(* Title : HOL/Real/RealPow.thy
ID : $Id: RealPow.thy,v 1.40 2007/06/23 17:33:23 nipkow Exp $
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
*)
header {* Natural powers theory *}
theory RealPow
imports RealDef
begin
declare abs_mult_self [simp]
instance real :: power ..
primrec (realpow)
realpow_0: "r ^ 0 = 1"
realpow_Suc: "r ^ (Suc n) = (r::real) * (r ^ n)"
instance real :: recpower
proof
fix z :: real
fix n :: nat
show "z^0 = 1" by simp
show "z^(Suc n) = z * (z^n)" by simp
qed
lemma two_realpow_ge_one [simp]: "(1::real) ≤ 2 ^ n"
by (rule power_increasing[of 0 n "2::real", simplified])
lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
apply (induct "n")
apply (auto simp add: real_of_nat_Suc)
apply (subst mult_2)
apply (rule add_less_le_mono)
apply (auto simp add: two_realpow_ge_one)
done
lemma realpow_Suc_le_self: "[| 0 ≤ r; r ≤ (1::real) |] ==> r ^ Suc n ≤ r"
by (insert power_decreasing [of 1 "Suc n" r], simp)
lemma realpow_minus_mult [rule_format]:
"0 < n --> (x::real) ^ (n - 1) * x = x ^ n"
apply (simp split add: nat_diff_split)
done
lemma realpow_two_mult_inverse [simp]:
"r ≠ 0 ==> r * inverse r ^Suc (Suc 0) = inverse (r::real)"
by (simp add: real_mult_assoc [symmetric])
lemma realpow_two_minus [simp]: "(-x)^Suc (Suc 0) = (x::real)^Suc (Suc 0)"
by simp
lemma realpow_two_diff:
"(x::real)^Suc (Suc 0) - y^Suc (Suc 0) = (x - y) * (x + y)"
apply (unfold real_diff_def)
apply (simp add: ring_simps)
done
lemma realpow_two_disj:
"((x::real)^Suc (Suc 0) = y^Suc (Suc 0)) = (x = y | x = -y)"
apply (cut_tac x = x and y = y in realpow_two_diff)
apply (auto simp del: realpow_Suc)
done
lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)"
apply (induct "n")
apply (auto simp add: real_of_nat_one real_of_nat_mult)
done
lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)"
apply (induct "n")
apply (auto simp add: real_of_nat_mult zero_less_mult_iff)
done
(* used by AFP Integration theory *)
lemma realpow_increasing:
"[|(0::real) ≤ x; 0 ≤ y; x ^ Suc n ≤ y ^ Suc n|] ==> x ≤ y"
by (rule power_le_imp_le_base)
subsection{*Literal Arithmetic Involving Powers, Type @{typ real}*}
lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)"
apply (induct "n")
apply (simp_all add: nat_mult_distrib)
done
declare real_of_int_power [symmetric, simp]
lemma power_real_number_of:
"(number_of v :: real) ^ n = real ((number_of v :: int) ^ n)"
by (simp only: real_number_of [symmetric] real_of_int_power)
declare power_real_number_of [of _ "number_of w", standard, simp]
subsection {* Properties of Squares *}
lemma sum_squares_ge_zero:
fixes x y :: "'a::ordered_ring_strict"
shows "0 ≤ x * x + y * y"
by (intro add_nonneg_nonneg zero_le_square)
lemma not_sum_squares_lt_zero:
fixes x y :: "'a::ordered_ring_strict"
shows "¬ x * x + y * y < 0"
by (simp add: linorder_not_less sum_squares_ge_zero)
lemma sum_nonneg_eq_zero_iff:
fixes x y :: "'a::pordered_ab_group_add"
assumes x: "0 ≤ x" and y: "0 ≤ y"
shows "(x + y = 0) = (x = 0 ∧ y = 0)"
proof (auto)
from y have "x + 0 ≤ x + y" by (rule add_left_mono)
also assume "x + y = 0"
finally have "x ≤ 0" by simp
thus "x = 0" using x by (rule order_antisym)
next
from x have "0 + y ≤ x + y" by (rule add_right_mono)
also assume "x + y = 0"
finally have "y ≤ 0" by simp
thus "y = 0" using y by (rule order_antisym)
qed
lemma sum_squares_eq_zero_iff:
fixes x y :: "'a::ordered_ring_strict"
shows "(x * x + y * y = 0) = (x = 0 ∧ y = 0)"
by (simp add: sum_nonneg_eq_zero_iff)
lemma sum_squares_le_zero_iff:
fixes x y :: "'a::ordered_ring_strict"
shows "(x * x + y * y ≤ 0) = (x = 0 ∧ y = 0)"
by (simp add: order_le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)
lemma sum_squares_gt_zero_iff:
fixes x y :: "'a::ordered_ring_strict"
shows "(0 < x * x + y * y) = (x ≠ 0 ∨ y ≠ 0)"
by (simp add: order_less_le sum_squares_ge_zero sum_squares_eq_zero_iff)
lemma sum_power2_ge_zero:
fixes x y :: "'a::{ordered_idom,recpower}"
shows "0 ≤ x² + y²"
unfolding power2_eq_square by (rule sum_squares_ge_zero)
lemma not_sum_power2_lt_zero:
fixes x y :: "'a::{ordered_idom,recpower}"
shows "¬ x² + y² < 0"
unfolding power2_eq_square by (rule not_sum_squares_lt_zero)
lemma sum_power2_eq_zero_iff:
fixes x y :: "'a::{ordered_idom,recpower}"
shows "(x² + y² = 0) = (x = 0 ∧ y = 0)"
unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)
lemma sum_power2_le_zero_iff:
fixes x y :: "'a::{ordered_idom,recpower}"
shows "(x² + y² ≤ 0) = (x = 0 ∧ y = 0)"
unfolding power2_eq_square by (rule sum_squares_le_zero_iff)
lemma sum_power2_gt_zero_iff:
fixes x y :: "'a::{ordered_idom,recpower}"
shows "(0 < x² + y²) = (x ≠ 0 ∨ y ≠ 0)"
unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)
subsection{* Squares of Reals *}
lemma real_two_squares_add_zero_iff [simp]:
"(x * x + y * y = 0) = ((x::real) = 0 ∧ y = 0)"
by (rule sum_squares_eq_zero_iff)
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
by simp
lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
by simp
lemma real_mult_self_sum_ge_zero: "(0::real) ≤ x*x + y*y"
by (rule sum_squares_ge_zero)
lemma real_sum_squares_cancel_a: "x * x = -(y * y) ==> x = (0::real) & y=0"
by (simp add: real_add_eq_0_iff [symmetric])
lemma real_squared_diff_one_factored: "x*x - (1::real) = (x + 1)*(x - 1)"
by (simp add: left_distrib right_diff_distrib)
lemma real_mult_is_one [simp]: "(x*x = (1::real)) = (x = 1 | x = - 1)"
apply auto
apply (drule right_minus_eq [THEN iffD2])
apply (auto simp add: real_squared_diff_one_factored)
