Rewriting in Matching Logic

Outline

First Session (Matching Logic)

|ldeal Language Framework Vision

Matching Logic Syntax and Semantics

Basic Matching Logic Theories

Matching Logic Theory of Transition Systems
Matching Logic Proof System

Second Session (Rewriting in Matching Logic)

e First-Order Term Unification & Anti-Unification: A Review
e First-Order Term Unification & Anti-Unification in Matching Logic
e Rewriting and Narrowing in Matching Logic

Session 1: Matching Logic

Ideal Language Framework Vision

Deductive
" Eon program
[PElSEL } verifier
[Interpreter} Formal Language Definition Model
(Syntax and Semantics) checker

[Compiler} |
[(semantic) 1 [Symbolic }

Debugger execution

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

Separate tools, by W
e

separate teams, littl
to no code shared

C L interpreter
Java Compiler
JavaScript Model Checker
Solidity ' Symbolic Execution |
Ethereum VM Deductive Verifier

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

C
Java

JavaScript
Solidity

-

~

The story of the

PL/FM community.

Maintenance hell
(L* T systems).
Uneconomical.

\ Wasted W §

Ethereum VM

Interpreter

Compiler

Model Checker

:Symbolic Execution:

: Deductive Verifier \

How It Should Be

C
Java
JavaScript
Solidity

Ethereum VM

|deal Language Framework

A

Compiler

T \
Interpreter)

Model Checker

Symbolic

— Execution

: Deductive Verifier

/

K Framework
http://kframework.org

® \We tried various semantic styles, for >17y and >100 top-tier
conference and journal papers:

O Small-/big-step SOS; Evaluation contexts; Abstract machines (CC, CK,
CEK, SECD, ...); Chemical abstract machine; Axiomatic;
Continuations; Denotational;...

® But each of the above had limitations

O Especially related to modularity, notation, verification

e K framework initially engineered: keep advantagges and
avoid limitations of various semantic styles

e Then theory was developed: matching logic

http://kframework.org/

Matching Logic is the Logical Foundation of K

K |MatchingLogic

PL formal definitions (java.k)

* PL syntax

* PL semantics and K rewrite rules
Formal properties of programs
A language task conducted by K
K does it right!

Logical theories (I'3V?)

* Constructors and terms

* Rewrite axioms

Logical formulas
A proof obligation I3V 1 ¢,

I1ava - .« has a proof object
that can be quickly checked by a proof
checker (245 LOC)

Outline

|ldeal Language Framework and K

Matching Logic Syntax

Matching Logic Semantics

Basic Matching Logic Theories

Transition Systems Defined in Matching Logic
Matching Logic Proof System

Reading Materials

Matching Logic Syntax

Definition (Patterns)

Let X be a set of (constant) symbols, called signature. The set of
2 -patterns is defined by the following 8 constructs:

pi=x|Xlolei o, 1 L1 =@ x| uX.

J

°* X,Y,2 ..denote element variables

* X,Y,Z,... denote set variables

* oisasymbolinX

* Q1 P, 1S a binary application operation

Matching Logic Syntax

Definition (Patterns)

Let X be a set of (constant) symbols, called signature. The set of
2 -patterns is defined by the following 8 constructs:

pi=x|Xlolei o, 1 L1 =@ x| uX.

J

* 1 and @; = @, are propositional connectives

* 3dx. Is existential quantification

 uX.q, called /least fixpoint pattern, requires that ¢ has no
negative occurrences of X

Matching Logic Syntax

Common Notation
The following derived constructs are defined as notations:
S == 1

s I = ol
* Y1V Py =91 Py
* P11 NPy =@ A,

* 919 @2 = (1 2 @) A9 > @1)
* Vx.¢p = —dx.@

° vX.(pE—luX.—Mp[—nX/X]

// standard definition of greatest fixpoints j

Matching Logic Syntax

Definition (Free Variables)
In matching logic, 3x and uX are binders. Therefore:

FreeVars(x) = {x}

FreeVars(X) = {X}

FreeVars(o) = @

FreeVars(@, ;) = FreeVars(g,) U FreeVars(p,)
FreeVars(L) =@

FreeVars(¢, = @,) = FreeVars(gp,) U FreeVars(g,)
FreeVars(3x.@) = FreeVars(p) \ {x}
FreeVars(uX.q@) = FreeVars(p) \ {X}

Matching Logic Syntax

Example (Variable Capture)
This Is wrong:

(Fy. (x - M)y/x] = 3y.(x > Yy/x]) =3y.(y - ¥)
This Is correct:

(Fy. (x > y))ly/x] = (3z. (x > 2))[y/x] = 3z. (y - 2)

o

It is called capture-avoiding substitution, where bound variables
are renamed to prevent variable capture.

Matching Logic Syntax

Definition (Capture-Avoiding Substitution)
Let @Y /x] be the result of substituting ¥ for x in @:

x[p/x] =y
y[yp/x] = y if y distinct from x
oly/x] =0
(0192 [Y/x] = (p1l¥p/xD) (@2 /x])
L [yp/x] =

(01 = @)W /x] = (p1[Y/x]) - (@2[/x])

(Ax. o) [P/x] = 3Ix. ¢

QAy.p)yY/x] = 3z. (plz/yl[Y/x]) where z is fresh
(wY.o)yY/x] = uZ.(plZ/Y][Y/x]) where Z is fresh

Matching Logic Syntax

Definition (Capture-Avoiding Substitution)
Similarly, @[y /X] is the result of substituting ¥ for X in ¢.

