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Abstract. Safe is a first-order eager functional language with facilities
for programmer controlled destruction of data structures. It provides also
regions, i.e. disjoint parts of the heap, where the program allocates data
structures, so that the runtime system does not need a garbage collector.
A region is a collection of cells, each one big enough to allocate a data
constructor. Deallocating cells or regions may create dangling pointers.
The language is aimed at inferring and certifying memory safety proper-
ties in a Proof Carrying Code like environment. Some of its analyses have
been presented elsewhere. The one relevant to this paper is a type system
and a type inference algorithm guaranteeing that well-typed programs
will be free of dangling pointers at runtime.
Here we present how to generate formal certificates about the absence
of dangling pointers property inferred by the compiler. The certificates
are Isabelle/HOL proof scripts which can be proof-checked by this tool
when loaded with a database of previously proved theorems. The key
idea is proving an Isabelle/HOL theorem for each syntactic construction
of the language, relating the static types inferred by the compiler to the
dynamic properties about the heap that will be satisfied at runtime.
keywords: Memory management, type-based analysis, formal certifi-
cates, proof assistants.

1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [14], these proofs should
be checked by an appropriate tool. The certified properties may be obtained
either manually, interactively, or automatically, but whatever is the effort needed
for generating them, the PCC paradigm insists on their checking to be fully
automatic.

In our setting, the certified property (absence of dangling pointers) is auto-
matically inferred as the product of several static analyses, so that the certificate
can be generated by the compiler without any human intervention. Certifying
the inferred property is needed in our case to convince a potential consumer that
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the static analyses are sound and that they have been correctly implemented in
the compiler.

Our functional language Safe, described below, is equipped with type-based
analyses for inferring regions where data structures are located [13], and for
detecting when a program with explicit deallocation actions is free of dangling
pointers [12]. One may wonder why a functional language with explicit deallo-
cation may be useful and why not using a more conventional one such as e.g.
C. Explicit deallocation is a low-level facility which, when used without restric-
tions, may create complex heap structures and programs difficult or impossible
to analyse for pointer safety. On the contrary, functional languages have more
structure and the explicit deallocation can be confined to a small part of it (in
our case, to pattern matching), resulting in heap-safe programs most of the time
and, more importantly, amenable for analysing their safety in an automatic way.

The above analyses have been manually proved correct in [11], but we em-
barked ourselves on the certification task by several reasons:

• The proof in [11] was very much involved. There were some subtleties that
we wanted to have formally verified in a proof assistant.
• The implementation was also very involved. Generating and checking certifi-

cates is also a way of increasing our trust in the implementation.
• A certificate is a different matter than proving analyses correct, since the

proof it contains must be related to every specific compiled program.

In this paper we describe how to create a certificate from the type annota-
tions inferred by the analyses. The key idea is creating a database of theorems,
proved once forever, relating these static annotations to the dynamic proper-
ties the compiled programs are expected to satisfy. There is one such theorem
for each syntactic construction of the language. Then, these theorems or proof
rules generate proof obligations, which the generated certificate must discharge.
We have chosen the proof assistant Isabelle/HOL [16] both for constructing and
checking proofs. To the best of our knowledge, this is the first system certifying
absence of dangling pointers in an automatic way.

The certificates are produced at the intermediate language level called Core-
Safe, at which also the analyses are carried on. This deviates a bit from the stan-
dard PCC paradigm where certificates are at the bytecode/assembly language
level, i.e. they certify properties satisfied by the executable code. We chose in-
stead to formally verify the compiler’s back-end: Core-Safe is translated in two
steps to the bytecode language of the Java Virtual Machine, and these steps have
been verified in Isabelle/HOL [7, 6], so that the certified property is preserved
across compilation. This has saved us the (huge) effort of translating Core-Safe
certificates to the JVM level, while nothing essential is lost: a scenario can be
imagined where the Core-Safe code and its certificate are sent from the producer
to a consumer and, once validated, the consumer uses the certified back-end for
generating the executable code. On the other hand, our certificates are smaller
than the ones which could be obtained at the executable code level.

In the next section we describe the relevant aspects of Safe. In Sec. 3 a first
set of proof rules related to explicit deallocation is presented, while a second set
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related to implicit region deallocation is explained in Sec. 4. Sec. 5 is devoted to
certificate generation and Sec. 6 presents related work and concludes.