done
lemma real_sum_squares_not_zero: "x ~= 0 ==> x * x + y * y ~= (0::real)"
by simp
lemma real_sum_squares_not_zero2: "y ~= 0 ==> x * x + y * y ~= (0::real)"
by simp
lemma realpow_two_sum_zero_iff [simp]:
"(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)"
by (rule sum_power2_eq_zero_iff)
lemma realpow_two_le_add_order [simp]: "(0::real) ≤ u ^ 2 + v ^ 2"
by (rule sum_power2_ge_zero)
lemma realpow_two_le_add_order2 [simp]: "(0::real) ≤ u ^ 2 + v ^ 2 + w ^ 2"
by (intro add_nonneg_nonneg zero_le_power2)
lemma real_sum_square_gt_zero: "x ~= 0 ==> (0::real) < x * x + y * y"
by (simp add: sum_squares_gt_zero_iff)
lemma real_sum_square_gt_zero2: "y ~= 0 ==> (0::real) < x * x + y * y"
by (simp add: sum_squares_gt_zero_iff)
lemma real_minus_mult_self_le [simp]: "-(u * u) ≤ (x * (x::real))"
by (rule_tac j = 0 in real_le_trans, auto)
lemma realpow_square_minus_le [simp]: "-(u ^ 2) ≤ (x::real) ^ 2"
by (auto simp add: power2_eq_square)
(* The following theorem is by Benjamin Porter *)
lemma real_sq_order:
fixes x::real
assumes xgt0: "0 ≤ x" and ygt0: "0 ≤ y" and sq: "x^2 ≤ y^2"
shows "x ≤ y"
proof -
from sq have "x ^ Suc (Suc 0) ≤ y ^ Suc (Suc 0)"
by (simp only: numeral_2_eq_2)
thus "x ≤ y" using ygt0
by (rule power_le_imp_le_base)
qed
subsection {*Various Other Theorems*}
lemma real_le_add_half_cancel: "(x + y/2 ≤ (y::real)) = (x ≤ y /2)"
by auto
lemma real_minus_half_eq [simp]: "(x::real) - x/2 = x/2"
by auto
lemma real_mult_inverse_cancel:
"[|(0::real) < x; 0 < x1; x1 * y < x * u |]
==> inverse x * y < inverse x1 * u"
apply (rule_tac c=x in mult_less_imp_less_left)
apply (auto simp add: real_mult_assoc [symmetric])
apply (simp (no_asm) add: mult_ac)
apply (rule_tac c=x1 in mult_less_imp_less_right)
apply (auto simp add: mult_ac)
done
lemma real_mult_inverse_cancel2:
"[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1"
apply (auto dest: real_mult_inverse_cancel simp add: mult_ac)
done
lemma inverse_real_of_nat_gt_zero [simp]: "0 < inverse (real (Suc n))"
by simp
lemma inverse_real_of_nat_ge_zero [simp]: "0 ≤ inverse (real (Suc n))"
by simp
lemma realpow_num_eq_if: "(m::real) ^ n = (if n=0 then 1 else m * m ^ (n - 1))"
by (case_tac "n", auto)
end
lemma two_realpow_ge_one:
1 ≤ 2 ^ n
lemma two_realpow_gt:
real n < 2 ^ n
lemma realpow_Suc_le_self:
[| 0 ≤ r; r ≤ 1 |] ==> r ^ Suc n ≤ r
lemma realpow_minus_mult:
0 < n ==> x ^ (n - 1) * x = x ^ n
lemma realpow_two_mult_inverse:
r ≠ 0 ==> r * inverse r ^ Suc (Suc 0) = inverse r
lemma realpow_two_minus:
(- x) ^ Suc (Suc 0) = x ^ Suc (Suc 0)
lemma realpow_two_diff:
x ^ Suc (Suc 0) - y ^ Suc (Suc 0) = (x - y) * (x + y)
lemma realpow_two_disj:
(x ^ Suc (Suc 0) = y ^ Suc (Suc 0)) = (x = y ∨ x = - y)