Matching Logic Syntax

Summary

* Syntax of patterns (very simple!)

* Common notations (-, @1 A @5, etc.)

* Free variables and capture-avoiding substitution
Next

* Models & semantics of patterns

Questions?

Matching Logic Semantics

- Definition (Models)
Let = be a signature. A X -mode/ M is a tuple (M, @y, {0y }ises))

* anonempty carrier set M
* an application function @y: M X M — P (M)
* a symbol interpretation oy © M for every o € X y

Unlike FOL, matching logic adopts a powerset interpretation. E.g.,
e INFOL: @y:M XM —-> M
* In matching logic: @y;: M X M — P (M)

>

Matching Logic Semantics

Example (Applicative Structures)
An applicative structure A is a pair (4, @,)
* anonempty carrier set A

* an application function @4:A X A —> A
We can regard A as a matching logic model.
* Letsignature 2 =0

* LetcarriersetM = A4
 leta@yb={a@,b}foralla,beA

Matching Logic Semantics

Example (Combinatory Algebras)

A combinatory algebra A is a tuple (A, @4, k4,54)
* (A, ,@,) is an applicative structure

e ky s, €A

e k@ ,a@b=aforallabeA

¢ S, @ a@,b@sc=((a@,c)@,(b@yc) foralla,b,c €A

We can regard A as a matching logic model.

* Letsignature £ = {k,s} and carrierset M = A

* Let symbol interpretations ky = {k,} and sy = {s4}
 leta@yb={a@,b}foralla,beA

/

Matching Logic Semantics

* Matching logic adopts a powerset interpretation
* FOL adopts a functional interpretation

* which iIs a special case
« One-to-one correspondence between a and {a}

Pattern Matching Semantics of Matching Logic
* A pattern ¢ is evaluated to a set
* aset that includes the elements that match it

Matching Logic Semantics

Definition (Variable Valuations)

Given a model M, a variable valuation p is a mapping
 p(x) € M for all element variables x

* p(X) € M for all set variables X

Definition (Semantics)
Given M and p, a pattern @ is evaluated to a set |@|y , € M.

Matching Logic Semantics

Definition (Semantics)

Given M and p, a pattern ¢ is evaluated to a set |¢@|y,, € M.
* x|y, ={p(x)}

* Xlnp = p(X)

UlM,p = Oy

P1 (p2|M»P = Ua1€|<P1|M,p: az€lozlm,p a, @y a;

* | Liy,=0

I L2 <P2|M,p =M\ (|<P1|M,p i |<P2|M,p)

EIx-(le,p = Ugem |<p|M,p[a/x]

* .UX-§0|M,p = Ifp (A . |<P|M,p[A/X])

Matching Logic Semantics

Semantics of Application ¢, ¢,

lo4 <P2|M,p = Ua1€|(p1|M,p, az€l@aly p 41 @y a,

Pointwisely extend @p: M X M — P(M) from elements to sets
¢ @, P(M) x P(M) - P(M)
* A @y A; =Ugea, a,ea,d1 @y ay forall A, A, €M

. Simplified: |¢, O2lmp = 191lmp @p 0210 /

Matching Logic Semantics

Semantics of Propositional connectives L and ¢; — ¢,
* | L |M,p =0

* |pg - <P2|M,p =M\ (|<P1|M,p i\ |<P2|M,p)
Propositional Connectives = Set Operations
* |Tly, =M

° ﬁ§0|M,p =M\ |90|M,p

* o1 Ao2lup = @1l O 1ozl

* |1 Vorlup = l01lmp Y lozlu,

* 191 <P2|M,p =M\ (|<P1 m,p A |<P2|M,p)
// set symmetric difference

/

Matching Logic Semantics

1 NP, ®1V @y -1

Y1 = P2 P1 < P

Matching Logic Semantics

Semantics of 3x.p and Vx. @

* |3x-§0|M,p = Ugem |§0|M,p[a/x]

. |Vx.<p|M,p = Ngem |(p|M,p[a/x] //Vx. = —=3dx. 1@
Intuitively

* 3Jx.@p means @la,/x]V @la,/x]V plasz/x]V -

* Vx.p means @la,/x] Apla,/x] Aplas/x] A - /
Example

. Hx-le,p = UaEMleM,p[a/x] = Ugemia} = M
° va-le,p = naEMlle,p[a/x] = naEM{a} =QorM

Matching Logic Semantics

Semantics of uX.9 and vX. ¢
o |uX.@ly, =1p (A - @y pra/x)
. |vX.g0|M,p = gfp (A 2 |§0|M,p[A/X])

- Theorem (Knaster-Tarski)

Let F: P(M) —» P(M) be a monotone function (w.r.t. “S”). Then
F has the least/greatest fixpoints, given as follows:

e fpF=N{ASM|FA) cA}

e gfpF=U{ASM|ASF(A)}

/

Matching Logic Semantics

Proposition
Since ¢ has no negative occurrences of X, the following function
FA) = |olmpra/x
IS a monotone function (w.r.t. “€"). y

Proposition
The semantics of uX. ¢ is well-defined. In particular,

¢ |liX-<P|M,p = ﬂ{A =gl | |<P|M,p[A/X] . A}
° IVX-(le,p = U{A cM I AC |(P|M,p[A/X]} Y

Matching Logic Semantics

{Matching logic has a pattern matching semantics.

