Rewriting in Matching Logic

Outline

First Session (Matching Logic)

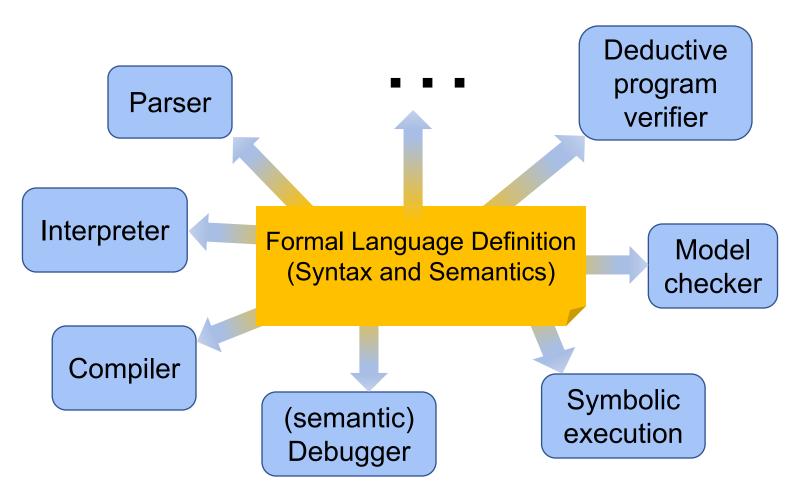
- Ideal Language Framework Vision
- Matching Logic Syntax and Semantics
- Basic Matching Logic Theories
- Matching Logic Theory of Transition Systems
- Matching Logic Proof System

Second Session (Rewriting in Matching Logic)

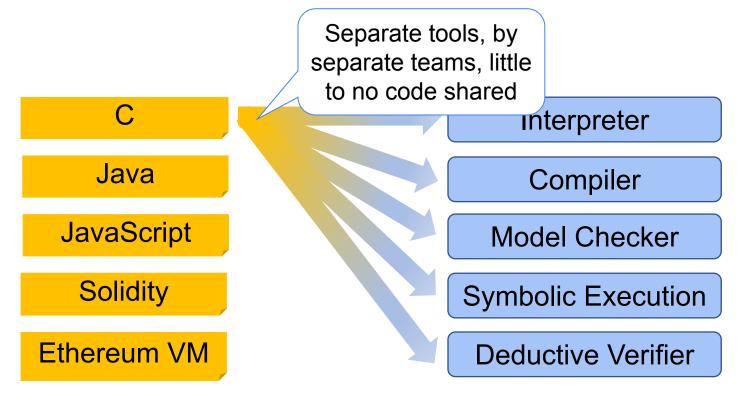
- First-Order Term Unification & Anti-Unification: A Review
- First-Order Term Unification & Anti-Unification in Matching Logic
- Rewriting and Narrowing in Matching Logic

Session 1: Matching Logic

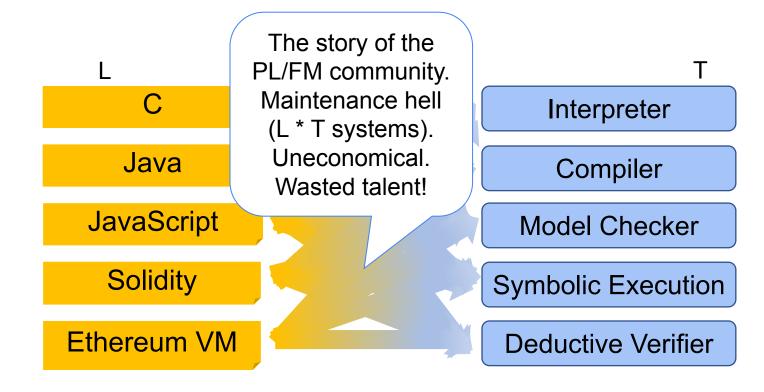
Ideal Language Framework Vision



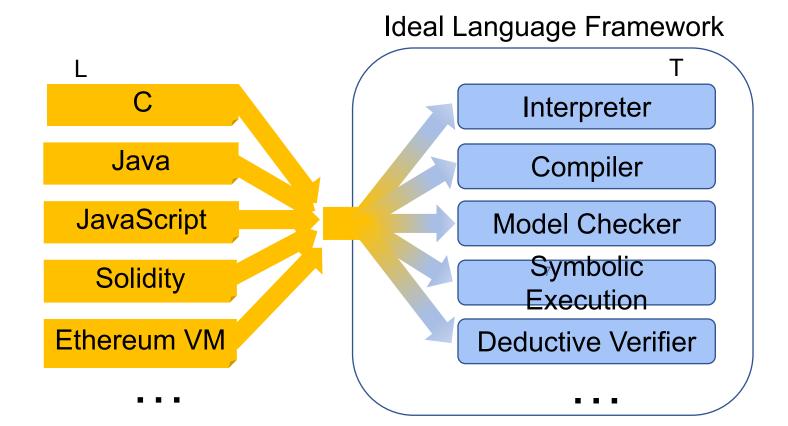
Current State-of-the-Art - Sharp Contrast to Ideal Vision -



Current State-of-the-Art - Sharp Contrast to Ideal Vision -



How It Should Be



K Framework http://kframework.org

- We tried various semantic styles, for >17y and >100 top-tier conference and journal papers:
 - Small-/big-step SOS; Evaluation contexts; Abstract machines (CC, CK, CEK, SECD, ...); Chemical abstract machine; Axiomatic; Continuations; Denotational;...
- But each of the above had limitations
 - Especially related to modularity, notation, verification
- K framework initially *engineered*: keep advantages and avoid limitations of various semantic styles
- Then theory was developed: matching logic

Matching Logic is the Logical Foundation of K

К	Matching Logic
PL formal definitions (java.k)	Logical theories (Γ^{Java})
• PL syntax	Constructors and terms
• PL semantics and K rewrite rules	Rewrite axioms
Formal properties of programs	Logical formulas
A language task conducted by K	A proof obligation $\Gamma^{\text{Java}} \vdash \varphi_{\text{task}}$
K does it right!	$\Gamma^{\text{Java}} \vdash \varphi_{\text{task}}$ has a proof object that can be quickly checked by a proof checker (245 LOC)

Outline

- Ideal Language Framework and K
- Matching Logic Syntax
- Matching Logic Semantics
- Basic Matching Logic Theories
- Transition Systems Defined in Matching Logic
- Matching Logic Proof System
- Reading Materials

Definition (Patterns)

Let Σ be a set of (constant) symbols, called *signature*. The set of Σ -*patterns* is defined by the following **8** constructs:

$$\varphi ::= x \mid X \mid \sigma \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x. \varphi \mid \mu X. \varphi$$

- *x*, *y*, *z*, ... denote *element variables*
- *X*, *Y*, *Z*, ... denote set variables
- σ is a symbol in Σ
- $\varphi_1 \varphi_2$ is a binary *application* operation

Definition (Patterns)

Let Σ be a set of (constant) symbols, called *signature*. The set of Σ -patterns is defined by the following **8** constructs:

 $\varphi ::= x \mid X \mid \sigma \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x. \varphi \mid \mu X. \varphi$

- \perp and $\varphi_1 \rightarrow \varphi_2$ are propositional connectives
- $\exists x. \varphi$ is existential quantification
- $\mu X. \varphi$, called *least fixpoint pattern*, requires that φ has no negative occurrences of X

Common Notation

The following derived constructs are defined as notations:

- $\neg \varphi \equiv \varphi \rightarrow \bot$
- $\top \equiv \neg \bot$
- $\varphi_1 \lor \varphi_2 \equiv \neg \varphi_1 \rightarrow \varphi_2$
- $\varphi_1 \wedge \varphi_2 \equiv \neg \varphi_1 \wedge \neg \varphi_2$
- $\varphi_1 \leftrightarrow \varphi_2 \equiv (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1)$
- $\forall x. \varphi \equiv \neg \exists x. \neg \varphi$
- $\nu X. \varphi \equiv \neg \mu X. \neg \varphi [\neg X/X]$

// standard definition of greatest fixpoints

Definition (Free Variables)

In matching logic, $\exists x$ and μX are *binders*. Therefore:

- $FreeVars(x) = \{x\}$
- $FreeVars(X) = \{X\}$
- $FreeVars(\sigma) = \emptyset$
- $FreeVars(\varphi_1 \varphi_2) = FreeVars(\varphi_1) \cup FreeVars(\varphi_2)$
- $FreeVars(\bot) = \emptyset$
- $FreeVars(\varphi_1 \rightarrow \varphi_2) = FreeVars(\varphi_1) \cup FreeVars(\varphi_2)$
- $FreeVars(\exists x. \varphi) = FreeVars(\varphi) \setminus \{x\}$
- $FreeVars(\mu X. \varphi) = FreeVars(\varphi) \setminus \{X\}$

Example (Variable Capture)
This is wrong:

$$(\exists y. (x \rightarrow y))[y/x] \equiv \exists y. ((x \rightarrow y)[y/x]) \equiv \exists y. (y \rightarrow y)$$

This is correct:
 $(\exists y. (x \rightarrow y))[y/x] \equiv (\exists z. (x \rightarrow z))[y/x] \equiv \exists z. (y \rightarrow z)$

It is called *capture-avoiding substitution*, where bound variables are renamed to prevent variable capture.

