
Automated Complexity Analysis for Term Rewriting

Carsten Fuhs

Birkbeck, University of London

Course at the International School on Rewriting 2021

Madrid, Spain1

5th July 2021

https://www.dcs.bbk.ac.uk/~carsten/isr2021/

1virtually

https://www.dcs.bbk.ac.uk/~carsten/isr2021/

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R
2/62

What is Term Rewriting?

(1) Core functional programming language
without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite
System (TRS) R)

double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s3(0))

−→R s2(double(s2(0)))

−→R s4(double(s(0)))

−→R s6(double(0))

−→R s6(0)

in 4 steps with −→R
2/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })

Question: How long can a −→R sequence from a term of size n become?
(worst case)

Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)

Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!

double(sn−2(0)) −→n−1
R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps

runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms

rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)

derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms

dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem
E |= s ≡ t by rewriting s and t via an equivalent convergent TRS RE

3/62

Overview

1 Introduction
2 Automatically Finding Upper Bounds
3 Automatically Finding Lower Bounds
4 Transformational Techniques
5 Analysing Program Complexity via TRS Complexity
6 Current Developments

4/62

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .

2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,
RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/

5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .

2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,
RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/

5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .

2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,
RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/

5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .

2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,
RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/

5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .

2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,
RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/

5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs2

2001: Techniques for polynomial upper complexity bounds3

2008: Runtime complexity introduced with first analysis techniques4

2008: First automated tools to find complexity bounds: TcT5, CaT6

2008: First complexity analysis categories in the Termination Competition
http://termination-portal.org/wiki/Termination_Competition

. . .
2D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,

RTA ’89
3G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial

interpretation termination proof, JFP ’01
4N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency

pair method, IJCAR ’08
5M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
6M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2,

RTA ’09, http://cl-informatik.uibk.ac.at/software/cat/
5/62

http://termination-portal.org/wiki/Termination_Competition
https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (2/2)

. . .
2021: Termination Competition 2021 with complexity analysis tools

AProVE7, TcT in July 2021

https://termcomp.github.io/Y2021-1

First run just finished!

7J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski,
R. Thiemann: Analyzing Program Termination and Complexity Automatically with
AProVE, JAR ’17, http://aprove.informatik.rwth-aachen.de/

6/62

https://termcomp.github.io/Y2021-1
http://aprove.informatik.rwth-aachen.de/

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

7/62

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

7/62

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

7/62

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

7/62

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

7/62

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).
7/62

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?8

Goal: find approximations for derivational complexity

Initial focus: find upper bounds

dcR(n) ∈ O(...)

8A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and
runtime complexity, CSL ’11

8/62

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)

dcR(n) polynomially bounded?8

Goal: find approximations for derivational complexity

Initial focus: find upper bounds

dcR(n) ∈ O(...)

8A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and
runtime complexity, CSL ’11

8/62

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?8

Goal: find approximations for derivational complexity

Initial focus: find upper bounds

dcR(n) ∈ O(...)

8A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and
runtime complexity, CSL ’11

8/62

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?8

Goal: find approximations for derivational complexity

Initial focus: find upper bounds

dcR(n) ∈ O(...)

8A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and
runtime complexity, CSL ’11

8/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) −→ 0

3 > 1

double(s(x)) −→ s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving
9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.

Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving
9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving

9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving

9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving

9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving

9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation9 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT10 or SMT11 solving
9D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

10C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT
solving for termination analysis with polynomial interpretations, SAT ’07

11C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT
modulo linear arithmetic for solving polynomial constraints, JAR ’12

9/62

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n)
from polynomial interpretations12)

Termination proof for TRS R with polynomial interpretation
⇒ dcR(n) ∈ 22

O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

12D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

10/62

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n)
from polynomial interpretations12)

Termination proof for TRS R with polynomial interpretation
⇒ dcR(n) ∈ 22

O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

12D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

10/62

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n)
from polynomial interpretations12)

Termination proof for TRS R with polynomial interpretation
⇒ dcR(n) ∈ 22

O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

12D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations,
RTA ’89

10/62

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds13 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations14 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation15 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius16 ≤ 1

⇒ dcR(n) is at most polynomial
standard matrix interpretation17 ⇒ dcR(n) is at most exponential

13A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems,
AAECC ’04

14A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term
rewriting, Acta Cyb. ’09

15G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based
on matrix and context dependent interpretations, FSTTCS ’08

16F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for
polynomial derivational complexity of term rewriting, LPAR (Yogyakarta) ’10

17J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving
termination of term rewriting, JAR ’08

11/62

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds13 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations14 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation15 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius16 ≤ 1

⇒ dcR(n) is at most polynomial

standard matrix interpretation17 ⇒ dcR(n) is at most exponential

13A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems,
AAECC ’04

14A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term
rewriting, Acta Cyb. ’09

15G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based
on matrix and context dependent interpretations, FSTTCS ’08

16F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for
polynomial derivational complexity of term rewriting, LPAR (Yogyakarta) ’10

17J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving
termination of term rewriting, JAR ’08

11/62

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds13 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations14 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation15 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius16 ≤ 1

⇒ dcR(n) is at most polynomial
standard matrix interpretation17 ⇒ dcR(n) is at most exponential

13A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems,
AAECC ’04

14A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term
rewriting, Acta Cyb. ’09

15G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based
on matrix and context dependent interpretations, FSTTCS ’08

16F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for
polynomial derivational complexity of term rewriting, LPAR (Yogyakarta) ’10

17J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving
termination of term rewriting, JAR ’08

11/62

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
lexicographic path order18 ⇒ dcR(n) is at most multiple recursive19

Dependency Pairs method20 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive21

Dependency Pairs framework2223 with dependency graphs, reduction
pairs, subterm criterion ⇒ dcR(n) is at most multiple recursive24

18S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
19A. Weiermann: Termination proofs for term rewriting systems by lexicographic path

orderings imply multiply recursive derivation lengths, TCS ’95

20T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
21G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair

method, LMCS ’11
22J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving

dependency pairs, JAR ’06
23N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and

features, IC ’07
24G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may

induce multiple recursive derivational complexity, RTA ’11

12/62

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
lexicographic path order18 ⇒ dcR(n) is at most multiple recursive19

Dependency Pairs method20 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive21

Dependency Pairs framework2223 with dependency graphs, reduction
pairs, subterm criterion ⇒ dcR(n) is at most multiple recursive24

18S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
19A. Weiermann: Termination proofs for term rewriting systems by lexicographic path

orderings imply multiply recursive derivation lengths, TCS ’95
20T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
21G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair

method, LMCS ’11

22J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving
dependency pairs, JAR ’06