/FoL

« Terms are interpreted as elements
 Formulas are interpreted as true/false
Matching Logic
* No distinction between terms and formulas
« Patterns are interpreted as subsets

K FOL functional interpretation is a special case

Matching Logic Semantics

Truth Values in Matching Logic
 Tand 1L

* Semantically, M (the total carrier set) and @ (the empty set)
* Since M Is nonempty, we won't confuse T and L

S

Definition (Validity)

Given a pattern set I', called a theory. For a model M, we write
MET

if for all axioms ¢ €T, [¢|y,, = M for all valuations p.

Matching Logic Semantics

Example

A combinatory algebra A is a tuple (A, @4, ka,54)

e ky@ya@ub=aforallabeA

c 5, @,a@,b@yc=(@@,c)@,(b@,c)foralla,b,ceA
We can regard A as a matching logic model. Then,

e AEkxy o x

e AEsxyz o (xz)(yz) /

Matching Logic Semantics

/Summary

* Models, powerset interpretation

e Pattern matching semantics

» Matching logic theories and validity
Next

K Basic matching logic theories

Questions?

Theory of Equality

‘ Goal

* To define equality in matching logic
* Q1 = P2

* T,Iif ¢; and ¢, are matched by the same elements
e 1, otherwise

NG Note that it is not @1 < @,

Y1 < P

Theory of Equality

Definition (Definedness)
Let [_] € Z be a symbol, called definedness. We write [¢] for [_] ¢.
Add one axiom:

DEFINEDNESS .
() Vx.[x] y

* Intuitively, [@] states that ¢ is matched by some elements
* e, Is defined (i.e., not 1)

 [x]is T, because x is matched by one element

e [L]is L

* [p]lisT,ifeisnotl // nonempty-ness checking Y

Theory of Equality

Proposition (Definedness)
For M = (DEFINEDNESS), the following hold:

* |lolly, =Mif|loly, 0
Hollmp =D if l@ly, =0

Totality, the dual of definedness

lp] = =[], states that @ is total (i.e., itis T)
lellm,pe =M if lQly, =M
lellmp =@ ifloly, #M

Theory of Equality

From definedness [¢@] and totality [¢], we can define equality
@1 = @, and many others derived constructs.

@1 < @, Is the complement of set difference between ¢, and

P>
Thus, @1 = @, Iff @1 © @, Is total

Thus, let 91 = @, = @1 © @;]

Y1 < Py

Theory of Equality

Proposition (Equality)

For M = (DEFINEDNESS), the following hold:
* o = 902|M,p =M if |€01|M,p = |§02|M,p

* o1 =02lup =D iflQilmp # l021m,p

* @1 = @, Is true equality (not a congruence)
* Defined within logic by axioms/theories (not an extension)

Theory of Equality

" Besides equality, we can also define:

Membership x € ¢ = [x A @]
Subset relation ¢; € @, = |@; = @,
Functional patterns (i.e., terms) 3z. (¢ = z)

Y1 = P

_

Axiom (DEFINEDNESS) also gives us equational deduction
Using the matching logic proof system (discussed later)

Theory of Sorts

A sort has a sort name and an inhabitant set
e sort name is Nat
e inhabitant setis {0,1,2, ... }

Define an /nhabitant symbol/ [_] € X.

Use a symbol s to represent a sort name.
Use [s] to represent the inhabitant set.

Theory of Sorts

Example (Natural Numbers)

* Nat represents the sort

e zero and succ represent 0 and the successor function
e (ZERO) 3z.z € [Nat] A zero = x

e (SUCC) Vx.x € [Nat] —» 3z.z € [Nat] A (succ x = z)
« (NAT) [Nat] = uD.zeroV (succ D) /

Notation (Sorted Quantification)
e (ZERO) 3z:Nat.zero = x
e (SUCC) Vx:Nat.3z:Nat.succx =z

Theory of Sorts

Example (Natural Numbers)
e (NAT) [Nat] = uD.zeroV (succ D)

* [Nat] satisfies [Nat] = zero V (succ [Nat])
* [Nat] is the smallest such set (least fixpoint u)

« Axiom (NAT) also gives us inductive reasoning
* The Peano induction proof rule is derivable from (NAT)

Theory of Sorts

* To state that f is a function from s4, ..., S, to s
Vi S NA0S= AV S.f Xy o Xy =8
fis{ X X8, =S
* To state that f is a partial function from sy, ..., S, t0 s
VXS X Sa-AVe s X X ES
* To state that sq Is a subsort of s,

[s1] € [s-]

* Flexible to capture complex sort structures

» subsorts, parametric sorts, dependent types/sorts, ...

Basic Matching Logic Theories

/Summary
« Theory of definedness and equality
* Theory of sorts
« Some axioms about natural numbers

Next
! Theory of transition systems and rewriting

Questions?

Theory of Transition Systems

Definition (Transition Systems)

A transition system consists of

* AsetS of states

* A binary transition relation R € § X §

« If (s,s") €R, s’ is a nextstate of s; s is a previous state of s’
* S s a terminating state If it has no next states
* s s a well-founded state if it has no infinite traces

Theory of Transition Systems

* Let State be the sort of states in S
* Lete € X be asymbol, called one-path next

* Intuitively, e ¢ is matched by states whose next states match @ J

s —» s —» ' —p " // states in S

0o oo °) /I patterns

One-Path Next and All-Path Next

> e @ is one-path next

> °@ = —gtqte ® Tstate P 1S all-path next
> “stateW = Y A [State]

7
.‘;’sz‘ J
#

Theory of Transition Systems

From one-path next, we can define temporal operations
* ¢, one-path next

o @, all-path next

e T, non-terminating states (has next states)

ol, terminating states (has no next states)

°e 0, reaches ¢ in 2 steps

Op = uX. @ VeX eventually ¢

Op =vX.p AoX, always @

01U @3 = pX. @3 V (@1 A e X), “until”

WF = uX. o X, well-founded states

VVVVVYVVVY

Theory of Transition Systems

From one-path next, we can define temporal axioms
e (FIN) Vs:State. s € WF

e (LIN) Vs:State.es —>os

* (INF) Vs:State.s€eT

Theorem (Matching p-Logic [LICS 2019])

* Linear temporal logic (LTL) is (LIN) + (INF).