Definition (Capture-Avoiding Substitution)

Let $\varphi[\psi/x]$ be the result of substituting ψ for x in φ :

- $x[\psi/x] \equiv \psi$
- $y[\psi/x] \equiv y$ if y distinct from x
- $\sigma[\psi/x] \equiv \sigma$
- $(\varphi_1\varphi_2)[\psi/x] \equiv (\varphi_1[\psi/x])(\varphi_2[\psi/x])$
- $\perp [\psi/x] \equiv \perp$
- $(\varphi_1 \rightarrow \varphi_2)[\psi/x] \equiv (\varphi_1[\psi/x]) \rightarrow (\varphi_2[\psi/x])$
- $(\exists x. \varphi)[\psi/x] \equiv \exists x. \varphi$
- $(\exists y. \varphi)[\psi/x] \equiv \exists z. (\varphi[z/y][\psi/x])$ where z is fresh
- $(\mu Y. \varphi)[\psi/x] \equiv \mu Z. (\varphi[Z/Y][\psi/x])$ where Z is fresh

Definition (Capture-Avoiding Substitution)

Similarly, $\varphi[\psi/X]$ is the result of substituting ψ for X in φ .

Summary

- Syntax of patterns (very simple!)
- Common notations ($\neg \varphi, \varphi_1 \land \varphi_2$, etc.)
- Free variables and capture-avoiding substitution

Next

• Models & semantics of patterns

Definition (Models)

Let Σ be a signature. A Σ -model M is a tuple $(M, @_M, \{\sigma_M\}_{\{\sigma \in \Sigma\}})$

- a nonempty *carrier set M*
- an *application function* $@_M : M \times M \to \mathcal{P}(M)$
- a symbol interpretation $\sigma_M \subseteq M$ for every $\sigma \in \Sigma$

Unlike FOL, matching logic adopts a *powerset interpretation*. E.g.,

- In FOL: $@_M: M \times M \to M$
- In matching logic: $@_M : M \times M \to \mathcal{P}(M)$

Example (Applicative Structures)

An *applicative structure* A is a pair $(A, @_A)$

- a nonempty carrier set A
- an application function $@_A: A \times A \rightarrow A$ We can regard A as a matching logic model.
- Let signature $\Sigma = \emptyset$
- Let carrier set M = A
- Let $a @_M b = \{a @_A b\}$ for all $a, b \in A$

Example (Combinatory Algebras)

A combinatory algebra A is a tuple $(A, @_A, k_A, s_A)$

- $(A, @_A)$ is an applicative structure
- $k_A, s_A \in A$
- $k_A @_A a @_A b = a$ for all $a, b \in A$
- $s_A @_A a @_A b @_A c = (a @_A c) @_A (b @_A c)$ for all $a, b, c \in A$ We can regard A as a matching logic model.
- Let signature $\Sigma = \{k, s\}$ and carrier set M = A
- Let symbol interpretations $k_M = \{k_A\}$ and $s_M = \{s_A\}$
- Let $a @_M b = \{a @_A b\}$ for all $a, b \in A$

- Matching logic adopts a *powerset interpretation*
- FOL adopts a *functional interpretation*
 - which is a special case
- One-to-one correspondence between a and {a}

Pattern Matching Semantics of Matching Logic

- A pattern φ is evaluated to a *set*
 - a set that includes the elements that *match* it

Definition (Variable Valuations)

Given a model M, a variable valuation ρ is a mapping

- $\rho(x) \in M$ for all element variables x
- $\rho(X) \subseteq M$ for all set variables X

Definition (Semantics)

Given M and ρ , a pattern φ is evaluated to a set $|\varphi|_{M,\rho} \subseteq M$.

Definition (Semantics)

Given M and ρ , a pattern φ is evaluated to a set $|\varphi|_{M,\rho} \subseteq M$.

- $\bullet \quad |x|_{M,\rho} = \{\rho(x)\}$
- $|X|_{M,\rho} = \rho(X)$
- $|\sigma|_{M,\rho} = \sigma_M$
- $|\varphi_1 \varphi_2|_{M,\rho} = \bigcup_{a_1 \in |\varphi_1|_{M,\rho}, a_2 \in |\varphi_2|_{M,\rho}} a_1 @_M a_2$
- $|\perp|_{M,\rho} = \emptyset$
- $|\varphi_1 \to \varphi_2|_{M,\rho} = M \setminus (|\varphi_1|_{M,\rho} \setminus |\varphi_2|_{M,\rho})$
- $|\exists x. \varphi|_{M,\rho} = \bigcup_{a \in M} |\varphi|_{M,\rho[a/x]}$
- $|\mu X. \varphi|_{M,\rho} = \mathbf{lfp} \left(A \mapsto |\varphi|_{M,\rho[A/X]} \right)$

Semantics of Application $\varphi_1 \ \varphi_2$

• $|\varphi_1 \varphi_2|_{M,\rho} = \bigcup_{a_1 \in |\varphi_1|_{M,\rho}, a_2 \in |\varphi_2|_{M,\rho}} a_1 @_M a_2$

Pointwisely extend $@_M: M \times M \to \mathcal{P}(M)$ from elements to sets

•
$$\overline{@}_M : \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M)$$

• $A_1 \overline{@_M} A_2 = \bigcup_{a_1 \in A_1, a_2 \in A_2} a_1 @_M a_2$ for all $A_1, A_2 \subseteq M$

Simplified: $|\varphi_1 \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \overline{@_M} |\varphi_2|_{M,\rho}$

Semantics of Propositional connectives \perp and $\varphi_1 \rightarrow \varphi_2$

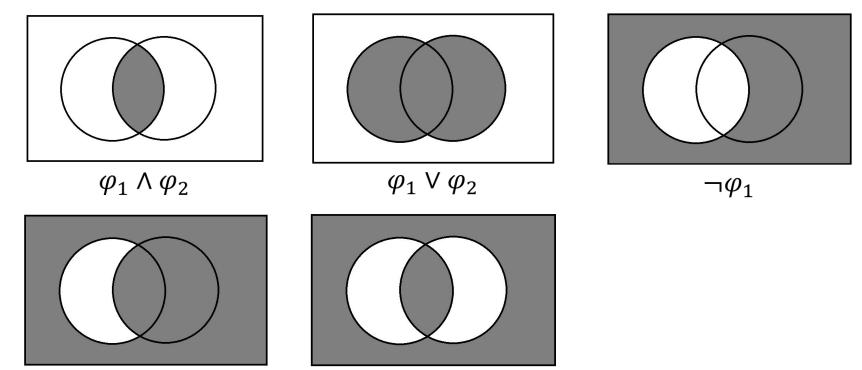
- $|\perp|_{M,\rho} = \emptyset$
- $|\varphi_1 \to \varphi_2|_{M,\rho} = M \setminus (|\varphi_1|_{M,\rho} \setminus |\varphi_2|_{M,\rho})$

Propositional Connectives = Set Operations

• $|\mathsf{T}|_{M,\rho} = M$

•
$$|\neg \varphi|_{M,\rho} = M \setminus |\varphi|_{M,\rho}$$

- $|\varphi_1 \wedge \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \cap |\varphi_2|_{M,\rho}$
- $|\varphi_1 \vee \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \cup |\varphi_2|_{M,\rho}$
- $|\varphi_1 \leftrightarrow \varphi_2|_{M,\rho} = M \setminus (|\varphi_1|_{M,\rho} \Delta |\varphi_2|_{M,\rho})$ // set symmetric difference



 $\varphi_1 \rightarrow \varphi_2$

 $\varphi_1 \leftrightarrow \varphi_2$

Semantics of $\exists x. \varphi$ and $\forall x. \varphi$

- $|\exists x. \varphi|_{M,\rho} = \bigcup_{a \in M} |\varphi|_{M,\rho[a/x]}$
- $|\forall x. \varphi|_{M,\rho} = \bigcap_{a \in M} |\varphi|_{M,\rho[a/x]}$ Intuitively

$$// \forall x. \varphi \equiv \neg \exists x. \neg \varphi$$

- $\exists x. \varphi$ means $\varphi[a_1/x] \lor \varphi[a_2/x] \lor \varphi[a_3/x] \lor \cdots$
- $\forall x. \varphi \text{ means } \varphi[a_1/x] \land \varphi[a_2/x] \land \varphi[a_3/x] \land \cdots$

Example

- $|\exists x. x|_{M,\rho} = \bigcup_{a \in M} |x|_{M,\rho[a/x]} = \bigcup_{a \in M} \{a\} = M$
- $|\forall x. x|_{M,\rho} = \bigcap_{a \in M} |x|_{M,\rho[a/x]} = \bigcap_{a \in M} \{a\} = \emptyset \text{ or } M$

Semantics of $\mu X. \varphi$ and $\nu X. \varphi$

- $|\mu X. \varphi|_{M,\rho} = \mathbf{lfp} \left(A \mapsto |\varphi|_{M,\rho[A/X]} \right)$
- $|\nu X. \varphi|_{M,\rho} = \mathbf{gfp} \left(A \mapsto |\varphi|_{M,\rho[A/X]} \right)$

Theorem (Knaster-Tarski)

Let $\mathcal{F}: \mathcal{P}(M) \to \mathcal{P}(M)$ be a *monotone function* (w.r.t. " \subseteq "). Then \mathcal{F} has the least/greatest fixpoints, given as follows:

- **Ifp** $\mathcal{F} = \bigcap \{ A \subseteq M \mid \mathcal{F}(A) \subseteq A \}$
- **gfp** $\mathcal{F} = \bigcup \{ A \subseteq M \mid A \subseteq \mathcal{F}(A) \}$

Proposition

Since φ has no negative occurrences of X, the following function $\mathcal{F}(A) = |\varphi|_{M,\rho[A/X]}$

is a monotone function (w.r.t. " \subseteq ").