23N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and
features, IC ’07

24G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may
induce multiple recursive derivational complexity, RTA ’11

12/62

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
lexicographic path order18 ⇒ dcR(n) is at most multiple recursive19

Dependency Pairs method20 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive21

Dependency Pairs framework2223 with dependency graphs, reduction
pairs, subterm criterion ⇒ dcR(n) is at most multiple recursive24

18S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
19A. Weiermann: Termination proofs for term rewriting systems by lexicographic path

orderings imply multiply recursive derivation lengths, TCS ’95
20T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
21G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair

method, LMCS ’11
22J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving

dependency pairs, JAR ’06
23N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and

features, IC ’07
24G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may

induce multiple recursive derivational complexity, RTA ’11
12/62

Runtime Complexity

So far: upper bounds for derivational complexity

But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible

Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term25)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc25)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

25N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

13/62

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:26

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree
at most d for [f] ⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double

26G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

14/62

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:26

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree
at most d for [f] ⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double

26G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial
interpretation termination proof, JFP ’01

14/62

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:26

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree
at most d for [f] ⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double
26G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial

interpretation termination proof, JFP ’01
14/62

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples27 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

27L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term
rewriting by dependency pairs, JAR ’13

15/62

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples27 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

27L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term
rewriting by dependency pairs, JAR ’13

15/62

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples27 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

27L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term
rewriting by dependency pairs, JAR ’13

15/62

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

Use interpretation [·] with [Comk](x1, . . . , xk) = x1 + · · ·+ xk and

[nil] = 0 [add](x1, x2) = x2 + 1 (≤ restricted interpret.)
[app](x1, x2) = x1 + x2 [reverse](x1) = x1 (bounds helper fct. result size)
[app]](x1, x2) = x1 + 1 [reverse]](x1) = x21 + x1 + 1 (complexity of fct.)

to show [`] ≥ [r] for all rules and [`] ≥ 1 + [r] for all Dependency Tuples

Maximum degree of [·] is 2 ⇒ ircR(n) ∈ O(n2)

16/62

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

Use interpretation [·] with [Comk](x1, . . . , xk) = x1 + · · ·+ xk and

[nil] = 0 [add](x1, x2) = x2 + 1 (≤ restricted interpret.)
[app](x1, x2) = x1 + x2 [reverse](x1) = x1 (bounds helper fct. result size)
[app]](x1, x2) = x1 + 1 [reverse]](x1) = x21 + x1 + 1 (complexity of fct.)

to show [`] ≥ [r] for all rules and [`] ≥ 1 + [r] for all Dependency Tuples

Maximum degree of [·] is 2 ⇒ ircR(n) ∈ O(n2)

16/62

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs)
from termination analysis to complexity analysis, allow for
incremental complexity proofs with several techniques

Further adaptation of DPs (incomparable): Weak (Innermost)
Dependency Pairs for (innermost) runtime complexity28

Extensions by polynomial path orders29, usable replacement maps30, a
combination framework for complexity analysis31, . . .

28N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

29M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
30N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive

rewriting, RTA-TLCA ’14
31M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

17/62

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs)
from termination analysis to complexity analysis, allow for
incremental complexity proofs with several techniques
Further adaptation of DPs (incomparable): Weak (Innermost)
Dependency Pairs for (innermost) runtime complexity28

Extensions by polynomial path orders29, usable replacement maps30, a
combination framework for complexity analysis31, . . .

28N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

29M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
30N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive

rewriting, RTA-TLCA ’14
31M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

17/62

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs)
from termination analysis to complexity analysis, allow for
incremental complexity proofs with several techniques
Further adaptation of DPs (incomparable): Weak (Innermost)
Dependency Pairs for (innermost) runtime complexity28

Extensions by polynomial path orders29, usable replacement maps30, a
combination framework for complexity analysis31, . . .

28N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency
pair method, IJCAR ’08

29M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
30N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive

rewriting, RTA-TLCA ’14
31M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

17/62

How about Lower Bounds for Complexity?

input size

runtime

upper bound

worst case

lower bound
best case

Why lower bounds?
get tight bounds with
upper bounds
can indicate implementation
bugs
security: single query can
trigger Denial of Service

Here: Two techniques for finding lower bounds32 inspired by proving
non-termination

32F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for
runtime complexity of term rewriting, JAR ’17

18/62

How about Lower Bounds for Complexity?

input size

runtime

upper bound

worst case

lower bound
best case

Why lower bounds?
get tight bounds with
upper bounds
can indicate implementation
bugs
security: single query can
trigger Denial of Service

Here: Two techniques for finding lower bounds32 inspired by proving
non-termination

32F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for
runtime complexity of term rewriting, JAR ’17

18/62

How about Lower Bounds for Complexity?

input size

runtime

upper bound

worst case

lower bound
best case

Why lower bounds?
get tight bounds with
upper bounds
can indicate implementation
bugs
security: single query can
trigger Denial of Service

Here: Two techniques for finding lower bounds32 inspired by proving
non-termination

32F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for
runtime complexity of term rewriting, JAR ’17

18/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).

Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)

Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls

Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination33

Generate infinite family Twitness of basic terms as witnesses in

∀n ∈ N. ∃tn ∈ Twitness. |tn| ≤ q(n) ∧ dh(tn,−→R) ≥ p(n)

to conclude rcR(n) ∈ Ω(p′(n)).
Constructor terms for arguments can be built recursively after type
inference: 0, s(0), s(s(0)), . . . (here q(n) = n+ 1, often linear)
Evaluate tn by narrowing, get rewrite sequences with recursive calls
Speculate polynomial p(n) based on values for n = 0, 1, . . . , k

Prove rewrite lemma tn −→
≥p(n)
R t′n inductively

Get lower bound for rcR(n) from p(n) in rewrite lemma and q(n)

33F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically,
IJCAR ’12

19/62

Finding Lower Bounds by Induction: Example

Example (quicksort)

qs(nil) −→ nil

qs(cons(x, xs)) −→ qs(low(x, xs)) ++ cons(x, qs(low(x, xs)))

low(x, nil) −→ nil

low(x, cons(y, ys)) −→ if(x ≤ y, x, cons(y, ys))

if(tt, x, cons(y, ys)) −→ low(x, ys)

if(ff, x, cons(y, ys)) −→ cons(y, low(x, ys))
. . .