* Finite-trace LTL is (LIN) + (FIN).

« Computation tree logic (CTL) is (INF).

* Modal pu-calculus is the empty theory over “e”.

Theory of Transition Systems

From one-path next, we can define rewriting

> @21 9, = @ o e 0, // one-step rewriting

> P> @, =@ 00, // zero or more step(s) rewriting
> @1 =T @, =@, > 0@, //oneor more steps rewriting

Theory of Transition Systems

Summary
* One-path next

* Other temporal operations as derived constructs
e Axioms (LIN), (FIN), (INF)

* Rewriting @1 = @2 = @1 = 0@,
Next
* Matching logic proof system

Questions?

Matching Logic Proof System

« A Hilbert proof system
* 13 proof rules
« Simple

~

e T'Fo
* @ can be proved, with
additional axioms in I’

A

FOL
Reasoning

Frame
Reasoning

Fixpoint
Reasoning

Technical
Rules

(Propositional Tautology)

¢ if ¢ is a tautology over patterns
P1 Q1 —>¢2

(Modus Ponens) 02
(3-Quantifier) ely/x] — 3x. @
P1 — Q2 :
———ifx ¢ FV
(3-Generalization) (3x.01) — @2 FEFY (g2}
(Propagation) ClL] = L
(Propagationy) Cler V 2] = Cle1] V Cle2]
(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
Q=202
(Framing) Cle1] — Clo2]
L
(Set Variable Substitution) ¢[¢/X]

(PreFixpoint) ol(pX.9)/X] - pX. @

ely/X] oy
(Knaster-Tarski) uX.o =y
(Existence) 5%

(Singleton)

~(Cilx A @] ACa[x A —p])

FOL Reasoning

(Propositional Tautology) ¢ if ¢ is a tautology over patterns

PL L=
(Modus Ponens) 0
(3-Quantifier) oly/x] = Ix. ¢
i =@z
ifx ¢ FV
(3-Generalization) (Ix.01) — @2 ¢ FV(¢2)

-

« Standard FOL proof rules
« Sound w.r.t. the powerset interpretation

-

Frame Reasoning

(Propagation) Cl[i] —» L

(Propagationy) Cle1 V 2] — Cle1] v Cloz]

(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
P1 — @2

(Framing) Clo1] = Clo2]

Definition (Application Contexts)
A context C is a pattern with one placeholder variable O0.

We write C[y] = C[y /O] for context plugging
C is an gpplication context, if from root to O there are only applications

Frame Reasoning

(Propagation) Cl[Ll] —» L

(Propagationy) Cle1 V 2] — Cle1] v Cloz]

(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
P1 — @2

(Framing) Clo1] = Clo2]

Semantically, frame reasoning = the pointwise extension of applications

lo4 <P2|M,p = |<P1|M,p @y |<P2|M,p

Frame Reasoning

(Propagation) Cl[Ll] —» L

(Propagationy) Cle1 V 2] — Cle1] v Cloz]

(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
P1 — @2

(Framing) Clo1] = Clo2]

(Framing) can be generalized to any positive contexts C

* Eg.,F @1 @y implies e @ 2o @,
* Also implies = ¢¢@; = O@,, because ¢ = uX. @ V ¢ X is positive w.rt. ¢ Y

Frame Reasoning

(Propagation) Cl[Ll] —» L

(Propagationy) Cle1 V 2] — Cle1] v Cloz]

(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
P1 — @2

(Framing) Clo1] = Clo2]

~* (Framing) is natural in terms of semantics
* (Framing) works for both structures and dynamic relations

* Allows us to bring local reasoning to the top; very useful in practice

Fixpoint Reasoning

¢
(Set Variable Substitution) ¢[¢//X]
(PreFixpoint) o[(pX.9)/X] —» pX. @
ely/X] - ¢
(Knaster-Tarski) pX.o > ¢

 Standard fixpoint proof rules as in modal u-calculus

* (Fixpoint) @[(uX.9)/X] & uX. ¢
* “>” is (PreFixpoint)

* “«"|s derivable from (Knaster Tarski), shown later

Fixpoint Reasoning

4
(Set Variable Substitution) ¢[¢/X]
(PreFixpoint) o[(pX.9)/X] —» pX. @
o[v/X] = ¢ if Pis a prefixpoint
(Knaster-Tarski) pX.o > ¢ then the Ifp is smaller than Y

* (Knaster Tarski) is a direct encoding of the Knaster-Tarski Fixpoint
Theorem

* 11X @l = N{A S M| |@luprasx) € A}
* Now, take A be (the evaluation of) Y

Fixpoint Reasoning

Example (Prove + (uX.p) - o[(uX.p)/X])
1.+ ololuX.9)/X1/X] - ol(uX. @) /X]

