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Nominal Rewriting

Introduction

• First-order languages

• Languages with binding operators

Specifying binders:

• α-equivalence

• Nominal terms

• Nominal unification (unification modulo α-equivalence)

• Nominal matching (matching modulo α-equivalence)

Nominal rewriting

• Extending first-order rewriting to specify binding operators

• Closed rewriting

• Confluence

• Typed Rewriting Systems

• Equational Axioms: AC operators
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First-order languages vs. languages with binders

Most programming languages support first-order data structures
and first-order operators.

Examples of first-order data structures: numbers, lists, trees, etc.
First-order operator on lists:

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

Very few programming languages support data structures with
binding constructs.

However, in many situations, we need to manipulate data with
bound names.
Example: compilers, type checkers, code optimisation, etc.

Maribel Fernández Nominal Rewriting



Binding operators: Examples

Some concrete examples of binding constructs (informally):

• Operational semantics:

let a = N in M −→ (fun a.M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• Logic equivalences:

P and (∀x .Q)⇔ ∀x(P and Q) (x 6∈ fv(P))
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Binding operators - α-equivalence

Terms are defined modulo renaming of bound variables, i.e.,
α-equivalence.

Example:
In ∀x .P the variable x can be renamed (avoiding name capture)

∀x .P =α ∀y .P{x 7→ y}

How can we formally define (or program) binding operators?
There are several alternatives.
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First-order frameworks

We can encode α-equivalence in a first-order specification or
programming language.

• Example: λ-calculus using De Bruijn’s indices with “lift” and
“shift” operators to encode non-capturing substitution

• Simple notion of substitution (first-order) (+)

• Efficient matching and unification algorithms (+)

• No binders (-)

• We need to ’implement’ α-equivalence and non-capturing
substitution from scratch (-)

• Not user-friendly (-)
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Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.) include a
general binding construct and terms are defined modulo
α-equivalence.
Example: β-rule

app(lam([a]Z (a)),Z ′)→ Z (Z ′)

One step of rewriting:

app(lam([a]f (a, g(a)), b)→ f (b, g(b))

using (a restriction of) higher-order matching.

• Logical frameworks based on Higher-Order Abstract Syntax
also work modulo α-equivalence.

let a = N in M(a) −→ (fun a→ M(a))N
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Higher-order frameworks

• The syntax includes binders (+)

• Implicit α-equivalence (+)

• We targeted α but now we have to deal with β too (-)

• Substitution is a meta-operation using β (-)

• Unification is undecidable in general (-)

• Leaving name dependencies implicit is convenient, e.g.

let a = N in M vs. let a = N in M(a)

app(lambda[a]Z ,Z ′) vs. app(lam([a]Z (a)),Z ′).
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Nominal Approach

Key ideas:
Freshness conditions a#t,
name swapping (a b) · t.

Example

β and η rules as nominal rewriting rules:

app(lam([a]Z ),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

⇒ Terms with binders

• Built-in α-equivalence
• Simple notion of substitution (first order)
• Efficient matching and unification algorithms
• Dependencies of terms on names are implicit
• Easy to express conditions such as a 6∈ fv(M)
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Atoms: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f ]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec fa = t in t ′, t[a 7→ t ′]
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α-equivalence

We use freshness to avoid name capture:
a#X means a 6∈ fv(X ) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
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Freshness

Also defined by induction:

a#b a#[a]s

π−1(a)#X

a#π · X

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s
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Exercises

Are the following judgements valid? Justify your answer by giving
a derivation or a counterexample.

` λ[x ]x ≈α λ[y ]y
` λ[x ]λ[y ]x ≈α λ[y ]λ[x ]y
` λ[x ]X ≈α λ[y ]Y
` λ[x ]X ≈α λ[y ]X

x#X ` λ[x ]X ≈α λ[y ]X
x#X , y#X ` λ[x ]s(X ) ≈α λ[y ]s(X )
x#X , y#X ` λ[x ] + (X ,Y ) ≈α λ[y ] + (X , (x y) · Y )
x#X , y#X ` λ[x ]app(X , λ[y ]y) ≈α λ[y ]app(X , λ[y ]y)

Maribel Fernández Nominal Rewriting



Computing with Nominal Terms

Rewrite rules can be used to define

• equational theories and theorem provers

• algebraic specifications of operators and data structures

• operational semantics of programs

• a theory of functions

• a theory of processes

• . . .
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Nominal Rewriting

Nominal Rewriting Rules:

∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Example: Prenex Normal Forms

a#P ` P ∧ ∀[a]Q → ∀[a](P ∧ Q)
a#P ` (∀[a]Q) ∧ P → ∀[a](Q ∧ P)
a#P ` P ∨ ∀[a]Q → ∀[a](P ∨ Q)
a#P ` (∀[a]Q) ∨ P → ∀[a](Q ∨ P)
a#P ` P ∧ ∃[a]Q → ∃[a](P ∧ Q)
a#P ` (∃[a]Q) ∧ P → ∃[a](Q ∧ P)
a#P ` P ∨ ∃[a]Q → ∃[a](P ∨ Q)
a#P ` (∃[a]Q) ∨ P → ∃[a](Q ∨ P)

` ¬(∃[a]Q)→ ∀[a]¬Q
` ¬(∀[a]Q)→ ∃[a]¬Q
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Nominal Rewriting

Rewriting relation generated by R = ∇ ` l → r : ∆ ` s
R→ t

s rewrites with R to t in the context ∆ when:
1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)
2 ∆ ` C [rθ] ≈α t.

