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Why rewriting logic?

@ Models and formal specification are easily written in Maude (simplicity, expressiveness,
and performance)

® Rewriting modulo associativity, commutativity and identity
© Differentiation between concurrent and functional fragments of a model
@ Order-sorted and parameterized specifications

@ Infrastructure for formal analysis and verification (including search command, LTL model
checker, theorem prover, etc.)

@ Reflection (meta-modeling, symbolic execution, building tools)

@ Application areas:
® Models of computation (A-calculi, 7-calculus, petri nets, CCS),
® Programming languages (C, Java, Haskell, Prolog),
® Distributed algorithms and systems (security protocols, real-time, probabilistic),
® Biological systems
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Why adding logical features to Rewriting Logic?

@ Logical features were included in preliminary designs of the language (80's) but never
implemented in Maude

® Automated reasoning capabilities by adding logical variables

© Differentiation between concurrent and functional fragments of a model is lifted to
differentiation between symbolic models and equational reasoning.

O Unification and Narrowing modulo combinations of A,C,U
@ Infrastructure for formal analysis and verification lifted:

® from equational reduction to equational unification,

® from search to symbolic reachability,

from LTL model checker to logical LTL model checker,
from theorem proving to narrowing-based theorem proving,
from SMT solving to variant-based SMT solving.
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What have we done

What have we donel!!
® Maude 2.4 (2009)

® Built-in Unification: free or associative-commutative (AC)

® Narrowing-based search: rules modulo axioms (no equations).
Maude 2.6 (2011)

® Built-in Unification: free, C, AC, or ACU (AC + identity)

® Variant Unification: Restricted equations modulo axioms.

® Narrowing-based search: rules modulo equations and axioms.
Maude 2.7 (2015)

® Built-in Unification: free, C, AC, or ACU, CU, U, Ul, Ur

® Built-in Variant unification: wide class of equational theories.

® Narrowing-based search: rules modulo equations and axioms.
Maude 2.7.1 (2016)

® Built-in Unification: previous cases + associativity

® Built-in Variant unification: modulo all combinations

® Narrowing-based search: modulo all combinations
Maude 3.0 (2019) Built-in Narrowing-based search: modulo all combinations

® Maude 3.1 (2020) Minimal (equational) unifiers, better unification modulo associavity
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Rewriting logic in a nutshell

Rewriting logic in a nutshell

A rewrite theory is
R = (T, AxWE, R), with:

® (X, R) a set of rewrite rules of the form t — s
(i.e., system transitions)

® (X,AxWE) a set of equational properties of the form t = s
(i.e., E are equations and Ax are axioms such as ACU)

Intuitively, R specifies a concurrent system, whose states are elements of the initial algebra
Ts/(axeE) specified by (X, AxWE), and whose concurrent transitions are specified by the rules
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Rewriting logic in a nutshell

Rewriting logic in a nutshell

mod VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .
op __ : Money Money -> Money [assoc comm id: empty]
subsort Money Item < Marking .
op - : Marking Marking -> Marking [assoc comm id: empty]
op <> : Marking -> State .
ops $q: ->Coin .
ops cookie cap : -> Item .
var M : Marking
rl [add-$]
rl [add-q] <
rl [buy-c] <
rl [buy-a] : <
eq [change]: q
endm

>=><MS$>.
>=><Mq>.
$§>=><Mcap > .

$ > => < M cookie q > .
qq = $ [variant]

A

Qo BER=R=-
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Rewriting logic in a nutshell

Rewriting logic in a nutshell

Maude> search <$ g q g> =>! <cookie cap St:State>
Solution 1 (state 3)

states: 6 rewrites: 5 in Oms cpu (Oms real)
St:State --> null

No more solutions.

states: 6 rewrites: 5 in Oms cpu (lms real)
Maude> show path 3

state 0, State: < $qqq >

===[ rl St § => St cookie q . J===>

state 2, State: < $ cookie >

===[rl St § = St cap . J]=—=>

state 3, State: < cap cookie >
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Rewriting logic in a nutshell

Rewriting modulo

Rewriting is

Given (X,AxWE,R), t =g (axur) § if there is
® a non-variable position p € Pos(t);
® arulel - rinR;

® a matching o (E-normalized and modulo Ax) such that t|, =(ayug) 0(1), and s = t[o(r)]p.

