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Abstract. In previous works, we have developed several algorithms for
inferring upper bounds to heap and stack consumption for a simple func-
tional language called Safe. The bounds inferred for a particular recursive
function with n arguments takes the form of symbolic n-ary functions
from (R+)n to R+ relating the input argument sizes to the number of
cells or words respectively consumed in the heap and in the stack. Most
frequently, these functions are multivariate polynomials of any degree,
although exponential and other functions can be inferred in some cases.
Certifying memory bounds is important because the analyses could be
unsound or have been wrongly implemented. But the certifying process
should not be necessarily tied to the method used to infer those bounds.
Although the motivation for the work presented here is certifying the
bounds inferred by our compiler, we have developed a certifying method
which could equally be applied to bounds computed by hand.
The certification process is divided into two parts: (a) an off-line part
consisting of proving the soundness of a set of proof rules. This part is
independent of the program being certified, and its correctness is estab-
lished once forever by using the proof assistant Isabelle/HOL; and (b) a
compile-time program-specific part in which the proof rules are applied
to a particular program and their premises proved correct.
The key idea for the first part is proving an Isabelle/HOL theorem for
each syntactic construction of the language, relating the symbolic infor-
mation asserted by the proof-rule to the dynamic properties about the
heap and stack consumption satisfied at runtime. For the second part,
we use a mathematical tool for proving instances of the Tarski decision
problem on quantified formulas in real closed fields.
keywords: Memory bounds, formal certificates, proof assistants, Tarski
decision problem.

1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [17], these proofs should
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be checked by an appropriate tool. The certified properties may be obtained
either manually, interactively, or automatically, but whatever is the effort needed
for generating them, the PCC paradigm insists on their checking to be fully
automatic.

In our setting, the certified property (safe memory bounds) is automatically
inferred as the product of several static analyses, so that the certificate can
be generated by the compiler without any human intervention. Certifying the
inferred property is needed to convince a potential consumer that the static anal-
yses are sound and that they have been correctly implemented in the compiler.

Inferring safe memory bounds in an automatic way is a complex task, involv-
ing in our case several static analyses:

• A region inference anaysis [15] decides in which regions different data struc-
tures should be allocated, so that they could be safely destroyed when the
region is deallocated. At the same time, the live memory is kept to a mini-
mum (in other words, the analysis detects the maximum possible garbage).

• A size analysis infers upper bounds to the size of certain variables.
• A termination analysis [14] is used to infer upper bounds to the number of

internal calls of recursive functions.
• A space inference analysis [16], uses the results of the above analyses to infer

upper bounds to the heap and stack consumption.

Memory bounds could also be manually obtained, but in this case the computa-
tion must determine all the additive and multiplicative constants. This is usually
a tedious and error-prone task.

But, once the memory bounds have been obtained, certifying them should
be a simpler task. It is common folklore in the PCC framework that to find a
proof is always more complex than to check it. A good example of this is ranking
function synthesis in termination proofs of recursive and iterative programs. A
ranking function is a kind of certificate or witness of termination. To find them is
a rather complex task. Sometimes, linear methods [20] or sophisticated polyhedra
libraries are used [10, 1]. Others, more powerful methods such as SAT solvers [3]
or non-linear constraint solvers [11] are needed. But, once the ranking function
has been obtained, certifying termination consists of ‘simply’1 proving that it
strictly decreases at each program transition in some well-founded order. This
shows that the certifying and the inference processes are not necessarily tied.

In this paper we propose a simple way of certifying upper memory bounds
whatever complex the method to obtain them has been. In the first part, we
develop a set of syntax-driven proof-rules allowing to infer safe upper memory
bounds to the execution of any expression, provided we have already upper
bounds for its subexpressions. Then we prove their soundness by relating the
symbolic information inferred by a rule to the dynamic properties about the heap
and stack consumption satisfied at runtime. In order to get complete confidence
on the rules, we have used the Isabelle/HOL proof assistant [19] for this task.

1 If the ranking function is not linear, this checking may not be so simple, and even
it might be undecidable.
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unshuffle [] = ([],[])
unshuffle (x:xs) = (x:ys2, ys1)

where (ys1,ys2) = unshuffle xs

merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

msort [] = []
msort [x] = [x]
msort xs = merge (msort xs1) (msort xs2)

where (xs1, xs2) = unshuffle xs

Fig. 1. mergesort algorithm in Full-Safe

In the second part we explain how, given a candidate upper bound for a
recursive function, the compiler can apply the proof-rules and infer a new upper
bound, which will be correct provided the candidate upper bound is correct. Our
main proof-rule states that if the derived bound is smaller than or equal to the
candidate one, then both are correct. In order to certify this latter inequality, we
propose to use a computer algebra tool for proving instances of Tarski’s decision
problem on quantified formulas involving polynomials over the reals [21]. To our
knowledge, this is the first time that the described method is used to certify
memory upper bounds.

The plan of the paper is as follows: after this introduction, in Sec. 2 we briefly
summarize the characteristics and semantics of our functional language Safe;
sections 3, 4, and 5 are devoted to presenting the proof-rules and to proving
their soundness; Sec. 6 explains the certification process and how a symbolic
algebra tool is used as a certificate checker; Sec. 7 presents a small case study
illustrating the certificate generation and checking; finally, Sec. 8 presents some
related work and draws the paper conclusions.

2 The language

Safe is a first-order eager language with a syntax similar to Haskell’s. Fig. 1 shows
a mergesort algorithm written in Full-Safe. Its runtime system uses regions, i.e.
disjoint parts of the heap where the program allocates data structures. They
are automatically inferred [15] and made explicit in the intermediate language,
called Core-Safe, and in the internal types. For instance, the types inferred for
the functions of Fig. 1 are (the ρ’s are region types):

unshuffle :: [a]@ρ→ ρ1 → ρ2 → ([a]@ρ1, [a]@ρ1)@ρ2

merge :: [a]@ρ→ [a]@ρ→ ρ→ [a]@ρ
msort :: [a]@ρ′ → ρ→ [a]@ρ

The smallest memory unit is the cell, a contiguous memory space big enough
to hold a data construction. A cell contains the mark of the constructor and a
representation of the free variables to which the constructor is applied. These
may consist either of basic values, or of pointers to other constructions. Each cell
is allocated at constructor application time. A region is a collection of cells. It is
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E ` (h, k), td , c ⇓ (h, k), c, ([ ]k, 0, 1) [Lit ]

E[x 7→ v] ` (h, k), td , x ⇓ (h, k), v, ([ ]k, 0, 1) [Var ]

j ≤ k fresh(p)

E ` (h, k), td , C ai
n @ r ⇓ (h ] [p 7→ (j, C vi

n)], k), p, ([j 7→ 1]k, 1, 1)
[Cons]

(f xi
n @ rj

l = e) ∈ ΣD [xi 7→ E(ai)
n
, rj 7→ E(r′

j)
l
, self 7→ k + 1] ` (h, k + 1), n+ l, e ⇓ (h′, k + 1), v, (δ,m, s)

E ` (h, k), td , f ai
n @ r′

j

l ⇓ (h′|k, k), v, (δ|k,m,max{n+ l, s+ n+ l − td})
[App]

E ` (h, k), td , a1 ⇓ (h, k), v1, ([ ]k, 0, 1) E ` (h, k), td , a2 ⇓ (h, k), v2, ([ ]k, 0, 1)

E ` (h, k), td , a1 ⊕ a2 ⇓ (h, k), v1 ⊕ v2, ([ ]k, 0, 2)
[Primop]

E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1)
E ∪ [x1 7→ v1] ` (h′, k), td + 1, e2 ⇓ (h′′, k), v, (δ2,m2, s2)

E ` (h, k), td , let x1 = e1 in e2 ⇓ (h′′, k), v, (δ1 + δ2,max{m1, |δ1|+m2},max{2 + s1, 1 + s2})
[Let ]

C = Cr E ∪ [xri 7→ vi
nr ] ` (h, k), td+ nr, er ⇓ (h′, k), v, (δ,m, s)

E[x 7→ p] ` (h[p 7→ (j, C vi
n)], k), td , case x of Ci xij

ni → ei
n ⇓ (h′, k), v, (δ,m, s+ nr)

[Case]

Fig. 2. Resource-Aware Operational semantics of Core-Safe expressions

created empty and it may grow up while it is active. Region deallocation frees
all its cells. The allocation and deallocation of regions are bound to function
calls. A working region, denoted by self, is allocated when entering the call and
deallocated when exiting it. Inside the function, data structures not belonging
to the output may be built there.