Speculate and prove rewrite lemma:

qs(cons(zero, . . . , cons(zero, nil))) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

qs(consn(zero, nil)) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

From |qs(consn(zero, nil))| = 2n+ 2 we get
rcR(2n+ 2) ≥ 3n2 + 2n+ 1 and rcR(n) ∈ Ω(n2).

20/62

Finding Lower Bounds by Induction: Example

Example (quicksort)

qs(nil) −→ nil

qs(cons(x, xs)) −→ qs(low(x, xs)) ++ cons(x, qs(low(x, xs)))

low(x, nil) −→ nil

low(x, cons(y, ys)) −→ if(x ≤ y, x, cons(y, ys))

if(tt, x, cons(y, ys)) −→ low(x, ys)

if(ff, x, cons(y, ys)) −→ cons(y, low(x, ys))
. . .

Speculate and prove rewrite lemma:

qs(cons(zero, . . . , cons(zero, nil))) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

qs(consn(zero, nil)) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

From |qs(consn(zero, nil))| = 2n+ 2 we get
rcR(2n+ 2) ≥ 3n2 + 2n+ 1 and rcR(n) ∈ Ω(n2).

20/62

Finding Lower Bounds by Induction: Example

Example (quicksort)

qs(nil) −→ nil

qs(cons(x, xs)) −→ qs(low(x, xs)) ++ cons(x, qs(low(x, xs)))

low(x, nil) −→ nil

low(x, cons(y, ys)) −→ if(x ≤ y, x, cons(y, ys))

if(tt, x, cons(y, ys)) −→ low(x, ys)

if(ff, x, cons(y, ys)) −→ cons(y, low(x, ys))
. . .

Speculate and prove rewrite lemma:

qs(cons(zero, . . . , cons(zero, nil))) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

qs(consn(zero, nil)) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

From |qs(consn(zero, nil))| = 2n+ 2 we get
rcR(2n+ 2) ≥ 3n2 + 2n+ 1 and rcR(n) ∈ Ω(n2).

20/62

Finding Lower Bounds by Induction: Example

Example (quicksort)

qs(nil) −→ nil

qs(cons(x, xs)) −→ qs(low(x, xs)) ++ cons(x, qs(low(x, xs)))

low(x, nil) −→ nil

low(x, cons(y, ys)) −→ if(x ≤ y, x, cons(y, ys))

if(tt, x, cons(y, ys)) −→ low(x, ys)

if(ff, x, cons(y, ys)) −→ cons(y, low(x, ys))
. . .

Speculate and prove rewrite lemma:

qs(cons(zero, . . . , cons(zero, nil))) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

qs(consn(zero, nil)) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

From |qs(consn(zero, nil))| = 2n+ 2 we get
rcR(2n+ 2) ≥ 3n2 + 2n+ 1

and rcR(n) ∈ Ω(n2).

20/62

Finding Lower Bounds by Induction: Example

Example (quicksort)

qs(nil) −→ nil

qs(cons(x, xs)) −→ qs(low(x, xs)) ++ cons(x, qs(low(x, xs)))

low(x, nil) −→ nil

low(x, cons(y, ys)) −→ if(x ≤ y, x, cons(y, ys))

if(tt, x, cons(y, ys)) −→ low(x, ys)

if(ff, x, cons(y, ys)) −→ cons(y, low(x, ys))
. . .

Speculate and prove rewrite lemma:

qs(cons(zero, . . . , cons(zero, nil))) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

qs(consn(zero, nil)) −→3n2+2n+1
cons(zero, . . . , cons(zero, nil))

From |qs(consn(zero, nil))| = 2n+ 2 we get
rcR(2n+ 2) ≥ 3n2 + 2n+ 1 and rcR(n) ∈ Ω(n2).

20/62

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

s −→+
R C[sσ] −→+

R C[Cσ[sσ2]] −→+
R · · ·

Example: f(y) −→ f(s(y)) has loop f(y) −→+
R f(s(y)) with σ(y) = 0.

Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other
arguments may grow, sequence can be repeated (loop)

Example: plus(s(x), y) −→ plus(x, s(y)) has decreasing loop

plus(s(x), y) −→+
R plus(x, s(y)) with D[x] = s(x)

for base term s = plus(x, y), pumping substitution θ = [x 7→ s(x)], and
result substitution σ = [y 7→ s(y)]:

sθ −→+
R C[sσ]

Implies rc(n) ∈ Ω(n)!

21/62

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

s −→+
R C[sσ] −→+

R C[Cσ[sσ2]] −→+
R · · ·

Example: f(y) −→ f(s(y)) has loop f(y) −→+
R f(s(y)) with σ(y) = 0.

Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other
arguments may grow, sequence can be repeated (loop)

Example: plus(s(x), y) −→ plus(x, s(y)) has decreasing loop

plus(s(x), y) −→+
R plus(x, s(y)) with D[x] = s(x)

for base term s = plus(x, y), pumping substitution θ = [x 7→ s(x)], and
result substitution σ = [y 7→ s(y)]:

sθ −→+
R C[sσ]

Implies rc(n) ∈ Ω(n)!

21/62

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

s −→+
R C[sσ] −→+

R C[Cσ[sσ2]] −→+
R · · ·

Example: f(y) −→ f(s(y)) has loop f(y) −→+
R f(s(y)) with σ(y) = 0.

Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other
arguments may grow, sequence can be repeated (loop)

Example: plus(s(x), y) −→ plus(x, s(y)) has decreasing loop

plus(s(x), y) −→+
R plus(x, s(y)) with D[x] = s(x)

for base term s = plus(x, y), pumping substitution θ = [x 7→ s(x)], and
result substitution σ = [y 7→ s(y)]:

sθ −→+
R C[sσ]

Implies rc(n) ∈ Ω(n)!

21/62

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

s −→+
R C[sσ] −→+

R C[Cσ[sσ2]] −→+
R · · ·

Example: f(y) −→ f(s(y)) has loop f(y) −→+
R f(s(y)) with σ(y) = 0.

Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other
arguments may grow, sequence can be repeated (loop)

Example: plus(s(x), y) −→ plus(x, s(y)) has decreasing loop

plus(s(x), y) −→+
R plus(x, s(y)) with D[x] = s(x)

for base term s = plus(x, y), pumping substitution θ = [x 7→ s(x)], and
result substitution σ = [y 7→ s(y)]:

sθ −→+
R C[sσ]

Implies rc(n) ∈ Ω(n)!
21/62

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several “compatible” parallel recursive calls:

Example: fib(s(s(n))) −→ plus(fib(s(n)), fib(n)) has 2 decreasing loops:

fib(s(s(n))) −→+
R C[fib(s(n))] and fib(s(s(n))) −→+

R C[fib(n)]

Implies rc(n) ∈ Ω(2n)!