Example

Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])

Rewriting steps: (λ[c]c)Z → c[c 7→Z ]→ Z
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Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a
matching/unification algorithm.
Recall:

• efficient algorithms (linear time) for first-order terms

• We need more powerful algorithms that take into account
α-equivalence

• Higher-order unification is undecidable

Nominal terms have good computational properties:

• Unification is decidable and unitary

• Efficient algorithms: α-equivalence, matching, unification

=⇒ Programming languages (Alpha-Prolog, FreshML)
=⇒ Nominal Rewriting
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Revision: First-order unification, Matching

• Unification: active research field (origin: Herbrand 1930s)

• Key for logic programming and theorem provers: central in
the implementation of resolution — Prolog.

Recall: Logic programming languages

• use logic to express knowledge, describe a problem;

• use inference to compute a solution to a problem.

Prolog = Clausal Logic + Resolution + Control Strategy
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Unification

A unification problem U is a set of equations between terms with
variables

{s1 = t1, . . . , sn = tn}

A solution to U , also called a unifier, is a substitution σ such that
for each equation si = ti ∈ U , the terms siσ and tiσ coincide.
The most general unifier of U is a unifier σ such that any other
unifier ρ is an instance of σ.
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Unification Algorithm

Martelli and Montanari’s algorithm finds the most general unifier
for a unification problem (if a solution exists, otherwise it fails) by
simplification:

It simplifies the unification problem until a substitution is
generated.

It is specified as a set of transformation rules, which apply to sets
of equations and produce new sets of equations or a failure.
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Unification Algorithm

Input: A finite set of equations: {s1 = t1, . . . , sn = tn}
Output: A substitution (mgu for these terms), or failure.

Transformation Rules:
applied non-deterministically, until no rule applies

(1) f (s1, . . . , sn) = f (t1, . . . , tn),E → s1 = t1, . . . , sn = tn,E
(2) f (s1, . . . , sn) = g(t1, . . . , tm),E → failure (clash)
(3) X = X ,E → E
(4) t = X ,E → X = t,E if t is not a

variable
(5) X = t,E → X = t,E{X 7→ t} if

X not in t and X in E
(6) X = t,E → failure if X in t, X 6= t

(occurs check)
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Back to nominal terms: checking α-equivalence

Idea:
Turn the α-equivalence derivation rules into simplification rules
in the style of Martelli and Montanari’s.

a#b,Pr =⇒ Pr
a#fs,Pr =⇒ a#s,Pr

a#(s1, . . . , sn),Pr =⇒ a#s1, . . . , a#sn,Pr
a#[b]s,Pr =⇒ a#s,Pr
a#[a]s,Pr =⇒ Pr

a#π · X ,Pr =⇒ π-1 · a#X ,Pr π 6≡ Id

a ≈α a,Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn),Pr =⇒ l1 ≈α s1, . . . , ln ≈α sn,Pr

fl ≈α fs,Pr =⇒ l ≈α s,Pr
[a]l ≈α [a]s,Pr =⇒ l ≈α s,Pr
[b]l ≈α [a]s,Pr =⇒ (a b) · l ≈α s, a#l ,Pr

π · X ≈α π′ · X ,Pr =⇒ ds(π, π′)#X ,Pr
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Checking α-equivalence of terms

The relation =⇒ is confluent and strongly normalising:
the simplification process terminates,
the result is unique: 〈Pr〉nf

〈Pr〉nf is of the form ∆ ∪ Contr ∪ Eq where:
∆ contains consistent freshness constraints (a#X )
Contr contains inconsistent freshness constraints (a#a)
Eq contains reduced ≈α constraints.

Lemma:

• Γ ` Pr if and only if Γ ` 〈Pr〉nf .

• Let 〈Pr〉nf = ∆ ∪ Contr ∪ Eq. Then ∆ ` Pr if and only if
Contr and Eq are empty.
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Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

• Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

(t ground or variables disjoint from s)

• Examples:
λ([a]X ) = λ([b]b) ??
λ([a]X ) = λ([b]X ) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.
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Back to Nominal Rewriting

Let R = ∇ ` l → r where V (l) ∩ V (s) = ∅
s rewrites with R to t in the context ∆, written ∆ ` s

R→ t,
when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.

• To define the reduction relation generated by nominal
rewriting rules we use nominal matching.

• (∇ ` l) ?≈ (∆ ` s ′) if
∇, l ≈α s ′ has solution (∆′, θ), that is, ∆′ ` ∇θ, lθ ≈α s ′

and
∆ ` ∆′
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Nominal Matching

• Nominal matching is decidable [Urban, Pitts, Gabbay 2003]
A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ.

• Nominal matching algorithm: add an instantiation rule:

π · X ≈α u,Pr =⇒X 7→π-1·u Pr [X 7→π-1 · u]

No occur-checks needed (left-hand side variables distinct from
right-hand side variables).
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Back to Nominal Rewriting

Equivariance: Rules defined modulo permutative renamings of
atoms.
Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Nominal Rewriting Exercises

Exercises: Are the following rewriting derivations valid? If your
answer is positive, indicate the rules and substitutions used in each
step.