Proposition

The semantics of $\mu X. \varphi$ is well-defined. In particular,

- $|\mu X. \varphi|_{M,\rho} = \bigcap \{ A \subseteq M \mid |\varphi|_{M,\rho[A/X]} \subseteq A \}$
- $|\nu X. \varphi|_{M,\rho} = \bigcup \{ A \subseteq M \mid A \subseteq |\varphi|_{M,\rho[A/X]} \}$

Matching logic has a pattern matching semantics.

FOL

- Terms are interpreted as elements
- Formulas are interpreted as true/false Matching Logic
- No distinction between terms and formulas
- Patterns are interpreted as subsets
- FOL functional interpretation is a special case

Truth Values in Matching Logic

- ⊤ and ⊥
- Semantically, M (the total carrier set) and \emptyset (the empty set)
- Since *M* is nonempty, we won't confuse \top and \bot

Definition (Validity)

Given a pattern set Γ , called a *theory*. For a model M, we write $M \models \Gamma$ if for all axioms $\psi \in \Gamma$, $|\psi|_{M,\rho} = M$ for all valuations ρ .

Example

A combinatory algebra A is a tuple $(A, @_A, k_A, s_A)$

- $k_A @_A a @_A b = a$ for all $a, b \in A$
- $s_A @_A a @_A b @_A c = (a @_A c) @_A (b @_A c)$ for all $a, b, c \in A$ We can regard A as a matching logic model. Then,
- $A \models kxy \leftrightarrow x$
- $A \models sxyz \leftrightarrow (xz)(yz)$

Summary

- Models, powerset interpretation
- Pattern matching semantics
- Matching logic theories and validity

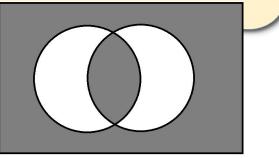
Next

Basic matching logic theories

Theory of Equality

Goal

- To define equality in matching logic
- $\varphi_1 = \varphi_2$
- T, if φ_1 and φ_2 are matched by the same elements
- ⊥, otherwise
- Note that it is not $\varphi_1 \leftrightarrow \varphi_2$



 $\varphi_1 \leftrightarrow \varphi_2$

Theory of Equality

Definition (Definedness)

Let $[_] \in \Sigma$ be a symbol, called *definedness*. We write $[\phi]$ for $[_] \phi$. Add one axiom:

(DEFINEDNESS) $\forall x. [x]$

- Intuitively, $\left[\varphi
 ight]$ states that φ is matched by some elements
 - i.e., is defined (i.e., not \perp)
- [x] is T, because x is matched by one element
- [⊥] is ⊥
- $[\varphi]$ is T, if φ is not \bot // nonempty-ness checking

Proposition (Definedness) For $M \models (DEFINEDNESS)$ the follow

For $M \models$ (DEFINEDNESS), the following hold:

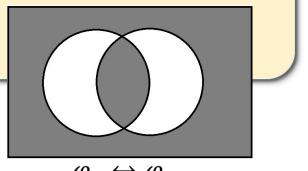
•
$$|[\varphi]|_{M,\rho} = M$$
 if $|\varphi|_{M,\rho} \neq \emptyset$

•
$$|[\varphi]|_{M,\rho} = \emptyset$$
 if $|\varphi|_{M,\rho} = \emptyset$

- Totality, the dual of definedness
- $[\varphi] \equiv \neg[\neg \varphi]$, states that φ is *total* (i.e., it is \top)
- $|[\varphi]|_{M,\rho} = M$ if $|\varphi|_{M,\rho} = M$
- $|[\varphi]|_{M,\rho} = \emptyset$ if $|\varphi|_{M,\rho} \neq M$

From definedness $[\varphi]$ and totality $[\varphi]$, we can define equality $\varphi_1 = \varphi_2$ and many others derived constructs.

- $\varphi_1 \leftrightarrow \varphi_2$ is the complement of set difference between φ_1 and φ_2
- Thus, $\varphi_1 = \varphi_2$ iff $\varphi_1 \leftrightarrow \varphi_2$ is total
- Thus, let $\varphi_1 = \varphi_2 \equiv [\varphi_1 \leftrightarrow \varphi_2]$



Proposition (Equality)

For $M \models$ (DEFINEDNESS), the following hold:

•
$$|\varphi_1 = \varphi_2|_{M,\rho} = M$$
 if $|\varphi_1|_{M,\rho} = |\varphi_2|_{M,\rho}$

•
$$|\varphi_1 = \varphi_2|_{M,\rho} = \emptyset$$
 if $|\varphi_1|_{M,\rho} \neq |\varphi_2|_{M,\rho}$

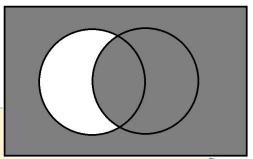
- $\varphi_1 = \varphi_2$ is *true* equality (not a congruence)
- Defined *within* logic by axioms/theories (not an extension)

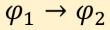
Besides equality, we can also define:

- Membership $x \in \varphi \equiv [x \land \varphi]$
- Subset relation $\varphi_1 \subseteq \varphi_2 \equiv [\varphi_1 \rightarrow \varphi_2]$
- Functional patterns (i.e., terms) $\exists z. (\varphi = z)$

Axiom (DEFINEDNESS) also gives us equational deduction

• Using the matching logic proof system (discussed later)





A sort has a sort name and an inhabitant set

- sort name is *Nat*
- inhabitant set is {0,1,2, ... }

Define an *inhabitant symbol* \llbracket_{-} $\rrbracket \in \Sigma$.

Use a symbol s to represent a sort name. Use [s] to represent the inhabitant set.

Example (Natural Numbers)

- *Nat* represents the sort
- zero and succ represent 0 and the successor function
- (ZERO) $\exists z. z \in [[Nat]] \land zero = x$
- (SUCC) $\forall x. x \in [[Nat]] \rightarrow \exists z. z \in [[Nat]] \land (succ \ x = z)$
- (NAT) $[[Nat]] = \mu D. zero \lor (succ D)$

Notation (Sorted Quantification)

- (ZERO) $\exists z: Nat. zero = x$
- (SUCC) $\forall x: Nat. \exists z: Nat. succ x = z$

Example (Natural Numbers)

• (NAT) $\llbracket Nat \rrbracket = \mu D. zero \lor (succ D)$

- *[[Nat]*] satisfies *[[Nat]*] = zero ∨ (succ *[[Nat]*])
- [Nat] is the smallest such set (least fixpoint μ)

- Axiom (NAT) also gives us inductive reasoning
 - The Peano induction proof rule is derivable from (NAT)

- To state that f is a function from s_1, \dots, s_n to s $\forall x_1: s_1 \dots \forall x_n: s_n. \exists y: s. f \ x_1 \dots x_n = s$ $f: s_1 \times \dots \times s_n \to s$
- To state that f is a *partial* function from $s_1, ..., s_n$ to s $\forall x_1: s_1 ... \forall x_n: s_n. \exists y: s. f \ x_1 \ ... \ x_n \subseteq s$

• To state that s_1 is a subsort of s_2 $\llbracket s_1 \rrbracket \subseteq \llbracket s_2 \rrbracket$

- Flexible to capture complex sort structures
 - subsorts, parametric sorts, dependent types/sorts, ...

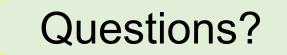
Basic Matching Logic Theories

Summary

- Theory of definedness and equality
- Theory of sorts
- Some axioms about natural numbers

Next

• Theory of transition systems and rewriting



Definition (Transition Systems)

A transition system consists of

- A set *S* of *states*
- A binary *transition relation* $R \subseteq S \times S$

- If $(s, s') \in R$, s' is a *next state* of s; s is a *previous state* of s'
- *s* is a *terminating* state if it has no next states
- *s* is a *well-founded* state if it has no infinite traces

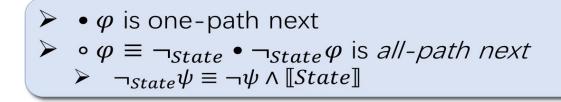
- Let *State* be the sort of states in *S*
- Let $\bullet \in \Sigma$ be a symbol, called *one-path next*

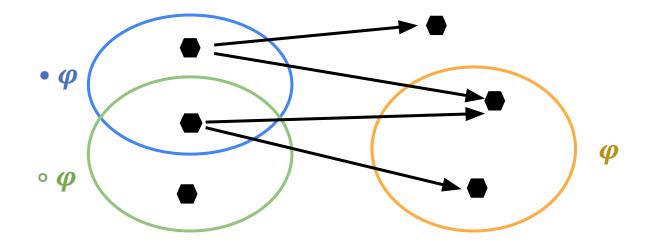
• Intuitively, • φ is matched by states whose *next states* match φ

$$s \xrightarrow{R} s' \xrightarrow{R} s'' \xrightarrow{R} s'' \xrightarrow{R} s''' // \text{ states in } S$$

••• $\varphi \quad \bullet \phi \quad \bullet \phi \quad \phi \quad \eta$ // patterns

One-Path Next and All-Path Next





From one-path next, we can define temporal operations

- $\succ \quad \bullet \varphi$, one-path next
- \succ φ , all-path next
- T, non-terminating states (has next states)
- •⊥, terminating states (has no next states)
- \blacktriangleright •• φ , reaches φ in 2 steps

$$\diamond \varphi \equiv \mu X. \ \varphi \lor \bullet X, \text{ eventually } \varphi$$

- $\blacktriangleright \quad \Box \varphi \equiv \nu X \cdot \varphi \land \circ X, \text{ always } \varphi$
- $\blacktriangleright \quad \varphi_1 \ U \ \varphi_2 \equiv \mu X. \ \varphi_2 \lor (\varphi_1 \land \bullet X), \ \text{``until''}$
- \blacktriangleright WF $\equiv \mu X. \circ X$, well-founded states

From one-path next, we can define *temporal axioms*

- (FIN) $\forall s: State. s \in WF$
- (LIN) $\forall s: State. \bullet s \rightarrow \circ s$
- (INF) $\forall s: State. s \in \bullet \top$

Theorem (*Matching* µ*-Logic* [LICS 2019]**)**

- Linear temporal logic (LTL) is (LIN) + (INF).
- Finite-trace LTL is (LIN) + (FIN).
- Computation tree logic (CTL) is (INF).
- Modal μ -calculus is the empty theory over "•".