(Non-)Example: tr(node(x, y)) −→ node(tr(x), tr(y))

Has linear complexity. But:

tr(node(x, y)) −→+
R C[tr(x)] and tr(node(x, y)) −→+

R C[tr(y)]

are not compatible (their pumping substitutions do not commute).

Automation for decreasing loops: narrowing.

22/62

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several “compatible” parallel recursive calls:

Example: fib(s(s(n))) −→ plus(fib(s(n)), fib(n)) has 2 decreasing loops:

fib(s(s(n))) −→+
R C[fib(s(n))] and fib(s(s(n))) −→+

R C[fib(n)]

Implies rc(n) ∈ Ω(2n)!

(Non-)Example: tr(node(x, y)) −→ node(tr(x), tr(y))

Has linear complexity. But:

tr(node(x, y)) −→+
R C[tr(x)] and tr(node(x, y)) −→+

R C[tr(y)]

are not compatible (their pumping substitutions do not commute).

Automation for decreasing loops: narrowing.

22/62

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several “compatible” parallel recursive calls:

Example: fib(s(s(n))) −→ plus(fib(s(n)), fib(n)) has 2 decreasing loops:

fib(s(s(n))) −→+
R C[fib(s(n))] and fib(s(s(n))) −→+

R C[fib(n)]

Implies rc(n) ∈ Ω(2n)!

(Non-)Example: tr(node(x, y)) −→ node(tr(x), tr(y))

Has linear complexity. But:

tr(node(x, y)) −→+
R C[tr(x)] and tr(node(x, y)) −→+

R C[tr(y)]

are not compatible (their pumping substitutions do not commute).

Automation for decreasing loops: narrowing.
22/62

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:
Can find non-linear polynomial lower bounds
Also works on non-left-linear TRSs

Benefits of Decreasing Loops:
Does not rely as much on heuristics
Computationally more lightweight

⇒ First try decreasing loops, then induction technique

Both techniques can be adapted to innermost runtime complexity!

23/62

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:
Can find non-linear polynomial lower bounds
Also works on non-left-linear TRSs

Benefits of Decreasing Loops:
Does not rely as much on heuristics
Computationally more lightweight

⇒ First try decreasing loops, then induction technique

Both techniques can be adapted to innermost runtime complexity!

23/62

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:
Can find non-linear polynomial lower bounds
Also works on non-left-linear TRSs

Benefits of Decreasing Loops:
Does not rely as much on heuristics
Computationally more lightweight

⇒ First try decreasing loops, then induction technique

Both techniques can be adapted to innermost runtime complexity!

23/62

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:
Can find non-linear polynomial lower bounds
Also works on non-left-linear TRSs

Benefits of Decreasing Loops:
Does not rely as much on heuristics
Computationally more lightweight

⇒ First try decreasing loops, then induction technique

Both techniques can be adapted to innermost runtime complexity!

23/62

A Landscape of Complexity Properties and Transformations

dc rc

TRS

24/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

24/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

LPAR’1734

34F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity,
LPAR ’17

24/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

LPAR’1734

FroCoS’1935

FroCoS’19

34F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity,
LPAR ’17

35C. Fuhs: Transforming Derivational Complexity of Term Rewriting to Runtime
Complexity, FroCoS ’19

24/62

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves
derivational complexity analysis

25/62

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves
derivational complexity analysis

25/62

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves
derivational complexity analysis

25/62

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves
derivational complexity analysis

25/62

From dc to rc: Results

program transformation such that runtime complexity of transformed
TRS is identical to derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

26/62

From dc to rc: Results

program transformation such that runtime complexity of transformed
TRS is identical to derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

26/62

From dc to rc: Results

program transformation such that runtime complexity of transformed
TRS is identical to derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

26/62

From dc to rc: Results

program transformation such that runtime complexity of transformed
TRS is identical to derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB36 relative to state of the art TcT

36Termination Problem Data Base, standard benchmark source for annual
Termination and Complexity Competition (TermComp) with 1000s of problems,
http://termination-portal.org/wiki/TPDB

26/62

http://termination-portal.org/wiki/TPDB

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f

Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|

bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f
from basic term with cf

Represent
t = double(double(double(s(0))))

by basic variant

bv(t) =
encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

27/62

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)
more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

28/62

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)

more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

28/62

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)
more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

28/62

From dc to rc: Correctness

Theorem (Derivational Complexity via Runtime Complexity)
Let R/S be a relative TRS, let G be the generator rules for R/S. Then

1 dcR/S(n) = rcR/(S∪G)(n) (arbitrary rewrite strategies)
2 idcR/S(n) = ircR/(S∪G)(n) (innermost rewriting)

Note: equalities hold also non-asymptotically!

29/62

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

upper bounds idc: both AProVE and TcT with transformation are
stronger than standard TcT

upper bounds dc: TcT stronger than AProVE and TcT with
transformation, but AProVE still solves some new examples

lower bounds idc and dc: heuristics do not seem to benefit much

⇒ Transformation-based approach should be part of the portfolio of
analysis tools for derivational complexity

30/62

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

upper bounds idc: both AProVE and TcT with transformation are
stronger than standard TcT

upper bounds dc: TcT stronger than AProVE and TcT with
transformation, but AProVE still solves some new examples

lower bounds idc and dc: heuristics do not seem to benefit much

⇒ Transformation-based approach should be part of the portfolio of
analysis tools for derivational complexity

30/62

Derivational Complexity: Future Work

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms
“between” basic and all terms (Tbasic ⊆ U ⊆ T).

Want to adapt techniques from runtime complexity analysis to
derivational complexity! How?

(Useful) adaptation of Dependency Pairs?
Abstractions to numbers?
. . .

31/62

Derivational Complexity: Future Work

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms
“between” basic and all terms (Tbasic ⊆ U ⊆ T).

Want to adapt techniques from runtime complexity analysis to
derivational complexity! How?

(Useful) adaptation of Dependency Pairs?
Abstractions to numbers?
. . .

31/62

Derivational Complexity: Future Work

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms
“between” basic and all terms (Tbasic ⊆ U ⊆ T).

Want to adapt techniques from runtime complexity analysis to
derivational complexity! How?

(Useful) adaptation of Dependency Pairs?
Abstractions to numbers?
. . .