Z. @ is a positive context w.r.t. X

3 +Fol(uX.9)/X] > uX.¢ // (Framing)
4. This is (PreFixpoint), QED /

(PreFixpoint) @[(pX.@)/X] — pX. ¢

oly/X] = ¢
pX. o >y

(Knaster-Tarski)

Fixpoint Reasoning

(Knaster Tarski) gives the principle of induction. J

 [Nat] = uD.zeroV (succ D)

zero > ¥ (succ¥) - V¥ (Knaster-Tarski)
[Nat] - ¥

* This is Peano induction. To prove all natural numbers satisfy ¥
1. Prove that zero satisfies ¥
2. Prove that if n satisfies ¥, so does (succ n) /

Technical Rules

(Existence) =l

(Singleton) = (C1[x A @] A C2[x A =p])

Theorem (Completeness)
In the fixpoint-free fragment, E @ implies + @.

° |3x-x|M,p = UaEMlle,p[a/x] = Ugemlal =M
* Since x I1s one element, oneof x A and x A =@ Is L

Matching Logic Proof System

Theorem (Equational Deduction)
The following equational proof rules are derivable:

Fo=¢

F @, = @, implies - @, = @,

F @ =@z and F @, = @3 imply F @1 = @3
F @1 = @, implies F Clo;] = Cle,]

F @1 = @, implies - @4 [y/x] = @, [y/x]

Matching Logic Proof System

4)
Summary

« A simple proof system
» 4 categories of rules

o J

* A small proof checker
* EncodeTl F @ into a
proof object

J

FOL
Reasoning

Frame
Reasoning

Fixpoint
Reasoning

Technical
Rules

(Propositional Tautology)

¢ if ¢ is a tautology over patterns
P1 Q1 —>¢2

(Modus Ponens) 02
(3-Quantifier) ely/x] — Ix. ¢
P1 — Q2 :
—if FV
(3-Generalization) (3x.01) — @2 FEFY (g2}
(Propagation) ClL] = L
(Propagationy) Cler V 2] = Cle1] V Cle2]
(Propagations) C[3x.¢] — Ix.Cle] ifx ¢ FV(C)
Q=202
(Framing) Clo1] — Clgz]
4
(Set Variable Substitution) ¢[¢/X]

(PreFixpoint) o[(pX. @)/ X] — pX. @

ely/X] = ¢
(Knaster-Tarski) pX.p > Y
(Existence) Jx. x

(Singleton)

= (C1[x A @] AC2[x A —g])

Matching Logic

One logic

One proof system
One proof checker
Many theories

\

Matching Logic: The Underlying Core Logic of K

/

Type Systems

/o
-
@

Use notations to
handle encoding
cost

Use lemmas to
handle reasoning
cost

\

J

]

First-Order Logic with| [Seperation Logic with
Least Fixpoints Recursive Definitions

Initial Algebra
Semantics

/

A

Reachability Logic

Separation Logic

Order-Sorted
Algebras

4

Rewriting Logic

A

A-Calculus

Hoare Logic

Many-Sorted
Algebras

Modal p-Logic

Temporal Logics
(LTL,CTL,CTL*,...)

Equational Logic

Polyadic and/or
Hybrid Modal Logic

First-Order Logic

T~

Dynamic Logic

e

/

Normal Modal Logic

Propositional Logic

Reading List

Core Papers

e Matching Logic by G. Rosu, LMCS 2017

e Matching mu-Logic by X. Chen & G. Rosu, LICS 2019

e Matching Logic Explained by X. Chen, D. Lucanu & G. Rosu, JLAMP 2020

Defining transition systems

e Sec. 7&8 of Matching mu-Logic by X. Chen & G. Rosu, LICS 2019

Defining unification

e Unification in Matching Logic by A. Arusoaie & D. Lucanu, FM 2019

Defining type systems

e A General Approach to Define Binders using Matching Logic by X. Chen & G. Rosu, ICFP 2020

Defining initial algebra semantics

e Initial Algebra Semantics in Matching Logic by X. Chen, D. Lucanu & G. Rosu, TechRep (http://hdl.handle.net/2142/107781) 2020
Automated matching logic prover

e Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic by X. Chen et al., OOPSLA 2020
Matching logic proof checker

e Towards a Trustworthy Semantics-Based Language Framework via Proof Generation by X. Chen et al., CAV 2021

http://hdl.handle.net/2142/107781

Session 2: Unification & Antiunification

Outline

Introduction

First-order Term Unification

First-order Term Unification in Matching Logic
First-order Term Anti-Unification

First-order Term Anti-Unification in Matching Logic
Conclusion

Motivation

» The semantics of the programming languages is usually given by rule
patterns of the form

ti\ o — Q(t,{ N\ C):)

where t;, t,f are term patterns and ¢,¢§ are predicate patterns (constraints).
Example:

((if (B) S1 else S, ~ S,0) Ao(B) = true) — (51 ~~ S, 0)
((if (B) S1 else S, ~» S,0) Ao(B) = false) — (5, ~~ S, 0)

» Assume a language L defined by just two rules

t1 A 1 — o(t] A P)
H AN\ ¢2 — O(té A\ gbé)

» A symbolic step t A ¢ = t' A ¢’ is characterized by the following properties:

(EADABL NGV (EADA Lt Ay) — ot A)
t' A" = (tp APy V (g A @)

» The configuration t’ A ¢ can be computed using (anti)unification algorithms.