Exx< $qgqq>—<$ cookie >
using ‘Tl < M § > = < M cookie q > ."
modulo AC of symbol “_"
Exx<gqqqq>—< cap >
using ‘Tl <M $ > = < Mcap > ."
modulo simplification withq q @ q = $ and AC of symbol “_"

Santiago Escobar (UMA-SRI-Ulllinois-UPV-UCM) 12th International School on Rewriting, Madrid, Spain (online)




Rewriting logic in a nutshell

Narrowing modulo

Narrowing is
Given (X, AxWE,R), t ~34 g (axwr) S if there is
® a non-variable position p € Pos(t);
® arulel = rinR;
® a unifier o (E-normalized and modulo Ax) such that o'(t[p) =(axwE) (1), and

s = o(t[r]p).

Ex:< X qqg >~ < $ cookie >
using ‘rl < M § > => < M cookie q > .’
using substitution {X — $ q} modulo AC of symbol “_"
Ex:<Xqq>~< cap >
using ‘'rl <M $§ > = < Mcap > .
using substitution {X — q q}
modulo simplification withq q q @ = $ and AC of symbol “_"
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tool Narval

Symbolic Analysis of Maude Theories (Narval tool)

Four execution modalities are supported by Narval: (i) Rewriting mode (rules&equations),
(i) Narrowing with equations, (iii) Narrowing with rules&equations, (iv) Equational unification

http://safe-tools.dsic.upv.es/narval

Zoom: - 100% + Narrowing In a rewrite theory

8 O J

S 6 (£->10);8->081

(i2oyeis—>10;8->0s1])[joenye(s->10 38->081]
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Unification modulo axioms

Definition
Given equational theory (X, Ax), an Ax-unification problem is

?
t=t'
An Ax-unifier is an order-sorted substitution ¢ s.t.

o(t) =ax o(t)

Decidability
® at most one mgu (syntactic unification, i.e., empty theory)
® a finite number (associativity—commutativity)

® an infinite number (associativity)
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Unification modulo axioms

Admissible Theories

Maude provides order-sorted Ax-unification algorithm for all order-sorted theories
(X,EUAX,R) s.t. X is preregular modulo Ax and axioms Ax are:

@ arbitrary function symbols and constants with no attributes;
® iter equational attribute declared for some unary symbols;

©® 'comm”’, “assoc”, “"assoc comm”, “assoc comm id:", “comm id:", “assoc id:",
“id:", “left id:", or “right id:" attributes declared for some binary function
symbols but no other equational attributes can be given for such symbols.
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Unification modulo axioms

Unification Command in Maude

Maude provides a Ax-unification command of the form:

unify [ n ] in (ModId)
(Term-1) =7 (Term’™-1) /\ ... /\ (Term-k) =7 (Term’-k)

irredundant unify [ n ] in (ModId)
(Term-1) =7 (Term’-1) /\ ... /\ (Term-k)

? (Term’-k)

Modld is the name of the module
® 1 is a bound on the number of unifiers

® new variables are created as #n:Sort
® |Implemented at the core level of Maude (C++)
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AC-Unification in Maude

Maude> unify [100] in NAT :
X:Nat + X:Nat + Y:Nat =7 A:Nat + B:Nat + C:Nat .