From one-path next, we can define *rewriting* $\Rightarrow \varphi_1 \Rightarrow^1 \varphi_2 \equiv \varphi_1 \rightarrow \cdot \cdot \varphi_2$ // one-step rewriting $\Rightarrow \varphi_1 \Rightarrow \varphi_2 \equiv \varphi_1 \rightarrow \diamond \varphi_2$ // zero or more step(s) rewriting $\Rightarrow \varphi_1 \Rightarrow^+ \varphi_2 \equiv \varphi_1 \rightarrow \cdot \diamond \varphi_2$ // one or more steps rewriting

Summary

- One-path next
- Other temporal operations as derived constructs
- Axioms (LIN), (FIN), (INF)
- Rewriting $\varphi_1 \Rightarrow \varphi_2 \equiv \varphi_1 \rightarrow \Diamond \varphi_2$ Next
- Matching logic proof system

Matching Logic Proof System

- A Hilbert proof system
- 13 proof rules
- Simple

- $\Gamma \vdash \varphi$
- φ can be proved, with additional axioms in Γ

FOL Reasoning

Frame Reasoning

Fixpoint Reasoning

Technical Rules

(Dream a siti and Tout ale stra)	if a is a tautal and and a star
(Propositional Tautology)	φ if φ is a tautology over patterns
	$\varphi_1 \varphi_1 \rightarrow \varphi_2$
(Modus Ponens)	φ_2
(∃-Quantifier)	$\varphi[y/x] \to \exists x. \varphi$
	$\varphi_1 \rightarrow \varphi_2$ is a product of
(∃-Generalization)	$\frac{\varphi_1 \to \varphi_2}{(\exists x.\varphi_1) \to \varphi_2} \text{ if } x \notin FV(\varphi_2)$
(Propagation $_{\perp}$)	$C[\bot] \rightarrow \bot$
(110pagation_)	
(Propagation $_{\vee}$)	$C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$
(Propagation \exists)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ if } x \notin FV(C)$
	$\varphi_1 \rightarrow \varphi_2$
(Framing)	$C[\varphi_1] \to C[\varphi_2]$
	φ
(Set Variable Substitution)	$\varphi[\psi/X]$
(PreFixpoint)	$\varphi[(\mu X. \varphi)/X] \to \mu X. \varphi$
	$\varphi[\psi/X] \to \psi$
(Knaster-Tarski)	$\frac{\mu X. \varphi \to \psi}{\mu X. \varphi \to \psi}$
(Existence)	$\exists x. x$
(Singleton)	$\neg \left(C_1[x \land \varphi] \land C_2[x \land \neg \varphi] \right)$

FOL Reasoning

(Propositional Tautology)	φ if φ is a tautology over patterns
	$\varphi_1 \varphi_1 \rightarrow \varphi_2$
(Modus Ponens)	$arphi_2$
(∃-Quantifier)	$\varphi[y/x] \to \exists x. \varphi$
	$\frac{\varphi_1 \to \varphi_2}{\varphi_1 \to \varphi_2} \text{ if } r \notin FV(\varphi_2)$
(∃-Generalization)	$\frac{\varphi_1 \to \varphi_2}{(\exists x.\varphi_1) \to \varphi_2} \text{ if } x \notin FV(\varphi_2)$

- Standard FOL proof rules
- Sound w.r.t. the powerset interpretation

(Propagation $_{\perp}$)	$C[\bot] \to \bot$
(Propagation $_{\vee}$)	$C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$
(Propagation \exists)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ if } x \notin FV(C)$
(European in a)	$\frac{\varphi_1 \to \varphi_2}{C[z_1] \to C[z_2]}$
(Framing)	$C[\varphi_1] \to C[\varphi_2]$

Definition (Application Contexts)

A *context* C is a pattern with one placeholder variable \Box .

We write $C[\psi] \equiv C[\psi/\Box]$ for *context plugging*

C is an *application context*, if from root to \Box there are only applications

(Propagation $_{\perp}$)	$C[\bot] \to \bot$
(Propagation $_{\vee}$)	$C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$
(Propagation \exists)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ if } x \notin FV(C)$
	$\varphi_1 o \varphi_2$
(Framing)	$C[\varphi_1] \to C[\varphi_2]$

Semantically, frame reasoning = the pointwise extension of applications $|\varphi_1 \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \overline{@_M} |\varphi_2|_{M,\rho}$

(Propagation $_{\perp}$)	$C[\bot] \to \bot$
(Propagation $_{\vee}$)	$C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$
(Propagation \exists)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ if } x \notin FV(C)$
	$\varphi_1 \rightarrow \varphi_2$
(Framing)	$C[\varphi_1] \rightarrow C[\varphi_2]$

(Framing) can be generalized to any positive contexts C

- E.g., $\vdash \varphi_1 \rightarrow \varphi_2$ implies $\vdash \bullet \varphi_1 \rightarrow \bullet \varphi_2$
- Also implies $\vdash \diamond \varphi_1 \rightarrow \diamond \varphi_2$, because $\diamond \varphi \equiv \mu X. \varphi \lor \bullet X$ is positive w.r.t. φ

(Propagation $_{\perp}$)	$C[\bot] \to \bot$
(Propagation $_{\vee}$)	$C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$
(Propagation _{\exists})	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ if } x \notin FV(C)$
	$\varphi_1 ightarrow \varphi_2$ do reasoning logically
(Framing)	$C[\varphi_1] \rightarrow C[\varphi_2]$ then generalize it to larger contexts

- (Framing) is natural in terms of semantics
- (Framing) works for both structures and dynamic relations
- Allows us to bring local reasoning to the top; very useful in practice

	φ
(Set Variable Substitution)	$\varphi[\psi/X]$
(PreFixpoint)	$\varphi[(\mu X.\varphi)/X] \to \mu X.\varphi$
	$\varphi[\psi/X] \to \psi$
(Knaster-Tarski)	$\mu X. \varphi \to \psi$

- Standard fixpoint proof rules as in modal μ -calculus
- (Fixpoint) $\varphi[(\mu X. \varphi)/X] \leftrightarrow \mu X. \varphi$
- " \rightarrow " is (PreFixpoint)
- "←" is derivable from (Knaster Tarski), shown later

	φ	
(Set Variable Substitution)	$\varphi[\psi/X]$	
(PreFixpoint)	$\varphi[(\mu X. \varphi)/X] -$	$\rightarrow \mu X. \varphi$
	$\varphi[\psi/X] \to \psi$	if $oldsymbol{\psi}$ is a prefixpoint
(Knaster-Tarski)	$\mu X. \varphi \to \psi$	then the lfp is smaller than

- (Knaster Tarski) is a direct encoding of the Knaster-Tarski Fixpoint Theorem
- $|\mu X. \varphi|_{M,\rho} = \bigcap \{ A \subseteq M \mid |\varphi|_{M,\rho[A/X]} \subseteq A \}$
- Now, take A be (the evaluation of) ψ

Example (Prove $\vdash (\mu X. \varphi) \rightarrow \varphi[(\mu X. \varphi)/X]$)

- 1. $\vdash \varphi[\varphi[(\mu X. \varphi)/X]/X] \rightarrow \varphi[(\mu X. \varphi)/X]$
- 2. φ is a positive context w.r.t. X
- 3. $\vdash \varphi[(\mu X. \varphi)/X] \rightarrow \mu X. \varphi$ // (Framing)

4. This is (PreFixpoint), QED

(PreFixpoint) $\varphi[(\mu X. \varphi)/X] \rightarrow \mu X. \varphi$ (Knaster-Tarski) $\frac{\varphi[\psi/X] \rightarrow \psi}{\mu X. \varphi \rightarrow \psi}$

(Knaster Tarski) gives the principle of induction.

- $\llbracket Nat \rrbracket = \mu D. zero \lor (succ D)$ $\underline{zero \rightarrow \Psi} (succ \Psi) \rightarrow \Psi$ (Knaster-Tarski) $\llbracket Nat \rrbracket \rightarrow \Psi$
- This is Peano induction. To prove all natural numbers satisfy Ψ
 - 1. Prove that *zero* satisfies Ψ
 - 2. Prove that if n satisfies Ψ , so does (succ n)

Technical Rules

(Existence)	$\exists x. x$
(Singleton)	$\neg \left(C_1[x \land \varphi] \land C_2[x \land \neg \varphi] \right)$

Theorem (Completeness) In the fixpoint-free fragment, $\vDash \varphi$ implies $\vdash \varphi$.