31/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

36M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for
term rewriting by integer transition systems, FroCoS ’17

32/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’1737 FroCoS’17

37M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for
term rewriting by integer transition systems, FroCoS ’17

32/62

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’1737 FroCoS’17

37M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for
term rewriting by integer transition systems, FroCoS ’17

32/62

Bottom-Up Complexity Analysis for Imperative Programs

Recently significant progress in complexity analysis tools for Integer
Transition Systems (ITSs):

CoFloCo38

KoAT39

PUBS40

Goal: use these tools to find upper bounds for TRS complexity

38A. Flores-Montoya, R. Hähnle: Resource analysis of complex programs with cost
equations, APLAS ’14, https://github.com/aeflores/CoFloCo

39M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl: Analyzing Runtime and
Size Complexity of Integer Programs, TOPLAS ’16,
https://github.com/s-falke/kittel-koat

40E. Albert, P. Arenas, S. Genaim, G. Puebla: Closed-Form Upper Bounds in Static
Cost Analysis, JAR ’11, https://costa.fdi.ucm.es/pubs/

33/62

https://github.com/aeflores/CoFloCo
https://github.com/s-falke/kittel-koat
https://costa.fdi.ucm.es/pubs/

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)
rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs)·)

Note: innermost reduction strategy

34/62

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)
rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs)·)

Note: innermost reduction strategy
34/62

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)

rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs)·)

Note: innermost reduction strategy
34/62

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)
rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs)·)

Note: innermost reduction strategy
34/62

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)
rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs) · . . .)

Note: innermost reduction strategy
34/62

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

rt(gt(x, y)) ∈ O(1) (“ =−→” for relative rules)
rt(insert(x, ys)) ∈ O(length(ys))

rt(isort(xs, ys)) ∈ O(length(xs) · (length(xs) + length(ys)))

Note: innermost reduction strategy
34/62

Using Dependency Tuples: Top-Down

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

the recursive isort rule is at most applied linearly often

the recursive insert rule is at most applied quadratically often

note: requires reasoning about isort, insert, and if rules!
found via quadratic polynomial interpretation

the recursive if rule is applied as often as the recursive insert rule

35/62

Using Dependency Tuples: Top-Down

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

the recursive isort rule is at most applied linearly often
the recursive insert rule is at most applied quadratically often

note: requires reasoning about isort, insert, and if rules!
found via quadratic polynomial interpretation

the recursive if rule is applied as often as the recursive insert rule

35/62

Using Dependency Tuples: Top-Down

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

the recursive isort rule is at most applied linearly often
the recursive insert rule is at most applied quadratically often

note: requires reasoning about isort, insert, and if rules!

found via quadratic polynomial interpretation

the recursive if rule is applied as often as the recursive insert rule

35/62

Using Dependency Tuples: Top-Down

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

the recursive isort rule is at most applied linearly often
the recursive insert rule is at most applied quadratically often

note: requires reasoning about isort, insert, and if rules!
found via quadratic polynomial interpretation

the recursive if rule is applied as often as the recursive insert rule

35/62

Using Dependency Tuples: Top-Down

Example
isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

the recursive isort rule is at most applied linearly often
the recursive insert rule is at most applied quadratically often

note: requires reasoning about isort, insert, and if rules!
found via quadratic polynomial interpretation

the recursive if rule is applied as often as the recursive insert rule

35/62

Bird’s Eye View of the Transformation

Example

isort(nil, ys) −→ ys

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

1 abstract terms to integers

[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(cons(x, xs), ys) −→ isort(xs, insert(x, ys))

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

1 abstract terms to integers

[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, nil) −→ cons(x, nil)

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

1 abstract terms to integers

[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, cons(y, ys)) −→ if(gt(x, y), x, cons(y, ys))

if(true, x, cons(y, ys)) −→ cons(y, insert(x, ys))

if(false, x, cons(y, ys)) −→ cons(x, cons(y, ys))

gt(0, y)
=−→ false

gt(s(x), 0)
=−→ true

gt(s(x), s(y))
=−→ gt(x, y)

1 abstract terms to integers

[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers

[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Bird’s Eye View of the Transformation

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC (Strongly Connected Component)
of call graph using standard ITS tools

36/62

Call Graph & Bottom SCCs

isort

insert

if

gt

37/62

Call Graph & Bottom SCCs

isort

insert

if

gt

37/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC using standard ITS tools

3 analyse runtime of bottom-SCC using standard ITS tools

38/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC using standard ITS tools

3 analyse runtime of bottom-SCC using standard ITS tools

38/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(gt(x, y), x, ys′) | ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

gt(x′, y′)
0−→ 1 | x′ = 1

gt(x′, y′)
0−→ 1 | x′ = 1 + x ∧ y′ = 1

gt(x′, y′)
0−→ gt(x, y) | x′ = 1 + x ∧ y′ = 1 + y

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

38/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

1 abstract terms to integers
[c](x1, . . . , xn) = 1 + x1 + · · ·+ xn for constructors c
note: variables range over N
just + and ·

2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

38/62

Abstracting Terms to Integers:
Pitfalls

39/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . .

O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?

Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . .

O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?

Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?

Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a)

g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a) g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a) g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . .

O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Terminating Variants

Term Rewriting Integer Transition Systems
start terms may have variables ground start terms only

Example
h(x) −→ f(g(x)) f(x) −→ f(x) g(a)

=−→ g(a) g(a)
=−→ a

innermost rewriting: h(x) −→ f(g(x)) −→ f(g(x)) −→ . . . O(∞)

ground rewriting: h(a) −→ f(g(a))
=−→ f(g(a))

=−→ . . . O(1)

with terminating variant: h(a) −→ f(g(a))
=−→ f(a) −→ f(a) −→ . . . O(∞)

Just ground rewriting?
Add terminating variant of relative rules!

Definition
N is a terminating variant of S iff N terminates and every N -normal form
is an S-normal form.

40/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . .

O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1))

O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a

g(x)
=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!

41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a g(x)

=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!
41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a g(x)

=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . .

O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!
41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a g(x)

=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its ground normal forms do not contain
defined symbols.

TRS not completely defined? y Add suitable terminating variant!
41/62

Ensuring Complete Definedness

Term Rewriting Integer Transition Systems
arbitrary matchers integer substitutions only

Example
f(x) −→ f(g(a)) g(b(a)) −→ a g(x)

=−→ a

original TRS: f(a) −→ f(g(a)) −→ f(g(a)) −→ . . . O(∞)

resulting ITS: f(1)
1−→ f(g(1)) O(1)

ITS after completion: f(1)
1−→ f(g(1))

0−→ f(1)
1−→ f(g(1))

0−→ . . . O(∞)

Definition
A TRS is completely defined iff its well-typed ground normal forms do not
contain defined symbols.