` (λ[x ]s(x))Y →∗ s(Y )
y#Y ` (λ[x ]λ[y ]x)Y →∗ λ[y ]Y
y#X ` (λ[y ]X )Y →∗ X
y#Y ` ((λ[x ]λ[y ]x)Y )Y →∗ Y
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Next questions

• Efficient nominal matching algorithm?

• Is nominal matching sufficient (complete) for nominal
rewriting?
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A Linear-Time Matching Algorithm

• The transformation rules create permutations.
In polynomial implementations of nominal unification
permutations are lazy: only pushed down a term when needed.

• Problem: lazy permutations may grow (they accumulate).

• To obtain an efficient algorithm, work with a single current
permutation, represented by an environment.
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A Linear-Time Algorithm

An environment ξ is a pair (ξπ, ξA) of a permutation and a set of
atoms.

Notation: s ≈α ξ♦t represents s ≈α ξπ · t, ξA # t.

An environment problem Pr is either ⊥ or
s1 ≈α ξ1♦t1, . . . , sn ≈α ξn♦tn.

It is easy to translate a standard problem into an environment
problem and vice-versa.
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A Linear-Time Algorithm

The algorithms to check α-equivalence constraints and to solve
matching problems are modular.

Core module (common to both algorithms) has four phases:
Phase 1 reduces environment constraints, by propagating ξi over ti .
Phase 2 eliminates permutations on the left-hand side.
Phase 3 reduces freshness constraints.
Phase 4 computes the standard form of the resulting problem.

Pr
c

denotes the result of applying the core algorithm on Pr .
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Checking α-equivalence constraints

To check that a set Pr of α-equivalence constraints is valid:

• Run the core algorithm on Pr

• If left-hand sides of ≈α-constraints in Pr are ground, stop
otherwise reduce the result Pr

c
using:

(α) Pr , X ≈α t =⇒

{
Pr , supp(π) # X if t = π · X
⊥ otherwise

where supp(π) = {a | π · a 6= a}
• Normal forms: ⊥ or (Ai # Xi )

n
1.

• Correctness: If the normal form is ⊥ then Pr is not valid.
If the normal form of Pr is (Ai # Xi )

n
1 then (Ai # Xi )

n
1 ` Pr .
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Solving Matching Problems

To solve a matching problem Pr :

• Run the core algorithm on Pr

• If the problem is non-linear, normalise the result Pr
c

by:
Pr ,X ≈α s, X ≈α t =⇒{

Pr , X ≈α s, s ≈α t ≈α if s ≈α t ≈α 6= ⊥
⊥ otherwise

• Normal forms: ⊥ or a pair of a substitution and a freshness
context.

• Correctness:
The result is a most general solution of the matching problem
Pr .

• Remark:
If variables occur linearly in patterns then the core algorithm
is sufficient.
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Complexity

Core algorithm: linear in the size of the initial problem in the
ground case, using mutable arrays. In the non-ground case,
log-linear using functional maps.

Alpha-equivalence check: linear if right-hand sides of constraints
are ground (core algorithm). Otherwise, log-linear using functional
maps.

Matching: quadratic in the non-ground case (traversal of every
term in the output of the core algorithm).
Worst case complexity: when phase 4 suspends permutations on all
variables. If variables in the input problem are ’saturated’ with
permutations, then linear (permutations cannot grow).
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Complexity - Summary

Case Alpha-equivalence Matching

Ground linear linear
Non-ground and linear log-linear log-linear

Non-ground and non-linear log-linear quadratic

Remark:
The representation using higher-order abstract syntax does
saturate the variables (they have to be applied to the set of atoms
they can capture).
Conjecture: the algorithms are linear wrt HOAS also in the
non-ground case.

For more details on the implementation see [3],
see [5] for formalisations in Coq and PVS
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Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.
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Closed Rules

R ≡ ∇ ` l → r is closed when

(∇′ ` (l ′, r ′)) ?≈ (∇,A(R ′)#V (R) ` (l , r))

has a solution σ (where R ′ is freshened with respect to R).

Given R ≡ ∇ ` l → r and ∆ ` s a term-in-context we write

∆ ` s
R→c t when ∆,A(R ′)#V (∆, s) ` s

R′→ t

and call this closed rewriting.
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Examples

The following rules are not closed:

g(a)→ a

[a]X → X

Why?
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Examples

The following rule is closed:

a#X ` [a]X → X

Why?
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Exercise

Provide a nominal rewriting system defining an explicit substitution
operator subst of arity 3 for the lambda-calculus.
subst(x , s, t) should return the term obtained by substituting x by
t in s.
Are your rules closed?
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Examples

Closed rules that define capture-avoiding substitution in the
lambda calculus:
(explicit) substitutions, subst([x ]M,N) abbreviated M[x 7→N].

(Beta) (λ[a]X )X ′ → X [a 7→X ′]
(σapp) (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
(σa) a[a 7→X ] → X
(σε) a#Y ` Y [a 7→X ] → Y
(σλ) b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Exercise

Show that the rules defining beta-reduction in the lambda-calculus
in the previous slide are closed.
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Properties of Closed Rewriting

Closed Nominal Rewriting:

• works uniformly in α equivalence classes of terms.

