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This Course

A bird’s eye view on session types for message-passing concurrency, in two parts:

1. Session types before 2010:
Motivation, key ideas, essential notions of binary and multiparty session types.

2. Session types after 2010:
The Curry-Howard correspondence between linear logic and session types
(aka “propositions as sessions”).

My proposal: Part 1 → Q&A → Break → Part 2 → Q&A
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Outline

Context

Binary Session Types

Multiparty Session Types
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When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”
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Message-Passing Concurrent Programs

An (imperfect) analogy:

I Distributed, heterogeneous
components or (µ-)services

I Compatible message exchanges
are crucial for correctness

I A single faulty exchange can
cause system-wide bugs



When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”
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Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Linear logic propositions ↔ session types
Proofs ↔ π-calculus processes

Cut elimination ↔ process communication
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Type Systems
• Can detect bugs before programs are run

• Attached to many programming languages

• Implement a specific notion of correctness
A program is either correct or incorrect

Sequential Languages
• Data type systems classify values in a program

• Examples: Integers, strings of characters

Concurrent Languages
• Behavioral type systems classify protocols in a program

• Example: “first send username, then receive true/false, finally close”

• A typical bug: sending messages in the wrong order
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Binary Session Types
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Protocols as Session Types

Session types uniformly describe protocols in terms of

• communication actions (input and output)

• labeled choices (offers and selections)

• sequential composition

• recursion

Session protocols are attached to interaction devices:
• channel endpoints
• channels in programming languages like Go
• π-calculus names
• · · ·

Sequentiality in types goes hand-in-hand with sequentiality in processes
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Protocols as Session Types

S ::= !U ;S output value of type U , continue as S

| ?U ;S input value of type U , continue as S

| &{li : Si}i∈I branching: offer a selection between S1, . . . ,Sn

| ⊕{li : Si}i∈I select one between S1, . . . ,Sn

| µt .S | t recursion

| end terminated protocol

(Labels l1, . . . , ln are pairwise different.)

Notice:
• Sequential communication patterns (no built-in concurrency)
• U stands for basic values (e.g. int) but also sessions S (aka delegation)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 11 / 45



Protocols as Session Types

S ::= !U ;S output value of type U , continue as S

| ?U ;S input value of type U , continue as S

| &{li : Si}i∈I branching: offer a selection between S1, . . . ,Sn

| ⊕{li : Si}i∈I select one between S1, . . . ,Sn

| µt .S | t recursion

| end terminated protocol

(Labels l1, . . . , ln are pairwise different.)

Notice:
• Sequential communication patterns (no built-in concurrency)
• U stands for basic values (e.g. int) but also sessions S (aka delegation)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 11 / 45



Session-Based Concurrency

Conceptually, two phases:

I. Services advertise their session protocols along channel names.
Agreements are realized by their point-to-point interaction,
in an unrestricted and non-deterministic way.

II. After agreement, services establish a session using session names.
Intra-session interactions follow the intended protocol,
in a linear and deterministic way.

Notice:
• ‘Linear’ and ‘unrestricted’ in the sense of Girard’s linear logic.
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Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards
it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.
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Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running
the protocol.

• Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)
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Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running
the protocol.

- Alice eventually receives an answer from Bob on his
contribution.
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Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running
the protocol.

• Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

Correctness follows from the interplay of these properties.
Hard to enforce, especially when actions are “scattered around” in source programs.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 14 / 45



Example: A Two-Buyer Protocol

Two separate protocols, with Alice “leading” the interactions:

• A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:
buy : ?paym; ?address; !ok; end

cancel : ?thanks; !bye; end

• A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:
share : ?address; !ok; end

close : !bye; end
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Example: A Two-Buyer Protocol
Implementations for Alice, Bob, Seller should be compatible.