Fig. 2 shows the Core-Safe big-step semantic rules, with extra annotations
added in order to obtain the resources used by evaluating an expression. A
judgment of the form E ` (h, k), td , e ⇓ (h′, k), v, (δ,m, s) means that expression
e is evaluated in an environment E using the td topmost stack positions, and in
a heap (h, k) with 0, . . . , k active regions. As a result, a heap (h′, k) and a value
v are obtained, and a resource vector (δ,m, s), explained below, is consumed.

We denote data constructors by C, constants by c, variables by x, and atoms
—an atom is either a constant or a variable— by a. ΣD is a global environment
containing all the function definitions. By h|k we denote the heap h with all
regions above k deleted. A heap h is a mapping between pointers p and con-
structor cells (j, C vi

n), where j is the cell region. The first component of the
resource vector is a partial function δ : N → N giving for each active region
i the difference between the cells in the final and initial heaps. By dom δ we
denote the subset {0 . . . k} in which δ is defined. By [ ]k we denote the function
λi ∈ {0 . . . k} .0. By |δ| we mean the sum

∑
i∈dom δ δ i giving the total balance of

cells. The remaining components m and s respectively give the minimum num-
ber of fresh cells in the heap and of words in the stack needed to successfully
evaluate e, i.e. the peak memory used during e’s evaluation. When e is the main
expression, these figures give us the total memory needs of a particular run of
the Safe program.
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3 Function Signatures

A Core-Safe function is defined as a n+m argument expression

f :: t1 → . . .→ tn → ρ1 → . . .→ ρm → t
f x1 · · ·xn @ r1 · · · rm = ef

where r1 · · · rm are the region arguments. A function may charge space costs
to heap regions and to the stack. In general, these costs depend on the sizes of
the function arguments. We define the size of an algebraic type term to be the
number of cells of its recursive spine. This is always at least 1. We define the
size of a boolean value to be zero. However, for an integer argument we choose
its size to be its value because frequently space costs depend on the value of a
numeric argument. As a consequence, all the costs and sizes of a function f can
be expressed as functions on f ’s argument sizes:

Ff = {η : (R+ ∪ {+∞})n → R+ ∪ {+∞,−∞} | η is monotonic}

Cost or size +∞ are used to represent that the analysis is not able to infer a
bound, while −∞ is used to express that the cost or size is not defined. For
instance, the following function, where xs is assumed to be a list size,

λxs.
{

xs − 3 if xs ≥ 4
−∞ otherwise

is undefined for sizes xs smaller than 4 (i.e. for lists with less than 3 elements).
They are ordered as expected,−∞ ≤ 0, and ∀x ∈ R+.x ≤ +∞, so−∞tx = x

and +∞t x = +∞. Arithmetic monotonic operations with ±∞ are defined as
follows, where x ∈ R+ while y ∈ R+ ∪ {+∞,−∞}:

−∞+ y = −∞ −∞ ∗ y = −∞ +∞+ x = +∞ +∞∗ x = +∞

The domain of cost functions (Ff ,v,⊥,>,t,u) is a complete lattice with the
usual order v between functions. The rest of the components are standard.
Notice that it is closed under the operations {+,t, ∗}.

Function f above may charge space costs to a maximum of m + 1 regions:
it may create cells in any output region r1 . . . rm, and additionally in its self
region. Each region r has a region type. We denote by Rf the set {ρ1 . . . ρm} of
argument region types, and by ρfself the type of region self.

Looked from outside, the charges to the self region are not visible, so Df =
{∆ : Rf → Ff} is the complete lattice of functions describing the space costs
charged by f to visible regions. We will call abstract heaps to these functions.

Definition 1. A function signature for f is a triple (∆f , µf , σf ), where ∆f

belongs to Df , and µf , σf belong to Ff .

The aim is that ∆f is an upper bound to the cost charged by f to visible regions,
(i.e. to the increment in live memory due to a call to f), and µf , σf respectively
are upper bounds to the heap and stack peaks contributed by f ’s evaluation.
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θ, φ, td �f c,Σ ` ([ ]f , 0, 1) [Lit ]

θ, φ, td �f x,Σ ` ([ ]f , 0, 1) [Var ]

θ, φ, td �f a1 ⊕ a2, Σ ` ([ ]f , 0, 2) [Primop]

θ, φ, td �f C ai
n @ r,Σ ` ([θ r 7→ 1]f , 1, 1) [Cons]

Σ g = (∆g, µg, σg) G (ai
n) ≡

Vl
i=1 def (φ ai x

n) argP(ψ, ρj
q, θ, rj

q)

µ = λxn.[G (ai
n)→ µg (φ ai xnl

)] σ = λxn.[G (ai
n)→ σg (φ ai xnl

)] ∆ = instancef (∆g, ψ, ai
l)

θ, φ, td �f g ai
l @ rj

q, Σ ` (∆,µ,t{l + q, σ + l + q − td})
[App]

θ, φ, 0 �f e1, Σ ` (∆1, µ1, σ1) θ, φ, td + 1 �f e2, Σ ` (∆2, µ2, σ2)

θ, φ, td �f let x1 = e1 in e2, Σ ` (∆1 +∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2})
[Let ]

(∀i) θ, φ, td + ni �f ei, Σ ` (∆i, µi, σi)

θ, φ, td �f case x of Ci xij
ni → ei

n
, Σ ` (

Fn
i=1∆i,

Fn
i=1 µi,

Fn
i=1(σi + ni))

[Case]

Fig. 3. Proof-rules for Core-Safe expressions

(f xi
l@ rj

q = ef ) ∈ ΣD θ, φ, l + q �f ef , Σ ] {f 7→ (∆,µ, σ)} ` (∆′, µ′, σ′) (b∆′c, µ′, σ′) v (∆,µ, σ)

θ, φ, l + q �f ef , Σ ` (∆′, µ′, σ′)
[Rec]

Fig. 4. Proof-rule for a (possibly) recursive Core-Safe function definition

4 Proof-rules

When dealing with an expression e, we assume it belongs to the body ef of a
function definition f xi

n @ rj
m = ef , that we will call the context function,

assumed to be well-typed.
We consider available a local type environment θ giving the types of all (free

and bound) variables in ef . It allows to type ef and all its subexpressions. We
also consider available a local environment φ giving for every (free and bound)
variable its size as a symbolic function of the sizes of f ’s formal arguments
xi
n. Let Σ be a global environment giving, for each Safe function g in scope,

its signature (∆g, µg, σg), and let td (abbreviation of top-depth) be a natural
number. This is a quantity used by the compiler to control the size of the runtime
environment stored in the stack (it is the same argument used in the operational
semantics, see Sec. 2). It has an impact on the stack consumption and so it will
be needed in our judgements. Finally, we consider available as an implicit global
constant, a type environment ΣT giving for every function and data constructor
of the program their most general types.

We inductively define a derivation relation as a set of proof-rules. The in-
tended meaning of a judgement of the form θ, φ, td �f e,Σ ` (∆,µ, σ) is that
∆,µ, σ are safe upper bounds for respectively the live heap contributed by eval-
uating the expression e, the additional peak heap needed by e, and its additional
peak stack. The context information needed is: a valid global signature environ-
ment Σ, two valid local environments θ (for types) and φ (for sizes), a runtime
enviroment top depth td , and the name f of the context function.
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In Figure 3 we show the proof-rules for the most relevant Core-Safe expres-
sions. Predicate def (η) expresses that the size η is defined according to its type:
if η has an algebraic type, def (η) ≡ η ≥ 1; if it is an integer, def (η) ≡ η ≥ 0;
otherwise def (η) ≡ True. We use the guarded notation [G → η], as equivalent
to η if G holds, and to −∞ otherwise. By [ ]f we denote the constant function
λρ ∈ Rf ∪{ρfself } .λxi

n . [def (xin)→ 0], and by [ρ′ → η]f we denote the function:

λρ ∈ Rf ∪ {ρfself } . λxi
n .