Solution 1

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #5:Nat + #6:Nat + #8:Nat
Y:Nat --> #4:Nat + #7:Nat + #9:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat + #4:Nat

B:Nat —--> #2:Nat + #5:Nat + #5:Nat + #6:Nat + #7:Nat

C:Nat --> #3:Nat + #6:Nat + #8:Nat + #8:Nat + #9:Nat

Solution 100

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #4:Nat
Y:Nat —--> #5:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat

B:Nat --> #2:Nat + #3:Nat

C:Nat --> #3:Nat + #4:Nat + #4:Nat + #5:Nat
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ACU-Unification in Maude

Maude> unify [100] in QID-SET : X:QidSet , X:QidSet , Y:QidSet =? A:QidSet , B:QidSet , C:QidSet .
unify [1@8@] in QID-SET : X:QidSet, X:QidSet, Y:QidSet =7 A:QidSet, B:QidSet, C:QidSet .
Decision time: @ms cpu (1lms real)

Solution 1

X:QidSet --> empty
Y:QidSet --> empty
A:QidSet --> empty
B:QidSet --> empty
C:QidSet --> empty

Solution 2

X:QidSet --> #1:QidSet

Y:QidSet --> empty

A:QidSet --> #1:QidSet, #1:QidSet
B:QidSet --> empty

C:QidSet --> empty
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Unification modulo axioms

Irredundant Unification in Maude

Maude> unify in UNIF-VENDING-MACHINE :
< q q X:Marking > =7 < $ Y:Marking > .

Unifier 1
X:Marking --> §
Y:Marking --> q q

Unifier 2
X:Marking --> $ #1:Marking
Y:Marking --> q q #1:Marking

Maude> irredundant unify in UNIF-VENDING-MACHINE :
< q q X:Marking > =7 < $ Y:Marking > .

Unifier 1
X:Marking --> $ #1:Marking
Y:Marking --> q q #1:Marking
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|dentity Unification in Maude

mod LEFTID-UNIFICATION-EX is

sorts Magma Elem . subsorts Elem < Magma
op — : Magma Magma -> Magma [left id: e]
ops a b c de : -> Elem

endm

Maude> unify in LEFTID-UNIFICATION-EX : X:Magma a =7 (Y:Magma a) a .

Solution 1 Solution 2
X:Magma --> a X:Magma --> #1:Magma a
Y:Magma --> e Y:Magma --> #1:Magma

Maude> unify in LEFTID-UNIFICATION-EX : a X:Magma =? (a a) Y:Magma .
No unifier.

mod COMM-ID-UNIFICATION-EX is

sorts Magma Elem . subsorts Elem < Magma
op — : Magma Magma -> Magma [comm id: e]
ops a b cde : -> Elem
endm
Maude> unify in COMM-ID-UNIFICATION-EX : X:Magma a =7 (Y:Magma a) a .
Solution 1 Solution 2 Solution 3
X:Magma --> a X:Magma --> a #1:Magma X:Magma --> a
Y:Magma -=> e Y:Magma --> #1:Magma Y:Magma --> e
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A-Unification in Maude

Maude> unify in UNIFICATION-EX4 :

Solution 1
-—>

X:NList
Y:NList
Z:NList
P:NList
Q:NList

Solution 2

X:NList
Y:NList
Z:NList
P:NList
Q:NList

-

Solution 3

X:NList
Y:NList
Z:NList
P:NList
Q:NList

-=>
-->
-->
-->
-->

#1:

#1:
:NList
:NList
:NList :
:NList :

#1:
#2:
#3:
#1:
#4:

NList :
:NList
:NList
:NList
:NList :

NList

NList
NList

NList :
NList :

NList

#2:

#3:

© #3:

#2:
#4:

#4:
#2:

NList

NList :

NList

NList
NList

NList

NList :

X:NList :

#4:NList

#3:NList

Y:NList : Z:NList =7 P:NList : Q:NList .