• Duality relates session types with opposite behaviors.
Intuitively:

- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

• Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost; &

8<
:
share : ?address; !ok; end

close : !bye; end

• Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;⊕

8<
:
share : !address; ?ok; end

close : ?bye; end

• Also, Alice’s implementation should conform to both SSA and SAB.
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Session Type Duality, Formally

Given a (finite) session type S , its dual type S is inductively defined as follows:

!U ;S = ?U ;S
?U ;S = !U ;S

&{li : Si}i∈I = ⊕{li : Si}i∈I
⊕{li : Si}i∈I = &{li : Si}i∈I

end = end

Notice:
• Duality for recursive session types is defined coinductively
(the dual of µt .S is not µt .S)
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Enhancing Compatibility via Subtyping

Consider a “mathematical server” and a candidate client

• The session type for the server:

S = &

8<
:
eq : ?Real; ?Real; !Bool; end

add : ?Int; ?Int; !Int; end

• The session type for the client:

T1 = ⊕

8<
:
eq : !Int; !Int; ?Bool; end

add : !Int; !Int; ?Int; end

Server and client are formally incompatible:
I S and T1 are not dual to each other, because of base types (Real vs Int)

Still, one may argue that server and client should be compatible.
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Enhancing Compatibility via Subtyping

Consider now an upgrade of the “mathematical server”
• The session type for the server known to clients:

S = &

8<
:
eq : ?Real; ?Real; !Bool; end

add : ?Int; ?Int; !Int; end

• The session type for the upgraded server:

S ′ = &

8>>><
>>>:

eq : ?Real; ?Real; !Bool; end

add : ?Int; ?Int; !Int; end

mul : ?Int; ?Int; !Int; end

The upgraded server and existing clients are formally incompatible:
I The options (labels) of clients (such as T1) and S ′ do not match.

Here again the upgraded server and old clients should be seen as compatible.
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Enhancing Compatibility via Subtyping

We may relate T1 with S and S ′ using a subtyping relation.

• Notation: S1 ≤ S2 (read: S1 is a subtype of S2)

• Intuitively, if S1 ≤ S2 then a name of type S1 can safely be used where a name
of type S2 is expected (safe sustitutability)
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Enhancing Compatibility via Subtyping
I On the one hand, we have:

&

8<
:
eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
T1

≤ &

8<
:
eq : ?Real; ?Real; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
S

T1 ≤ S : It is safe for the server to receive integers if reals are supported.

I We also have:

&

8<
:
eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
S

≤ &

8>>><
>>>:

eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end

mul : ?Int; ?Int; !Int; end| {z }
S ′

S ≤ S ′: It is safe to serve clients who know only some of the options.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 21 / 45



Enhancing Compatibility via Subtyping
I On the one hand, we have:

&

8<
:
eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
T1

≤ &

8<
:
eq : ?Real; ?Real; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
S

T1 ≤ S : It is safe for the server to receive integers if reals are supported.

I We also have:

&

8<
:
eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end| {z }
S

≤ &

8>>><
>>>:

eq : ?Int; ?Int; !Bool; end

add : ?Int; ?Int; !Int; end

mul : ?Int; ?Int; !Int; end| {z }
S ′

S ≤ S ′: It is safe to serve clients who know only some of the options.
Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 21 / 45



Subtyping, Formally

We assume expected relations for base types, e.g., Int ≤ Real.

end ≤ end

U1 ≤ U2 S1 ≤ S2

!U2; S1 ≤ !U1; S2

U1 ≤ U2 S1 ≤ S2

?U1; S1 ≤ ?U2; S2

I ⊆ J ∀i ∈ I .Si ≤ Ti

&{li : Si}i∈I ≤ &{lj : Tj}j∈J
J ⊆ I ∀j ∈ J .Sj ≤ Tj

⊕{lj : Sj}j∈J ≤ ⊕{li : Ti}i∈I
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?U1; S1 ≤ ?U2; S2

I ⊆ J ∀i ∈ I .Si ≤ Ti

&{li : Si}i∈I ≤ &{lj : Tj}j∈J
J ⊆ I ∀j ∈ J .Sj ≤ Tj

⊕{lj : Sj}j∈J ≤ ⊕{li : Ti}i∈I

Notice:

• ≤ is co-variant for inputs and contra-variant for outputs
Example: ?Int;S ≤ ?Real;S is sound, but !Int;S ≤ !Real;S is not.