• is expressive: can encode Combinatory Reduction Systems.

• is efficient: linear matching.

• inherits confluence conditions from first order rewriting.
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Confluence — Critical Pairs

Suppose

1 Ri = ∇i ` li → ri for i = 1, 2 are copies of two rules in R
such that V (R1) ∩ V (R2) = ∅ (R1 and R2 could be copies of
the same rule).

2 l1 ≡ L[l ′1] such that ∇1,∇2, l
′
1 ?≈? l2 has a principal solution

(Γ, θ), so that Γ ` l ′1θ ≈α l2θ and Γ ` ∇iθ for i = 1, 2.

Then Γ ` (r1θ, Lθ[r2θ]) is a critical pair.
If L = [-] and R1, R2 are copies of the same rule, or if l ′1 is a
variable, then we say the critical pair is trivial.

We distinguish:
If R2 is a copy of Rπ

1 , the overlap is permutative.
Root-permutative overlap: permutative overlap at the root.
Proper overlap: not trivial and not root-permutative
Same terminology for critical pairs.
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Confluence — Critical Pairs

Permutative overlap −→ critical pair between rules R and Rπ.
Only the root-permutative overlaps where π is Id are trivial.
While overlaps at the root between variable-renamed versions of
first-order rules can be discarded (they generate equal terms), in
nominal rewriting we must consider non-trivial root-permutative
overlaps. Indeed, they do not necessarily produce the same result.

Example

R = ( ` f (X )→ f ([a]X )) and R(a b) = ( ` f (X )→ f ([b]X )) have
a non-trivial root-permutative overlap.
Critical pair: ` (f ([a]X ), f ([b]X )). Note that f ([a]X ) 6≈α f ([b]X ).
This theory is not confluent; we have for instance:

f (a)
〈R,ε,Id ,[X 7→a]〉

{{

〈R,ε,(a b),[X 7→a]〉

##

f ([a]a) 6≈α f ([b]a)
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Confluence — Critical Pairs

For uniform rules (i.e., rules that do not generate new atoms),
joinability of non-trivial critical pairs implies local confluence;
also confluence if terminating (Newman’s Lemma).

Joinability of proper critical pairs is insufficient for local
confluence, even for a uniform theory:
the rule in Example above is uniform. However, it is not α-stable:
R = ∇ ` l → r is α-stable when, for all ∆, π, σ, σ′,
∆ ` ∇σ,∇πσ′, lσ ≈α lπσ′ implies ∆ ` rσ ≈α rπσ′.

Critical Pair Lemma for uniform α-stable theories:
Let R = (Σ,Rw) be a uniform rewrite theory where all the rewrite
rules in Rw are α-stable. If every proper critical pair is joinable,
then R is locally confluent.
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Confluence — Critical Pairs

α-stability is difficult to check, however,
closed rules are α-stable.

The reverse implication does not hold:
` f (a)→ a is α-stable but not closed.

Corollary:
A closed nominal rewrite system where all proper critical pairs are
joinable is locally confluent.
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Confluence — Critical Pairs and Closed Rewriting

More efficient: checking fresh overlaps and fresh critical pairs is
sufficient for closed rewriting.
Let Ri = ∇i ` li → ri (i = 1, 2) be freshened versions of rules.
If the nominal unification problem ∇1 ∪∇2 ∪ {l2 ?≈? l1|p} has a
most general solution 〈Γ, θ〉 for some position p, then R1 fresh
overlaps with R2, and the pair of terms-in-context
Γ ` (r1θ, l1θ[p←r2θ]) is a fresh critical pair.
If p is a variable position, or if R1 and R2 are equal modulo
renaming of variables and p = ε, then we call the overlap and
critical pair trivial.
If R1 and R2 are freshened versions of the same rule and p = ε,
then we call the overlap and critical pair fresh root-permutative.
A fresh overlap (resp. fresh critical pair) that is not trivial and not
root-permutative is proper.
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Confluence — Critical Pairs and Closed Rewriting

The fresh critical pair Γ ` (r1θ, l1θ[p←r2θ]) is joinable if there is a
term u such that Γ `

R
r1θ →c u and Γ `

R
(l1θ[p←r2θ])→c u.

Critical Pair Lemma for Closed Rewriting:
Let R = (Σ,Rw) be a rewrite theory where every proper fresh
critical pair is joinable. Then the closed rewriting relation
generated by R is locally confluent.
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Confluence — Critical Pairs

Since it is sufficient to consider just one freshened version of each
rule when computing overlaps of closed rules, the number of fresh
critical pairs for a finite set of rules is finite.
Thus, we have an effective criterion for local confluence, similar to
the criterion for first-order systems.

Example

Explicit substitution rules in the λ-calculus (all rules except Beta)
are locally confluent: every proper fresh critical pair is joinable.
If we include Beta then the system is not locally confluent.
This does not contradict the previous theorem: there is a proper
fresh critical pair between (Beta) and (σapp), which is not joinable,
obtained from ∅ ` ((λ[a]X )Y )[b 7→ Z ]:

∅ ` (((λ[a]X )[b 7→ Z ])(Y [b 7→ Z ]), (X [a 7→ Y ])[b 7→ Z ]).
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Exercise: Critical Pairs

Compute all the proper, fresh critical pairs of the system defining
beta-reduction in the lambda-calculus.
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Confluence — Orthogonality

Theorem

Orthogonal (i.e., left-linear, no non-trivial overlaps) uniform
nominal rewriting systems are confluent.