Unifier
X:NList
Y:NList
Z:NList
P:NList
Q:NList

Unifier
X:NList
Y:NList
Z:NList
P:NList
Q:NList
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#2:
#3:
#1:
#3:

#1:
#2:
#3:
#1:
#2:

NList
NList
NList
NList
NList

NList
NList
NList
NList
NList

#2:NList

#3:NList
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Incomplete A-Unification in Maude

Possible warnings and situations:
e Associative unification using cycle detection.

e Associative unification algorithm detected an infinite family of unifiers.
e Associative unification using depth bound of 5.
e Associative unification algorithm hit depth bound.

Example:

Maude> unify in UNIFICATION-EX4 : O : X:NList =7 X:NList : O .
Warning: Unification modulo the theory of operator
an instance for which it may not be complete.

:_ has encountered

Solution 1

X:NList --> O

Warning: Some unifiers may have been missed due to incomplete
unification algorithm(s).
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AU-Unification in Maude

Maude> irredundant unify in UNIFICATION-EX5 :
X:NList
Decision time: 2ms cpu (2ms real)

Unifier
X:NList
Y:NList
Z:NList
P:NList
Q:NList

Unifier
X:NList
Y:NList
Z:NList
P:NList
Q:NList

Unifier
X:NList
Y:NList
Z:NList
P:NList
Q:NList

1

#3:NList :

: Y:NList :

#1:NList
#2:NList
#3:NList

#4:NList :

-=> #1:NList

#3:
#2:

#1

#4:

#1

#1

NList :

NList

:NList :
NList :

:NList
#2:
#4:

NList

NList :
:NList :
#3:

NList

#4:NList

#1:NList :

#4:NList

#3:NList
#2:NList

#3:NList

#2:NList :

Z:NList =7 P:NList : Q:NList .

#2:NList

#4:NList

AU fewer unifiers than A (5 vs 3) & unify returns many more than irredundant unify (32 vs 3)
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Variants in Maude

Narrowing-based Equational Unification

Definition

Given an order-sorted equational theory (X, AxWE) and ¢ 2 t/, an (Ax & E)-unifier is an
order-sorted subst. o s.t. o(t) =aewe o(t).

When Ax = @ and E convergent TRS

Narrowing provides a complete (but semi-decidable) E-unification algorithm [Hullot80]. e.g.
cancellation d(K,e(K,M)) = M.

When Ax # @ and E convergent and coherent TRS modulo Ax

Narrowing provides a complete (but semi-decidable) E-unification algorithm
[Jouannaud-Kirchner-Kirchner-83] e.g. exclusive-or eq X 0 = X,eq X« X =0
symbol * being AC
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Narrowing-based Equational Unification

Decidable Classes of Equational Theories

Narrowing is very inefficient and may not terminate.
Narrowing strategies for classes of equational theories.

When Ax = @

Basic narrowing strategy [Hullot80] is complete for normalized substitutions.
Cases where basic narrowing terminates have been studied [Alpuente-Escobar-Iborra-TCS09].

y

When Ax # @

Folding variant-narrowing [Escobar-Meseguer-Sasse-JLAP12] is the optimal strategy for
equational unification.
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Variants in Maude ‘

From equational reduction to variants (1/4)

E,Ax-variant

Given a term t and an equational theory AxWE, (t,0) is an E,Ax-variant of t if
0(t)Lr oy =ax t' [Comon-Delaune-RTAQS5]

Exclusive Or

Xe0—>X Xe(YoZ)=XoY)®Z
XeX =0 XoY=Y®X
XeXpY =Y (axioms: Ax)

Computed Variants
For X & X: (0,id), (0, {X — a}), (0, {X — a®b}),...
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Variants in Maude ‘

From equational reduction to variants (2/4)

Finite and complete set of E,Ax-variants

A preorder relation of generalization between variants provides a notion of most general variant.

Computed Variants
For X @Y there are 7 most general E,Ax-variants

1L (X®Y,id) 2. (0,{X+— U, Y+ U})
3. (Z{X—0,Y—~Z}) 4 (Z{X—ZaUYw U)})
5. (Z,{X— ZY —0}) 6. (Z{X—UYw—ZaU})
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From equational reduction to variants (3/4)

Finite Variant Property

Theory has FVP if finite number of most general variants for every term.

