(* Title : HOL/Real/RComplete.thy
ID : $Id: RComplete.thy,v 1.30 2007/10/23 21:27:24 nipkow Exp $
Author : Jacques D. Fleuriot, University of Edinburgh
Author : Larry Paulson, University of Cambridge
Author : Jeremy Avigad, Carnegie Mellon University
Author : Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
*)
header {* Completeness of the Reals; Floor and Ceiling Functions *}
theory RComplete
imports Lubs RealDef
begin
lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
by simp
subsection {* Completeness of Positive Reals *}
text {*
Supremum property for the set of positive reals
Let @{text "P"} be a non-empty set of positive reals, with an upper
bound @{text "y"}. Then @{text "P"} has a least upper bound
(written @{text "S"}).
FIXME: Can the premise be weakened to @{text "∀x ∈ P. x≤ y"}?
*}
lemma posreal_complete:
assumes positive_P: "∀x ∈ P. (0::real) < x"
and not_empty_P: "∃x. x ∈ P"
and upper_bound_Ex: "∃y. ∀x ∈ P. x<y"
shows "∃S. ∀y. (∃x ∈ P. y < x) = (y < S)"
proof (rule exI, rule allI)
fix y
let ?pP = "{w. real_of_preal w ∈ P}"
show "(∃x∈P. y < x) = (y < real_of_preal (psup ?pP))"
proof (cases "0 < y")
assume neg_y: "¬ 0 < y"
show ?thesis
proof
assume "∃x∈P. y < x"
have "∀x. y < real_of_preal x"
using neg_y by (rule real_less_all_real2)
thus "y < real_of_preal (psup ?pP)" ..
next
assume "y < real_of_preal (psup ?pP)"
obtain "x" where x_in_P: "x ∈ P" using not_empty_P ..
hence "0 < x" using positive_P by simp
hence "y < x" using neg_y by simp
thus "∃x ∈ P. y < x" using x_in_P ..
qed
next
assume pos_y: "0 < y"
then obtain py where y_is_py: "y = real_of_preal py"
by (auto simp add: real_gt_zero_preal_Ex)
obtain a where "a ∈ P" using not_empty_P ..
with positive_P have a_pos: "0 < a" ..
then obtain pa where "a = real_of_preal pa"
by (auto simp add: real_gt_zero_preal_Ex)
hence "pa ∈ ?pP" using `a ∈ P` by auto
hence pP_not_empty: "?pP ≠ {}" by auto
obtain sup where sup: "∀x ∈ P. x < sup"
using upper_bound_Ex ..
from this and `a ∈ P` have "a < sup" ..
hence "0 < sup" using a_pos by arith
then obtain possup where "sup = real_of_preal possup"
by (auto simp add: real_gt_zero_preal_Ex)
hence "∀X ∈ ?pP. X ≤ possup"
using sup by (auto simp add: real_of_preal_lessI)
with pP_not_empty have psup: "!!Z. (∃X ∈ ?pP. Z < X) = (Z < psup ?pP)"
by (rule preal_complete)
show ?thesis
proof
assume "∃x ∈ P. y < x"
then obtain x where x_in_P: "x ∈ P" and y_less_x: "y < x" ..
hence "0 < x" using pos_y by arith
then obtain px where x_is_px: "x = real_of_preal px"
by (auto simp add: real_gt_zero_preal_Ex)
have py_less_X: "∃X ∈ ?pP. py < X"
proof
show "py < px" using y_is_py and x_is_px and y_less_x
by (simp add: real_of_preal_lessI)
show "px ∈ ?pP" using x_in_P and x_is_px by simp
qed
have "(∃X ∈ ?pP. py < X) ==> (py < psup ?pP)"
using psup by simp
hence "py < psup ?pP" using py_less_X by simp
thus "y < real_of_preal (psup {w. real_of_preal w ∈ P})"
using y_is_py and pos_y by (simp add: real_of_preal_lessI)
next
assume y_less_psup: "y < real_of_preal (psup ?pP)"
hence "py < psup ?pP" using y_is_py
by (simp add: real_of_preal_lessI)
then obtain "X" where py_less_X: "py < X" and X_in_pP: "X ∈ ?pP"
using psup by auto
then obtain x where x_is_X: "x = real_of_preal X"
by (simp add: real_gt_zero_preal_Ex)
hence "y < x" using py_less_X and y_is_py
by (simp add: real_of_preal_lessI)
moreover have "x ∈ P" using x_is_X and X_in_pP by simp
ultimately show "∃ x ∈ P. y < x" ..
qed
qed
qed
text {*
\medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc.
*}
lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)"
apply (frule isLub_isUb)
apply (frule_tac x = y in isLub_isUb)
apply (blast intro!: order_antisym dest!: isLub_le_isUb)
done
text {*
\medskip Completeness theorem for the positive reals (again).
*}
lemma posreals_complete:
assumes positive_S: "∀x ∈ S. 0 < x"
and not_empty_S: "∃x. x ∈ S"
and upper_bound_Ex: "∃u. isUb (UNIV::real set) S u"
shows "∃t. isLub (UNIV::real set) S t"
proof
let ?pS = "{w. real_of_preal w ∈ S}"
obtain u where "isUb UNIV S u" using upper_bound_Ex ..
hence sup: "∀x ∈ S. x ≤ u" by (simp add: isUb_def setle_def)
obtain x where x_in_S: "x ∈ S" using not_empty_S ..
hence x_gt_zero: "0 < x" using positive_S by simp
have "x ≤ u" using sup and x_in_S ..
hence "0 < u" using x_gt_zero by arith
then obtain pu where u_is_pu: "u = real_of_preal pu"
by (auto simp add: real_gt_zero_preal_Ex)
have pS_less_pu: "∀pa ∈ ?pS. pa ≤ pu"
proof
fix pa
assume "pa ∈ ?pS"
then obtain a where "a ∈ S" and "a = real_of_preal pa"
by simp
moreover hence "a ≤ u" using sup by simp
ultimately show "pa ≤ pu"
using sup and u_is_pu by (simp add: real_of_preal_le_iff)
qed
have "∀y ∈ S. y ≤ real_of_preal (psup ?pS)"
proof
fix y
assume y_in_S: "y ∈ S"
hence "0 < y" using positive_S by simp
then obtain py where y_is_py: "y = real_of_preal py"
by (auto simp add: real_gt_zero_preal_Ex)
hence py_in_pS: "py ∈ ?pS" using y_in_S by simp
with pS_less_pu have "py ≤ psup ?pS"
by (rule preal_psup_le)
thus "y ≤ real_of_preal (psup ?pS)"
using y_is_py by (simp add: real_of_preal_le_iff)
qed
moreover {
fix x
assume x_ub_S: "∀y∈S. y ≤ x"
have "real_of_preal (psup ?pS) ≤ x"
proof -
obtain "s" where s_in_S: "s ∈ S" using not_empty_S ..