Call a rewrite theory R = (Σ,Rw) fresh quasi-orthogonal when
all rules are left-linear and there are no proper fresh critical pairs.

Theorem

If R is a fresh-quasi-orthogonal rewrite system, then the closed
rewriting relation generated by R is confluent.

Example

First-order logic signature: ¬, ∀ and ∃ of arity 1, and ∧,∨ of arity
2 (infix).
Closed rules to simplify formulas:

` ¬(X∧Y )→ ¬(X )∨¬(Y ) and b#X ` ¬(∀[a]X )→ ∃[b]¬((b a)·X ).
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Confluence — Orthogonality

The criteria for local confluence / confluence of closed rewriting
are easy to check using a nominal unification algorithm:
just compute overlaps for the set of rules obtained by taking one
freshened copy of each given rule.

For comparison, the criteria for general nominal rewriting require
the computation of critical pairs for permutative variants of rules,
which needs equivariant unification (exponential).
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Types

So far, we have discussed untyped nominal terms.

There are also typed versions:

• many-sorted

• Simply typed — Church-style and Curry-style

• Polymorphic Curry-style systems (next slides)

• Intersection type assignment systems

• Dependently typed systems
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Polymorphic Curry-Style Types for Nominal Terms

Types built from

• a set of base data sorts δ (e.g. Nat, Bool, Exp, . . . ), and

• type variables α,

• using type constructors C (e.g. List, →, . . . )

Types:
σ, τ ::= δ | α | (τ1 × . . .× τn) | C τ | [σ]τ

Type declarations:
ρ ::= ∀(α).〈σ ↪→ τ〉

Example

succ : 〈Nat ↪→ Nat〉
length : ∀(α).〈Listα ↪→ Nat〉 ≡ ∀(β).〈Listβ ↪→ Nat〉

Instantiation: E.g. ∀(α).〈α ↪→ α〉 < 〈Nat ↪→ Nat〉
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Typing Rules

Quasi-typing judgements: Γ �
Σ

∆ ` s : τ , defined inductively,
where Γ is a typing context, Σ a signature (set of declarations for
term-formers), ∆ a freshness context, s a term and τ a type.
∆ needed later.

Γa ≡ τ
(atm)τ

Γ �
Σ

∆ ` a : τ

ΓX ≡ τ
(var)τ

Γ �
Σ

∆ ` π · X : τ

Σf < 〈σ ↪→ τ〉 Γ �
Σ

∆ ` t : σ

Γ �
Σ

∆ ` f t : τ

Γ on (a : τ) �
Σ

∆ ` t : τ ′

Γ �
Σ

∆ ` [a] t : [τ ] τ ′

Γ �
Σ

∆ ` t1 : τ1 . . . Γ �
Σ

∆ ` tn : τn
(tpl)τ

Γ �
Σ

∆ ` (t1, . . . , tn) : (τ1 × . . .× τn)
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Typing Judgements

Typing judgement:
A derivable quasi-typing judgement such that for every X ,
all occurrences of X are typed in the same essential environment:
Γπ
−1 −∆X is the same for any π · X in t.

The latter is called linearity property.

Notation for typing judgements: Γ 
Σ

∆ ` s : τ
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Examples

a : α, X : β ∅ ∅ ` (a, X ) : (α× β)

∅ ∅ ∅ ` [a] a : [α]α

a : β ∅ ∅ ` [a] a : [α]α

a : τ1, b : τ2, X : τ ∅ ∅ ` (a b) · X : τ

a : τ1, b : τ1, X : τ ∅ ∅ ` ((a b) · X , Id · X ) : (τ × τ)

X : τ ∅ a # X ` ([a] Id · X , Id · X ) : ([α]τ × τ)

a : α, b : β, X : τ ∅ ∅ ` [a] ((a b) · X , Id · X ) : [β] (τ × τ)

Exercise: Show that each of these typing judgements is valid.
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Type System Features

Generalisation of Hindley-Milner’s type system:

• atoms (can be abstracted or unabstracted),

• variables (cannot be abstracted but can be instantiated, with
non-capture-avoiding substitutions),

• suspended permutations,

• declarations for function symbols (term formers).
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Principal Types

• Every term has a principal type, and type inference is
decidable.

• Principal types are obtained using a function pt(Γ,Σ,∆, s):
given a typeability problem Γ 

Σ
∆ ` t, pt returns a pair

(S , τ) of a type substitution and a type, such that
the quasi-typing judgement Γ S �

Σ
∆ ` t : τ is derivable

and satisfies the linearity property,
or fails if there is no such S , τ .

• pt implemented in two phases:
1) build a quasi-typing judgement derivation,
2) check essential typings.

• pt is sound and complete.
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Properties

• Meta-level equivariance of typing judgements:
if Γ 

Σ
∆ ` t : τ , then πΓ 

Σ
π∆ ` πt : τ .

• Object-level equivariance of typing judgements:
if Γ 

Σ
∆ ` t : τ then πΓ 

Σ
∆ ` π · t : τ .

• Well-typed substitutions preserve types:
If θ is well-typed in Γ, Σ and ∆ for Φ 

Σ
∇ ` t : τ , then

Γ 
Σ

∆ ` t θ : τ .