Common
® Cryptographic Security Protocols: Public or shared encryption, Exclusive Or, Abelian
groups, Diffie-Hellman
® Satisfiability Modulo Theories Natural Presburger Arithmetic, Integer Presburger
Arithmetic, Lists, Sets

Used in application areas

Equational Unification, Logical Model Checking, Cyber-Physical systems, Partial evaluation,
Confluence tools, Termination tools, Theorem provers
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Variants in Maude

From equational reduction to variants (4/4)

Test for FVP

Whether a theory has FVP is undecidable in general, though there are approximations
techniques.

Computing most general variants

Given a theory that has FVP, it is possible to compute all the most general variants by using
the Folding Variant Narrowing Strategy (Escobar et al. 2012)
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Variants in Maude

Variant Command in Maude

Maude provides variant generation:

get variants [ n ] in (ModId) : (Term)
get irredundant variants [ n ] in (Modld) : (Term)

® Modld is the name of the module

® 1 is a bound on the number of variants

® new variables are created as #n:Sort and %n:Sort
® Implemented at the core level of Maude (C++)

® Folding variant narrowing strategy is used internally
® Terminating if Finite Variant Property

® [ncremental output if not Finite Variant Property

® |rredundant version only if Finite Variant Property
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Variants in Maude

Exclusive-or Variants

fmod EXCLUSIVE-OR is
sorts Nat NatSet . subsort Nat < NatSet
op 0 : -> Nat
op s : Nat -> Nat
op mt : -> NatSet
op _*_ : NatSet NatSet -> NatSet [assoc comm]
vars X Z : [NatSet]

eq [idem] : X *x X =mt [variant]
eq [idem-Coh] : X * X * Z = Z [variant]
eq [id] : X *mt =X [variant]
endfm
Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1: [NatSet] X --> Y%1:[NatSet]
Y --> #2:[NatSet] Y --> mt
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Abelian Group Variants

fmod ABELIAN-GROUP is
sorts Elem .
op _+_ : Elem Elem -> Elem [comm assoc]
op —_ : Elem -> Elem .
op O : -> Elem .
vars X Y Z : Elem
eq X + 0 = X [variant]
eq X + (- X) = 0 [variant]
eq X + (- X) +Y =Y [variant]
eq - X) = X [variant]
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X +Y) [variant]
eq (X +Y) +Y = - X [variant]
eq (- X +Y) =X+ (-Y) [variant]
eq (-X) + (-Y) +Z =-(X+Y) + Z [variant]
eq ~(X +Y) + Y+ Z=(-X) + Z [variant]
endfm

Maude> get variants in ABELIAN-GROUP : X + Y .

Variant 1 Variant 47

Elem: #1:Elem + #2:Elem  ................. Elem: - (%2:Elem + %3:Elem)

X --> #1:Elem X --> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

+
¥
(
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Variants in Maude

Incremental Variant Generation

fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat [ctor]
op s : Nat -> Nat [ctor]
op _+_ : Nat Nat -> Nat .
vars X Y : Nat .
eq [base] : 0 + Y = Y [variant]
eq [ind] : s(X) +Y = s(X +Y) [variant]

endfm
Maude> get variants in NAT-VARIANT : s(0) + X .
Variant 1

Nat: s(#1:Nat)
X --> #1:Nat

Maude> get variants [10] in NAT-VARIANT : X + s(0)

Variant 1 Variant 10
Nat: #1:Nat + S(0) oottt ittt Nat: s(s(s(s(s(0)))))
X --> #1:Nat X -—> s(s(s(s(0))))

Infinite!!!
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Variant-based Equational Unification

Admissible Theories

Maude provides order-sorted Ax & E-unification algorithm for all order-sorted theories
(X,Ax,E) sit.

@ Maude has an Ax-unification algorithm,
® E equations specified with the eq and variant keywords.
® E is unconditional, convergent, sort-decreasing and coherent modulo Ax.