• ≤ is co-variant for branching and contra-variant for choices.
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end ≤ end

U1 ≤ U2 S1 ≤ S2

!U2; S1 ≤ !U1; S2

U1 ≤ U2 S1 ≤ S2

?U1; S1 ≤ ?U2; S2

I ⊆ J ∀i ∈ I .Si ≤ Ti

&{li : Si}i∈I ≤ &{lj : Tj}j∈J
J ⊆ I ∀j ∈ J .Sj ≤ Tj

⊕{lj : Sj}j∈J ≤ ⊕{li : Ti}i∈I
Notice:
• ≤ is co-variant for inputs and contra-variant for outputs
Example: ?Int;S ≤ ?Real;S is sound, but !Int;S ≤ !Real;S is not.
• ≤ is co-variant for branching and contra-variant for choices.

Also:
• ≤ concerns substitutability of names implementing protocols.
Safe substitutability of processes (programs) also possible.
• A general definition of ≤ is coinductive

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I) 22 / 45



Outline

Context

Binary Session Types

Multiparty Session Types
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From Binary to Multiparty Protocols

A two-buyer protocol, similar to the one discussed earlier:
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From Binary to Multiparty Protocols

• Binary session types organize interactions between exactly two partners.

• If there are three or more partners involved, binary protocols between them are
unavoidably disjoint.

• In realistic scenarios, we find multiparty protocols, in which multiple partners
are expected to interact along the same session protocol.
• Decomposing such multiparty protocols into binary session types is not always
possible — essential sequencing information may be lost.
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The Need for Sequencing Information

A decomposition as binary protocols may appear plausible...

... but misses key sequencing between unrelated partners.
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Binary and Multiparty Session Types

• In binary session types protocols involve exactly two partners

• Multiparty session types lift this limitation.
Two levels:
• a global type offers a high-level perspective of the protocol
• local types abstract each partner’s contribution to the protocol
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Multiparty Session Types

A methodology for decentralized specification, development, and validation of
protocols between multiple participants:

Global Type

Local Type

Programs

Projection

Type Checking

G

Tada Tbob Tdale Teve

Pada Pbob Pdale Peve
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The Syntax of Multiparty Session Types

We use p, q, . . . to denote participants. U is the type of transmittable values.

1. Global types:

G ::= p→ q : 〈U 〉.G Exchange of value of type U
| p→ q : {li : Gi}i∈I Branching

| µt .G | t Recursion

| end Terminated global protocol

2. Local types
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The Two-Buyer Protocol, Revisited (1/2)

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks with Bob whether he can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either
a) completing the payment and arranging delivery details
b) canceling the transaction



The Two-Buyer Protocol, Revisited (2/2)
A single global protocol G between three participants: Alice, Bob, and Seller.

G = Alice→ Seller : 〈book〉.
Seller→ Alice : 〈quote〉.
Alice→ Bob : 〈cost〉.
Bob→ Alice : { share : Bob→ Alice : 〈address〉.

Alice→ Bob : 〈ok〉.
Seller→ Alice : 〈invoice〉.
Alice→ Seller : 〈paym〉.end

close : Alice→ Bob : 〈bye〉.end
}

(with base types ‘book’, ‘quote’, ‘cost’, ‘address’, ‘ok’, ‘invoice’, ‘paym’, ‘bye’)

(Note: There is a problem with this protocol - can you spot it?)
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The Syntax of Multiparty Session Types
We use p, q, . . . to denote participants. U is the type of transmittable values.
1. Global types:

G ::= p→ q : 〈U 〉.G Exchange of value of type U
| p→ q : {li : Gi}i∈I Branching

| µt .G | t Recursion

| end Terminated global protocol

2. Local types:
T ::= !〈p,U 〉.T Send value to p

| ?〈p,U 〉.T Receive value from p

| &〈p, {li : Ti}i∈I 〉 Offer labeled options l1, l2, . . . to p

| ⊕〈p, {li : Ti}i∈I 〉 Select one option from l1, l2, . . . offered by p

| µt .T | t | end Recursion / Terminated Protocol
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Multiparty Session Types

A methodology for decentralized specification, development, and validation of
protocols between multiple participants:

Global Type

Local Type

Programs

Projection

Type Checking

G

Tada Tbob Tdale Teve

Pada Pbob Pdale Peve
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From Global to Local Types via Projection
The projection of G onto participant r, denoted G�r, is defined as follows:

• (p→ q : 〈U 〉.G ′)�r =

8>>><
>>>:

!〈q,U 〉.(G ′�r) if r = p

?〈p,U 〉.(G ′�r) if r = q

G ′�r otherwise

• (p→ q : {li : Gi}i∈I )�r =8>>><
>>>:

⊕〈q, {li : (Gi�r)}i∈I 〉 if r = p

&〈p, {li : (Gi�r)}i∈I 〉 if r = q

Gj�r if r 6= p, r 6= q, j ∈ I and Gk�r = Gl�r, for all k , l ∈ I

• (µt .G)�r =

8<
:
µt .(G�r) if G�r 6= t
end otherwise

• Also: t�r = t and end�r = end
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Well-Formed Global Types

I Fact: Not all global types generated by the syntax are make sense and/or can
be implemented in a distributed setting.

I Example:

G = p→ q : {l1 : q→ r〈Int〉.end , l2 : r→ q〈Str〉.end}

In G, participant p communicates a choice (label l1 or l2) to q.
This decision determines two different behaviors for r, which remains unaware.

I In theories of MPSTs, non-sensical protocols are ruled out by defining
well-formed global types — those that can be projected onto all participants.

I G is not well formed:
projecting G onto r fails, because the behaviors under l1 and l2 are not equal.
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The Role of Projection

In MPSTs, projection addresses two intertwined issues:

1. Whether participants can be implemented (and how)

2. The class of well-formed global types

Projectability determines expressivity, measured by the “size” of the class of
well-formed global types.

We explore this aspect by continuing our example.
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An Amended Protocol
Consider again G = p→ q : {l1 : q→ r〈Int〉.end , l2 : r→ q〈Str〉.end}.
We amend G by making p’s decision known to r by sending a message:

G ′ = p→ q : {l1 : q→ r : {rcv : q→ r〈Int〉.end}| {z }
G1

,

l2 : q→ r : {snd : r→ q〈Str〉.end}| {z }
G2

}

Is this enough? Let’s consider the projections G1�r and G2�r. We have:

G1�r = &〈q, {rcv : ?〈q, Int〉.end}〉
G2�r = &〈q, {snd : !〈q,Str〉.end}〉

Because local types G1�r and G2�r are not identical, G ′ is still not well-formed.
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An Amended Protocol
The amended protocol:

G ′ = p→ q : {l1 : q→ r : {rcv : q→ r〈Int〉.end}| {z }
G1

,

l2 : q→ r : {snd : r→ q〈Str〉.end}| {z }
G2

}

The non-identical projections G1�r and G2�r:

G1�r = &〈q, {rcv : ?〈q, Int〉.end}〉 G2�r = &〈q, {snd : !〈q,Str〉.end}〉

Morally, G ′ should be projectable, though:

G1�r and G2�r define the same behavior (r expecting a choice by q) while
determining separate branches.
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An Amended Protocol
The non-identical projections G1�r and G2�r:

G1�r = &〈q, {rcv : ?〈q, Int〉.end}〉 G2�r = &〈q, {snd : !〈q,Str〉.end}〉

Morally, G ′ should be projectable, though:

G1�r and G2�r define the same behavior (r expecting a choice by q) while
determining separate branches.