• α-equivalence preserves types:
∆ ` s ≈α t and Γ 

Σ
∆ ` s : τ imply Γ 

Σ
∆ ` t : τ .
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Subject Reduction

Typeable rewrite rule Φ 
Σ
∇ ` l → r : τ

1 ∇ ` l → r is a uniform rule;

2 pt(Φ 
Σ
∇ ` l) = (Id , τ) and Φ 

Σ
∇ ` (l , r) : (τ × τ).

Remark: reductions do not generate new atoms (uniform rules);
l and r are both typeable with the principal type of l , so the
essential environments of both sides of the rule are the same (key!).

Typed Nominal Matching: The substitution must be will be typed.

Subject Reduction:
The rewrite relation generated by typeable rewrite rules using
typed nominal matching preserves types.
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Typeable Rewrite Rules for the Lambda-Calculus

Declarations: lam: ∀(α, β).〈[α]β ↪→ α⇒ β〉,
app: ∀(α, β).〈(α⇒ β×α) ↪→ β〉, sub: ∀(α, β).〈([α]β×α) ↪→ β〉
Rules:

X : α, Y : β 
Σ
∅ ` app ((lam [a] X ), Y )→ sub ([a] X , Y ) : α

X : α⇒ β 
Σ

a # X ` lam [a] (app (X , a))→ X : α⇒ β

X : α, Z : γ 
Σ

a # X ` sub ([a] X , Z )→ X : α

Z : γ 
Σ
∅ ` sub ([a] a, Z )→ Z : γ

X : β ⇒ α, Y : β, Z : γ 
Σ
∅ ` sub ([a] (app (X , Y )), Z )

→ app (sub ([a] X , Z ), sub ([a] Y , Z )) : α

X : α, Z : γ 
Σ

b # Z ` sub ([a] (lam [b] X ), Z )

→ lam [b] (sub ([a] X , Z )) : α′ ⇒ α

Exercise: Show that the rules satisfy the conditions in the def. of
typeable rule.
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Why Typed Matching?

Assume Σf = ∀(α).〈α ↪→ Nat〉 and Σtrue = 〈() ↪→ Bool〉 and a rule

X : Nat 
Σ
∅ ` f X → X : Nat

The untyped pattern-matching problem ∅ ` f X ?≈α ∅ ` f true
has a solution X 7→ true.

The typed pattern matching problem
(X : Nat 

Σ
∅ ` f X ) ?≈α (∅ 

Σ
∅ ` f true) has none: the

substitution X 7→ true is not well-typed, because X is required to
have the type Nat, but it is instantiated with a term of type Bool.
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More efficient: Typed Closed Nominal Rewriting

Typeable-closed rewrite rule Φ 
Σ
∇ ` l → r : τ

1 ∇ ` l → r is closed.

2 pt(Φ 
Σ
∇ ` l) = (Id , τ) and Φ 

Σ
∇ ` (l , r) : (τ × τ).

3 Every variable in l has an occurrence within a function
application f t, and for every subderivation Γ′ 

Σ
∆ ` f t : τ ′

in l where t is not ground, if Σf = ∀(α).〈σ ↪→ τ〉, then the
type of t is as general as σ.

Subject Reduction:
The closed rewriting relation generated by typeable-closed rules
preserves types.
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Exercises: Typed Closed Nominal Rewriting

Consider again the rewrite system defining beta-reduction in the
lambda-calculus.
Are all the rules typeable-closed?

They are closed, but we need to check if all the rules use the most
general type for term constructors...

Problem: rule for substitution over abstraction has an argument of
arrow type (not the most general type for sub).
OK with the signature of untyped lambda-calculus: type
declarations with one base type Lam for lambda-terms
For more details see [4]
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Theories with AC operators

Recall:

First Order E-Unification problem:
Given two terms s and t and an equational theory E.
Question: is there a substitution σ such that sσ =E tσ?

Undecidable in general

Decidable subcases: C, AC, ACU, . . .
[Baader, Kapur, Narendran, Siekmann, Schmidt-Schauß, etc..]
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Nominal E-Unification problem:
Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Nominal E-Unification: α and E .
Modular extension of first-order equational unification procedures?

It depends on the theory E ...

Maribel Fernández Nominal Rewriting



Nominal E-Unification problem:
Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Nominal E-Unification: α and E .
Modular extension of first-order equational unification procedures?

It depends on the theory E ...

Maribel Fernández Nominal Rewriting



Nominal E-Unification problem:
Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Nominal E-Unification: α and E .
Modular extension of first-order equational unification procedures?

It depends on the theory E ...

Maribel Fernández Nominal Rewriting



Interference: Commutative Symbols, e.g., OR , +

∀[a]OR(p(a), p((c d) · X )) ≈α
? ∀[b]OR(p((a b) · X ), p(b))

⇓∗

OR(p(a), p((c d) · X ))) ≈α
? OR(p(X ), p(a)), a#?OR(p((a b) · X ), p(b))

⇓∗

p(a) ≈α
? p(X ), p((c d) · X ) ≈α

? p(a), b#X

⇓
a ≈α

? X , (c d) · X ≈α
? a, b#X

⇓ [X 7→ a]

(c d) · a ≈α
? a, b#a

⇓
⊥
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OR is a commutative symbol:

OR(p(a), p((c d) · X ))) ≈α? OR(p(X ), p(a)), b#?X
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OR is a commutative symbol:

OR(p(a), p((c d) · X ))) ≈?
α,C OR(p(X ), p(a)), b#?X

⇓
p(a) ≈α? p(a), p((c d) · X ) ≈?