{
[def (xin)→ 0] if ρ 6= ρ′

[def (xin)→ η] if ρ = ρ′

We abbreviate λxi
n . [def (xin) → c] by c, when c ∈ R+. By |∆| we mean∑

ρ∈dom ∆∆ ρ.
Rules [Lit ], [Var ], [Primop] and [Cons] exactly reflect the corresponding

resource-aware semantic rules shown in Fig. 2.
When a function application g ail @ rj

q is found, its signature Σ g is applied
to the sizes of the actual arguments, φ ai xjn

l
. Some different region types of g

may instantiate to the same actual region type of f . This instantiation mapping
ψ : Rg → Rf ∪ {ρfself } is provided by the compiler, and we will require it to be
consistent with the typing environment θ and with the actual region arguments
of the application. We call this property to be argument preserving.

Definition 2. Given a type signature for g, ΣT g = ti
l → ρj

q → t, a local type
environment θ for f , and the sequence of actual region arguments rjq, we say
that the instantiation mapping ψ is argument preserving with respect to ρj

q, θ,
and rjq, denoted argP(ψ, ρjq, θ, rjq), if ∀j ∈ {1 . . . q} . ψ ρj = θ rj.

The memory consumed by g in the formal regions mapped by ψ to the same
f ’s actual region must be accumulated in order to get the charge to this region
of f . In the [App] rule of Figure 3, function instancef does this computation.

Definition 3. The funcion instancef converts an abstract heap for g into an
abstract heap for f . If f is the context function, Σ g = (∆g, , ), φ is the local
size environment for f , ψ is an instantiation mapping, and ail are the arguments
of the application, we define instancef (∆g, ψ, ai

l) as the abstract heap ∆ with
domain Rf ∪ {ρfself } such that:

∀ρ ∈ dom ∆ . ∆ ρ = λ xi
n . [G (ain)→

∑
ρ′∈Rg∧ ψ ρ′=ρ

∆g ρ
′ (φ ai xin

l
)]

where G (ain) ≡
∧l
i=1 def (φ ai x

n). Notice that if any of the sizes φ ai xi
n is

not defined, ∆g applied to it is neither defined. It is easy to see that ∆, µ and
σ defined in rule [App] are monotonic. If ∃i ∈ {1 . . . l} . ¬def (φ ai xin), then ∆,
µ and σ return −∞, which guarantees monotonicity since −∞ is the smallest
value in the domain. For the rest of the arguments, monotonicity is guaranteed
by the monotonicity of ∆g, µg and σg.

Rule [Let ] reflects the corresponding resource-aware semantic rule, while rule
[Case] uses the least upper bound operators

⊔
in order to obtain an upper bound

to the costs and of all the branches.
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In Fig. 4 we show the proof rule for recursive functions. In fact, it could
also be applied to non-recursive ones. By b∆c we denote the projection of ∆
over Rf , obtained by removing the region ρfself from ∆. This rule is a relevant
contribution of the paper, since it reduces proving upper memory bounds to
checking inequalities between functions over the reals. In words, its says that
if a triple (∆,µ, σ) (obtained by whatever means) is to be proved a safe upper
bound for the recursive function f , a sufficient condition is:

1. Introduce (∆,µ, σ) in the environment Σ as a candidate signature for f .
2. By using the remaining proof-rules, derive a triple (∆′, µ′, σ′) as a new upper

bound for f ’s body.
3. Prove (b∆′c, µ′, σ′) v (∆,µ, σ).

The rule asserts that (∆′, µ′, σ′) is a correct bound for ef without any assumption
for f in Σ. By deleting the self region, then (b∆′c, µ′, σ′) is a correct signature
for f , and so will it be (∆,µ, σ), which is greater than or equal to it.

The first two steps are rutinary. The only difficulty remaining is proving the
third. As we will see, for polynomial functions this can be done by converting it
into a decision problem of Tarski’s theory of closed real fields.

5 Soundness theorems

Let f xi
n @ rj

m = ef , be the context function and θ the inferred local type
environment for f . Let us assume an execution of ef under some h0, k0 = k+ 1,
and E0 = [xi 7→ vi

n, rj 7→ ij
m
, self 7→ k + 1] for some vi, 0 ≤ ij ≤ k for all j,

and td0 = n+m:

E0 ` h0, k0, td0, ef ⇓ hf , k0, vf , (δ0,m0, s0) (1)

In the following, all ⇓–judgements corresponding to a given sub-expression of ef
will be assumed to belong to the derivation of (1). Also, we will call generically
a bound to a triple (∆,µ, σ).

The steps we shall follow in this section are: (1) we shall introduce a notion
of semantic satisfaction of a bound by an expression in the context of a given
function; (2) we shall define a notion of valid signature which formalises the
intuition of a bound (∆g, µg, σg) actually being an upper bound of the actual
(δ,m, s) obtained in any execution of the function g. This will lead us to the
notion of valid global bound environment Σ; (3) we shall refine the notion of
semantic satisfaction of a bound to a conditional one subject to the validity of a
global bound environment; and (4) we shall prove that the proof rules of figures
3 and 4 are sound with respect to the given semantic notions.

We need to provide the following definitions:

1. A notion of size of a data structure, so that we can refer to the sizes of the
arguments of a function.

2. A notion of valid type and size local environments, whose properties will be
needed when proving the soundness of the proof rules.
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Definition 4. Given a value v (either a constant c or a pointer p) belonging to
a heap h, the function size returns the number of cells in h of the data structure
starting at v:

size(h, c) = 0
size(h[p 7→ (j, C vi

n)], p) = 1 +
∑
i∈RecPos C size(h, vi)

where RecPos C denotes the recursive positions of constructor C, and they are
obtained by consulting the type ΣT C.

For example, if p points to the first cons cell of the list [1, 2, 3] in the heap h
then size(h, p) = 4.

When applying abstract signatures to sizes, as in Definition 8 below, we will
consider that the size of an actual integer argument is its value, i.e. size(h, n) = n
for every numeric argument n. This is so, because very frequently the memory
consumption of a function depends on the value of its integer arguments.

We reproduce from previous papers the notions of a region runtime instan-
tiation mapping η to be admissible, and of consistency between the static types
and the runtime contents of the heap.

Definition 5. Assuming that k denotes the topmost region of a given heap, we
say that the mapping η is admissible, denoted admissible η k, if:

ρfself ∈ dom η ∧ η ρfself = k ∧ ∀ρ ∈ (dom η)− {ρfself } . η ρ < k

Definition 6. We say that the mappings θ, η, the runtime environment E, and
the heap h are consistent, denoted consistent θ η E h, if:

1. ∀x ∈ dom(E) . consistent(θ(x), η, E(x), h) where:
consistent(B, η, c, h) = true -- B denotes a basic type
consistent(a, η, v, h) = true -- a denotes a type variable
consistent(t, η, p, h) ⇐ p 6∈ dom(h)
consistent(T t′i

m
@ ρj

l, η, p, h)⇐ ∃j C vk
n µ tkC

n
ρjC

l . h(p) = (j, C vk
n)

∧ ρl ∈ dom(η) ∧ η(ρl) = j

∧ ΓT (C) = tkC
n → ρlC → T t′iC

m
@ ρjC

l

∧ µ(T t′iC
m

@ ρjC
l) = T t′i

m
@ ρj

l

∧ ∀k ∈ {1..n} . consistent(µ(tkC), η, vk, h))
2. ∀r ∈ dom E . θ r ∈ dom η ∧ E r = (η · θ) r
3. self ∈ dom E ∧ θ self = ρfself

Now me move to the validity of local type and size environments.