Problem

» The (anti)unification algorithms work on the term algebra.
We need an axiomatization of the term algebra in Matching Logic.

» A unification algorithm computes the most general unifier (mgu).
We need to characterize the mgu in Matching Logic.

» An anti-unification algorithm computes the least general
generalization (lgg).
We need to characterize the lgg in Matching Logic.

» How to transform the execution of an algorithm into a ML proof?

» What is the minimal set of lemmas needed to handle the reasoning
effort?

Term Algebra in ML (Example)

spec LISTofNAT

Symbols : inh, Nat, List, zero, succ, nil, cons

Notations :
[¢] = inhe
Ixis.p=Ixx € [s]Agp
Vx:is.p =Vx.x € [s] = ¢
Axioms :
(INDUCTIVE DOMAIN) :

(FUNCTION) :

(NoCoNFusiIoN 1) :

(NoConrusion I1) :

endspec

[Nat] = pN.zero V succ X

[List] = pL.nil V cons [Nat] L

dy.y € [Nat] A zero =y,

Vx.x € [Nat] — dy.y € [Nat] A succ x = y;

dy.y € [List] A nil =y,

Vx.x € [Nat] Al € [List] — 3y.y € [List) Acons x | =y
zero # nil

Vx:Nat.VI:List.zero # cons x |

Vx:Nat.zero # succ x

VI:List.nil # succ x

Vx:Nat.VI:List.nil # cons x |

Vn:Nat.Vx:Nat.VI:List.succ n # cons x |
Vx:Nat.¥x':Nat.succ x = succ x' — x = x’
Vx,x":Nat ¥, l':List.cons x| = consx'I' = x=x'"Al=/

LISTofNAT in Maude

fmod LISTofNAT is
sorts Nat List .
op zero : -> Nat [ctor] .
op succ : Nat -> Nat [ctor] .
op nil : -> List [ctor] .
op cons : Nat List -> List [ctor] .

endfm

Annotation semantics:
ctor : No Confusion | + Il +
Inductive Domain (No Junk)

fmod-endfm (initial semantics): it is a
consequence of the ML specification

Lemmas for handling the reasoning effort

Proof System = ML Proof System +

3-SussT 3zt A (2 =u) + tlu/z],if z € var(u)

3Gen z=(ft) o TFz=(fRPAF=1, ifF & var((f1)) U {z}

-Occrs (z=t)+ L,if = € var(t)

Fig. 9: A particular set of proof rules used holding in term algebra. Here, 7 is a placeholder for t; ... t,, 7 is
a placeholder for y; ..., yn, and § = T stands for Nj=1Yi =t;-

2 > P
3-ConTexT (3Z.01 A @2) ¢ 3T.01 A @5

3-ScorE ((3Z.901) © p2) > TT.01 © 2,if T & free(yp2)

3-CoLraprse ((IZ.¢1) V (IT.02)) ¢ IT.01 V 2

A particular set of derived proof rules used to generate certificates for anti-unification.

What’s next

Definitions

Martelli-Montanari unification algorithm

First-order Term Unification in Matching Logic
First-order Term Anti-Unification

First-order Term Anti-Unification in Matching Logic
Conclusion

First-order term unification - Definitions

Definition
A substitution o is a unifier of t and t’ if to = t'o

First-order term unification - Example

(cons (succ x) (cons y 1)) (cons x" (cons (succ y') I'))

Are there other
unifiers for this
example’?

COnS SUCC X COnS succy

o é {x" +— (succ x),y > (succ y'),I" — I}

First-order term unification - Definitions

t '
(We are interested in finding

O o \\the most general unifier!

Definition
o is more general than n, written as o < n, if there is a
substitution 6 such that o6 =7

First-order term unification - Unification problem

Unification problem = either {t; =t1,...,t, =1t} or -

{(cons (succ x) (cons y 1)) = (cons x' (cons (succ y') I'))}

{(succ x)=x',(cons y I)=(cons (succ y') I')}

First-order term unification - Solved forms

Solved form: either

or: {x; = uy,...,xx = ux}, where x; & vars(u;) and x; # xj,
i,jeA{l,..., k}

First-order term unification - Unification algorithm

Delete: PU{t=t}=P

Decomposition: PU{(fty1...ta)=(ft]{ ... t}))} = Pu{ta=t{,...,tph=1t/}
Orient: PIIA(F ¥ e Ta)—=t = PUAR = (Fl oo)}

Elimination: PU{x=t}= P{x— t}U{x=t} if x € vars(t),x € vars(P)
Symbol clash: PU{(fti ... tn)=(gt]{ :-- t,)} = -

Occurs check: PU{x=(ft...t)} = -, ifxevars((ft...t1t))

First-order term unification - Example

Delete: Plilt=t}=P

Decomposition: PU{(fty ... t)=(ft] ... t}=>PU{ts=1t]..... =101
Orient: PU{(fti,..) =xJ= PUIx=(ft ... tn)}
Elimination: PUIX=tf = P{x—= tfU{Xx=¢tf If x € vars(t), x € vars(P)
Symbol clash: PU{(Fiti s th)=(gt 5« E) =

Occurs check: PU{x=(ft...t)} = H ifxevars((ft...t))

{(cons (succ x) (cons y 1)) = (cons x’ (cons (succ y’)I'))} = (Decomposition)
{(sucec x) =x', (cons yl)=(cons (succy’) ")} = (Orient)
{x" = (succ x), (consy)= (cons (succy’) ')} = (Decomposition)

{x" = (succ x), y=(succy’), I=1"}

First-order term unification - Example

{(cons (succ x) (cons y 1)) = (cons x’ (cons (succy’)I"))} = (Decomposition)

{(succ x) =x", (consy)= (cons (succy’) ')} = (Orient)
{x" = (succ x), (consy)= (cons (succy’)!l")} = (Decomposition)
{x'=/(sucecx), y=(sucey'), =1} = P

\LSOIM . }

o = {x" > (succ x),y s (succ y'), I — I'}

First-order term unification - Example

{(cons (succ x) (cons y 1)) = (cons zero (cons (succy’)I’))} = (Decomposition)
{[(succ x) = zero| (cons y |) = (cons (succy’) ')} = (SymbolClash)
_1

Solved form! J

No substitution in
this case!