hence s_pos: "0 < s" using positive_S by simp
hence "∃ ps. s = real_of_preal ps" by (simp add: real_gt_zero_preal_Ex)
then obtain "ps" where s_is_ps: "s = real_of_preal ps" ..
hence ps_in_pS: "ps ∈ {w. real_of_preal w ∈ S}" using s_in_S by simp
from x_ub_S have "s ≤ x" using s_in_S ..
hence "0 < x" using s_pos by simp
hence "∃ px. x = real_of_preal px" by (simp add: real_gt_zero_preal_Ex)
then obtain "px" where x_is_px: "x = real_of_preal px" ..
have "∀pe ∈ ?pS. pe ≤ px"
proof
fix pe
assume "pe ∈ ?pS"
hence "real_of_preal pe ∈ S" by simp
hence "real_of_preal pe ≤ x" using x_ub_S by simp
thus "pe ≤ px" using x_is_px by (simp add: real_of_preal_le_iff)
qed
moreover have "?pS ≠ {}" using ps_in_pS by auto
ultimately have "(psup ?pS) ≤ px" by (simp add: psup_le_ub)
thus "real_of_preal (psup ?pS) ≤ x" using x_is_px by (simp add: real_of_preal_le_iff)
qed
}
ultimately show "isLub UNIV S (real_of_preal (psup ?pS))"
by (simp add: isLub_def leastP_def isUb_def setle_def setge_def)
qed
text {*
\medskip reals Completeness (again!)
*}
lemma reals_complete:
assumes notempty_S: "∃X. X ∈ S"
and exists_Ub: "∃Y. isUb (UNIV::real set) S Y"
shows "∃t. isLub (UNIV :: real set) S t"
proof -
obtain X where X_in_S: "X ∈ S" using notempty_S ..
obtain Y where Y_isUb: "isUb (UNIV::real set) S Y"
using exists_Ub ..
let ?SHIFT = "{z. ∃x ∈S. z = x + (-X) + 1} ∩ {x. 0 < x}"
{
fix x
assume "isUb (UNIV::real set) S x"
hence S_le_x: "∀ y ∈ S. y <= x"
by (simp add: isUb_def setle_def)
{
fix s
assume "s ∈ {z. ∃x∈S. z = x + - X + 1}"
hence "∃ x ∈ S. s = x + -X + 1" ..
then obtain x1 where "x1 ∈ S" and "s = x1 + (-X) + 1" ..
moreover hence "x1 ≤ x" using S_le_x by simp
ultimately have "s ≤ x + - X + 1" by arith
}
then have "isUb (UNIV::real set) ?SHIFT (x + (-X) + 1)"
by (auto simp add: isUb_def setle_def)
} note S_Ub_is_SHIFT_Ub = this
hence "isUb UNIV ?SHIFT (Y + (-X) + 1)" using Y_isUb by simp
hence "∃Z. isUb UNIV ?SHIFT Z" ..
moreover have "∀y ∈ ?SHIFT. 0 < y" by auto
moreover have shifted_not_empty: "∃u. u ∈ ?SHIFT"
using X_in_S and Y_isUb by auto
ultimately obtain t where t_is_Lub: "isLub UNIV ?SHIFT t"
using posreals_complete [of ?SHIFT] by blast
show ?thesis
proof
show "isLub UNIV S (t + X + (-1))"
proof (rule isLubI2)
{
fix x
assume "isUb (UNIV::real set) S x"
hence "isUb (UNIV::real set) (?SHIFT) (x + (-X) + 1)"
using S_Ub_is_SHIFT_Ub by simp
hence "t ≤ (x + (-X) + 1)"
using t_is_Lub by (simp add: isLub_le_isUb)
hence "t + X + -1 ≤ x" by arith
}
then show "(t + X + -1) <=* Collect (isUb UNIV S)"
by (simp add: setgeI)
next
show "isUb UNIV S (t + X + -1)"
proof -
{
fix y
assume y_in_S: "y ∈ S"
have "y ≤ t + X + -1"
proof -
obtain "u" where u_in_shift: "u ∈ ?SHIFT" using shifted_not_empty ..
hence "∃ x ∈ S. u = x + - X + 1" by simp
then obtain "x" where x_and_u: "u = x + - X + 1" ..
have u_le_t: "u ≤ t" using u_in_shift and t_is_Lub by (simp add: isLubD2)
show ?thesis
proof cases
assume "y ≤ x"
moreover have "x = u + X + - 1" using x_and_u by arith
moreover have "u + X + - 1 ≤ t + X + -1" using u_le_t by arith
ultimately show "y ≤ t + X + -1" by arith
next
assume "~(y ≤ x)"
hence x_less_y: "x < y" by arith
have "x + (-X) + 1 ∈ ?SHIFT" using x_and_u and u_in_shift by simp
hence "0 < x + (-X) + 1" by simp
hence "0 < y + (-X) + 1" using x_less_y by arith
hence "y + (-X) + 1 ∈ ?SHIFT" using y_in_S by simp
hence "y + (-X) + 1 ≤ t" using t_is_Lub by (simp add: isLubD2)
thus ?thesis by simp
qed
qed
}
then show ?thesis by (simp add: isUb_def setle_def)
qed
qed
qed
qed
subsection {* The Archimedean Property of the Reals *}
theorem reals_Archimedean:
assumes x_pos: "0 < x"
shows "∃n. inverse (real (Suc n)) < x"
proof (rule ccontr)
assume contr: "¬ ?thesis"
have "∀n. x * real (Suc n) <= 1"
proof
fix n
from contr have "x ≤ inverse (real (Suc n))"
by (simp add: linorder_not_less)
hence "x ≤ (1 / (real (Suc n)))"
by (simp add: inverse_eq_divide)
moreover have "0 ≤ real (Suc n)"
by (rule real_of_nat_ge_zero)
ultimately have "x * real (Suc n) ≤ (1 / real (Suc n)) * real (Suc n)"
by (rule mult_right_mono)
thus "x * real (Suc n) ≤ 1" by simp
qed
hence "{z. ∃n. z = x * (real (Suc n))} *<= 1"
by (simp add: setle_def, safe, rule spec)
hence "isUb (UNIV::real set) {z. ∃n. z = x * (real (Suc n))} 1"
by (simp add: isUbI)
hence "∃Y. isUb (UNIV::real set) {z. ∃n. z = x* (real (Suc n))} Y" ..
moreover have "∃X. X ∈ {z. ∃n. z = x* (real (Suc n))}" by auto
ultimately have "∃t. isLub UNIV {z. ∃n. z = x * real (Suc n)} t"
by (simp add: reals_complete)
then obtain "t" where
t_is_Lub: "isLub UNIV {z. ∃n. z = x * real (Suc n)} t" ..
have "∀n::nat. x * real n ≤ t + - x"
proof
fix n
from t_is_Lub have "x * real (Suc n) ≤ t"
by (simp add: isLubD2)
hence "x * (real n) + x ≤ t"
by (simp add: right_distrib real_of_nat_Suc)
thus "x * (real n) ≤ t + - x" by arith
qed
hence "∀m. x * real (Suc m) ≤ t + - x" by simp
hence "{z. ∃n. z = x * (real (Suc n))} *<= (t + - x)"
by (auto simp add: setle_def)
hence "isUb (UNIV::real set) {z. ∃n. z = x * (real (Suc n))} (t + (-x))"
by (simp add: isUbI)
hence "t ≤ t + - x"
using t_is_Lub by (simp add: isLub_le_isUb)
thus False using x_pos by arith
qed
text {*
There must be other proofs, e.g. @{text "Suc"} of the largest
integer in the cut representing @{text "x"}.