TRS not completely defined? y Add suitable terminating variant!
41/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

1 abstract terms to integers
2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

42/62

Call Graph & Bottom SCCs

isort

insert

if

43/62

Call Graph & Bottom SCCs

isort

insert

if

43/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

1 abstract terms to integers
2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

44/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

1 abstract terms to integers
2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

44/62

Analyse Size Using Standard ITS
Tools

45/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights

y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights

y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights

y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights

y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1+ys′−−−−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights

y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1+ys′−−−−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1+ys′−−−−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator

46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1+ys′−−−−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator
46/62

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert
in original rules

Example

insert(x, ys′)
2+x−−→ 2 + x | ys′ = 1

insert(x, ys′)
0−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1+y−−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1+ys′−−−−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

Idea: move “integer context” to weights y sz(insert(x, ys′)) ≤ 1 +x+ ys′

Example

f(x)
1−→ 2 + x · f(x− 1) | x > 0

f(x, acc) acc·2−−−→ 2+ x · f(x− 1, acc · x) | x > 0

Idea: use accumulator
46/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

insert(x, ys′)
1−→ 2 + x | ys′ = 1

insert(x, ys′)
1−→ if(b, x, ys′) | ys′ = 1 + y + ys ∧ b ≤ 1

if(b, x, ys′)
1−→ 1 + y + insert(x, ys) | b = 1 ∧ ys′ = 1 + y + ys

if(b, x, ys′)
1−→ 1 + ys′ | b = 1 ∧ ys′ = 1 + y + ys

1 abstract terms to integers
2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

47/62

Bird’s Eye View

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1 + x+ xs

1 abstract terms to integers
2 analyse result size for bottom-SCC using standard ITS tools
3 analyse runtime of bottom-SCC using standard ITS tools

47/62

Analyse Runtime Using Standard
Tools

48/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys

add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1−→ isort(xs, insert(x, ys)) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call

replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, insert(x, ys)) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call

replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, insert(x, ys)) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf

add constraint “xf ≤ size bound”
y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)

similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf

add constraint “xf ≤ size bound”
y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)

similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs

∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)

similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!
times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls

=⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Removing Nested Function Calls

Example

isort(xs′, ys)
1−→ ys | xs′ = 1

isort(xs′, ys)
1+2·ys−−−−→ isort(xs, xf) | xs′ = 1+x+xs∧xf ≤ 1+x+ys

sz(insert(x, ys)) ≤ 1 + x+ ys

rt(insert(x, ys)) ≤ 2 · ys
add costs of nested function call
replace nested function call by fresh variable xf
add constraint “xf ≤ size bound”

y rt(isort(xs′, ys)) ≤ O(xs′2 + xs′ · ys)
similar techniques to eliminate outer function calls =⇒ see paper!

times(s(x), y) −→ plus(times(x, y), y)

49/62

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as backends.

Results on the TPDB (922 examples):

AProVE + ITS backend finds better bounds than AProVE & TcT for
127 TRSs

transformation a useful additional inference technique for upper
bounds

50/62

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as backends.

Results on the TPDB (922 examples):

AProVE + ITS backend finds better bounds than AProVE & TcT for
127 TRSs

transformation a useful additional inference technique for upper
bounds

50/62

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as backends.

Results on the TPDB (922 examples):

AProVE + ITS backend finds better bounds than AProVE & TcT for
127 TRSs

transformation a useful additional inference technique for upper
bounds

50/62

From irc of TRSs to Integer Transition Systems: Summary

Abstraction from terms to integers

Modular bottom-up approach using standard ITS tools

Approach complements and improves state of the art

Note: abstraction hard-coded to term size

⇒ Future work: more flexible approach?

51/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size

of individual RITS functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size

of individual RITS functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)

2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size

of individual RITS functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)

3 Transform TRS to Recursive Integer Transition System (RITS),
analyse complexity of RITS instead (FroCoS’17)

4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size
of individual RITS functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)

4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size
of individual RITS functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size

of individual RITS functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:
1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS),

analyse complexity of RITS instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size

of individual RITS functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR using induction technique.

52/62

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Input for Automated Tools (1/4)

Automated tools at the Termination and Complexity Competition 2021:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:41

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

41For TcT Web, use only VAR and RULES entries in the text format and configure
other aspects (e.g., start terms) in the web interface.

53/62

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (1/4)

Automated tools at the Termination and Complexity Competition 2021:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:41

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

41For TcT Web, use only VAR and RULES entries in the text format and configure
other aspects (e.g., start terms) in the web interface.

53/62

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (1/4)

Automated tools at the Termination and Complexity Competition 2021:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:41

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

41For TcT Web, use only VAR and RULES entries in the text format and configure
other aspects (e.g., start terms) in the web interface.

53/62

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (2/4)

Innermost runtime complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

54/62

Input for Automated Tools (3/4)

Derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

55/62

Input for Automated Tools (4/4)

Innermost derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

56/62

What if Complexity Analysis Tools have Bugs?

Problem noted in the early Termination Competitions:
Tools may give contradictory answers on some (few) inputs.

Also program analysis tools may have bugs! But verifying tool
correctness seems infeasible.

Solution for termination and complexity of TRSs:
Proof output by TRS tools in a standard (XML) format
Proof certifiers based on trusted proof assistants
(Isabelle/HOL, Coq, . . .) check proofs independently
Example for TRS complexity: IsaFoR with certifier CeTA42

42R. Thiemann, C. Sternagel: Certification of Termination Proofs Using CeTA,
TPHOLs 2009, http://cl-informatik.uibk.ac.at/software/ceta/

57/62

http://cl-informatik.uibk.ac.at/software/ceta/

What if Complexity Analysis Tools have Bugs?

Problem noted in the early Termination Competitions:
Tools may give contradictory answers on some (few) inputs.
Also program analysis tools may have bugs! But verifying tool
correctness seems infeasible.

Solution for termination and complexity of TRSs:
Proof output by TRS tools in a standard (XML) format
Proof certifiers based on trusted proof assistants
(Isabelle/HOL, Coq, . . .) check proofs independently
Example for TRS complexity: IsaFoR with certifier CeTA42

42R. Thiemann, C. Sternagel: Certification of Termination Proofs Using CeTA,
TPHOLs 2009, http://cl-informatik.uibk.ac.at/software/ceta/

57/62

http://cl-informatik.uibk.ac.at/software/ceta/

What if Complexity Analysis Tools have Bugs?

Problem noted in the early Termination Competitions:
Tools may give contradictory answers on some (few) inputs.
Also program analysis tools may have bugs! But verifying tool
correctness seems infeasible.