First-order term unification - Example

Theorem (Martelli&Montanari)
Let P be a unification problem. Then :

1. Progress: If P is not in solved form, then there exists P’ such
that P = P';

2. Solution preservation: If P = P’ then
unifiers(P) = unifiers(P’);

3. Termination: There is no infinite sequence
P=P=P,=-.;

4. Most general unifier: If 6 is a solution for P, then for any
maximal sequence of transformations that starts with P and
ends with P’, either P’ is 4 or P’ is in solved form and
opr < 6. There is no solution for P iff P" is .

First-order term unification in Matching Logic

Semantic unification in ML = conjunction of term patterns

J

(cons (succ x) (cons y 1))

A (cons x’ (cons (succ y’) I))

GOAL.: simplify such conjunctions

(cons (succ x) (consy 1)) A

The substitution is
obtained using the
unification algorithm!

(X' = (succx) Ny = (succy’Y NI =1T)

NG J/

e

First-order term unification in Matching Logic

Definition
For each P = {t; =t],...,t,=t,} we define " = \"_, t; = t..

Lemma
For all unification problems P and P’, if P = P’ then
TERM(S,X) = o « o

First-order term unification in Matching Logic

Lemma
If {ti =t} =' P then TERM(S,X) |= (t1A t2) < (t; A &F),
where i € {1,2}.

Soundness

Definition

Two term patterns t; and t, are unifiable (in ML) iff
TERM(S, Z) — |_E|7.t1 N\ t2_|, where X = vars(t1 A tz).
Consequently, the term patterns t; and ty are not unifiable iff
TERM(S, Z) — —IE|7.t1 A tﬂ.

Theorem (Soundness)

If {t; =t} =" P then the following hold:
1. If P # - then TERM(S, XY) |= [3x.t1 A to];
2. If P =+ then TERM(S,X) = =[3x.t1 A t].

Completeness

Definition

Two term patterns t; and t, are unifiable (in ML) iff
TERM(S, Z) — |_E|7.t1 N\ t2_|, where X = vars(t1 A tz).
Consequently, the term patterns t; and ty are not unifiable iff
TERM(S, Z) — —IE|7.t1 A tﬂ.

Theorem (Completeness)

Let t1 and t> be two term patterns.
1. If TERM(S,X) |= [3x.t1 A to] then {t1 =t} =' P # —;
2. If TERM(S,X) = —[3x.t; A to] then {t; =t} =' .

Certification
TERM(S,X) = (1A) < (ti A oF)
IDEA: derived proof rules that correspond to each step of the unification algorithm

STEPS:

e Execute the unification algorithm on the input unification problem: {tl — tz}

e Obtain an execution trace, e.g., T = Decomposition, Orientation

e Based on the obtained trace generate a proof where each derived proof rule
is replaced by its certificate schemata:

instance of the certificate schema for Decomposition
instance of the certificate schema for Orientation

Certificate schemata for Decomposition

(k)

(k +1)
(k + 2)
(k + 3)

/

=@ AN(fty ... tg)=(Fft] ...t

(Fty ... tn)=(ft] ... t) = (t1 =

@' N(fty ... tg)=(Fft] ... t}) > ¢

e —=> @' N(t1=t)A---A(ta

(premise)
NOCONFUSION 11
—>context: K + 1, 99/
—>tranz: Kk, k + 2

Certificate example

Orientation

Decomposition

Common to all proD

[?(1) (cons x a) = (consaz) — (consxa) =\ pnsaz) —> ref]

2) (consxa) = (consaz) — (a=2z) A (x\]a) NOCONFUSION 11

(3) (consxa) = (consaz) — (a=z) A (x{} a) — context: 2

(4) (cons x a) = (cons az) — (a:z)A(xM:a) —tranz: 1, 3)y

G) (a=2) = (z=2a) =symmetry h

(6) (a=z)A(x=2a) > (x=2a)A(z=2a) —> context: 9

(7) (cons xa) = (consaz) = (x = a) A (z = a) —>tranz: 4. 6)

(8) (cons x a) N\ (consxa) = (consaz) — (consxa) N\ (x =a) A (z= a) —contexd® 1)

(9) (cons az) A (cons x a) — (cons x a) A ((cons x a) = (cons a z)) PROPOSITION 9
consaz) N\ (cons xa) — (cons xa) N\ —>tranz: 9, 8

@

Anti-unification

First-order Term Anti-Unification
Definition

t iIs a common generalisation of t; and t, if there are o1 and o5
s.t. to; = t1 and toy = t»

01 g2

First-order Term Anti-Unification - Example

(COI’)S Z1 22)

/ /
01 05

(cons (succ x1) (cons zero 1)) (cons xa (cons (succ x2) I))

z1 — (succ x1), 2o — (cons zero L)}

/
oy =A
oy = {z1 — xp, 20 — (cons (succ xz) h)}

First-order Term Anti-Unification - Example

another
(cons z1 (cons z3 z4))

0| 957,

(cons (succ x1) (cons zero I1)) (cons x (cons (succ x2) k))

o1 ={z1 > (succxy), z3 > zero,z4 > I}
02 = {Zl —= X2,23 — (SUCCXQ),Z4 —> /2}

LGG = Least General Generalisation

t' is more general than a term t if thereis o s.t. t'o =t

o= {z +> (cons z3 z4)}

t t!