*}
lemma reals_Archimedean2: "∃n. (x::real) < real (n::nat)"
proof cases
assume "x ≤ 0"
hence "x < real (1::nat)" by simp
thus ?thesis ..
next
assume "¬ x ≤ 0"
hence x_greater_zero: "0 < x" by simp
hence "0 < inverse x" by simp
then obtain n where "inverse (real (Suc n)) < inverse x"
using reals_Archimedean by blast
hence "inverse (real (Suc n)) * x < inverse x * x"
using x_greater_zero by (rule mult_strict_right_mono)
hence "inverse (real (Suc n)) * x < 1"
using x_greater_zero by simp
hence "real (Suc n) * (inverse (real (Suc n)) * x) < real (Suc n) * 1"
by (rule mult_strict_left_mono) simp
hence "x < real (Suc n)"
by (simp add: ring_simps)
thus "∃(n::nat). x < real n" ..
qed
lemma reals_Archimedean3:
assumes x_greater_zero: "0 < x"
shows "∀(y::real). ∃(n::nat). y < real n * x"
proof
fix y
have x_not_zero: "x ≠ 0" using x_greater_zero by simp
obtain n where "y * inverse x < real (n::nat)"
using reals_Archimedean2 ..
hence "y * inverse x * x < real n * x"
using x_greater_zero by (simp add: mult_strict_right_mono)
hence "x * inverse x * y < x * real n"
by (simp add: ring_simps)
hence "y < real (n::nat) * x"
using x_not_zero by (simp add: ring_simps)
thus "∃(n::nat). y < real n * x" ..
qed
lemma reals_Archimedean6:
"0 ≤ r ==> ∃(n::nat). real (n - 1) ≤ r & r < real (n)"
apply (insert reals_Archimedean2 [of r], safe)
apply (subgoal_tac "∃x::nat. r < real x ∧ (∀y. r < real y --> x ≤ y)", auto)
apply (rule_tac x = x in exI)
apply (case_tac x, simp)
apply (rename_tac x')
apply (drule_tac x = x' in spec, simp)
apply (rule_tac x="LEAST n. r < real n" in exI, safe)
apply (erule LeastI, erule Least_le)
done
lemma reals_Archimedean6a: "0 ≤ r ==> ∃n. real (n) ≤ r & r < real (Suc n)"
by (drule reals_Archimedean6) auto
lemma reals_Archimedean_6b_int:
"0 ≤ r ==> ∃n::int. real n ≤ r & r < real (n+1)"
apply (drule reals_Archimedean6a, auto)
apply (rule_tac x = "int n" in exI)
apply (simp add: real_of_int_real_of_nat real_of_nat_Suc)
done
lemma reals_Archimedean_6c_int:
"r < 0 ==> ∃n::int. real n ≤ r & r < real (n+1)"
apply (rule reals_Archimedean_6b_int [of "-r", THEN exE], simp, auto)
apply (rename_tac n)
apply (drule order_le_imp_less_or_eq, auto)
apply (rule_tac x = "- n - 1" in exI)
apply (rule_tac [2] x = "- n" in exI, auto)
done
subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
definition
floor :: "real => int" where
"floor r = (LEAST n::int. r < real (n+1))"
definition
ceiling :: "real => int" where
"ceiling r = - floor (- r)"
notation (xsymbols)
floor ("⌊_⌋") and
ceiling ("⌈_⌉")
notation (HTML output)
floor ("⌊_⌋") and
ceiling ("⌈_⌉")
lemma number_of_less_real_of_int_iff [simp]:
"((number_of n) < real (m::int)) = (number_of n < m)"
apply auto
apply (rule real_of_int_less_iff [THEN iffD1])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
done
lemma number_of_less_real_of_int_iff2 [simp]:
"(real (m::int) < (number_of n)) = (m < number_of n)"
apply auto
apply (rule real_of_int_less_iff [THEN iffD1])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
done
lemma number_of_le_real_of_int_iff [simp]:
"((number_of n) ≤ real (m::int)) = (number_of n ≤ m)"
by (simp add: linorder_not_less [symmetric])
lemma number_of_le_real_of_int_iff2 [simp]:
"(real (m::int) ≤ (number_of n)) = (m ≤ number_of n)"
by (simp add: linorder_not_less [symmetric])
lemma floor_zero [simp]: "floor 0 = 0"
apply (simp add: floor_def del: real_of_int_add)
apply (rule Least_equality)
apply simp_all
done
lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0"
by auto
lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD1])
apply simp_all
done
lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD1])
apply simp_all
done
lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply auto
done
lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst])
apply auto
done
lemma real_lb_ub_int: " ∃n::int. real n ≤ r & r < real (n+1)"
apply (case_tac "r < 0")
apply (blast intro: reals_Archimedean_6c_int)
apply (simp only: linorder_not_less)
apply (blast intro: reals_Archimedean_6b_int reals_Archimedean_6c_int)
done
lemma lemma_floor:
assumes a1: "real m ≤ r" and a2: "r < real n + 1"
shows "m ≤ (n::int)"
proof -
have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
also have "... = real (n + 1)" by simp
finally have "m < n + 1" by (simp only: real_of_int_less_iff)
thus ?thesis by arith
qed
lemma real_of_int_floor_le [simp]: "real (floor r) ≤ r"
apply (simp add: floor_def Least_def)
apply (insert real_lb_ub_int [of r], safe)
apply (rule theI2)
apply auto
done
lemma floor_mono: "x < y ==> floor x ≤ floor y"
apply (simp add: floor_def Least_def)
apply (insert real_lb_ub_int [of x])
apply (insert real_lb_ub_int [of y], safe)
apply (rule theI2)
apply (rule_tac [3] theI2)
apply simp
apply (erule conjI)
apply (auto simp add: order_eq_iff int_le_real_less)
done
lemma floor_mono2: "x ≤ y ==> floor x ≤ floor y"
by (auto dest: order_le_imp_less_or_eq simp add: floor_mono)
lemma lemma_floor2: "real n < real (x::int) + 1 ==> n ≤ x"
by (auto intro: lemma_floor)
lemma real_of_int_floor_cancel [simp]:
"(real (floor x) = x) = (∃n::int. x = real n)"
apply (simp add: floor_def Least_def)
apply (insert real_lb_ub_int [of x], erule exE)
apply (rule theI2)
apply (auto intro: lemma_floor)
done
lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
apply (simp add: floor_def)
apply (rule Least_equality)
apply (auto intro: lemma_floor)