- $|\exists x. x|_{M,\rho} = \bigcup_{a \in M} |x|_{M,\rho[a/x]} = \bigcup_{a \in M} \{a\} = M$
- Since x is one element, one of $x \land \varphi$ and $x \land \neg \varphi$ is \bot

Matching Logic Proof System

Theorem (Equational Deduction)

The following equational proof rules are derivable:

•
$$\vdash \varphi = \varphi$$

•
$$\vdash \varphi_1 = \varphi_2$$
 implies $\vdash \varphi_2 = \varphi_1$

•
$$\vdash \varphi_1 = \varphi_2$$
 and $\vdash \varphi_2 = \varphi_3$ imply $\vdash \varphi_1 = \varphi_3$

•
$$\vdash \varphi_1 = \varphi_2$$
 implies $\vdash C[\varphi_1] = C[\varphi_2]$

•
$$\vdash \varphi_1 = \varphi_2$$
 implies $\vdash \varphi_1[y/x] = \varphi_2[y/x]$

Matching Logic Proof System

FOL

Frame

Reasoning

Fixpoint

Reasoning

Technical

Rules

Reasoning

Summary

- A simple proof system
- 4 categories of rules

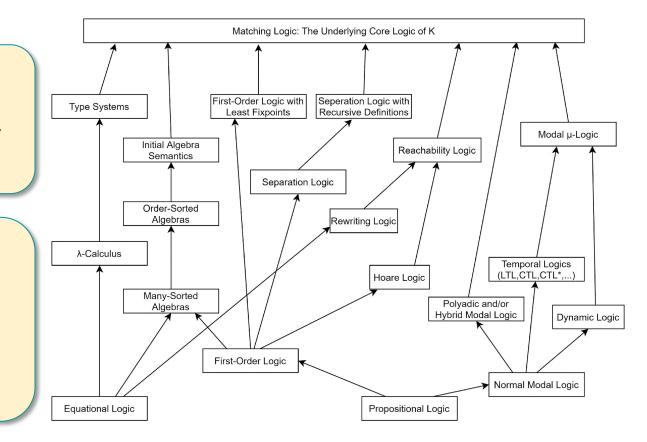
- A small proof checker
- Encode Γ ⊢ φ into a proof object

(Propositional Tautology) if φ is a tautology over patterns Q $\varphi_1 \quad \varphi_1 \rightarrow \varphi_2$ (Modus Ponens) φ_2 $\varphi[y/x] \to \exists x. \varphi$ $(\exists$ -Quantifier) $\frac{\varphi_1 \to \varphi_2}{(\exists x.\varphi_1) \to \varphi_2} \text{ if } x \notin FV(\varphi_2)$ (*∃*-Generalization) $(Propagation_{\perp})$ $C[\bot] \rightarrow \bot$ $C[\varphi_1 \lor \varphi_2] \to C[\varphi_1] \lor C[\varphi_2]$ (Propagation_{\vee}) (Propagation \exists) $C[\exists x. \varphi] \rightarrow \exists x. C[\varphi] \text{ if } x \notin FV(C)$ $\varphi_1 \rightarrow \varphi_2$ $C[\varphi_1] \rightarrow C[\varphi_2]$ (Framing) φ (Set Variable Substitution) $\varphi[\psi|X]$ (PreFixpoint) $\varphi[(\mu X, \varphi)/X] \to \mu X, \varphi$ $\varphi[\psi/X] \to \psi$ $\mu X. \varphi \rightarrow \psi$ (Knaster-Tarski) $\exists x. x$ (Existence) (Singleton) $\neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$

Matching Logic

- One logic
- One proof system
- One proof checker
- Many theories

- Use notations to handle encoding cost
- Use lemmas to handle reasoning cost



Reading List

Core Papers

- Matching Logic by G. Rosu, LMCS 2017
- Matching mu-Logic by X. Chen & G. Rosu, LICS 2019
- Matching Logic Explained by X. Chen, D. Lucanu & G. Rosu, JLAMP 2020

Defining transition systems

• Sec. 7&8 of Matching mu-Logic by X. Chen & G. Rosu, LICS 2019

Defining unification

• Unification in Matching Logic by A. Arusoaie & D. Lucanu, FM 2019

Defining type systems

• A General Approach to Define Binders using Matching Logic by X. Chen & G. Rosu, ICFP 2020

Defining initial algebra semantics

- Initial Algebra Semantics in Matching Logic by X. Chen, D. Lucanu & G. Rosu, TechRep (<u>http://hdl.handle.net/2142/107781</u>) 2020 Automated matching logic prover
- Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic by X. Chen et al., OOPSLA 2020 Matching logic proof checker
- Towards a Trustworthy Semantics-Based Language Framework via Proof Generation by X. Chen et al., CAV 2021

Session 2: Unification & Antiunification

Outline

- Introduction
- First-order Term Unification
- First-order Term Unification in Matching Logic
- First-order Term Anti-Unification
- First-order Term Anti-Unification in Matching Logic
- Conclusion

Motivation

The semantics of the programming languages is usually given by rule patterns of the form

 $t_i \wedge \phi_i \rightarrow \bullet(t'_i \wedge \phi'_i)$

where t_i, t'_i are term patterns and ϕ, ϕ'_i are predicate patterns (constraints). Example: $(\langle \text{if } (B) S_1 \text{ else } S_2 \rightsquigarrow S, \sigma \rangle \land \sigma(B) = true) \rightarrow \bullet \langle S_1 \rightsquigarrow S, \sigma \rangle$ $(\langle \text{if } (B) S_1 \text{ else } S_2 \rightsquigarrow S, \sigma \rangle \land \sigma(B) = false) \rightarrow \bullet \langle S_2 \rightsquigarrow S, \sigma \rangle$

Assume a language L defined by just two rules

$$t_1 \wedge \phi_1 \to \bullet(t'_1 \wedge \phi'_1)$$
$$t_2 \wedge \phi_2 \to \bullet(t'_2 \wedge \phi'_2)$$

• A symbolic step $t \land \phi \Rightarrow t' \land \phi'$ is characterized by the following properties:

$$(t \land \phi \land t_1 \land \phi_1) \lor (t \land \phi \land t_2 \land \phi_2) \to \circ (t' \land \phi') t' \land \phi' \to (t'_1 \land \phi'_1) \lor (t'_2 \land \phi'_2)$$

• The configuration $t' \wedge \phi'$ can be computed using (anti)unification algorithms.

Problem

- The (anti)unification algorithms work on the term algebra. We need an axiomatization of the term algebra in Matching Logic.
- A unification algorithm computes the most general unifier (mgu). We need to characterize the mgu in Matching Logic.
- An anti-unification algorithm computes the least general generalization (lgg).
 We need to characterize the lgg in Matching Logic.
- How to transform the execution of an algorithm into a ML proof?
- What is the minimal set of lemmas needed to handle the reasoning effort?

Term Algebra in ML (Example)

spec LISTofNAT Symbols : inh, Nat, List, zero, succ, nil, cons Notations : $\llbracket \varphi \rrbracket \equiv inh \varphi$ $\exists x: s. \varphi \equiv \exists x. x \in \llbracket s \rrbracket \land \varphi$ $\forall x: s. \varphi \equiv \forall x. x \in \llbracket s \rrbracket \to \varphi$ Axioms : (INDUCTIVE DOMAIN): $[Nat] = \mu N.zero \lor succ X$ $\llbracket List \rrbracket = \mu L.nil \lor cons \llbracket Nat \rrbracket L$ (FUNCTION): $\exists y.y \in \llbracket Nat \rrbracket \land zero = y,$ $\forall x.x \in \llbracket \mathsf{Nat} \rrbracket \to \exists y.y \in \llbracket \mathsf{Nat} \rrbracket \land \mathsf{succ} \ x = y;$ $\exists y.y \in \llbracket List \rrbracket \land nil = y,$ $\forall x.x \in [[Nat]] \land l \in [[List]] \rightarrow \exists y.y \in [[List]] \land cons \ x \ l = y$ (NoConfusion I): *zero* \neq *nil* $\forall x: Nat. \forall I: List. zero \neq cons \times I$ $\forall x: Nat. zero \neq succ x$ $\forall I: List.nil \neq succ x$ $\forall x: Nat. \forall I: List. nil \neq cons \times I$ $\forall n: Nat. \forall x: Nat. \forall I: List. succ \ n \neq cons \ x \ I$ $\forall x: Nat. \forall x': Nat. succ \ x = succ \ x' \rightarrow x = x'$ (NoConfusion II): $\forall x, x': Nat. \forall l, l': List. cons x l = cons x' l' \rightarrow x = x' \land l = l'$ endspec

LISTofNAT in Maude

fmod LISTofNAT is

sorts Nat List .

```
op zero : -> Nat [ctor] .
```

```
op succ : Nat -> Nat [ctor] .
```

op nil : -> List [ctor] .

```
op cons : Nat List -> List [ctor] .
```

endfm

Annotation semantics: ctor : No Confusion I + II + Inductive Domain (No Junk)

fmod-endfm (initial semantics): it is a consequence of the ML specification

Lemmas for handling the reasoning effort

Proof System = ML Proof System +

 $\begin{array}{lll} \exists \text{-Subst} & \exists z.t \land (z=u) \leftrightarrow t[u/z], \text{if } z \not\in var(u) \\ \\ \exists \text{-Gen} & z=(f\,\overline{t}) \leftrightarrow \exists \overline{y}.z=(f\,\overline{y}) \land \overline{y}=\overline{t}, \text{ if } \overline{y} \not\in var\big((f\,\overline{t})\big) \cup \{z\} \\ \\ \neg \text{Occrs} & (x=t) \leftrightarrow \bot, \text{if } x \in var(t) \end{array}$

Fig. 9: A particular set of proof rules used holding in term algebra. Here, \overline{t} is a placeholder for $t_1 \ldots t_n$, \overline{y} is a placeholder for $y_1 \ldots, y_n$, and $\overline{y} = \overline{t}$ stands for $\bigwedge_{i=1}^n y_i = t_i$.