Definition 7 (Validity of local environments). Let f xi
n @ rj

m = ef be
the context function, e a subexpression of ef , and θ, φ respectively be local type
and size environments for f . We say that they are valid, denoted validf θ φ, if

(xin ∪ fv e ∪ rjm ∪ self ) ⊆ dom θ
∧ (xin ∪ fv e) ⊆ dom φ
∧ (∀E h k td h′ v η si δ m s .

E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) ∧ (∀i . si = size(h,E xi)) ∧ admissible η k →
consistent θ η E h ∧ (∀y ∈ dom φ . φ y si

n ≥ size(h,E y)))
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The semantic satisfaction of a bound by an expression, denoted

θ, φ, td �f e |= [[(∆,µ, σ)]]

must express that, whenever θ, φ are valid environments, and some minor static
and dynamic properties hold, then (∆,µ, σ) is a correct bound for the memory
consumption of expression e in any of its possible evaluations.

Definition 8. Let f xi
n @ rj

m = ef be the context function, and e a subex-
pression of ef . We say that e satisfies the bound (∆,µ, σ) in the context of θ, φ,
denoted θ, φ, td �f e |= [[(∆,µ, σ)]], if:

validf θ φ→
Pstat ∧ (∀E h k h′ v η δ m s si

n . P⇓ ∧ Pdyn ∧ Psize ∧ Pη → P∆ ∧ Pµ ∧ Pσ)

where:

1. Pstat
def
= dom ∆ = Rf ∪ {ρfself }

2. P⇓
def
= E ` h, k, td , e ⇓ h′, k, v, (δ,m, s)

3. Pdyn
def
= (xin ∪ fv e ∪ rjm ∪ self ) ⊆ dom E ∧ dom η = dom ∆

4. Psize
def
= ∀i ∈ {1..n} . si = size(h,E xi)

5. Pη
def
= admissible(η, k)

6. P∆
def
= ∀j ∈ {0 . . . k} .

∑
η ρ=j ∆ ρ si

n ≥ δ j
7. Pµ

def
= µ si

n ≥ m
8. Pσ

def
= σ si

n ≥ s
The semantic satisfaction of a bound by a whole function’s body will convert

this bound in a bound signature for the function, These signatures can be stored
in a global bound environment which we will call a valid environment.

Definition 9. A global bound environment Σ is valid, denoted |= Σ, if it belongs
to the following inductively defined set:

1. |= ∅, i.e. the empty environment is always valid.
2. If |= Σ, and f xi

l @ rj
m = ef , and there exist ∆, µ, σ and valid local

environments θ, φ such that θ, φ, (l +m) �f ef |= [[(∆,µ, σ)]], then |= Σ ]
{f 7→ (b∆c, µ, σ)}.
When proving a bound for an expression, we will usually need a valid global

environment in order to get from it correct signatures for the subsidiary functions
called by the expression, and then being able to apply the App proof rule. We
will then say that the satisfaction of the bound is conditioned to the validity of
the environment.

Definition 10. We say that an expression e conditionally satisfies a bound
(∆,µ, σ) with respect to a bound environment Σ in the context of θ, φ, denoted
θ, φ, td �f e,Σ |= [[(∆,µ, σ)]], if |= Σ → θ, φ, td �f e |= [[(∆,µ, σ)]].

Now, we are in a position to state and prove the main theorem establishing
that the proof rules of figures 3 and 4 are sound.

Theorem 1 (Soundness).

If θ, φ, td �f e,Σ ` (∆,µ, σ), then θ, φ, td �f e,Σ |= [[(∆,µ, σ)]]
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5.1 Proving the soundness theorem

It will take us some work to set up the infrastructure for proving the theorem.
First, we enrich the big-step semantics with a side-effect counter nf counting the
maximum length of the recursive call chains to a given function f . Then, E `
h, k, td , e ⇓f h′, k, v, (δ,m, s), nf means that, in the derivation tree of expression
e, there are 0 or more calls to f , and the longest call-chain involving f and
starting at e has a length nf ≥ 0. A length nf = 0 means that there are no calls
to f during e’s evaluation.

Definition 11. We define a restricted big-step semantics with an upper bound
n to the longest chain of f ’s:

E ` h, k, td , e ⇓f,n h′, k, v, (δ,m, s)
def
= E ` h, k, td , e ⇓f h′, k, v, (δ,m, s), nf∧nf ≤ n

If we write P⇓(f, n) we refer to the following property:

E ` h, k, td , e ⇓f,n h′, k, v, (δ,m, s)

which is similar to P⇓ of Def. 8 but using the ⇓f,n relation instead of the ⇓ one.
The following lemma establishes that both semantics are in essence equivalent.

Lemma 1. E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) if and only if

∃n . E ` h, k, td , e ⇓f,n h′, k, v, (δ,m, s)

Proof. By induction on ⇓f,n the if direction, and by induction on ⇓ the only if
one.

We modify definitions 8, 9, and 10 in order to introduce the depth of the deriva-
tion:

Definition 12. Let f xi
l @ rj

m = ef be the context function, and e a subex-
pression of ef . We say that e satisfies the bound (∆,µ, σ) in the context of θ, φ,
up to depth n for f , denoted θ, φ, td �f e |=f,n [[(∆,µ, σ)]], if:

validf θ φ→
Pstat ∧ (∀E h k h′ v η δ m s si

n . P⇓(f, n) ∧ Pdyn ∧ Psize ∧ Pη → P∆ ∧ Pµ ∧ Pσ)

Definition 13. A global bound environment Σ is valid up to depth n for f ,
denoted |=f,n Σ, if it belongs to the following inductively defined set:

1. An environment in which f is not defined is valid at any depth for f if it is
valid in general, i.e. if |= Σ and f 6∈ dom Σ, then |=f,n Σ.

2. A valid environment can be extended with any bound for f at depth 0, i.e.
for all (∆,µ, σ), if |= Σ then |=f,0 Σ ] {f 7→ (∆,µ, σ)}.

3. If |= Σ, function f is defined as f xi
l @ rj

m = ef , and θ, φ are valid
local environments for f , and θ, φ, (l +m) �f ef |=f,n [[(∆,µ, σ)]] holds, then
|=f,n+1 Σ ] {f 7→ (b∆c, µ, σ)} also holds.

4. If |=f,n Σ, function g 6= f is defined as g yil @ rj
m = eg, and θ, φ are

valid local environments for g, and θ, φ, (l +m) �g eg |= [[(∆,µ, σ)]] holds,
then |=f,n Σ ] {g 7→ (b∆c, µ, σ)} also holds.
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Definition 14. Given a context function f , we say that an expression e condi-
tionally satisfies a bound (∆,µ, σ), up tp depth n for f , with respect to a bound
environment Σ in the context of θ, φ, denoted θ, φ, td �f e,Σ |=f,n [[(∆,µ, σ)]],
if

|=f,n Σ → θ, φ, td �f e |=f,n [[(∆,µ, σ)]]

The following lemmas relate satisfaction and validity at depth n with satistacfion
and validity in general.

Lemma 2. ∀n . θ, φ, td �f e |=f,n [[(∆,µ, σ)]] iff θ, φ, td �f e |= [[(∆,µ, σ)]].

Proof. By equational reasoning.

∀n . θ, φ, td �f e |=f,n [[(∆,µ, σ)]]
≡ {By Def. 12}
∀n . (validf θ φ→ Pstat ∧ (∀E h k h′ v η δ m s si . P⇓(f, n) ∧ Pdyn ∧ Psize ∧ Pη
→ P∆ ∧ Pµ ∧ Pσ))

≡ {By first-order logic}
validf θ φ→ Pstat ∧ (∀E h k h′ v η δ m s si . (∃n . P⇓(f, n)) ∧ Pdyn ∧ Psize ∧ Pη

≡ {By Lemma 1}
validf θ φ→ Pstat ∧ (∀E h k h′ v η δ m s si . P⇓ ∧ Pdyn ∧ Psize ∧ Pη → P∆ ∧ Pµ ∧ Pσ)

≡ {By Def. 8}
θ, φ, td �f e |= [[(∆,µ, σ)]] ut

Lemma 3. ∀n . |=f,n Σ iff |= Σ.