done
lemma floor_eq2: "[| real n ≤ x; x < real n + 1 |] ==> floor x = n"
apply (simp add: floor_def)
apply (rule Least_equality)
apply (auto intro: lemma_floor)
done
lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
apply (rule inj_int [THEN injD])
apply (simp add: real_of_nat_Suc)
apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
done
lemma floor_eq4: "[| real n ≤ x; x < real (Suc n) |] ==> nat(floor x) = n"
apply (drule order_le_imp_less_or_eq)
apply (auto intro: floor_eq3)
done
lemma floor_number_of_eq [simp]:
"floor(number_of n :: real) = (number_of n :: int)"
apply (subst real_number_of [symmetric])
apply (rule floor_real_of_int)
done
lemma floor_one [simp]: "floor 1 = 1"
apply (rule trans)
prefer 2
apply (rule floor_real_of_int)
apply simp
done
lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 ≤ real(floor r)"
apply (simp add: floor_def Least_def)
apply (insert real_lb_ub_int [of r], safe)
apply (rule theI2)
apply (auto intro: lemma_floor)
done
lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
apply (simp add: floor_def Least_def)
apply (insert real_lb_ub_int [of r], safe)
apply (rule theI2)
apply (auto intro: lemma_floor)
done
lemma real_of_int_floor_add_one_ge [simp]: "r ≤ real(floor r) + 1"
apply (insert real_of_int_floor_ge_diff_one [of r])
apply (auto simp del: real_of_int_floor_ge_diff_one)
done
lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
apply (insert real_of_int_floor_gt_diff_one [of r])
apply (auto simp del: real_of_int_floor_gt_diff_one)
done
lemma le_floor: "real a <= x ==> a <= floor x"
apply (subgoal_tac "a < floor x + 1")
apply arith
apply (subst real_of_int_less_iff [THEN sym])
apply simp
apply (insert real_of_int_floor_add_one_gt [of x])
apply arith
done
lemma real_le_floor: "a <= floor x ==> real a <= x"
apply (rule order_trans)
prefer 2
apply (rule real_of_int_floor_le)
apply (subst real_of_int_le_iff)
apply assumption
done
lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
apply (rule iffI)
apply (erule real_le_floor)
apply (erule le_floor)
done
lemma le_floor_eq_number_of [simp]:
"(number_of n <= floor x) = (number_of n <= x)"
by (simp add: le_floor_eq)
lemma le_floor_eq_zero [simp]: "(0 <= floor x) = (0 <= x)"
by (simp add: le_floor_eq)
lemma le_floor_eq_one [simp]: "(1 <= floor x) = (1 <= x)"
by (simp add: le_floor_eq)
lemma floor_less_eq: "(floor x < a) = (x < real a)"
apply (subst linorder_not_le [THEN sym])+
apply simp
apply (rule le_floor_eq)
done
lemma floor_less_eq_number_of [simp]:
"(floor x < number_of n) = (x < number_of n)"
by (simp add: floor_less_eq)
lemma floor_less_eq_zero [simp]: "(floor x < 0) = (x < 0)"
by (simp add: floor_less_eq)
lemma floor_less_eq_one [simp]: "(floor x < 1) = (x < 1)"
by (simp add: floor_less_eq)
lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
apply (insert le_floor_eq [of "a + 1" x])
apply auto
done
lemma less_floor_eq_number_of [simp]:
"(number_of n < floor x) = (number_of n + 1 <= x)"
by (simp add: less_floor_eq)
lemma less_floor_eq_zero [simp]: "(0 < floor x) = (1 <= x)"
by (simp add: less_floor_eq)
lemma less_floor_eq_one [simp]: "(1 < floor x) = (2 <= x)"
by (simp add: less_floor_eq)
lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
apply (insert floor_less_eq [of x "a + 1"])
apply auto
done
lemma floor_le_eq_number_of [simp]:
"(floor x <= number_of n) = (x < number_of n + 1)"
by (simp add: floor_le_eq)
lemma floor_le_eq_zero [simp]: "(floor x <= 0) = (x < 1)"
by (simp add: floor_le_eq)
lemma floor_le_eq_one [simp]: "(floor x <= 1) = (x < 2)"
by (simp add: floor_le_eq)
lemma floor_add [simp]: "floor (x + real a) = floor x + a"
apply (subst order_eq_iff)
apply (rule conjI)
prefer 2
apply (subgoal_tac "floor x + a < floor (x + real a) + 1")
apply arith
apply (subst real_of_int_less_iff [THEN sym])
apply simp
apply (subgoal_tac "x + real a < real(floor(x + real a)) + 1")
apply (subgoal_tac "real (floor x) <= x")
apply arith
apply (rule real_of_int_floor_le)
apply (rule real_of_int_floor_add_one_gt)
apply (subgoal_tac "floor (x + real a) < floor x + a + 1")
apply arith
apply (subst real_of_int_less_iff [THEN sym])
apply simp
apply (subgoal_tac "real(floor(x + real a)) <= x + real a")
apply (subgoal_tac "x < real(floor x) + 1")
apply arith
apply (rule real_of_int_floor_add_one_gt)
apply (rule real_of_int_floor_le)
done
lemma floor_add_number_of [simp]:
"floor (x + number_of n) = floor x + number_of n"
apply (subst floor_add [THEN sym])
apply simp
done
lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
apply (subst floor_add [THEN sym])
apply simp
done
lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
apply (subst diff_minus)+
apply (subst real_of_int_minus [THEN sym])
apply (rule floor_add)
done
lemma floor_subtract_number_of [simp]: "floor (x - number_of n) =
floor x - number_of n"
apply (subst floor_subtract [THEN sym])
apply simp
done
lemma floor_subtract_one [simp]: "floor (x - 1) = floor x - 1"
apply (subst floor_subtract [THEN sym])
apply simp
done
lemma ceiling_zero [simp]: "ceiling 0 = 0"
by (simp add: ceiling_def)
lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
by (simp add: ceiling_def)
lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0"
by auto
lemma ceiling_floor [simp]: "ceiling (real (floor r)) = floor r"
by (simp add: ceiling_def)
lemma floor_ceiling [simp]: "floor (real (ceiling r)) = ceiling r"