3-Context	$\frac{\varphi_2 \leftrightarrow \varphi_2'}{\left(\exists \overline{x}.\varphi_1 \land \varphi_2\right) \leftrightarrow \exists \overline{x}.\varphi_1 \land \varphi_2'}$
3-Scope	$\left(\left(\exists \overline{x}.\varphi_1\right)\odot\varphi_2\right)\leftrightarrow\exists \overline{x}.\varphi_1\odot\varphi_2, \text{if } \overline{x}\not\in \textit{free}(\varphi_2)$
3-Collapse	$\left((\exists \overline{x}.\varphi_1) \lor (\exists \overline{x}.\varphi_2)\right) \leftrightarrow \exists \overline{x}.\varphi_1 \lor \varphi_2$

A particular set of derived proof rules used to generate certificates for anti-unification.

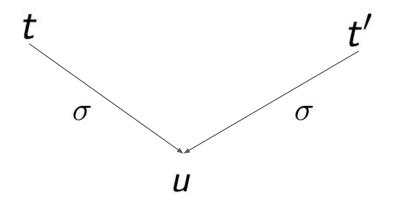
What's next

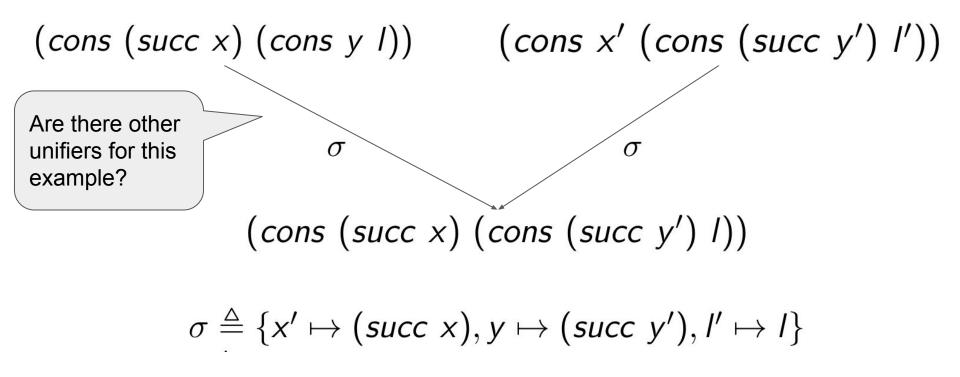
- Definitions
- Martelli-Montanari unification algorithm
- First-order Term Unification in Matching Logic
- First-order Term Anti-Unification
- First-order Term Anti-Unification in Matching Logic
- Conclusion

First-order term unification - Definitions

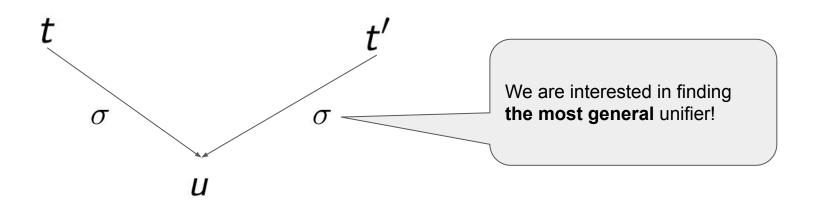
Definition

A substitution σ is a unifier of t and t' if $t\sigma = t'\sigma$





First-order term unification - Definitions



Definition

 σ is more general than η , written as $\sigma \leq \eta$, if there is a substitution θ such that $\sigma \theta = \eta$

First-order term unification - Unification problem

Unification problem = either $\{t_1 \doteq t'_1, \ldots, t_n \doteq t'_n\}$ or \dashv

{(cons (succ x) (cons y l)) \doteq (cons x' (cons (succ y') l'))}

{(succ x)
$$\doteq$$
 x', (cons y l) \doteq (cons (succ y') l')}

First-order term unification - Solved forms

Solved form: either \dashv

or:
$$\{x_1 \doteq u_1, \ldots, x_k \doteq u_k\}$$
, where $x_i \notin vars(u_j)$ and $x_i \neq x_j$,
 $i, j \in \{1, \ldots, k\}$

First-order term unification - Unification algorithm

Delete: Decomposition: Orient: Elimination: Symbol clash: Occurs check:

$$P \cup \{t \doteq t\} \Rightarrow P$$

$$P \cup \{(f t_1 \dots t_n) \doteq (f t'_1 \dots t'_n)\} \Rightarrow P \cup \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$$

$$P \cup \{(f t_1, \dots t_n) \doteq x\} \Rightarrow P \cup \{x \doteq (f t_1 \dots t_n)\}$$

$$P \cup \{x \doteq t\} \Rightarrow P\{x \mapsto t\} \cup \{x \doteq t\} \text{ if } x \notin vars(t), x \in vars(P)$$

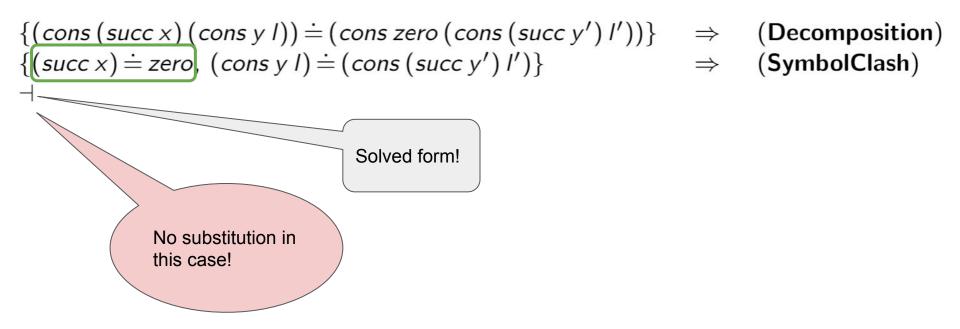
$$P \cup \{(f t_1 \dots t_n) \doteq (g t'_1 \dots t'_n)\} \Rightarrow \dashv$$

$$P \cup \{x \doteq (f t \dots t)\} \Rightarrow \dashv, \text{ if } x \in vars((f t \dots t))$$

Delete:	$P \cup \{t \doteq t\} \Rightarrow P$
Decomposition:	$P \cup \{(f t_1 \dots t_n) \doteq (f t'_1 \dots t'_n)\} \Rightarrow P \cup \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$
Orient:	$P \cup \{(f t_1, \ldots, t_n) \doteq x\} \Rightarrow P \cup \{x \doteq (f t_1, \ldots, t_n)\}$
Elimination:	$P \cup \{x = t\} \Rightarrow P\{x \mapsto t\} \cup \{x = t\} \text{ if } x \notin vars(t), x \in vars(P)$
Symbol clash:	$P \cup \{(f t_1 \ldots t_n) \doteq (g t'_1 \ldots t'_n)\} \Rightarrow \dashv$
Occurs check:	$P \cup \{x \doteq (f \ t \ \dots \ t)\} \Rightarrow \dashv$, if $x \in vars((f \ t \ \dots \ t))$

$$\{ (cons (succ x) (cons y l)) \doteq (cons x' (cons (succ y') l')) \} \Rightarrow (Decomposition) \\ \{ (succ x) \doteq x', (cons y l) \doteq (cons (succ y') l') \} \Rightarrow (Orient) \\ \{ x' \doteq (succ x), (cons y l) \doteq (cons (succ y') l') \} \Rightarrow (Decomposition) \\ \{ x' \doteq (succ x), y \doteq (succ y'), l \doteq l' \}$$

$$\{ (cons (succ x) (cons y l)) \doteq (cons x' (cons (succ y') l')) \} \Rightarrow (Decomposition) \\ \{ (succ x) \doteq x', (cons y l) \doteq (cons (succ y') l') \} \Rightarrow (Orient) \\ \{ x' \doteq (succ x), (cons y l) \doteq (cons (succ y') l') \} \Rightarrow (Decomposition) \\ \{ x' \doteq (succ x), y \doteq (succ y'), l \doteq l' \} \Rightarrow P' \\ \\ Solved form! \\ \sigma \triangleq \{ x' \mapsto (succ x), y \mapsto (succ y'), l \mapsto l' \}$$



Theorem (Martelli&Montanari)

Let P be a unification problem. Then :

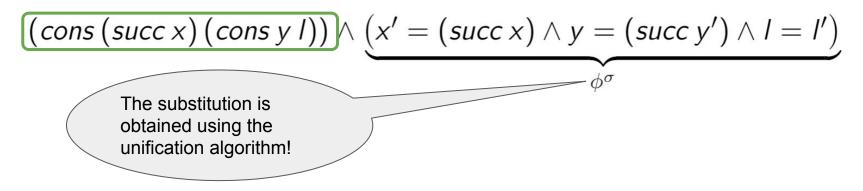
- 1. Progress: If P is not in solved form, then there exists P' such that $P \Rightarrow P'$;
- 2. Solution preservation: If $P \Rightarrow P'$ then unifiers(P) = unifiers(P');
- 3. Termination: There is no infinite sequence $P \Rightarrow P_1 \Rightarrow P_2 \Rightarrow \cdots$;
- 4. Most general unifier: If θ is a solution for P, then for any maximal sequence of transformations that starts with P and ends with P', either P' is \dashv or P' is in solved form and $\sigma_{P'} \leq \theta$. There is no solution for P iff P' is \dashv .