What we need is a more flexible notion of projection, in which non-identical local
types like G1�r and G2�r can be merged in a more general specification:

&〈q, {rcv : ?〈q, Int〉.end , snd : !〈q,Str〉.end}〉
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Merging Local Types [see, e.g., Deniélou and Yoshida - ICALP’13]

Given local types T1 and T2, their merge T1 tT2 is defined inductively as:

end t end = end

!〈q,U 〉.T t !〈q,U 〉.T = !〈q,U 〉.T
?〈q,U 〉.T t ?〈q,U 〉.T = ?〈q,U 〉.T

⊕〈q, {li : Ti}i∈I 〉 t ⊕〈q, {li : Ti}i∈I 〉 = ⊕〈q, {li : Ti}〉
&〈q, {li : Ti}i∈I 〉 t &〈q, {l ′j : T ′j}j∈J 〉 = &〈q, {li : Ti}i∈I\J ∪ {l ′j : T ′j}j∈J\I

∪ {lk : Tk tT ′k}k∈I∩J 〉

Intuition:
Merge is equality on local types except for branching types (&): we combine
distinct branches (when lk 6∈ I ∩ J ) and merge further (when lk ∈ I ∩ J ).
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Projection, Revisited
The merge-based projection of G onto participant r, denoted G�r, is defined as:

• (p→ q : 〈U 〉.G ′)�r =

8>>><
>>>:

!〈q,U 〉.(G ′�r) if r = p

?〈p,U 〉.(G ′�r) if r = q

G ′�r otherwise

• (p→ q : {li : Gi}i∈I )�r =

8>>><
>>>:

⊕〈q, {li : (Gi�r)}i∈I 〉 if r = p

&〈p, {li : (Gi�r)}i∈I 〉 if r = q

ti∈IGi�r otherwise

• (µt .G)�r =

8<
:
µt .(G�r) if G�r 6= t
end otherwise

• Also: t�r = t and end�r = end
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The Two-Buyer Protocol, Once Again
The global type G between Alice, Bob, and Seller:

G = Alice→ Seller : 〈book〉.
Seller→ Alice : 〈quote〉.
Alice→ Bob : 〈cost〉.
Bob→ Alice : { share : Bob→ Alice : 〈address〉.

Alice→ Bob : 〈ok〉.
Seller→ Alice : 〈invoice〉.
Alice→ Seller : 〈paym〉.end

close : Alice→ Bob : 〈bye〉.end
}

G is problematic: if Bob decides to close the transaction, Seller is not notified!
We can amend the protocol by adding some explicit messages.
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The Two-Buyer Protocol, Once Again

A revised global type G ′ in which Seller is notified of the exchange between Alice
and Bob:

G = Alice→ Seller : 〈book〉.
Seller→ Alice : 〈quote〉.
Alice→ Bob : 〈cost〉.
Bob→ Alice : { share : Bob→ Alice : 〈address〉.

Alice→ Bob : 〈ok〉.
Bob→ Seller : { order : Seller→ Alice : 〈invoice〉.

Alice→ Seller : 〈paym〉.end}
close : Alice→ Bob : 〈bye〉.end.

Bob→ Seller : { cancel : Seller→ Alice : 〈bye〉.end}
}
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The Two-Buyer Protocol, Once Again
The projections of G ′ onto Alice, Bob, and Seller:

G ′�Alice = !〈Seller, book〉.?〈Seller, quote〉.!〈Bob, cost〉.
&〈Bob, {share : ?〈Bob, address〉.

!〈Bob, ok〉.?〈Seller, invoice〉.!〈Seller, paym〉.end
close : !〈Bob, bye〉.!〈Seller, bye〉.end
}〉

G ′�Bob = ?〈Alice, cost〉.
⊕〈Alice, {share : !〈Alice, address〉.?〈Alice, ok〉.⊕ 〈Seller, {order : end }〉

close : ?〈Alice, bye〉.⊕ 〈Seller, {cancel : end }〉 }〉

G ′�Seller = ?〈Alice, book〉.!〈Alice, quote〉.
&〈Bob, {share : !〈Alice, invoice〉.?〈Alice, paym〉.end ,

cancel : !〈Alice, bye〉.end}〉
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Taking Stock
Binary session types
• Describe protocols between exactly two partners
• A session type specifies the sequence of actions by some given participant

• Compatibility defined in terms of session type duality

• Enhancements of compatibility via subtyping

Multiparty session types
• Describe protocols between more than two partners
• A global type describes the overall interaction scenario.
Local types: binary session types + participant identities.

• Global type projection into local types enforces compatibility.
Not all global types are well-formed (i.e., implementable).

• Enhancements via merge-based projectability (a form of subtyping)
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