by (simp add: ceiling_def)
lemma real_of_int_ceiling_ge [simp]: "r ≤ real (ceiling r)"
apply (simp add: ceiling_def)
apply (subst le_minus_iff, simp)
done
lemma ceiling_mono: "x < y ==> ceiling x ≤ ceiling y"
by (simp add: floor_mono ceiling_def)
lemma ceiling_mono2: "x ≤ y ==> ceiling x ≤ ceiling y"
by (simp add: floor_mono2 ceiling_def)
lemma real_of_int_ceiling_cancel [simp]:
"(real (ceiling x) = x) = (∃n::int. x = real n)"
apply (auto simp add: ceiling_def)
apply (drule arg_cong [where f = uminus], auto)
apply (rule_tac x = "-n" in exI, auto)
done
lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
apply (simp add: ceiling_def)
apply (rule minus_equation_iff [THEN iffD1])
apply (simp add: floor_eq [where n = "-(n+1)"])
done
lemma ceiling_eq2: "[| real n < x; x ≤ real n + 1 |] ==> ceiling x = n + 1"
by (simp add: ceiling_def floor_eq2 [where n = "-(n+1)"])
lemma ceiling_eq3: "[| real n - 1 < x; x ≤ real n |] ==> ceiling x = n"
by (simp add: ceiling_def floor_eq2 [where n = "-n"])
lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
by (simp add: ceiling_def)
lemma ceiling_number_of_eq [simp]:
"ceiling (number_of n :: real) = (number_of n)"
apply (subst real_number_of [symmetric])
apply (rule ceiling_real_of_int)
done
lemma ceiling_one [simp]: "ceiling 1 = 1"
by (unfold ceiling_def, simp)
lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 ≤ r"
apply (rule neg_le_iff_le [THEN iffD1])
apply (simp add: ceiling_def diff_minus)
done
lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) ≤ r + 1"
apply (insert real_of_int_ceiling_diff_one_le [of r])
apply (simp del: real_of_int_ceiling_diff_one_le)
done
lemma ceiling_le: "x <= real a ==> ceiling x <= a"
apply (unfold ceiling_def)
apply (subgoal_tac "-a <= floor(- x)")
apply simp
apply (rule le_floor)
apply simp
done
lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
apply (unfold ceiling_def)
apply (subgoal_tac "real(- a) <= - x")
apply simp
apply (rule real_le_floor)
apply simp
done
lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
apply (rule iffI)
apply (erule ceiling_le_real)
apply (erule ceiling_le)
done
lemma ceiling_le_eq_number_of [simp]:
"(ceiling x <= number_of n) = (x <= number_of n)"
by (simp add: ceiling_le_eq)
lemma ceiling_le_zero_eq [simp]: "(ceiling x <= 0) = (x <= 0)"
by (simp add: ceiling_le_eq)
lemma ceiling_le_eq_one [simp]: "(ceiling x <= 1) = (x <= 1)"
by (simp add: ceiling_le_eq)
lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
apply (subst linorder_not_le [THEN sym])+
apply simp
apply (rule ceiling_le_eq)
done
lemma less_ceiling_eq_number_of [simp]:
"(number_of n < ceiling x) = (number_of n < x)"
by (simp add: less_ceiling_eq)
lemma less_ceiling_eq_zero [simp]: "(0 < ceiling x) = (0 < x)"
by (simp add: less_ceiling_eq)
lemma less_ceiling_eq_one [simp]: "(1 < ceiling x) = (1 < x)"
by (simp add: less_ceiling_eq)
lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
apply (insert ceiling_le_eq [of x "a - 1"])
apply auto
done
lemma ceiling_less_eq_number_of [simp]:
"(ceiling x < number_of n) = (x <= number_of n - 1)"
by (simp add: ceiling_less_eq)
lemma ceiling_less_eq_zero [simp]: "(ceiling x < 0) = (x <= -1)"
by (simp add: ceiling_less_eq)
lemma ceiling_less_eq_one [simp]: "(ceiling x < 1) = (x <= 0)"
by (simp add: ceiling_less_eq)
lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
apply (insert less_ceiling_eq [of "a - 1" x])
apply auto
done
lemma le_ceiling_eq_number_of [simp]:
"(number_of n <= ceiling x) = (number_of n - 1 < x)"
by (simp add: le_ceiling_eq)
lemma le_ceiling_eq_zero [simp]: "(0 <= ceiling x) = (-1 < x)"
by (simp add: le_ceiling_eq)
lemma le_ceiling_eq_one [simp]: "(1 <= ceiling x) = (0 < x)"
by (simp add: le_ceiling_eq)
lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
apply (unfold ceiling_def, simp)
apply (subst real_of_int_minus [THEN sym])
apply (subst floor_add)
apply simp
done
lemma ceiling_add_number_of [simp]: "ceiling (x + number_of n) =
ceiling x + number_of n"
apply (subst ceiling_add [THEN sym])
apply simp
done
lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
apply (subst ceiling_add [THEN sym])
apply simp
done
lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
apply (subst diff_minus)+
apply (subst real_of_int_minus [THEN sym])
apply (rule ceiling_add)
done
lemma ceiling_subtract_number_of [simp]: "ceiling (x - number_of n) =
ceiling x - number_of n"
apply (subst ceiling_subtract [THEN sym])
apply simp
done
lemma ceiling_subtract_one [simp]: "ceiling (x - 1) = ceiling x - 1"
apply (subst ceiling_subtract [THEN sym])
apply simp
done
subsection {* Versions for the natural numbers *}
definition
natfloor :: "real => nat" where
"natfloor x = nat(floor x)"
definition
natceiling :: "real => nat" where
"natceiling x = nat(ceiling x)"
lemma natfloor_zero [simp]: "natfloor 0 = 0"
by (unfold natfloor_def, simp)
lemma natfloor_one [simp]: "natfloor 1 = 1"
by (unfold natfloor_def, simp)
lemma zero_le_natfloor [simp]: "0 <= natfloor x"
by (unfold natfloor_def, simp)
lemma natfloor_number_of_eq [simp]: "natfloor (number_of n) = number_of n"
by (unfold natfloor_def, simp)
lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
by (unfold natfloor_def, simp)
lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
by (unfold natfloor_def, simp)
lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
apply (unfold natfloor_def)