α,C p(X ), b#?X

⇓
p((c d) · X ) ≈?

α,C p(X ), b#?X

⇓
(c d) · X ≈?

α,C X , b#?X

(c d) · X ≈?
α,C X has infinite principal solutions:

X 7→ c + d ,X 7→ f (c + d),X 7→ [e]c + [e]d , . . .

Maribel Fernández Nominal Rewriting



Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.
Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.
Alternative representation?
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Nominal Sets

Perm(A): group of finite permutations of A
S : set equipped with an action of the group Perm(A)

Definition

A ⊂ A is a support for an element x ∈ S if for all π ∈ Perm(A)

((∀a ∈ A) π(a) = a)⇒ π · x = x (1)

A nominal set is a set equipped with an action of the group
Perm(A), all of whose elements have finite support.

suppS(x): least finite support of x
Example:
If a ∈ A then supp(a) = {a}
supp(app(a, g(c, d))) = {a, c , d}
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Freshness vs. Fixed-Point Constraints

Definition of Freshness [Pitts2013]:

a#X ⇔ Na′.(a a′) · X = X

Freshness derived from Nand a notion of permutation fixed-point.

Let S be a nominal set.
The fixed-point relation f ⊆ Perm(A)×S is defined as:
π f x ⇔ π · x = x
Read “π f x” as “π fixes x”.
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α-equivalence via fixed point constraints

Notation:

• α-equivalence constraint: s
f
≈α t

• Fixed-point constraint: π f t

Intuitively, π fixes t if π · t
f
≈α t,

π has “no effect” on t except for possible renaming of bound
names, for instance, (a b)f [a]a but not (a b)f f a.

• Primitive fixed-point constraint: π f X

• Fixed-point context: Υ = {π1 f X1, . . . , πk f Xk}
• Support of a permutation: supp(π) = {a | π(a) 6= a}
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Fixed-Point Rules

Notation: perm(Υ|X ) permutations that fix X according to Υ

π(a) = a
(fa)

Υ ` π f a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X ))
(fvar)

Υ ` π f π′ · X

Υ ` π f t
(ff)

Υ ` π f f t

Υ ` π f t1 . . . Υ ` π f tn
(ftuple)

Υ ` π f (t1, . . . , tn)

Υ, (c1 c2)f Var(t) ` π f (a c1) · t
(fabs),

c1 and c2

new namesΥ ` π f [a]t
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Alpha-Equivalence Rules

(
f
≈α a)

Υ ` a
f
≈α a

supp((π′)−1 ◦ π) ⊆ supp(perm(Υ|X ))
(
f
≈α var)

Υ ` π · X
f
≈α π

′ · X

Υ ` t
f
≈α t ′

(
f
≈α f)

Υ ` f t
f
≈α f t ′

Υ ` t1
f
≈α t ′1 . . . Υ ` tn

f
≈α t ′n

(
f
≈α tuple)

Υ ` (t1, . . . , tn)
f
≈α (t ′1, . . . , t

′
n)

Υ ` t
f
≈α t ′

(
f
≈α [a])

Υ ` [a]t
f
≈α [a]t ′

Υ ` s
f
≈α (a b) · t Υ, (c1 c2)f Var(t) ` (a c1)f t

(
f
≈α ab)

Υ ` [a]s
f
≈α [b]t
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Correctness

Theorem

Υ ` π f t iff Υ ` π · t
f
≈α t.

[ ]f maps freshness constraints in ∆ to fixed-point constraints:

[ ]f : ∆ −→ Ff
a#X 7→ (a ca)f X where ca is a new name.

[ ]#maps fixed-point constraints in Υ to freshness constraints:

[ ]# : Υ −→ F#

π f X 7→ supp(π)#X .

Theorem

1 ∆ ` s ≈α t ⇒ [∆]f ` s
f
≈α t.

2 Υ ` s
f
≈α t ⇒ [Υ]# ` s ≈α t.

Maribel Fernández Nominal Rewriting



C-fixed point constraints

+: commutative symbol
C-fixed-point constraint: π fC t

C-α-equality constraint: s
f
≈C t

+((a b) · X , a)
f?
≈C +(Y , X )

↙ ↘

{(a b) · X
f?
≈C Y , a

f?
≈C X}

⇓ [X 7→ a]

{(a b) · a
f?
≈C Y }
⇓

{b
f?
≈C Y }

⇓ [Y 7→ b]
(∅, {X 7→ a,Y 7→ b})

{(a b) · X
f?
≈C X , a

f?
≈C Y }

⇓ [Y 7→ a]

{(a b) · X
f?
≈C X}

⇓
{(a b)f?