First-order term unification in Matching Logic

Semantic unification in ML = conjunction of term patterns

 $(cons(succ x)(cons y I))) \land (cons x'(cons(succ y') I'))$

GOAL: simplify such conjunctions



First-order term unification in Matching Logic

Definition
For each
$$P = \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$$
 we define $\phi^P = \bigwedge_{i=1}^n t_i = t'_i$.

Lemma

For all unification problems P and P', if $P \Rightarrow P'$ then $TERM(S, \Sigma) \models \phi^P \leftrightarrow \phi^{P'}$.

First-order term unification in Matching Logic

Lemma If $\{t_1 \doteq t_2\} \Rightarrow^! P$ then $TERM(S, \Sigma) \models (t_1 \land t_2) \leftrightarrow (t_i \land \phi^P)$, where $i \in \{1, 2\}$.

Soundness

Definition

Two term patterns t_1 and t_2 are unifiable (in ML) iff $TERM(S, \Sigma) \models [\exists \overline{x}.t_1 \land t_2]$, where $\overline{x} = vars(t_1 \land t_2)$. Consequently, the term patterns t_1 and t_2 are not unifiable iff $TERM(S, \Sigma) \models \neg [\exists \overline{x}.t_1 \land t_2]$.

Theorem (Soundness) If $\{t_1 \doteq t_2\} \Rightarrow^! P$ then the following hold: 1. If $P \neq \dashv$ then $TERM(S, \Sigma) \models \lceil \exists \overline{x}.t_1 \land t_2 \rceil;$ 2. If $P = \dashv$ then $TERM(S, \Sigma) \models \neg \lceil \exists \overline{x}.t_1 \land t_2 \rceil.$

Completeness

Definition

Two term patterns t_1 and t_2 are unifiable (in ML) iff $TERM(S, \Sigma) \models [\exists \overline{x}.t_1 \land t_2]$, where $\overline{x} = vars(t_1 \land t_2)$. Consequently, the term patterns t_1 and t_2 are not unifiable iff $TERM(S, \Sigma) \models \neg [\exists \overline{x}.t_1 \land t_2]$.

Theorem (Completeness)

Let t_1 and t_2 be two term patterns.

1. If $TERM(S, \Sigma) \models [\exists \overline{x}.t_1 \land t_2]$ then $\{t_1 \doteq t_2\} \Rightarrow P \neq \exists \overline{x}.t_1 \land t_2\}$

2. If $TERM(S, \Sigma) \models \neg [\exists \overline{x} \cdot t_1 \land t_2]$ then $\{t_1 \doteq t_2\} \Rightarrow ! \dashv$.

Certification

$TERM(S, \Sigma) \models (t_1 \land t_2) \leftrightarrow (t_i \land \phi^P)$

IDEA: derived proof rules that correspond to each step of the unification algorithm STEPS:

- Execute the unification algorithm on the input unification problem: $\{t_1 \doteq t_2\}$
- Obtain an execution trace, e.g., T = **Decomposition**, **Orientation**
- Based on the obtained trace generate a proof where each derived proof rule is replaced by its certificate schemata:

instance of the certificate schema for **Decomposition** instance of the certificate schema for **Orientation**

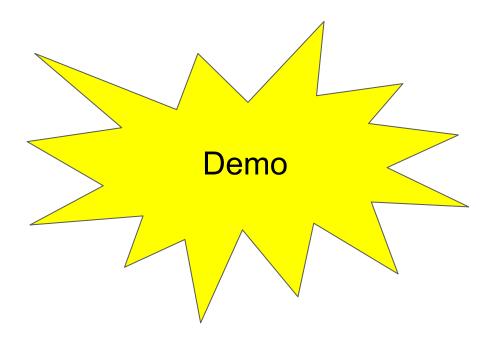
. . .

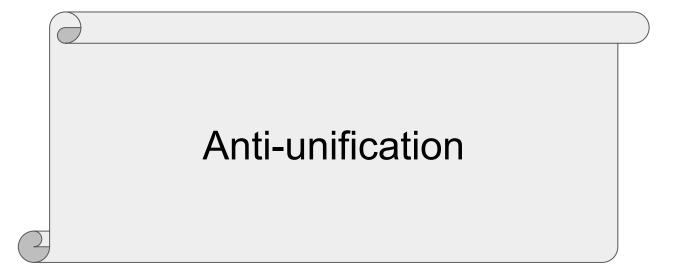
Certificate schemata for Decomposition

$$\begin{array}{ll} (\mathsf{k}) & \varphi \to \varphi' \land (f \ t_1 \ \dots \ t_n) = (f \ t'_1 \ \dots \ t'_n) \\ (\mathsf{k} + 1) & (f \ t_1 \ \dots \ t_n) = (f \ t'_1 \ \dots \ t'_n) \to (t_1 = t'_1) \land \dots \land (t_n = t'_n) \\ (\mathsf{k} + 2) & \varphi' \land (f \ t_1 \ \dots \ t_n) = (f \ t'_1 \ \dots \ t'_n) \to \varphi' \land (t_1 = t'_1) \land \dots \land (t_n = t'_n) \\ (\mathsf{k} + 3) & \varphi \to \varphi' \land (t_1 = t'_1) \land \dots \land (t_n = t'_n) \end{array}$$
 (premise) NoCONFUSION II
$$\begin{array}{l} \to \text{context: } \mathsf{k} + 1, \ \varphi' \\ \to \text{tranz: } \mathsf{k}, \ \mathsf{k} + 2 \end{array}$$

Certificate example Orientation Decomposition					
(1)	$(cons \times a) = (cons a z) \rightarrow (cons \times a) = ons a z)$	\rightarrow_{refl}			
(2)	$(cons \times a) = (cons a z) \rightarrow (a = z) \land (x = a)$	NoConfusion II			
(3)	$(cons \times a) = (cons a z) \rightarrow (a = z) \land (x + a)$	$\rightarrow_{context}$: 2			
(4)	$(cons \times a) = (cons a z) \rightarrow (a = z) \land (x = a)$	\rightarrow_{tranz} : 1, 3			
(5)	$(a = z) \rightarrow (z = a)$	= _{symmetry}			
(6)	$(a = z) \land (x = a) \rightarrow (x = a) \land (z = a)$	$\rightarrow_{context}$: 5			
(7)	$(cons \times a) = (cons a z) \rightarrow (x = a) \land (z = a)$	\rightarrow_{tranz} : 4, 6			
(8)	$(cons \times a) \land (cons \times a) = (cons a z) \rightarrow (cons \times a) \land (x = a) \land (z = a)$	$\rightarrow_{context}$: 7			
(9)	$(cons \ a \ z) \land (cons \ x \ a) \rightarrow (cons \ x \ a) \land ((cons \ x \ a) = (cons \ a \ z))$	PROPOSITION 9			
(10)	$(cons \ a \ z) \land (cons \ x \ a) \rightarrow (cons \ x \ a) \land (x = a) \land (z = a)$	\rightarrow_{tranz} : 9, 8			
		h			

Common to all proofs

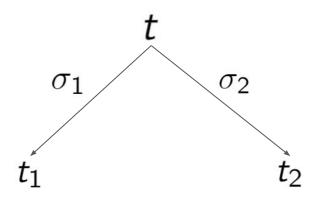


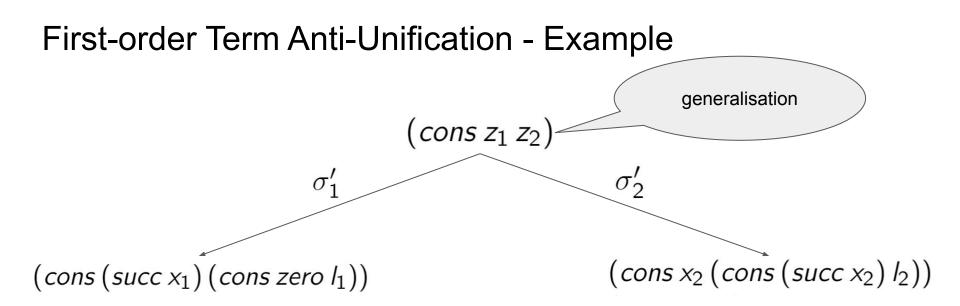


First-order Term Anti-Unification

Definition

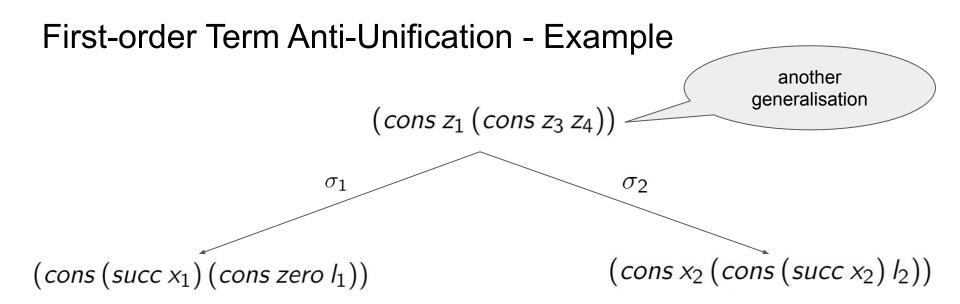
t is a common *generalisation* of t_1 and t_2 if there are σ_1 and σ_2 s.t. $t\sigma_1 = t_1$ and $t\sigma_2 = t_2$