O The owise feature is not allowed.
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Variant-based Equational Unification

Equational Unification Command in Maude

Maude provides a (Ax W E)-unification command of the form:

variant unify [ n ] in (ModId)

(Term-1) =7 (Term’-1) /\ ... /\ {(Term-k) =7 (Term’-k)
filtered variant unify [ n 1 in (ModId)

(Term-1) =7 (Term’~1) /\ ... /\ (Term-k) =7 (Term’-k)

Modld is the name of the module

® 1 is a bound on the number of unifiers

® new variables are created as #n:Sort and %n:Sort
® |Implemented at the core level of Maude (C++)

® Terminating if Finite Variant Property

® [ncremental output if not Finite Variant Property
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Variant-based Equational Unification

Variant-based Unification Command in Maude

fmod NAT-VARIANT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq [base]l : 0 + Y = Y [variant] .

eq [ind] : s(X) + Y = s(X + Y) [variant] .
endfm

Maude> variant unify in NAT-VARIANT : s(0) + X =7 s(s(s(0)))

Unifier #1
X --> s(s(0))

No more unifiers.

Maude> variant unify [1] in NAT-VARIANT : X + s(0) =7 s(s(s(0)))

Unifier #1
X -—> s(s(0))

Infinite!!!
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Filtered Variant-based Unification in Maude

Maude> variant unify in VARIANT-VENDING-MACHINE :
< q q X:Marking > =? < $ Y:Marking > .

Unifier 1
X:Marking --> $ %1:Marking
Y:Marking --> q q %1:Marking

Unifier 2
X:Marking --> q q #1:Marking
Y:Marking --> #1:Marking

Maude> filtered variant unify in VARIANT-VENDING-MACHINE :
< q q X:Marking > =7 < § Y:Marking >

Unifier 1
X:Marking --> q q #1:Marking
Y:Marking --> #1:Marking
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Variant-based Equational Unification

Incomplete Variant Unification (due to assoc)

Maude> variant unify in VARIANT-UNIFICATION-ASSOC :
head(L) =? last(L) /\ prefix(L) =7 tail(L)

Warning: Unification modulo the theory of operator
an instance for which it may not be complete.

:_ has encountered

Unifier #1
L --> %1:Nat : %1:Nat : %1:Nat

Unifier #2
L --> %1:Nat : %1:Nat

No more unifiers.
Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

eq head(E : L) = E [variant] .
eq tail(E : L) = L [variant] .
eq prefix(L : E) = L [variant] .
eq last(L : E) = E [variant] .
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® Narrowing
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Narrowing

Symbolic reachability analysis in rewrite theories

Given (¥, E U Ax, R) as a concurrent system, a symbolic reachability problem is
(3X)t —*t

® Narrowing provides a sound and complete method for topmost theories.

® Narrowing with R modulo Ax W E requires Ax & E-unification at each narrowing step

® Narrowing can be also used for logical model checking
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Narrowing

Narrowing in Maude

Narrowing generalizes term rewriting by allowing free variables in terms and by performing
unification instead of matching in order to (non—deterministically) reduce a term.

® Narrowing + simplification (for built-in operators and equational simplification)

® Frozen arguments, similar to the context-sensitive narrowing

© Extra variables in right hand sides of the rules for functional logic programming features
(e.g. constraint programming and instantiation search).
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Narrowing

Narrowing Search Command in Maude

Narrowing-based search command of the form:

vu-narrow [ n, m ] in (Modld) : (Term-1) (SearchArrow) (Term-2)

® 1 is the bound on the desired reachability solutions

® m is the maximum depth of the narrowing tree

® Term-1 is not a variable but may contain variables

® Term-2 is a pattern to be reached

® SearchArrow is either =>1, =>+, =>%, =>!

® =>! denotes strongly irreducible terms or rigid normal forms.