C X}
⇓

((a b)fC X , {Y 7→ a})
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Fixed Point Rules

π(a) = a
(fCa)

Υ ` π fC a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X ))
(fCvar)

Υ ` π fC π
′ · X

Υ ` π fC t
f 6= + (fCf)

Υ ` π fC ft

Υ ` π fC t1 . . . Υ ` π fC tn
(fCtuple)

Υ ` π fC (t1, . . . , tn)

Υ ` π · t0
f
≈C ti Υ ` π · t1

f
≈C t(i+1) mod 2

i = 0, 1(fC+)
Υ ` π fC +(t0, t1)

Υ, (c1 c2)fC Var(t) ` π fC (a c1) · t
(fCabs)

Υ ` π fC [a]t
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Alpha-Equality Rules

(
f
≈C a)

Υ ` a
f
≈C a

Υ ` (π′)−1 ◦ π fC X
(
f
≈C var)

Υ ` π · X
f
≈C π

′ · X

Υ ` t
f
≈C t ′

(
f
≈C f, f 6= +)

Υ ` ft
f
≈C ft ′

Υ ` t1
f
≈C t ′1 . . . Υ ` tn

f
≈C t ′n

(
f
≈C tuple)

Υ ` (t1, . . . , tn)
f
≈C (t ′1, . . . , t

′
n)

Υ ` s0
f
≈C ti s1

f
≈C t(i+1) mod 2

i = 0, 1 (
f
≈C +)

Υ ` +〈s0, s1〉
f
≈C +〈t0, t1〉

Υ ` t
f
≈C t ′

(
f
≈C [a])

Υ ` [a]t
f
≈C [a]t ′

Υ ` s
f
≈C (a b)t Υ, (c1 c2)fC Var(t) ` (a c1)fC t

(
f
≈C ab)

Υ ` [a]s
f
≈C [b]t
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Simplification rules for nominal C-unification

Pr ] {π f?
C a} =⇒ Pr, if π(a) = a

Pr ] {π f?
C ft} =⇒ Pr ∪ {π f?

C t}, f 6= +
Pr ] {π f?

C +(t0, t1)} =⇒ Pr ∪ {π · t0 ≈? t0, π · t1 ≈? t1}
Pr ] {π f?

C +(t0, t1)} =⇒ Pr ∪ {π · t0 ≈? t1, π · t1 ≈? t0}
Pr ] {π f?

C (t̃)n} =⇒ Pr ∪ {π f?
C t1, . . . , π f?

C tn}
Pr ] {π f?

C [a]t} =⇒ Pr ∪ {π f?
C (a c1) · t, (c1 c2) f?

C Var(t)}
Pr ] {π f?

C π
′ · X} =⇒ Pr ∪ {π(π′)−1

f?
C X}, if π′ 6= Id

Pr ] {ft
f?
≈C ft′} =⇒ Pr ∪ {t

f?
≈C t′}, f 6= +

Pr ] {+(t0, t1)
f?
≈C +(s0, s1)} =⇒ Pr ∪ {t0

f?
≈C s0, t1

f?
≈C s1}

Pr ] {+(t0, t1)
f?
≈C +(s0, s1)} =⇒ Pr ∪ {t0

f?
≈C s1, t1

f?
≈C s0}

Pr ] {(t̃)n
f?
≈C (t̃′)n} =⇒ Pr ∪ {t1

f?
≈C t′1, . . . , tn

f?
≈C t′n}

Pr ] {[a]t
f?
≈C [a]t′} =⇒ Pr ∪ {t

f?
≈C t′}

Pr ] {[a]t
f?
≈C [b]s} =⇒ Pr ∪ {t

f?
≈C (a b) · s, (a c1) f?

C s,

(c1 c2) f?
C Var(s)}

Pr ] {π · X
f?
≈C π

′ · X} =⇒ Pr ∪ {(π′)−1 ◦ π f?
C X}

Pr ] {π · X
f?
≈C t} [X 7→pi−1.t]

=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)
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Properties

• Termination: There is no infinite chain of reductions =⇒C

starting from a C-unification problem Pr.

• Soundess and Completeness

• Nominal C Unification is finitary if solutions are represented as
pairs of fixed-point context and substitution

For more details see [6].
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Conclusion

• NRSs are first-order systems with built-in α-equivalence.

• Closed NRSs ⇔ higher-order rewriting systems
Capture-avoiding atom substitutions are easy to define. They
can also be included as primitive BUT unification becomes
undecidable [7]

• Hindley-Milner style types [4]: principal types, α-equivalence
preserves types. Sufficient conditions for Subject Reduction.

• Nominal unification is quadratic (unknown lower bound)
[Levy&Villaret, Calvès & F.]

• Nominal matching is linear, equivariant matching is linear with
closed rules.
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Conclusions

• Applications: functional and logic programming languages,
theorem provers, model checkers (eg. FreshML, AlphaProlog,
AlphaCheck, Nominal package in Isabelle-HOL, etc.).

• Extensions: AC-Nominal Unification, E-Nominal Unification,
Nominal Narrowing [Ayala-Rincón et al]

• Some implementations/formalisations:
Nominal Datatypes Package for Haskell (Jamie Gabbay):
https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia:
http://nominal.cic.unb.br

alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/

aprolog/

and also implementations of rewriting, unification, matching
by Elliot Fairweather, Christophe Calves and others.

Maribel Fernández Nominal Rewriting

https://github.com/bellissimogiorno/nominal
http://nominal.cic.unb.br
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

	Nominal E Unfication
	Fixed Point Constraints (FPC)