apply (subgoal_tac "floor x <= floor 0")
apply simp
apply (erule floor_mono2)
done
lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
apply (case_tac "0 <= x")
apply (subst natfloor_def)+
apply (subst nat_le_eq_zle)
apply force
apply (erule floor_mono2)
apply (subst natfloor_neg)
apply simp
apply simp
done
lemma le_natfloor: "real x <= a ==> x <= natfloor a"
apply (unfold natfloor_def)
apply (subst nat_int [THEN sym])
apply (subst nat_le_eq_zle)
apply simp
apply (rule le_floor)
apply simp
done
lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
apply (rule iffI)
apply (rule order_trans)
prefer 2
apply (erule real_natfloor_le)
apply (subst real_of_nat_le_iff)
apply assumption
apply (erule le_natfloor)
done
lemma le_natfloor_eq_number_of [simp]:
"~ neg((number_of n)::int) ==> 0 <= x ==>
(number_of n <= natfloor x) = (number_of n <= x)"
apply (subst le_natfloor_eq, assumption)
apply simp
done
lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
apply (case_tac "0 <= x")
apply (subst le_natfloor_eq, assumption, simp)
apply (rule iffI)
apply (subgoal_tac "natfloor x <= natfloor 0")
apply simp
apply (rule natfloor_mono)
apply simp
apply simp
done
lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
apply (unfold natfloor_def)
apply (subst nat_int [THEN sym]);back;
apply (subst eq_nat_nat_iff)
apply simp
apply simp
apply (rule floor_eq2)
apply auto
done
lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
apply (case_tac "0 <= x")
apply (unfold natfloor_def)
apply simp
apply simp_all
done
lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
apply (simp add: compare_rls)
apply (rule real_natfloor_add_one_gt)
done
lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
apply (subgoal_tac "z < real(natfloor z) + 1")
apply arith
apply (rule real_natfloor_add_one_gt)
done
lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
apply (unfold natfloor_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq)
apply simp
done
lemma natfloor_add_number_of [simp]:
"~neg ((number_of n)::int) ==> 0 <= x ==>
natfloor (x + number_of n) = natfloor x + number_of n"
apply (subst natfloor_add [THEN sym])
apply simp_all
done
lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
apply (subst natfloor_add [THEN sym])
apply assumption
apply simp
done
lemma natfloor_subtract [simp]: "real a <= x ==>
natfloor(x - real a) = natfloor x - a"
apply (unfold natfloor_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp
done
lemma natceiling_zero [simp]: "natceiling 0 = 0"
by (unfold natceiling_def, simp)
lemma natceiling_one [simp]: "natceiling 1 = 1"
by (unfold natceiling_def, simp)
lemma zero_le_natceiling [simp]: "0 <= natceiling x"
by (unfold natceiling_def, simp)
lemma natceiling_number_of_eq [simp]: "natceiling (number_of n) = number_of n"
by (unfold natceiling_def, simp)
lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
by (unfold natceiling_def, simp)
lemma real_natceiling_ge: "x <= real(natceiling x)"
apply (unfold natceiling_def)
apply (case_tac "x < 0")
apply simp
apply (subst real_nat_eq_real)
apply (subgoal_tac "ceiling 0 <= ceiling x")
apply simp
apply (rule ceiling_mono2)
apply simp
apply simp
done
lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
apply (unfold natceiling_def)
apply simp
done
lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
apply (case_tac "0 <= x")
apply (subst natceiling_def)+
apply (subst nat_le_eq_zle)
apply (rule disjI2)
apply (subgoal_tac "real (0::int) <= real(ceiling y)")
apply simp
apply (rule order_trans)
apply simp
apply (erule order_trans)
apply simp
apply (erule ceiling_mono2)
apply (subst natceiling_neg)
apply simp_all
done
lemma natceiling_le: "x <= real a ==> natceiling x <= a"
apply (unfold natceiling_def)
apply (case_tac "x < 0")
apply simp
apply (subst nat_int [THEN sym]);back;
apply (subst nat_le_eq_zle)
apply simp
apply (rule ceiling_le)
apply simp
done
lemma natceiling_le_eq: "0 <= x ==> (natceiling x <= a) = (x <= real a)"
apply (rule iffI)
apply (rule order_trans)
apply (rule real_natceiling_ge)
apply (subst real_of_nat_le_iff)
apply assumption
apply (erule natceiling_le)
done
lemma natceiling_le_eq_number_of [simp]:
"~ neg((number_of n)::int) ==> 0 <= x ==>
(natceiling x <= number_of n) = (x <= number_of n)"
apply (subst natceiling_le_eq, assumption)
apply simp
done
lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
apply (case_tac "0 <= x")
apply (subst natceiling_le_eq)
apply assumption
apply simp
apply (subst natceiling_neg)
apply simp
apply simp
done
lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
apply (unfold natceiling_def)
apply (simplesubst nat_int [THEN sym]) back back
apply (subgoal_tac "nat(int n) + 1 = nat(int n + 1)")
apply (erule ssubst)
apply (subst eq_nat_nat_iff)
apply (subgoal_tac "ceiling 0 <= ceiling x")
apply simp
apply (rule ceiling_mono2)
apply force
apply force
apply (rule ceiling_eq2)
apply (simp, simp)
apply (subst nat_add_distrib)
apply auto
done
lemma natceiling_add [simp]: "0 <= x ==>
natceiling (x + real a) = natceiling x + a"
apply (unfold natceiling_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply (subst nat_add_distrib)
apply (subgoal_tac "0 = ceiling 0")
apply (erule ssubst)
apply (erule ceiling_mono2)
apply simp_all
done
lemma natceiling_add_number_of [simp]:
"~ neg ((number_of n)::int) ==> 0 <= x ==>
natceiling (x + number_of n) = natceiling x + number_of n"