Proof. We separatedly prove each direction:

(⇐) By induction on the |= relation. If Σ = ∅ then we must prove ∀n . |=f,n ∅,
which is trivial by Def. 13-(1). If Σ = Σ′]{f ′ 7→ (∆,µ, σ)} then must prove:

|= Σ′ ] {f ′ 7→ (∆,µ, σ)} ⇒ ∀n . |=f,n Σ
′ ] {f ′ 7→ (∆,µ, σ)}

By applying Def. 9-(2) of |=, this es equivalent to proving:

|= Σ′∧θ, φ, (l +m) �f ′ ef ′ |= [[(∆′, µ, σ)]]⇒ ∀n . |=f,n Σ
′]{f ′ 7→ (∆,µ, σ)}

with ∆ = b∆′c and valid θ, φ. By induction hypothesis, we can also assume
∀n . |=f,n Σ

′. Now, we proceed by cases on f ′:
f ′ = f We proceed by induction on n:

• If n = 0 we must prove |=f,0 Σ
′ ] {f 7→ (∆,µ, σ)}, which is trivial

by Def. 13-(2).
• For n+1 we must prove |=f,n+1 Σ

′]{f 7→ (∆,µ, σ)}. By Def. 13-(3),
this is equivalent to proving |= Σ′∧θ, φ, (l +m) �f ef |=f,n [[(∆′′, µ, σ)]],
for a ∆′′ such that ∆ = b∆′′c, and valid θ, φ. But we have as hypoth-
esis |= Σ′ ∧ θ, φ, (l +m) �f ef |= [[(∆′, µ, σ)]] with ∆ = b∆′c, which
is stronger by Lemma 2.
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f ′ 6= f We must prove ∀n. |=f,n Σ
′]{f ′ 7→ (∆,µ, σ)}. By Def. 13-(4), this is

equivalent to proving (∀n . |=f,n)Σ′ ∧ θ, φ, (l +m) �f ′ ef ′ |= [[(∆′, µ, σ)]]
with ∆ = b∆′c. The first conjunct holds by induction hypothesis, and
the second one by hypothesis.

(⇒) We distinguish here two cases:
f 6∈ dom Σ By doing induction on |=f,n we get four cases corresponding to

those of Def. 13, all of them trivial.
f ∈ dom Σ We must prove f ∈ dom Σ∧(∀n. |=f,n Σ)⇒|= Σ. We will prove

the slightly stronger property f ∈ dom Σ ∧ (∀n > 0 . |=f,n Σ) ⇒ |= Σ.
The proof is split into two pieces:

1. f ∈ dom Σ ∧ ∀n > 0 . |=f,n Σ ⇒ ∀n . θ, φ, (l +m) �f ef |=f,n [[(∆′, µ, σ)]]
2. f ∈ dom Σ ∧ ∀n > 0 . |=f,n Σ ∧ θ, φ, (l +m) �f ef |= [[(∆′, µ, σ)]]⇒ |= Σ

By Lemma 2, the conclusion of the first one implies the third premise
of the second one. Both proofs can easily be done by induction on the
|=f,n relation.

Lemma 4.

If ∀n . θ, φ, td �f e,Σ |=f,n [[(∆,µ, σ)]] then θ, φ, td �f e,Σ |= [[(∆,µ, σ)]]

Proof. By equational reasoning.

∀n . θ, φ, td �f e,Σ |=f,n [[(∆,µ, σ)]]
≡ {By Def. 14}
∀n . (|=f,n Σ → θ, φ, td �f e |=f,n [[(∆,µ, σ)]])

⇒ {By first-order logic}
(∀n . |=f,n Σ)→ (∀n . θ, φ, td �f e |=f,n [[(∆,µ, σ)]])

≡ {By lemmas 2 and 3}
|= Σ → θ, φ, td �f e |= [[(∆,µ, σ)]]

≡ {By Def. 10}
θ, φ, td �f e,Σ |= [[(∆,µ, σ)]] ut

Having proved Lemma 4, the soundness of θ, φ, td �f e,Σ ` (∆,µ, σ), stated as
Theorem 1, can be completed as follows:

Lemma 5 (Soundness).

If θ, φ, td �f e,Σ ` (∆,µ, σ) then ∀n . θ, φ, td �f e,Σ |=f,n [[(∆,µ, σ)]]

Proof. By induction on the ` derivation, and by cases on the last rule applied.

Lit See Lemma 6 in Section 5.2
Var See Lemma 7 in Section 5.2
Primop See Lemma 8 in Section 5.2
Cons See Lemma 9 in Section 5.2
Let See Lemma 10 in Section 5.2
Case See Lemma 11 in Section 5.2
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App See Lemma 12 in Section 5.2
Rec Let us assume that the last rule applied was Rec. On the one hand, we have:

θ, φ, l +m�f ef , Σ ` (∆′, µ′, σ′)
≡ {By the REC rule}
f xi

l@ rj
m = ef ∧ θ, φ, l +m�f ef , Σ ] {f 7→ (∆,µ, σ)} ` (∆′, µ′, σ′)∧

(b∆′c, µ′, σ′) v (∆,µ, σ)
⇒ {By induction hypothesis on `}
∀n . θ, φ, l +m�f ef , Σ ] {f 7→ (∆,µ, σ)} |=f,n [[(∆′, µ′, σ′)]]

≡ {By Def. 14}
∀n . (|=f,n Σ ] {f 7→ (∆,µ, σ)} → θ, φ, l +m�f ef |=f,n [[(∆′, µ′, σ′)]]) (1)

On the other hand, we must prove:

∀n . (|=f,n Σ → θ, φ, l +m�f ef |=f,n [[(∆′, µ′, σ′)]])

We proceed by induction on n:
n = 0 By f 6∈ dom Σ and Def. 13-(1), assuming |=f,0 Σ is equivalent to

assuming |= Σ, and this is in turn equivalent by Def. 13-(2) to |=f,0

Σ ] {f 7→ (∆,µ, σ)}. By (1) we get θ, φ, l +m�f ef |=f,0 [[(∆′, µ′, σ′)]])
and we are done.

n > 0 By Def. 13-(1), assuming |=f,n+1 Σ is equivalent to assuming |= Σ,
and this is in turn equivalent to |=f,n Σ. By induction hypothesis on n
we get θ, φ, l +m�f ef |=f,n [[(∆′, µ′, σ′)]]). By (b∆′c, µ′, σ′) v (∆,µ, σ)
we get θ, φ, l +m�f ef |=f,n [[(d∆e, µ, σ)]]), where we define d∆e as ∆
completed with {ρfself 7→ ∆′ ρfself }. Obviously, ∆′ v d∆e and bd∆ec = ∆.
From this and from |= Σ, by Def. 13-(3) we get |=f,n+1 Σ ] {f 7→
(∆,µ, σ)}, and from (1) we get θ, φ, l +m�f ef |=f,n+1 [[(∆′, µ′, σ′)]] as
desired.

Notice that both |= Σ ]{f 7→ (∆,µ, σ)} and |= Σ ]{f 7→ (b∆′c, µ′, σ′)} can
be easily obtained in the above proof. So, both are correct signatures for f .

ut

Then, the lemmas 4 and 5 complete the proof of the Soundness Theorem 1.

5.2 Proofs of the individual lemmas

Lit

Lemma 6. The formula to be proved is:

If θ, φ, td �f c,Σ ` ([ ]f , 0, 1) then ∀n . θ, φ, td �f c,Σ |=f,n [[([ ]f , 0, 1)]]

Proof. The Lit proof-rule has no premises, so we must prove Lemma’s conclusion
from scratch. Let us assume an arbitrary but fixed n. We must prove:

validf θ φ→ Pstat∧(∀E h k h′ v η δ m s si
n.P⇓(f, n)∧Pdyn∧Psize∧Pη → P∆∧Pµ∧Pσ)

The premise validf θ φ is not needed in this case. Pstat holds by definition of [ ]f .
Let us assume P⇓(f, n) for appropriate E h k η si

n satisfying Pdyn ∧ Psize ∧ Pη.
From the Lit semantic rule we get (δ,m, s) = ([ ]k, 0, 1). Trivially it holds that
∀j ∈ {0 . . . k} .