® Implemented at the core level of Maude (C++)

® “vu-narrow {filter}"” for filtered variant unification

Santiago Escobar (UMA-SRI-Ulllinois-UPV-UCM) 12th International School on Rewriting, Madrid, Spain (online) ISR 2021 47 /62



Narrowing

Variant-based unification in Narrowing Search Command

mod NARROWING-VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty]
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm id: empty]

op <_> : Marking -> State .
ops $ q : -> Coin .
ops a ¢ : —> Item .
var M : Marking .
rl [buy-c] : <M $ > => < M c > [narrowing]
rl [buy-al : <M $ > => < M a q > [narrowing]
eq [change]l : g g g qgM=$ M [variant]
endm

Maude> vu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a ¢ >

Solution 1

state: < a c #1:Money >
accumulated substitution:
M:Money --> $ q q q #1:Money
variant unifier:

#1:Money --> empty
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Narro

Variant-based unification in Narrowing Search Command

mod AG-VENDING is
sorts Item Items State Coin Money .
subsort Item < Items . subsort Coin < Money .
op __ : Items Items -> Items [assoc comm id: mt]
op <_|_> : Money Items -> State .
ops ac : ->Item. opsq$ : -> Coin .

rl < M:Money | I:Items > => < M:Money + - § | I:Items c > [narrowing]

rl < M:Money | I:Items > => < M:Money + - q + - q + - q | I:Items a > [narrowing]

eq $=q+q+q+q [variant] . --- Property of the original vending machine example
op _+_ : Money Money -> Money [comm assoc]

op -_ : Money -> Money .
op O : -> Money .
vars X Y Z : Money .
. (here come the variant equations shown before for Abelian Group)
endm

Maude> vu-narrow [1] in AG-VENDING : < M:Money | mt > =>* < 0 | a c > .
Solution 1

rewrites: 32032 in 247478ms cpu (272327ms real) (129 rewrites/second)
state: < %l:Money + - (q +q+q+q+q+q+q | ac>

accumulated substitution:

M:Money --> %1:Money

variant unifier:

%l:Money -->q+q+q+q+q+q+q

Maude> vu-narrow {filter} [1] in AG-VENDING : < M:Money | mt > =>* < 0 | a c > .
Solution 1

rewrites: 510 in 236ms cpu (274ms real) (2160 rewrites/second)

state: < %l:Money + - (q +q+q+q+qg+qg+q | ac>

accumulated substitution:

M:Money --> %1:Money

variant unifier:

%l:Money --> q +q+q+q+q+q+q
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Assoc unification in Narrowing Search Command

mod GRAMMAR is
sorts Symbol NSymbol TSymbol String Production Grammar Conf .
subsorts TSymbol NSymbol < Symbol < String . subsort Production < Grammar .
ops ® 1 2 eps : -> TSymbol . ops S A B C : -> NSymbol .
op _@_ : String Grammar -> Conf . op _->_ : String String -> Production .
op __ : String String -> String [assoc id: eps] . op mt : -> Grammar .
op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt]
vars L1 L2 U V : String . var G : Grammar . var N : NSymbol . var T : TSymbol .
rl (L1UL2@ W ->V) ;G =>(LIVL2@ @ ->V) ; G [narrowing]
endm

Maude> vu-narrow [1] in GRAMMAR : N @ (S -> eps) ; S >0 S 1=>* (00 11)@(S->eps) ; S->0S1.
Solution 1

rewrites: 5 in Ims cpu (Ims real) (3518 rewrites/second)

state: (00 11) @ (S ->eps) ; S->0S1

accumulated substitution:

N -->S§

variant unifier:

Maude> vu-narrow [1] in GRAMMAR : S@ (N ->T) ; (S ->eps) ; S>0S1=>*(0®01)@N->T); (S->eps) ; S->0S1.
Solution 1

rewrites: 6 in Ims cpu (lms real) (4115 rewrites/second)

state: (0 %1:TSymbol 1) @ (S -> eps) ; (S -> %1:TSymbol) ; S -> 0 S 1

accumulated substitution:

N-->8§

T --> %1:TSymbol

variant unifier:

%1:TSymbol --> 0

No warning is shown!!!
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QOutline

O Logical Model Checking
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Model Checking

® Model checking techniques effective in verification of concurrent systems

® However, standard techniques only work for:
® specific initial state (or finite set of initial states)
® the set of states reachable from the initial state is finite
® abstraction techniques
® Various model checking techniques for infinite-state systems exist, but they are less
developed
® Stronger limitations on the kind of systems and/or the properties that can be model checked
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VENDING Example (1/6)

Terminating theory without rules adding money ($ and q).

<$$§>

¥

<$c>

<agqec>

(one initial state - finite space)
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VENDING Example (2/6)

Non-terminating theory with rules adding money ($ and q).

<$> <c$> <cc$>

¢/"¢/’V

< C > <cc>

(one initial state - infinite space)
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VENDING Example (3/6)

Instantiation is another source of infinity.

< X:Money > — — — > < § Yl:Money > —> ---

AN \\\3.

NN < $ 8 Y2:Money > —> .-
AN NG
N <$$ $ Y3:Money > — -

~
S - _ >0

(infinite number of initial states)
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VENDING Example (4/6)

Narrowing usually provides an infinite space due to instantiation even for terminating theories
(e.g. without rules adding money ($ and q)).

< Mo > < c Mo’ > <ccM’’ >
Mo—$ Mo‘¢ /Me'»—>/$/Mo”\L / i
< c Mo’ > <ccM’'’ > oo

(one initial state - infinite space)
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Logical Model Checking

VENDING Example (5/6)

Narrowing-based state space can be treated in new ways and folded into a finite space in many

cases
<E <E
< Mo >
Mo»—y wno’
<aqM’ > <c Mo’ >

Narrowing + folding relation = (multiple initial states - finite space)
(equality =)
(renaming ~g)
(instantiation <)
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VENDING Example (6/6)

Maude> fvu-narrow in NARROWING-VENDING-MACHINE : < M:Marking > =>* < a c > .

Solution 1

state: < #1:Marking >
accumulated substitution:
M:Marking --> #1:Marking
variant unifier:
#1:Marking --> a ¢

No more solutions.
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Logical Model Checking

FVU-VENDING Example

mod FOLDING-NARROWING-VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty]

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty]

op <_> : Marking -> State .
ops $ q : -> Coin .

ops a ¢ : -> Item .
var M : Marking .
rl [buy-c] : <M $ ¢ > => < M > [narrowing]
rl [buy-a] : <M $ a > => < M q > [narrowing]
eq [change] : q g g qM=¢ M [variant]

endm

Maude> fvu-narrow in FOLDING-NARROWING-VENDING-MACHINE :

Solution 1

state: < #1:Marking >
accumulated substitution:
M:Marking --> § q q q #1:Marking
variant unifier:

#1:Marking --> empty

Santiago ( MA-SRI-Ulllinois-UPV.

<E <E
< Mo >
Mo>—>$y wa Mo’
<q Mo’ > < Mo’ >

< M:Marking a ¢ > =>*% < empty > .
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QOutline

@ Applications

Santiago PV-UCM) 12th International School on Rewritin id, Spain (onlin:



Applications

Variant-based unification itself

Formal reasoning tools :
® Relying on unification capabilities:
® termination proofs
® proofs of local confluence and coherence
® Relying on narrowing capabilities:
® narrowing-based theorem proving
® testing

Logical model checking (model checking with logical variables)

Cryptographic protocol analysis:
® the Maude-NPA tool (narrowing + unification in Maude)
® the Tamarin and AKISS protocol analyzers also use Maude capabilities

® Program transformation: partial evaluation, slicing

SMT based on narrowing or by variant generation.
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Thank you!

More information in the Maude webpage.
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