Solution for termination and complexity of TRSs:
Proof output by TRS tools in a standard (XML) format
Proof certifiers based on trusted proof assistants
(Isabelle/HOL, Coq, . . .) check proofs independently

Example for TRS complexity: IsaFoR with certifier CeTA42

42R. Thiemann, C. Sternagel: Certification of Termination Proofs Using CeTA,
TPHOLs 2009, http://cl-informatik.uibk.ac.at/software/ceta/

57/62

http://cl-informatik.uibk.ac.at/software/ceta/

What if Complexity Analysis Tools have Bugs?

Problem noted in the early Termination Competitions:
Tools may give contradictory answers on some (few) inputs.
Also program analysis tools may have bugs! But verifying tool
correctness seems infeasible.

Solution for termination and complexity of TRSs:
Proof output by TRS tools in a standard (XML) format
Proof certifiers based on trusted proof assistants
(Isabelle/HOL, Coq, . . .) check proofs independently
Example for TRS complexity: IsaFoR with certifier CeTA42

42R. Thiemann, C. Sternagel: Certification of Termination Proofs Using CeTA,
TPHOLs 2009, http://cl-informatik.uibk.ac.at/software/ceta/

57/62

http://cl-informatik.uibk.ac.at/software/ceta/

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

58/62

A Landscape of Complexity Properties and Transformations

Prolog

OCaml

Java

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

58/62

A Landscape of Complexity Properties and Transformations

Prolog

OCaml

Java

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

ICFP’1543

IC’1844

PPDP’1245

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

43M. Avanzini, U. Dal Lago, G. Moser: Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order, ICFP ’15

44G. Moser, M. Schaper: From Jinja bytecode to term rewriting: A complexity
reflecting transformation, IC ’18

45J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs: Symbolic evaluation
graphs and term rewriting: A general methodology for analyzing logic programs, PPDP ’12

58/62

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to
term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can
take functions as arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially
evaluate functions to instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of
the OCaml program

59/62

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to
term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can
take functions as arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially
evaluate functions to instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of
the OCaml program

59/62

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to
term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can
take functions as arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially
evaluate functions to instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of
the OCaml program

59/62

Program Complexity Analysis via Term Rewriting:
Prolog and Java

Complexity analysis for Prolog programs and for Java programs by
translation to term rewriting

Common ideas:
Analyse program via symbolic execution and generalisation (a form of
abstract interpretation46)
Deal with language specifics in program analysis
Extract TRS R such that rcR(n) is provably at least as high as
runtime of program on input of size n
Can represent tree structures of program as terms in TRS!

46P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, POPL ’77

60/62

Program Complexity Analysis via Term Rewriting:
Prolog and Java

Complexity analysis for Prolog programs and for Java programs by
translation to term rewriting

Common ideas:
Analyse program via symbolic execution and generalisation (a form of
abstract interpretation46)
Deal with language specifics in program analysis
Extract TRS R such that rcR(n) is provably at least as high as
runtime of program on input of size n
Can represent tree structures of program as terms in TRS!

46P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, POPL ’77

60/62

Current Developments

amortised complexity analysis for term rewriting47

probabilistic term rewriting −→ upper bounds on expected runtime48

complexity analysis for logically constrained rewriting with built-in
data types from SMT theories (integers, booleans, arrays, . . .)49

direct analysis of complexity for higher-order term rewriting50

analysis of parallel-innermost runtime complexity51

47G. Moser, M. Schneckenreither: Automated amortised resource analysis for term
rewrite systems, SCP ’20

48M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
49S. Winkler, G. Moser: Runtime complexity analysis of logically constrained

rewriting, LOPSTR ’20
50C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
51T. Baudon, C. Fuhs, L. Gonnord: Parallel complexity of term rewriting systems,

WST ’21

61/62

Current Developments

amortised complexity analysis for term rewriting47

probabilistic term rewriting −→ upper bounds on expected runtime48

complexity analysis for logically constrained rewriting with built-in
data types from SMT theories (integers, booleans, arrays, . . .)49

direct analysis of complexity for higher-order term rewriting50

analysis of parallel-innermost runtime complexity51

47G. Moser, M. Schneckenreither: Automated amortised resource analysis for term
rewrite systems, SCP ’20

48M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20

49S. Winkler, G. Moser: Runtime complexity analysis of logically constrained
rewriting, LOPSTR ’20

50C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
51T. Baudon, C. Fuhs, L. Gonnord: Parallel complexity of term rewriting systems,

WST ’21

61/62

Current Developments

amortised complexity analysis for term rewriting47

probabilistic term rewriting −→ upper bounds on expected runtime48

complexity analysis for logically constrained rewriting with built-in
data types from SMT theories (integers, booleans, arrays, . . .)49

direct analysis of complexity for higher-order term rewriting50

analysis of parallel-innermost runtime complexity51

47G. Moser, M. Schneckenreither: Automated amortised resource analysis for term
rewrite systems, SCP ’20

48M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
49S. Winkler, G. Moser: Runtime complexity analysis of logically constrained

rewriting, LOPSTR ’20

50C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
51T. Baudon, C. Fuhs, L. Gonnord: Parallel complexity of term rewriting systems,

WST ’21

61/62

Current Developments

amortised complexity analysis for term rewriting47

probabilistic term rewriting −→ upper bounds on expected runtime48

complexity analysis for logically constrained rewriting with built-in
data types from SMT theories (integers, booleans, arrays, . . .)49

direct analysis of complexity for higher-order term rewriting50

analysis of parallel-innermost runtime complexity51

47G. Moser, M. Schneckenreither: Automated amortised resource analysis for term
rewrite systems, SCP ’20

48M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
49S. Winkler, G. Moser: Runtime complexity analysis of logically constrained

rewriting, LOPSTR ’20
50C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21

51T. Baudon, C. Fuhs, L. Gonnord: Parallel complexity of term rewriting systems,
WST ’21

61/62

Current Developments

amortised complexity analysis for term rewriting47

probabilistic term rewriting −→ upper bounds on expected runtime48

complexity analysis for logically constrained rewriting with built-in
data types from SMT theories (integers, booleans, arrays, . . .)49

direct analysis of complexity for higher-order term rewriting50

analysis of parallel-innermost runtime complexity51

47G. Moser, M. Schneckenreither: Automated amortised resource analysis for term
rewrite systems, SCP ’20

48M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
49S. Winkler, G. Moser: Runtime complexity analysis of logically constrained

rewriting, LOPSTR ’20
50C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
51T. Baudon, C. Fuhs, L. Gonnord: Parallel complexity of term rewriting systems,

WST ’21
61/62

Conclusion

Complexity analysis for term rewriting: active field of research

Push-button tools to infer upper and lower complexity bounds
available

Runtime complexity a popular translation target

Cross-fertilisation with techniques for other formalisms (integer
transition systems, functional programs, . . .)