∑
η ρ=j [ ]f ρ sin = 0 ≥ 0 = δ j, and µ si

n = 0 ≥ 0 = m, and
σ si

n = 1 ≥ 1 = s. So, we get P∆ ∧ Pµ ∧ Pσ as desired.
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Var

Lemma 7. The formula to be proved is:

If θ, φ, td �f x,Σ ` ([ ]f , 0, 1) then ∀n . θ, φ, td �f x,Σ |=f,n [[([ ]f , 0, 1)]]

Proof. The proof is completely identical to the case Lit . ut

Primop

Lemma 8. The formula to be proved is:

If θ, φ, td �f a1 ⊕ a2, Σ ` ([ ]f , 0, 2) then ∀n.θ, φ, td �f a1 ⊕ a2, Σ |=f,n [[([ ]f , 0, 2)]]

Proof. The proof is almost identical to the cases Lit and Var , the only difer-
ence being that a bound λx.2 is obtained for σ, and a stack consumption 2 for
s. ut

Cons

Lemma 9. The formula to be proved is:

If θ, φ, td �f C ai
n @ r,Σ ` ([θ r 7→ 1], 1, 1)

then ∀n . θ, φ, td �f C ai
n @ r,Σ |=f,n [[([θ r 7→ 1]f , 1, 1)]]

Proof. Let us assume an arbitrary but fixed n. As the Cons proof-rule has no
premises, we must prove from scratch:

validf θ φ→ Pstat∧(∀E h k h′ v η δ m s si.P⇓(f, n)∧Pdyn∧Psize∧Pη → P∆∧Pµ∧Pσ)

Let us assume validf θ φ. Property Pstat holds by definition of [θ r 7→ 1]f . Let us
assume an evaluation P⇓(f, n) of the expression with appropriate E h k h′ v η si
such that Pdyn ∧Psize ∧Pη hold. From the semantic rule Cons we get (δ,m, s) =
([j 7→ 1]k, 1, 1). From consistent(θ, η, E, h)), implied by validf θ φ, we get j =

E r = η (θ r). Then, P∆
def= ∀j ∈ {0 . . . k} .

∑
η ρ=j ∆ ρ si

n ≥ δ j reduces to
proving 1 ≥ 1. Properties Pµ and Pσ are also trivial. ut

Let

Lemma 10. The formula to be proved is:

If θ, φ, td �f let x1 = e1 in e2, Σ ` (∆1 +∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2}) then
∀n . θ, φ, td �f let x1 = e1 in e2, Σ |=f,n [[(∆1 +∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2})]]

Proof. By the Let proof rule of the derivation relation ` we have:

θ, φ, 0 �f e1, Σ ` (∆1, µ1, σ1) and θ, φ, td + 1 �f e2, Σ ` (∆2, µ2, σ2)

By induction hypothesis on the statement of Lemma 5 we get:

∀n . θ, φ, 0 �f e1, Σ |=f,n [[(∆1, µ1, σ1)]] and
∀n . θ, φ, td + 1 �f e2, Σ |=f,n [[(∆2, µ2, σ2)]]

Let us choose an arbitrary but fixed n for the whole proof. The steps are the
following:
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1. Assuming validf θ φ for let, we have validf θ φ for both e1 and e2. Then,
we get Pstat and the rest of properties of � |= [[( )]] for e1 and e2.

2. Pstat for e1 and e2 easily lead to Pstat for let.
3. Assuming P⇓(f, n) for let, and using the semantic rule Let , we get P⇓(f, n)

for both e1 and e2 and appropriate heaps and runtime environments.
4. Likewise, assuming Pdyn ∧ Psize ∧ Pη for let, it is straightforward to show
Pdyn ∧ Psize ∧ Pη for e1 and e2 on their respective heaps and runtime envi-
ronments.

5. Then, we get P∆ ∧ Pµ ∧ Pσ for the bound (∆1, µ1, σ1) with respect to
the runtime consumption (δ1,m1, s1) of e1’s evaluation, and for the bound
(∆2, µ2, σ2) with respect to e2’s consumption (δ2,m2, s2).

6. Then, it only remains to be shown that (∆1 + ∆2,t{µ1, |∆1| + µ2},t{2 +
σ1, 1+σ2}) is a bound for (δ1 +δ2,t{m1, |δ1|+m2},t{2+s1, 1+s2}), which
is trivial.

ut

Case

Lemma 11. The formula to be proved is:

If θ, φ, td �f case x of Ci xij
ni → ei

m
, Σ ` (

⊔n
i=1∆i,

⊔n
i=1 µi,

⊔n
i=1(σi + ni)) then

∀n . θ, φ, td �f case x of Ci xij
ni → ei

m
, Σ |=f,n [[(

⊔n
i=1∆i,

⊔n
i=1 µi,

⊔n
i=1(σi + ni))]]

Proof. By the Case proof rule of the derivation relation ` we have:

(∀i) θ, φ, td + ni �f ei, Σ ` (∆i, µi, σi)

By induction hypothesis on the statement of Lemma 5 we get:

(∀i n) θ, φ, td + ni �f ei, Σ |=f,n [[(∆i, µi, σi)]]

Let us choose an arbitrary but fixed n for the whole proof. The steps are the
following:

1. Assuming validf θ φ for case, we have validf θ φ for all the ei. Then, we
get Pstat and the rest of properties of � |= [[( )]] for all the ei.

2. Pstat for all the ei lead to Pstat for case.
3. Assuming P⇓(f, n) for case, and using the semantic rule Case, we get P⇓(f, n)

for one ej , j ∈ {1..m} for appropriate heap and runtime environment.
4. Likewise, assuming Pdyn ∧ Psize ∧ Pη for case, it is straightforward to show
Pdyn ∧ Psize ∧ Pη for ej on its respective heap and runtime environment.

5. Then, we get P∆ ∧ Pµ ∧ Pσ for the bound (∆j , µj , σj) with respect to the
runtime consumption (δj ,mj , sj) of ej ’s evaluation.

6. By knowing that, we must show that (
⊔n
i=1∆i,

⊔n
i=1 µi,

⊔n
i=1(σi + ni)) is a

correct bound for (δj ,mj , sj + nj), which is straightforward.
ut
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App

Lemma 12. The formula to be proved is:

If θ, φ, td �f g ai
l @ rj

q, Σ ` (∆,µ,t{l + q, σ − td + l + q}) then
∀n . θ, φ, td �f g ai

l @ rj
q, Σ |=f,n [[(∆,µ,t{l + q, σ − td + l + q})]]

Proof. In the first place let us assume that g 6= f , and let us choose an arbitrary
fixed n for the whole proof. By the App proof rule, we know:

Σ g = (∆g, µg, σg) G xn ≡ ∀i ∈ {1..l}.φ ai xn 6= −∞
argP(ψ, ρ′j

q
, θ, rj

q) µ = λxn.[G xn → µg (φ ai xn
l
)]

σ = λxn.[G xn → σg (φ ai xn
l
)] ∆ = instancef (∆g, ψ, ai

l)

From Def. 14 we can assume |=f,n Σ. We can also assume validf θ φ as it is
a premise of lemma’s consequent. From Def. 13, and by doing induction on the
|=f,n relation, we get that θg, φg, (l + q) �g eg |=f,n [[(∆′g, µg, σg)]] holds for some
valid θg, φg, and a ∆′g such that ∆g = b∆′gc. Then, we get for eg and the bound
(∆′g, µg, σg):

Pstat ∧ (∀E h k h′ v η δ m s si
n . P⇓(f, n) ∧ Pdyn ∧ Psize ∧ Pη → P∆ ∧ Pµ ∧ Pσ)

We must prove for g ail @ rj
q and the bound (∆,µ,t{l + q, σ − td + l + q})

exactly the same properties. The steps are the following:

1. Pstat
def= dom ∆ = Rf ∪ {ρfself } is just a consequence of the definition of the

instancef function.
2. Let us assume P⇓(f, n) for the application and some particular E, h, h′, k,
v, η, δ, m, s, and si

n such that Pdyn ∧ Psize ∧ Pη hold.
3. By the App semantics’ rule, and assuming that g yi

l @ r′j
q

= eg is the
definition for g, we get:

Eg ` h, k + 1, l + q, eg ⇓f,n h′, k + 1, v, (δg,mg, sg)

where Eg = [yi 7→ E ai
l
, r′j 7→ E rj

q
, self 7→ k + 1], δ = δg|k, m = mg, and

s = t{l + q, sg + l + q − td}. Then, we have P⇓(f, n) for these values.
4. Now we choose ηg = (η·ψ)]{ρgself 7→ k+1}, and s′i

l
= Eg yi

l
= E ai

l
. Having

argP(ψ, ρ′j
q
, θ, rj

q), it is easy to show that these values satisfy Pdyn∧Psize∧Pη
for eg.