$$\sigma_1' = \{z_1 \mapsto (succ \ x_1), z_2 \mapsto (cons \ zero \ l_1)\}$$

$$\sigma_2' = \{z_1 \mapsto x_2, z_2 \mapsto (cons \ (succ \ x_2) \ l_2)\}$$

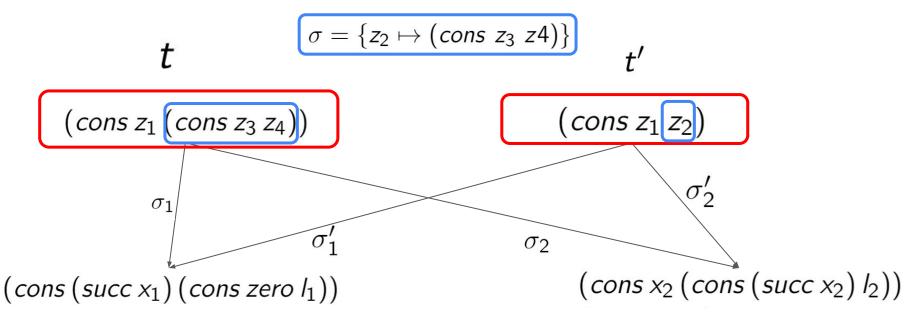


$$\sigma_1 = \{z_1 \mapsto (succ x_1), z_3 \mapsto zero, z_4 \mapsto l_1\}$$

$$\sigma_2 = \{z_1 \mapsto x_2, z_3 \mapsto (succ x_2), z_4 \mapsto l_2\}$$

LGG = Least General Generalisation

t' is more general than a term t if there is σ s.t. $t'\sigma = t$



Plotkin's algorithm for finding the LGG

Definition

Anti-unification problem = a pair $\langle t, P \rangle$, where:

- t is a term, and
- P is a non-empty set of pairs z → u □ v, (z is a variable and u and v are terms)

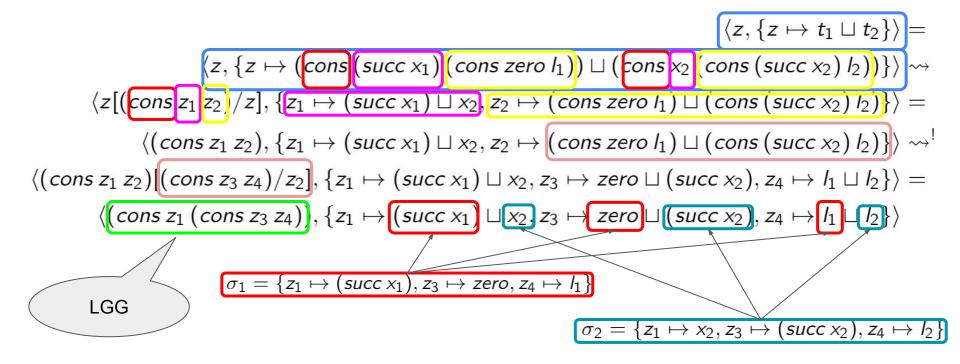
Plotkin's algorithm for finding the LGG

$$\langle t, P \cup \{z \mapsto (f \ u_1 \ \dots \ u_n) \sqcup (f \ v_1 \ \dots \ v_n)\} \rangle \rightsquigarrow$$

 $\langle t[(f \ z_1 \ \dots \ z_n)/z], P \cup \{z_1 \mapsto u_1 \sqcup v_1, \dots, z_n \mapsto u_n \sqcup v_n\} \rangle,$
where z_1, \dots, z_n are fresh variables

Plotkin's algorithm - Example

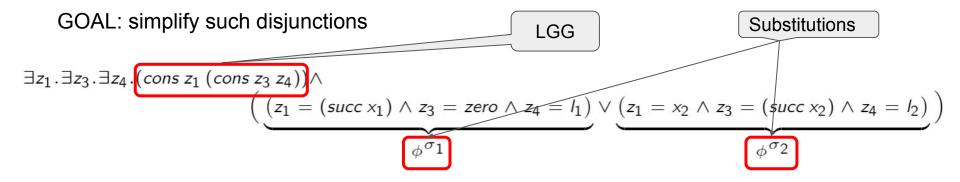
 $t_1 = (cons(succ x_1)(cons zero l_1)) \qquad t_2 = (cons x_2(cons(succ x_2) l_2))$



Anti-unification in Matching Logic

Anti-unification in ML = disjunction of term patterns

$$\bigcup_{(cons (succ x_1) (cons zero l_1))} (cons x_2 (cons (succ x_2) l_2))$$



Anti-unification in Matching Logic

Definition

For each anti-unification problem $\langle t, P \rangle$ we define a corresponding ML pattern

9

$$\phi^{\langle t,P \rangle} \triangleq \exists \overline{z}.t \land (\phi^{\sigma_1} \lor \phi^{\sigma_2})$$

where $\sigma_1 = \{z \mapsto u \mid z \mapsto u \sqcup v \in P\}$,
 $\sigma_2 = \{z \mapsto v \mid z \mapsto u \sqcup v \in P\}$, and
 $vars(t) = dom(\sigma_1) = dom(\sigma_2) = \overline{z}.$

Anti-unification in Matching Logic

Theorem (Soundness)

Let t_1 and t_2 be two term patterns and z a variable such that $z \notin vars(t_1) \cup vars(t_2)$.

If $\langle z, \{z \mapsto t_1 \sqcup t_2\} \rangle \rightsquigarrow^! \langle t, P \rangle$, then $TERM(S, F) \models (t_1 \lor t_2) \leftrightarrow \phi^{\langle t, P \rangle}$.

Certificate generation

 $TERM(S,F) \models (t_1 \lor t_2) \leftrightarrow \phi^{\langle t,P \rangle}$

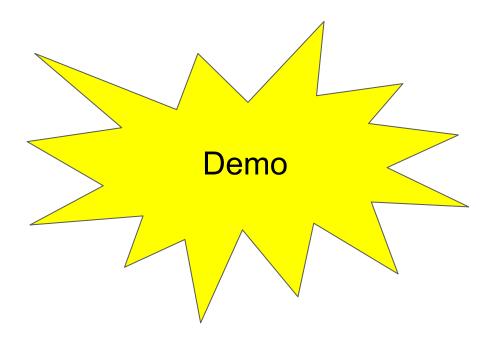
IDEA:

- Execute Plotkin's algorithm for finding the LGG and keep a trace of the steps
- Generate a proof for each step based on a proof schemata
- Compose proofs for each step

Certificate generation

These equivalences are the most difficult ones! Each equivalence corresponds to a step in Plotkin's algorithm.

(1)	$t_1 \lor t_2 \leftrightarrow$		
	$\exists z.z \land (z = (cons (succ x_1) (cons zero L_{TT} \lor z = (cons x_2 (cons (succ x_2) l_2)))$	\lor_{gen}	
(2.1)	$\exists z.z \land \left(z = (cons (succ x_1) (cons zero l_1)) \lor z = (cons x_2 (cons (succ x_2) l_2))\right) \leftrightarrow$		
~ ~	$\exists z_1. \exists z_2. (cons z_1 z_2) \land$		
	$\left(\left(z_1 = (succ x_1) \land z_2 = (cons zero l_1)\right) \lor \left(z_1 = x_2 \land z_2 = (cons (succ x_2) l_2)\right)\right)$	\rightsquigarrow_{step}	
(2.2)	$\exists z_1. \exists z_2. (cons z_1 z_2) \land$		
20 SS	$\left(\left(z_1 = (succ x_1) \land z_2 = (cons zero l_1)\right) \lor \left(z_1 = x_2 \land z_2 = (cons (succ x_2) l_2)\right)\right) \leftrightarrow$		
	$\exists z_1. \exists z_3. \exists z_4. (cons z_1 (cons z_3 z_4)) \land$		
	$\left(\left(z_1 = (succ x_1) \land z_3 = zero \land z_4 = l_1\right) \lor \left(z_1 = x_2 \land z_3 = (succ x_2) \land z_4 = l_2\right)\right)$	\rightsquigarrow step	
(3.1)	$t_1 \lor t_2 \leftrightarrow$		
	$\exists z_1. \exists z_2. (cons z_1 z_2) \land$		
	$\left(\left(z_1 = (succ x_1) \land z_2 = (cons zero l_1)\right) \lor \left(z_1 = x_2 \land z_2 = (cons (succ x_2) l_2)\right)\right)$	\leftrightarrow_{tranz} : 1, 2.1	
(3.2)	$t_1 \lor t_2 \leftrightarrow$		
200 - 552	$\exists z_1.\exists z_3.\exists z_4.(cons z_1 (cons z_3 z_4)) \land$		
	$\Big(ig(z_1 = (\operatorname{succ} x_1) \land z_3 = \operatorname{zero} \land z_4 = l_1 ig) \lor ig(z_1 = x_2 \land z_3 = (\operatorname{succ} x_2) \land z_4 = l_2 ig) \Big)$	$\leftrightarrow_{tranz}: 3.1, 2.2$	



Conclusion

- Matching Logic can specify the term algebra up to an isomorphism
- Consequently, some computations in the term algebra can be axiomatized in Matching Logic
- In this presentation we considered the unification and anti-unification
- Initial algebra for the equational specification can also be specified in Matching Logic up to an isomorphism
- The next challenge is to see how the computations modulo equational axioms can be captured by Matching Logic