apply (subst natceiling_add [THEN sym])
apply simp_all
done
lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
apply (subst natceiling_add [THEN sym])
apply assumption
apply simp
done
lemma natceiling_subtract [simp]: "real a <= x ==>
natceiling(x - real a) = natceiling x - a"
apply (unfold natceiling_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp
done
lemma natfloor_div_nat: "1 <= x ==> y > 0 ==>
natfloor (x / real y) = natfloor x div y"
proof -
assume "1 <= (x::real)" and "(y::nat) > 0"
have "natfloor x = (natfloor x) div y * y + (natfloor x) mod y"
by simp
then have a: "real(natfloor x) = real ((natfloor x) div y) * real y +
real((natfloor x) mod y)"
by (simp only: real_of_nat_add [THEN sym] real_of_nat_mult [THEN sym])
have "x = real(natfloor x) + (x - real(natfloor x))"
by simp
then have "x = real ((natfloor x) div y) * real y +
real((natfloor x) mod y) + (x - real(natfloor x))"
by (simp add: a)
then have "x / real y = ... / real y"
by simp
also have "... = real((natfloor x) div y) + real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y"
by (auto simp add: ring_simps add_divide_distrib
diff_divide_distrib prems)
finally have "natfloor (x / real y) = natfloor(...)" by simp
also have "... = natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y + real((natfloor x) div y))"
by (simp add: add_ac)
also have "... = natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y) + (natfloor x) div y"
apply (rule natfloor_add)
apply (rule add_nonneg_nonneg)
apply (rule divide_nonneg_pos)
apply simp
apply (simp add: prems)
apply (rule divide_nonneg_pos)
apply (simp add: compare_rls)
apply (rule real_natfloor_le)
apply (insert prems, auto)
done
also have "natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y) = 0"
apply (rule natfloor_eq)
apply simp
apply (rule add_nonneg_nonneg)
apply (rule divide_nonneg_pos)
apply force
apply (force simp add: prems)
apply (rule divide_nonneg_pos)
apply (simp add: compare_rls)
apply (rule real_natfloor_le)
apply (auto simp add: prems)
apply (insert prems, arith)
apply (simp add: add_divide_distrib [THEN sym])
apply (subgoal_tac "real y = real y - 1 + 1")
apply (erule ssubst)
apply (rule add_le_less_mono)
apply (simp add: compare_rls)
apply (subgoal_tac "real(natfloor x mod y) + 1 =
real(natfloor x mod y + 1)")
apply (erule ssubst)
apply (subst real_of_nat_le_iff)
apply (subgoal_tac "natfloor x mod y < y")
apply arith
apply (rule mod_less_divisor)
apply auto
apply (simp add: compare_rls)
apply (subst add_commute)
apply (rule real_natfloor_add_one_gt)
done
finally show ?thesis by simp
qed
end
lemma real_sum_of_halves:
x / 2 + x / 2 = x
lemma posreal_complete:
[| ∀x∈P. 0 < x; ∃x. x ∈ P; ∃y. ∀x∈P. x < y |]
==> ∃S. ∀y. (∃x∈P. y < x) = (y < S)
lemma real_isLub_unique:
[| isLub R S x; isLub R S y |] ==> x = y
lemma posreals_complete:
[| ∀x∈S. 0 < x; ∃x. x ∈ S; ∃u. isUb UNIV S u |] ==> ∃t. isLub UNIV S t
lemma reals_complete:
[| ∃X. X ∈ S; ∃Y. isUb UNIV S Y |] ==> ∃t. isLub UNIV S t
theorem reals_Archimedean:
0 < x ==> ∃n. inverse (real (Suc n)) < x
lemma reals_Archimedean2:
∃n. x < real n
lemma reals_Archimedean3:
0 < x ==> ∀y. ∃n. y < real n * x
lemma reals_Archimedean6:
0 ≤ r ==> ∃n. real (n - 1) ≤ r ∧ r < real n
lemma reals_Archimedean6a:
0 ≤ r ==> ∃n. real n ≤ r ∧ r < real (Suc n)
lemma reals_Archimedean_6b_int:
0 ≤ r ==> ∃n. real n ≤ r ∧ r < real (n + 1)
lemma reals_Archimedean_6c_int:
r < 0 ==> ∃n. real n ≤ r ∧ r < real (n + 1)
lemma number_of_less_real_of_int_iff:
(number_of n < real m) = (number_of n < m)
lemma number_of_less_real_of_int_iff2:
(real m < number_of n) = (m < number_of n)
lemma number_of_le_real_of_int_iff:
(number_of n ≤ real m) = (number_of n ≤ m)
lemma number_of_le_real_of_int_iff2:
(real m ≤ number_of n) = (m ≤ number_of n)
lemma floor_zero:
⌊0⌋ = 0
lemma floor_real_of_nat_zero:
⌊real 0⌋ = 0
lemma floor_real_of_nat:
⌊real n⌋ = int n
lemma floor_minus_real_of_nat:
⌊- real n⌋ = - int n
lemma floor_real_of_int:
⌊real n⌋ = n
lemma floor_minus_real_of_int:
⌊- real n⌋ = - n
lemma real_lb_ub_int:
∃n. real n ≤ r ∧ r < real (n + 1)
lemma lemma_floor:
[| real m ≤ r; r < real n + 1 |] ==> m ≤ n
lemma real_of_int_floor_le:
real ⌊r⌋ ≤ r
lemma floor_mono:
x < y ==> ⌊x⌋ ≤ ⌊y⌋
lemma floor_mono2:
x ≤ y ==> ⌊x⌋ ≤ ⌊y⌋
lemma lemma_floor2:
real n < real x + 1 ==> n ≤ x
lemma real_of_int_floor_cancel:
(real ⌊x⌋ = x) = (∃n. x = real n)
lemma floor_eq:
[| real n < x; x < real n + 1 |] ==> ⌊x⌋ = n
lemma floor_eq2:
[| real n ≤ x; x < real n + 1 |] ==> ⌊x⌋ = n
lemma floor_eq3:
[| real n < x; x < real (Suc n) |] ==> nat ⌊x⌋ = n
lemma floor_eq4:
[| real n ≤ x; x < real (Suc n) |] ==> nat ⌊x⌋ = n
lemma floor_number_of_eq:
⌊number_of n⌋ = number_of n
lemma floor_one:
⌊1⌋ = 1
lemma real_of_int_floor_ge_diff_one:
r - 1 ≤ real ⌊r⌋
lemma real_of_int_floor_gt_diff_one:
r - 1 < real ⌊r⌋
lemma real_of_int_floor_add_one_ge:
r ≤ real ⌊r⌋ + 1
lemma real_of_int_floor_add_one_gt:
r < real ⌊r⌋ + 1
lemma le_floor:
real a ≤ x ==> a ≤ ⌊x⌋
lemma real_le_floor:
a ≤ ⌊x⌋ ==> real a ≤ x
lemma le_floor_eq:
(a ≤ ⌊x⌋) = (real a ≤ x)
lemma le_floor_eq_number_of:
(number_of n ≤ ⌊x⌋) = (number_of n ≤ x)
lemma le_floor_eq_zero:
(0 ≤ ⌊x⌋) = (0 ≤ x)
lemma le_floor_eq_one:
(1 ≤ ⌊x⌋) = (1 ≤ x)
lemma floor_less_eq:
(⌊x⌋ < a) = (x < real a)
lemma floor_less_eq_number_of:
(⌊x⌋ < number_of n) = (x < number_of n)
lemma floor_less_eq_zero:
(⌊x⌋ < 0) = (x < 0)
lemma floor_less_eq_one:
(⌊x⌋ < 1) = (x < 1)
lemma less_floor_eq:
(a < ⌊x⌋) = (real a + 1 ≤ x)
lemma less_floor_eq_number_of:
(number_of n < ⌊x⌋) = (number_of n + 1 ≤ x)
lemma less_floor_eq_zero:
(0 < ⌊x⌋) = (1 ≤ x)
lemma less_floor_eq_one:
(1 < ⌊x⌋) = (2 ≤ x)
lemma floor_le_eq:
(⌊x⌋ ≤ a) = (x < real a + 1)
lemma floor_le_eq_number_of:
(⌊x⌋ ≤ number_of n) = (x < number_of n + 1)
lemma floor_le_eq_zero:
(⌊x⌋ ≤ 0) = (x < 1)
lemma floor_le_eq_one:
(⌊x⌋ ≤ 1) = (x < 2)
lemma floor_add:
⌊x + real a⌋ = ⌊x⌋ + a
lemma floor_add_number_of:
⌊x + number_of n⌋ = ⌊x⌋ + number_of n
lemma floor_add_one:
⌊x + 1⌋ = ⌊x⌋ + 1
lemma floor_subtract:
⌊x - real a⌋ = ⌊x⌋ - a
lemma floor_subtract_number_of:
⌊x - number_of n⌋ = ⌊x⌋ - number_of n
lemma floor_subtract_one:
⌊x - 1⌋ = ⌊x⌋ - 1
lemma ceiling_zero:
⌈0⌉ = 0
lemma ceiling_real_of_nat:
⌈real n⌉ = int n
lemma ceiling_real_of_nat_zero:
⌈real 0⌉ = 0
lemma ceiling_floor:
⌈real ⌊r⌋⌉ = ⌊r⌋
lemma floor_ceiling:
⌊real ⌈r⌉⌋ = ⌈r⌉
lemma real_of_int_ceiling_ge:
r ≤ real ⌈r⌉
lemma ceiling_mono:
x < y ==> ⌈x⌉ ≤ ⌈y⌉
lemma ceiling_mono2:
x ≤ y ==> ⌈x⌉ ≤ ⌈y⌉
lemma real_of_int_ceiling_cancel:
(real ⌈x⌉ = x) = (∃n. x = real n)
lemma ceiling_eq:
[| real n < x; x < real n + 1 |] ==> ⌈x⌉ = n + 1
lemma ceiling_eq2:
[| real n < x; x ≤ real n + 1 |] ==> ⌈x⌉ = n + 1
lemma ceiling_eq3:
[| real n - 1 < x; x ≤ real n |] ==> ⌈x⌉ = n
lemma ceiling_real_of_int:
⌈real n⌉ = n
lemma ceiling_number_of_eq:
⌈number_of n⌉ = number_of n
lemma ceiling_one:
⌈1⌉ = 1
lemma real_of_int_ceiling_diff_one_le:
real ⌈r⌉ - 1 ≤ r
lemma real_of_int_ceiling_le_add_one:
real ⌈r⌉ ≤ r + 1
lemma ceiling_le:
x ≤ real a ==> ⌈x⌉ ≤ a
lemma ceiling_le_real:
⌈x⌉ ≤ a ==> x ≤ real a
lemma ceiling_le_eq:
(⌈x⌉ ≤ a) = (x ≤ real a)
lemma ceiling_le_eq_number_of:
(⌈x⌉ ≤ number_of n) = (x ≤ number_of n)
lemma ceiling_le_zero_eq:
(⌈x⌉ ≤ 0) = (x ≤ 0)
lemma ceiling_le_eq_one:
(⌈x⌉ ≤ 1) = (x ≤ 1)
lemma less_ceiling_eq:
(a < ⌈x⌉) = (real a < x)
lemma less_ceiling_eq_number_of:
(number_of n < ⌈x⌉) = (number_of n < x)
lemma less_ceiling_eq_zero:
(0 < ⌈x⌉) = (0 < x)
lemma less_ceiling_eq_one:
(1 < ⌈x⌉) = (1 < x)
lemma ceiling_less_eq:
(⌈x⌉ < a) = (x ≤ real a - 1)
lemma ceiling_less_eq_number_of:
(⌈x⌉ < number_of n) = (x ≤ number_of n - 1)
lemma ceiling_less_eq_zero:
(⌈x⌉ < 0) = (x ≤ -1)
lemma ceiling_less_eq_one:
(⌈x⌉ < 1) = (x ≤ 0)
lemma le_ceiling_eq:
(a ≤ ⌈x⌉) = (real a - 1 < x)
lemma le_ceiling_eq_number_of:
(number_of n ≤ ⌈x⌉) = (number_of n - 1 < x)
lemma le_ceiling_eq_zero:
(0 ≤ ⌈x⌉) = (-1 < x)
lemma le_ceiling_eq_one:
(1 ≤ ⌈x⌉) = (0 < x)
lemma ceiling_add:
⌈x + real a⌉ = ⌈x⌉ + a
lemma ceiling_add_number_of:
⌈x + number_of n⌉ = ⌈x⌉ + number_of n
lemma ceiling_add_one:
⌈x + 1⌉ = ⌈x⌉ + 1
lemma ceiling_subtract:
⌈x - real a⌉ = ⌈x⌉ - a
lemma ceiling_subtract_number_of:
⌈x - number_of n⌉ = ⌈x⌉ - number_of n
lemma ceiling_subtract_one:
⌈x - 1⌉ = ⌈x⌉ - 1
lemma natfloor_zero:
natfloor 0 = 0
lemma natfloor_one:
natfloor 1 = 1
lemma zero_le_natfloor:
0 ≤ natfloor x
lemma natfloor_number_of_eq:
natfloor (number_of n) = number_of n
lemma natfloor_real_of_nat:
natfloor (real n) = n
lemma real_natfloor_le:
0 ≤ x ==> real (natfloor x) ≤ x
lemma natfloor_neg:
x ≤ 0 ==> natfloor x = 0
lemma natfloor_mono:
x ≤ y ==> natfloor x ≤ natfloor y
lemma le_natfloor:
real x ≤ a ==> x ≤ natfloor a
lemma le_natfloor_eq:
0 ≤ x ==> (a ≤ natfloor x) = (real a ≤ x)
lemma le_natfloor_eq_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> (number_of n ≤ natfloor x) = (number_of n ≤ x)
lemma le_natfloor_eq_one:
(1 ≤ natfloor x) = (1 ≤ x)
lemma natfloor_eq:
[| real n ≤ x; x < real n + 1 |] ==> natfloor x = n
lemma real_natfloor_add_one_gt:
x < real (natfloor x) + 1
lemma real_natfloor_gt_diff_one:
x - 1 < real (natfloor x)
lemma ge_natfloor_plus_one_imp_gt:
natfloor z + 1 ≤ n ==> z < real n
lemma natfloor_add:
0 ≤ x ==> natfloor (x + real a) = natfloor x + a
lemma natfloor_add_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> natfloor (x + number_of n) = natfloor x + number_of n
lemma natfloor_add_one:
0 ≤ x ==> natfloor (x + 1) = natfloor x + 1
lemma natfloor_subtract:
real a ≤ x ==> natfloor (x - real a) = natfloor x - a
lemma natceiling_zero:
natceiling 0 = 0
lemma natceiling_one:
natceiling 1 = 1
lemma zero_le_natceiling:
0 ≤ natceiling x
lemma natceiling_number_of_eq:
natceiling (number_of n) = number_of n
lemma natceiling_real_of_nat:
natceiling (real n) = n
lemma real_natceiling_ge:
x ≤ real (natceiling x)
lemma natceiling_neg:
x ≤ 0 ==> natceiling x = 0
lemma natceiling_mono:
x ≤ y ==> natceiling x ≤ natceiling y
lemma natceiling_le:
x ≤ real a ==> natceiling x ≤ a
lemma natceiling_le_eq:
0 ≤ x ==> (natceiling x ≤ a) = (x ≤ real a)
lemma natceiling_le_eq_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> (natceiling x ≤ number_of n) = (x ≤ number_of n)
lemma natceiling_le_eq_one:
(natceiling x ≤ 1) = (x ≤ 1)
lemma natceiling_eq:
[| real n < x; x ≤ real n + 1 |] ==> natceiling x = n + 1
lemma natceiling_add:
0 ≤ x ==> natceiling (x + real a) = natceiling x + a
lemma natceiling_add_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> natceiling (x + number_of n) = natceiling x + number_of n
lemma natceiling_add_one:
0 ≤ x ==> natceiling (x + 1) = natceiling x + 1
lemma natceiling_subtract:
real a ≤ x ==> natceiling (x - real a) = natceiling x - a
lemma natfloor_div_nat:
[| 1 ≤ x; 0 < y |] ==> natfloor (x / real y) = natfloor x div y