5. Then, we get P∆ ∧ Pµ ∧ Pσ for ηg, k + 1, (δg,mg, sg), s′i
l
, and the bound

(∆′g, µg, σg). It remains to be proved that (∆,µ,t{l + q, σ + l + q − td}) is
a bound for k, η, (δ,m, s), and si

n .
6. Let us prove P∆. By validf θ φ and by Def. 7, for each i ∈ {1 . . . l} we have:

φ ai si
n ≥ size(h,E ai) = size(h,Eg yi) = s′i (2)

which is always positive, i.e. φ ai si
n 6= −∞. So, by the definition of

instancef , and for all ρ ∈ Rf ∪ {ρfself }, all ρ′ ∈ Rg, and all j ∈ {0 . . . k}
we get: ∑

η ρ=j

∆ ρ si
n =

∑
η ρ=j

∑
ψ ρ′=ρ

∆g ρ
′ φ ai si

nl
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Because of the monotonicity of ∆g we get:∑
η ρ=j

∆ ρ si
n ≥

∑
η ρ=j

∑
ψ ρ′=ρ

∆g ρ
′ s′i

l
=

∑
(η·ψ) ρ′=j

∆g ρ
′ s′i

l
≥ δ j

because ∆g = b∆′gc, and ηg = η · ψ for ρ′ ∈ Rg, and ∆′g is a bound for δg,
and δ = δg|k.

7. Let us prove Pµ. The steps are:

µ si
n = µg φ ai si

nl {because G xi
n is true}

≥ µg s′i
l

{because of (2) and monotonicity of µg}
≥ mg {because µg is a bound for mg}
= m

8. Finally, we prove Pσ. By G xi
n true, and σg being monotonic and a bound

for sg we get:

σ si
n = t {l + q, σg (φ ai| sjn)

l
+ l + q − td}

≥ t {l + q, σg s′j
l
+ l + q − td}

≥ t {l + q, sg + l + q − td}
= s

Let us consider now g = f . We must prove:

∀n.Pstat ∧ (∀E h k h′ v η δ m s si
n .P⇓(f, n)∧Pdyn ∧Psize ∧Pη → P∆∧Pµ∧Pσ)

for the application f ai
l @ rj

q and the bounds (∆,µ,t{l + q, σ − td + l + q}).
The reasoning for proving Pstat is the same as above. Now we distinguish two
cases according to the value of n:

n = 0 In this case, by Def. 11 P⇓(f, n) is false for the expression f ail @ rj
q (at

least one call to f is being done). So the whole predicate is true.
n > 0 From Def. 14 we can assume |=f,n Σ. We can also assume validf θ φ as

it is a premise of lemma’s consequent. From Def. 13, and by doing induction
on the |=f,n relation, we get that θf , φf , (l + q) �f ef |=f,n−1 [[(∆′f , µf , σf )]]
holds for any valid θf , φf , and a ∆′f such that ∆f = b∆′fc. Then, we have:

Pstat∧(∀E h k h′ v η δ m s si .P⇓(f, n−1)∧Pdyn∧Psize∧Pη → P∆∧Pµ∧Pσ)

for ef and the bounds (∆′f , µf , σf ). But, by the App rule of the relation
⇓(f,n), if P⇓(f, n) holds for the expression f ai

l @ rj
q, then P⇓(f, n − 1)

holds for the body ef , the same heap with one additional empty region
k + 1, and the appropriate runtime environment Ef . The remaining steps
are almost identical to the steps (4) to (8) of the case g 6= f above. ut
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6 Certification

The proof-rules presented in Sec. 4 are valid whatever are the monotonic func-
tions considered for describing sizes and costs. However, for certification purposes
we restrict ourselves to the smaller class of monotonic Max-Poly functions:

Definition 15. The class Max-Poly over xn is the smallest set of expressions
containing constants in R+, variables y ∈ xn, and closed under the operations
{+, ∗,t}. We will call a max-poly to any element of Max-Poly.

We will call a max-poly function to a function of the form λxn.p in (R+)n → R+,
where p is a max-poly over xn.

Notice that all the three operations are commutative and associative, and
that + and ∗ distribute over t in R+. The latter makes that any max-poly can
be normalized to a form p1 t . . .t pn, where all the pi are ordinary polynomials.
This property extends also to max-poly functions.

In our case and disregrading +∞ (which in fact means absence of a bound),
the size and cost functions return a value in R+∪{−∞}. As they are monotonic,
in each dimension i they return −∞ in some (possibly empty) interval [0..ki),
and when (∀i . xi ≥ ki) they return a value greater than or equal to 0. This
property can be expressed by a boolean guard on the xi. Inspired by this, we
restrict our elementary functions to have the form [G→ f ], where G is a guard of
the form

∧n
i=1(pi ≥ ki), ki ∈ R+, and all the pi and f are multivariate max-polys

over the set xn of variables. The meaning of this atomic guarded function (AGF
in what follows) is:

[G→ f ] def= λxn .

{
−∞ if ¬G
f if G

Operating with AGFs satisfies the following properties (a, b, c denote AGFs):

1. [G1→ f1] + [G2→ f2] = [G1 ∧G2→ f1 + f2]
2. [G1→ f1] ∗ [G2→ f2] = [G1 ∧G2→ f1 ∗ f2]
3. [G1→ [G2→ f ]] = [G1 ∧G2→ f ]
4. (a t b) + c = (a+ c) t (b+ c)
5. (a t b) ∗ c = (a ∗ c) t (b ∗ c)

As a consequence, any function obtained by combining AGFs with {+, ∗,t} can
be normalized to:

[G1→ f1] t . . . t [Gl→ fl]

We will call it a normalized AGF set. Now, comming back to the proof-rules of
figures 3 and 4, if we introduce in the environment Σ of the Rec rule a triple
(∆,µ, σ) consisting of normalized AGF sets, and then derive a triple (∆′, µ′, σ′),
the latter can be expressed also as normalized AGF sets. This is because the
operations involved in the remaining proof-rules are {+, ∗,t}, and the instanti-
ations of the App rule. The latter consists of substituting max-polys for variables
inside a max-poly. The result will also be a max-poly.

So, the check (b∆′c, µ′, σ′) v (∆,µ, σ) of the Rec rule reduces to checking
inequalities of the form:

[G1→ f1] t . . . t [Gl→ fl] v [G′1→ f ′1] t . . . t [G′m→ f ′m]
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Assuming that all the AGFs are functions over xn, this is in turn equivalent to:

∀xn .
l∧
i=1

m∨
j=1

[Gi→ fi] v [G′j→ f ′j ]

Then, the elementary operation is comparing two AGFs. This can be expressed
as follows:

[G→ f ] v [G′→ f ′] = G→ (G′ ∧ f ≤ f ′)

The comparison f ≤ f ′ consists of comparing two max-polys of the form p1 t
. . . t pr and q1 t . . . t qs, which we can decide by applying again the same idea:

f ≤ f ′ =
r∧
i=1

s∨
j=1

pi ≤ qj

Summarizing, to decide (b∆′c, µ′, σ′) v (∆,µ, σ) we generate first-order formu-
las in Tarski’s theory of real closed fields [21]. It is well known that this theory is
decidable, although the existent algorithms are not efficient at all. For instance,
Collins’ quantifier elimination algorithm [9], which is recognized to be a great
improvement over the original Tarski’s procedure, has still a worst case complex-
ity polynomial in the maximum degree of the involved polynomials and doubly
exponential in the number of quantified variables. It is implemented in several
symbolic algebra tools such as Mathematica. We have used the QEPCAD sys-
tem built by Collins’ group [7] which contains an improved version of original
Collins’ algorithm.