lemma realpow_real_of_nat:
real m ^ n = real (m ^ n)
lemma realpow_real_of_nat_two_pos:
0 < real (Suc (Suc 0) ^ n)
lemma realpow_increasing:
[| 0 ≤ x; 0 ≤ y; x ^ Suc n ≤ y ^ Suc n |] ==> x ≤ y
lemma real_of_int_power:
real x ^ n = real (x ^ n)
lemma power_real_number_of:
number_of v ^ n = real (number_of v ^ n)
lemma sum_squares_ge_zero:
(0::'a) ≤ x * x + y * y
lemma not_sum_squares_lt_zero:
¬ x * x + y * y < (0::'a)
lemma sum_nonneg_eq_zero_iff:
[| (0::'a) ≤ x; (0::'a) ≤ y |]
==> (x + y = (0::'a)) = (x = (0::'a) ∧ y = (0::'a))
lemma sum_squares_eq_zero_iff:
(x * x + y * y = (0::'a)) = (x = (0::'a) ∧ y = (0::'a))
lemma sum_squares_le_zero_iff:
(x * x + y * y ≤ (0::'a)) = (x = (0::'a) ∧ y = (0::'a))
lemma sum_squares_gt_zero_iff:
((0::'a) < x * x + y * y) = (x ≠ (0::'a) ∨ y ≠ (0::'a))
lemma sum_power2_ge_zero:
(0::'a) ≤ x ^ 2 + y ^ 2
lemma not_sum_power2_lt_zero:
¬ x ^ 2 + y ^ 2 < (0::'a)
lemma sum_power2_eq_zero_iff:
(x ^ 2 + y ^ 2 = (0::'a)) = (x = (0::'a) ∧ y = (0::'a))
lemma sum_power2_le_zero_iff:
(x ^ 2 + y ^ 2 ≤ (0::'a)) = (x = (0::'a) ∧ y = (0::'a))
lemma sum_power2_gt_zero_iff:
((0::'a) < x ^ 2 + y ^ 2) = (x ≠ (0::'a) ∨ y ≠ (0::'a))
lemma real_two_squares_add_zero_iff:
(x * x + y * y = 0) = (x = 0 ∧ y = 0)
lemma real_sum_squares_cancel:
x * x + y * y = 0 ==> x = 0
lemma real_sum_squares_cancel2:
x * x + y * y = 0 ==> y = 0
lemma real_mult_self_sum_ge_zero:
0 ≤ x * x + y * y
lemma real_sum_squares_cancel_a:
x * x = - (y * y) ==> x = 0 ∧ y = 0
lemma real_squared_diff_one_factored:
x * x - 1 = (x + 1) * (x - 1)
lemma real_mult_is_one:
(x * x = 1) = (x = 1 ∨ x = - 1)
lemma real_sum_squares_not_zero:
x ≠ 0 ==> x * x + y * y ≠ 0
lemma real_sum_squares_not_zero2:
y ≠ 0 ==> x * x + y * y ≠ 0
lemma realpow_two_sum_zero_iff:
(x ^ 2 + y ^ 2 = 0) = (x = 0 ∧ y = 0)
lemma realpow_two_le_add_order:
0 ≤ u ^ 2 + v ^ 2
lemma realpow_two_le_add_order2:
0 ≤ u ^ 2 + v ^ 2 + w ^ 2
lemma real_sum_square_gt_zero:
x ≠ 0 ==> 0 < x * x + y * y
lemma real_sum_square_gt_zero2:
y ≠ 0 ==> 0 < x * x + y * y
lemma real_minus_mult_self_le:
- (u * u) ≤ x * x
lemma realpow_square_minus_le:
- (u ^ 2) ≤ x ^ 2
lemma real_sq_order:
[| 0 ≤ x; 0 ≤ y; x ^ 2 ≤ y ^ 2 |] ==> x ≤ y
lemma real_le_add_half_cancel:
(x + y / 2 ≤ y) = (x ≤ y / 2)
lemma real_minus_half_eq:
x - x / 2 = x / 2
lemma real_mult_inverse_cancel:
[| 0 < x; 0 < x1.0; x1.0 * y < x * u |] ==> inverse x * y < inverse x1.0 * u
lemma real_mult_inverse_cancel2:
[| 0 < x; 0 < x1.0; x1.0 * y < x * u |] ==> y * inverse x < u * inverse x1.0
lemma inverse_real_of_nat_gt_zero:
0 < inverse (real (Suc n))
lemma inverse_real_of_nat_ge_zero:
0 ≤ inverse (real (Suc n))
lemma realpow_num_eq_if:
m ^ n = (if n = 0 then 1 else m * m ^ (n - 1))