[(cons z; (cons z3 z4) (cons z;

(cons (succ x1) (cons zero I1)) (cons x (cons (succ x2) k))

Plotkin’s algorithm for finding the LGG

Definition
Anti-unification problem = a pair (t, P), where:
» tis a term, and

» P is a non-empty set of pairs z — u Ll v, (z is a variable and
u and v are terms)

Plotkin’s algorithm for finding the LGG

(t,PU{z— (fur ... upn)U(Ffvy ... vp)}) ~
(t[(Fzy ... z0)/z], PU{zs — 1 Uwvy,...,Zp — u, U vp}),
where zi, ..., z, are fresh variables

Plotkin’s algorithm - Example

t1 = (cons (succ x1) (cons zero l)) to = (cons xo (cons (succ x2) I))

(z,{z— t1Ub})|=

z,{z— ((cons zero I)) L (‘cons (succ x2) h))}) |~

(z[(kcons|zi|zo /2], {1 — (succ x1) L xa) zo — (cons zero Iy) L (cons (succ xp) b))}y =

((cons z1 z0), {z1 +— (succ x1) U xa, zo +— |(cons zero I) Ll (cons (succ x2) l)}) ~'

)
((cons z1 z2)|(cons z3 z4) / z2), {z1 > (succ x1) U x2, z3 +> zero U (succ xp),za — hh U h}) =
)

(cons z1 (cons z3 z4)), {z1 +—{(succ x1) U[x2) z3 +— zero|U((succ x2), za r—)Bq 2

P

o1 = {z1 — (succ x1),z3 — zero,zs — | }

02 =121+ X2,23 — (succ xp),z4 — b}

Anti-unification in Matching Logic

Anti-unification in ML = disjunction of term patterns

(cons (succ x1) (cons zero I1))

GOAL: simplify such disjunctions ::

3z ..Jz5.Jzy.

cons z1 (cons z3 zz)

((z1 = (succ x1) A z3 = zero

N

A\

|

V

(cons xo (cons (succ x2) b))

\

;

Substitutions

h)V (z1 = xp A z3 = (succxp) A z4 = b)

>

)

Anti-unification in Matching Logic

Definition
For each anti-unification problem (t, P) we define a corresponding
ML pattern

H\F & Tzt A (971 V $72),

where 01 ={z— u|z— ulv € P},
op={z—v|z—ullv e P}, and
vars(t) = dom(oy) = dom(oy) = Z.

Anti-unification in Matching Logic

Theorem (Soundness)

Let t1 and t; be two term patterns and z a variable such that
z & vars(t1) U vars(tz).

If (z,{z — t1 Utr}) ~' (t, P), then TERM(S,F) = (t1 V t2) + ¢'VF.

Certificate generation

TERM(S,F) = (t1 V &) & ¢'BP)

IDEA:

e Execute Plotkin’s algorithm for finding the LGG and keep a trace of the steps
e Generate a proof for each step based on a proof schemata
e Compose proofs for each step

Certificate generation

These equivalences are the most difficult

step in Plotkin’s algorithm.

ones! Each equivalence corresponds to a

-

(1) t1 Vio <> %ﬂ///
Jz.2 A (2 = (cons (succ x1) (cons zerg z = (cons x2 (cons (succx2)12))) | Vgen
(2.1) | 32.2 A (2 = (cons (succ 1) (cons zeroly)) V z = (cons z2 (cons (succ x2) l2)))
32z1.322.(cons z1 z2)A
((zl = (succz1) A z2 = (cons zerol1)) V (z1 = x2 A z2 = (cons (succ xz) l2))> S step
(2.2) | Fz1.322.(cons z1 z2)A
((zl = (succz1) A 22 = (cons zerol1)) V (21 = z2 A z2 = (cons (succ x2) lz))) “
Jz1.323.324.(cons z1 (cons 23 z4))A
((zl = (succx1) AN z3 = zero Aza = 11) V (21 = 2 A 23 = (succz2) A z4 = lz)) ~ step
(3.1) | t1 Vi2 <
Jz1.322.(cons z1 z2)A
((zl = (succzy) A z2 = (cons zerol1)) V (z1 = x2 A z2 = (cons (succ xz) lg))) Eeranz: 152:1
(3.2) | t1 Vi2 +

Jz1.323.324.(cons z1 (cons z3 z4))A

((zl = (succx1) A z3 = zero A z4 = 11) V (21 = @2 A 23 = (succx2) A z4 = l2)>

Htranz: 3.1, 2.2

Conclusion

e Matching Logic can specify the term algebra up to an isomorphism

e Consequently, some computations in the term algebra can be axiomatized in
Matching Logic

e In this presentation we considered the unification and anti-unification

e |Initial algebra for the equational specification can also be specified in
Matching Logic up to an isomorphism

e The next challenge is to see how the computations modulo equational axioms
can be captured by Matching Logic