Fortunately, the number of quantified variables in our case is the number of
arguments of the Safe function being certified, and this is usually very small,
typically from one to three. So for practical purposes the QEPCAD system, or a
similar tool, can be used as a certificate checker. The Safe compiler is used, not
only to generate the initial triple (∆,µ, σ) for every Safe function, but also to
derive the triple (∆′, µ′, σ′), to normalize both, and eventually to generate the
proof obligations in the form of Tarski’s formulas. For the moment, the compiler
and the QEPCAD system have not been directly connected.

7 Case Study

In Figure 5 we show the Core-Safe versions of the algorithms merge and msort,
in which regions are explicit. We will explain in detail how the proof-rules are
applied to merge (simpler, but it produces an uninteresting linear Tarski prob-
lem), and then will show in less detail the process for msort (which produces
a more interesting quadratic one). Let us assume that the candidate memory
bound obtained by the Safe compiler for merge live heap is:

∆merge ρ = [x ≥ 2 ∧ y ≥ 1→ x+ y − 2] -- A
t [x ≥ 1 ∧ y ≥ 2→ x+ y − 2] -- B
t [x ≥ 1 ∧ y ≥ 1→ 0] -- C
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merge x y @ r = case x of
[] -> y
ex:x’ -> case y of

[] -> x
ey:y’ -> let c = ex <= ey in

case c of
True -> let z1 = merge x’ y @ r in

ex:z1 @ r
False -> let z2 = merge x y’ @ r in

ey:z2 @ r

msort x @ r = case x of
[] -> x
ex:x’ -> case x’ of

[] -> x
_:_ -> let (x1,x2) = unshuffle x @ self self in

let z1 = msort x1 @ r in
let z2 = msort x2 @ r in
merge z1 z2 @ r

Fig. 5. functions merge and msort in Core-Safe

Remember that the constructor application proof-rule gets [x ≥ 1 ∧ y ≥ 1→ 1]
charged to region ρ, the one for let asks for the addition of the involved ∆’s,
and the one for case asks for t of the branches. All in all, we obtain as derived
bound the following function:

∆′
merge ρ = [x ≥ 1 ∧ y ≥ 1→ 0]

t [x ≥ 1 ∧ y ≥ 1→ 0]
t (([x− 1 ≥ 2 ∧ y ≥ 1→ x− 1 + y − 2] t [x− 1 ≥ 1 ∧ y ≥ 2→ x− 1 + y − 2]
t [x− 1 ≥ 1 ∧ y ≥ 1→ 0]) + [x ≥ 1 ∧ y ≥ 1→ 1])

t (([x ≥ 2 ∧ y − 1 ≥ 1→ x+ y − 1− 2] t [x ≥ 1 ∧ y − 1 ≥ 2→ x+ y − 1− 2]
t [x ≥ 1 ∧ y − 1 ≥ 1→ 0]) + [x ≥ 1 ∧ y ≥ 1→ 1])

After normalization and simplification, we get:

∆′merge ρ = [x ≥ 1 ∧ y ≥ 1→ 0] -- C ′

t [x ≥ 3 ∧ y ≥ 1→ x+ y − 2] t [x ≥ 2 ∧ y ≥ 1→ 1] -- A′ tA′′
t [x ≥ 2 ∧ y ≥ 2→ x+ y − 2] -- D′

t [x ≥ 1 ∧ y ≥ 3→ x+ y − 2] t [x ≥ 1 ∧ y ≥ 2→ 1] -- B′ tB′′

Obviously, for all x, y we get C ′ v C, A′ v A, B′ v B, and both D′ v A and
D′ v B. It is also easy to convince ourselves that A′′ is dominated by A and B′′

is dominated by B. Then, the inequality b∆′mergec v ∆merge holds.
The candidate msort live memory bound inferred by our compiler, assuming

∆merge as above, and the following bound obtained for unshuffle:

∆unshuffle =
[
ρ1 7→ [x ≥ 2→ x+ 1] t [x ≥ 1→ 2]
ρ2 7→ [x ≥ 2→ x] t [x ≥ 1→ 1]

]
is

∆msort ρ = [x ≥ 2→ 4
3
x2 − 3x] t [x ≥ 1→ 0]
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Introducing this candidate bound in the environment, applying the proof-rules,
normalizing, and simplifying lead to:

∆′msort =
[
ρ 7→ [x ≥ 3→ 2

3x
2 − 3

2x−
17
6 ] t [x ≥ 1→ 0]

ρself 7→ [x ≥ 2→ 2x+ 1] t [x ≥ 1→ 3]

]
Notice that the charges to the self region are not needed in the comparison
b∆′msortc v ∆msort . The relevant inequality is then:

∀x . . . .

(
x ≥ 3→ x ≥ 2 ∧ (

2
3
x2 − 3

2
x− 17

6
≤ 4

3
x2 − 3x)

)
. . .

When this formula is given to QEPCAD, it answers True in about 100 msec.
Then, b∆′msortc v ∆msort holds.

8 Related Work and Conclusion

A seminal paper on static inference of memory bounds is [13]. A special type
inference algorithm generates a set of linear constraints which, if satisfiable,
they build a safe linear bound on the heap consumption. Afterwards, the au-
thors extended this work to certificate generation [4], the certificate being an
Isabelle/HOL proof-script which in essence was a proof of correctness of the
type system, specialized for the types of the program being certified.

One of the authors extended in [12] the type system of [13] in order to infer
polynomial bounds. Although not every polynomial could be inferred by this
system, the work was a remarkable step forwards in the area. They do not pay
attention to certificates in this paper but there is an occasional comment on that
the same ideas of [4] could be applied here.

In [8] an abstract interpretation based algorithm for controlling that memory
is not allocated inside loops in Java programs is verified by using the Coq proof-
assistant [5]. Here there is no program-specific certificate, but a general proof of
correctness of the analysis algorithm.

With respect to our proof-rules, they clearly have an abstract interpretation
flavour. In fact variants of these rules have been used in [16] for inferring the
candidate bounds. For recursive functions, we have adapted to our framework
the technique first explained in [18] for verifying properties of recursive proce-
dures. This technique has also been used in similar works (see e.g. [2]) where
procedure global environments occur, and recursive procedures must be verified.
The main idea is to explicitly introduce the depth of recursive call chains in the
environment, and then doing some form of induction on this depth.

We have found inspiration on some work on quasi-interpretations for charac-
terizing the complexity classes of rewriting systems [6], where Max-Poly play
a role. The existence of a quasi-interpretation belonging to Max-Poly is used
to decide that some systems are in the classes PTIME or PSPACE. They show
that the problem is decidable by generating formulas in first-order Tarski’s the-
ory over the reals. The formulas are existentially quantified and they assert the
existence of a quasi-interpretation, although no attempt to synthesize it is done.
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Our work finds for the first time a way of separating the bound inference
problem from the certification one. We have shown that certification need not
be a kind of proof of correctness of the inference algorithm. It could be then
applied to languages other than Safe (for instance, to the functional language
used in [13] and [12]), where other algorithms and type systems are used to
compute the candidate bounds.

Additionally, our language takes into account the memory deallocation due to
the region mechanism. Most of other approaches infer and/or certify bounds to
the total allocated memory, as opposed to the live and peak memory, respectively
reached after and during program evaluation.

Acknowledgements: We are grateful to our colleague Maria Emilia Alonso for
putting us on the tracks of the QEPCAD system.
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