Thanks a lot for your attention!

62/62

Conclusion

Complexity analysis for term rewriting: active field of research

Push-button tools to infer upper and lower complexity bounds
available

Runtime complexity a popular translation target

Cross-fertilisation with techniques for other formalisms (integer
transition systems, functional programs, . . .)

Thanks a lot for your attention!

62/62

Conclusion

Complexity analysis for term rewriting: active field of research

Push-button tools to infer upper and lower complexity bounds
available

Runtime complexity a popular translation target

Cross-fertilisation with techniques for other formalisms (integer
transition systems, functional programs, . . .)

Thanks a lot for your attention!

62/62

Conclusion

Complexity analysis for term rewriting: active field of research

Push-button tools to infer upper and lower complexity bounds
available

Runtime complexity a popular translation target

Cross-fertilisation with techniques for other formalisms (integer
transition systems, functional programs, . . .)

Thanks a lot for your attention!

62/62

Conclusion

Complexity analysis for term rewriting: active field of research

Push-button tools to infer upper and lower complexity bounds
available

Runtime complexity a popular translation target

Cross-fertilisation with techniques for other formalisms (integer
transition systems, functional programs, . . .)

Thanks a lot for your attention!

62/62

References I

T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

M. Avanzini and G. Moser. Dependency pairs and polynomial path
orders. In RTA ’09, pages 48–62, 2009.

M. Avanzini and G. Moser. A combination framework for complexity.
Information and Computation, 248:22–55, 2016.

M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean Complexity
Tool. In TACAS ’16, pages 407–423, 2016.

M. Avanzini, U. Dal Lago, and A. Yamada. On probabilistic term
rewriting. Science of Computer Programming, 185, 2020.

T. Baudon, C. Fuhs, and L. Gonnord. Parallel complexity of term
rewriting systems. In WST ’21, pages 45–50, 2021.

63/62

References II

G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Algorithms with
polynomial interpretation termination proof. Journal of Functional
Programming, 11(1):33–53, 2001.

C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and
A. Rubio. SAT modulo linear arithmetic for solving polynomial
constraints. Journal of Automated Reasoning, 48(1):107–131, 2012.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL ’77, pages 238–252, 1977.

F. Emmes, T. Enger, and J. Giesl. Proving non-looping
non-termination automatically. In IJCAR ’12, pages 225–240.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for
proving termination of term rewriting. Journal of Automated
Reasoning, 40(2–3):195–220, 2008.

64/62

References III

F. Frohn and J. Giesl. Analyzing runtime complexity via innermost
runtime complexity. In Proc. LPAR ’17, pages 249–268, 2017.

F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder. Lower
bounds for runtime complexity of term rewriting. Journal of
Automated Reasoning, 59(1):121–163, 2017.

C. Fuhs. Transforming derivational complexity of term rewriting to
runtime complexity. In FroCoS ’19, pages 348–364, 2019.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl. SAT solving for termination analysis with polynomial
interpretations. In SAT ’07, pages 340–354, 2007.

A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string
rewriting systems. Applicable Algebra in Engineering, Communication
and Computing, 15(3–4):149–171, 2004.

65/62

References IV

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and improving dependency pairs. Journal of Automated Reasoning, 37
(3):155–203, 2006.

J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs.
Symbolic evaluation graphs and term rewriting: A general methodology
for analyzing logic programs. In PPDP ’12, pages 1–12, 2012.

N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool:
Techniques and features. Information and Computation, 205(4):
474–511, 2007.

N. Hirokawa and G. Moser. Automated complexity analysis based on
the dependency pair method. In IJCAR ’08, pages 364–379, 2008.

N. Hirokawa and G. Moser. Automated complexity analysis based on
context-sensitive rewriting. In RTA-TLCA ’14, pages 257–271, 2014.

66/62

References V

D. Hofbauer and C. Lautemann. Termination proofs and the length of
derivations. In RTA ’89, pages 167–177, 1989.

S. Kamin and J.-J. Lévy. Two generalizations of the recursive path
ordering. Unpublished Manuscript, University of Illinois, Urbana, IL,
USA, 1980.

C. Kop and D. Vale. Tuple interpretations for higher-order rewriting. In
FSCD ’21, 2021. To appear.

A. Koprowski and J. Waldmann. Max/plus tree automata for
termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean
Termination Tool 2. In RTA ’09, pages 295–304, 2009.

D. S. Lankford. Canonical algebraic simplification in computational
logic. Technical Report ATP-25, University of Texas, 1975.

67/62

References VI

G. Moser and M. Schaper. From Jinja bytecode to term rewriting: A
complexity reflecting transformation. Information and Computation,
261:116–143, 2018.

G. Moser and A. Schnabl. The derivational complexity induced by the
dependency pair method. Logical Methods in Computer Science, 7(3),
2011a.

G. Moser and A. Schnabl. Termination proofs in the dependency pair
framework may induce multiple recursive derivational complexity. In
RTA ’11, pages 235–250, 2011b.

G. Moser and M. Schneckenreither. Automated amortised resource
analysis for term rewrite systems. Science of Computer Programming,
185, 2020.

68/62

References VII

G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term
rewriting based on matrix and context dependent interpretations. In
FSTTCS ’08, pages 304–315, 2008.

M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl.
Complexity analysis for term rewriting by integer transition systems. In
FroCoS ’17, pages 132–150, 2017.

F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix
interpretations for polynomial derivational complexity of term
rewriting. In LPAR (Yogyakarta) ’10, pages 550–564, 2010.

L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime
complexity of term rewriting by dependency pairs. Journal of
Automated Reasoning, 51(1):27–56, 2013.

A. Schnabl and J. G. Simonsen. The exact hardness of deciding
derivational and runtime complexity. In CSL ’11, pages 481–495, 2011.

69/62

References VIII

R. Thiemann and C. Sternagel. Certification of termination proofs
using CeTA. In TPHOLs ’09, pages 452–468, 2009.

A. Weiermann. Termination proofs for term rewriting systems by
lexicographic path orderings imply multiply recursive derivation
lengths. Theoretical Computer Science, 139(1&2):355–362, 1995.

S. Winkler and G. Moser. Runtime complexity analysis of logically
constrained rewriting. In LOPSTR ’20, pages 37–55, 2020.

70/62

	Introduction
	Finding Upper Bounds
	Finding Lower Bounds
	Transformations
	Program Complexity Analysis via Term Rewriting