2 The language

Safe is a first-order eager language with a syntax similar to Haskell’s. Its runtime
system uses regions, i.e. disjoint parts of the heap where the program allocates
data structures. The smallest memory unit is the cell, a contiguous memory
space big enough to hold a data construction. A cell contains the mark of the
constructor and a representation of the free variables to which the constructor
is applied. These may consist either of basic values, or of pointers to other
constructions. Each cell is allocated at constructor application time. A region is
a collection of cells. It is created empty and it may grow and shrink while it is
active. Region deallocation frees all its cells. The allocation and deallocation of
regions is bound to function calls. A working region, denoted by self, is allocated
when entering the call and deallocated when exiting it. Inside the function, data
structures not belonging to the output may be built there. The region arguments
are explicit in the intermediate code but not in the source, since they are inferred
by the compiler [13]. The following list sorting function builds an intermediate
tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference, the code is annotated with region arguments (those ocur-
ring after the @):

treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treesort’s self region and deallocated upon termi-
nation of treesort.

Besides regions, destruction facilities are associated with pattern matching.
For instance, we show here a destructive function splitting a list into two:

unshuffle []! = ([],[])

unshuffle (x:xs)! = (x:xs2,xs1) where (xs1,xs2) = unshuffle xs

The ! mark is the way programmers indicate that the matched cell must be
deleted. The space consumption is reduced with respect to a conventional version
because, at each recursive call, a cell is deleted by the pattern matching. At
termination, the whole input list has been returned to the runtime system.

The Safe front-end desugars Full-Safe and produces a bare-bones functional
language called Core-Safe. The transformation starts with region inference and
continues with Hindley-Milner type inference, pattern matching desugaring, and
some other simplifications. In Fig. 1 we show the syntax of Core-Safe. A program
is a sequence of possibly recursive polymorphic data and function definitions
followed by a main expression e whose value is the program result. The over-line
abbreviation xi

n stands for x1 · · ·xn. case! expressions implement destructive
pattern matching, constructions are only allowed in let bindings, and atoms —or
just variables— are used in function applications, case/case! discriminant, copy
and reuse. Region arguments are explicit in constructor and function applications
and in copy expressions. As an example, we show the Core-Safe version of the
unshuffle function above:
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prog → datai
n
; decj

m
; e {Core-Safe program}

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x @ r {copy data structure x into region r}
| x! {reuse data structure x}
| a1 ⊕ a2 {primitive operator application}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e {case alternative}
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe syntax

unshuffle x34 @ r1 r2 r3 = case! x34 of

x49 : x50 -> let x40 = unshuffle x50 @ r2 r1 self in

let x15 = case x40 of (x45,x46) -> x45 in

let x16 = case x40 of (x47,x48) -> x48 in

let x38 = x49 : x16 @ r1 in

let x39 = (x38,x15) @ r3 in x39

[] -> let x36 = [] @ r1 in

let x35 = [] @ r2 in

let x37 = (x36,x35) @ r3 in x37

2.1 Operational Semantics

In Figure 2 we show the big-step operational semantics rules of the most relevant
core language expressions. We use v, vi, . . . to denote either heap pointers or
basic constants, p, pi, q, . . . to denote heap pointers, and a, ai, . . . to denote either
program variables or basic constants (atoms). The former are named x, xi, . . .
and the latter c, ci etc. Finally, we use r, ri, . . . to denote region arguments.

A judgement of the form E ` (h, k), e ⇓ (h′, k), v states that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to
values and region variables to actual region numbers in the range {0 . . . k}. We
adopt the convention that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p (we call them heap
pointers) to construction cells w of the form (j, C vin), meaning that the cell
resides in region j. By h[p 7→ w] we denote a heap h where the binding [p 7→ w]
is highlighted. On the contrary, by h ] [p 7→ w] we denote the disjoint union
of heap h with the binding [p 7→ w]. By h |k we denote the heap obtained by
deleting from h those bindings living in regions greater than k.

The semantics of a program dec1; . . . ; decn; e is the semantics of the main
expression e in an environment Σ containing all the function declarations.
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E ` (h, k), c ⇓ (h, k), c [Lit ] E[x 7→ v] ` (h, k), x ⇓ (h, k), v [Var1]

j ≤ k (h′, p′) = copy(h, p, j)

E[x 7→ p, r 7→ j] ` (h, k), x@r ⇓ (h′, k), p′
[Var2]

fresh(q)

E[x 7→ p] ` (h ] [p 7→ w], k), x! ⇓ (h ] [q 7→ w], k), q
[Var3]

(f xi
n@ rj

m = e) ∈ Σ [xi 7→ E(ai)
n
, rj 7→ E(r′j)

m
, self 7→ k + 1] ` (h, k + 1), e ⇓ (h′, k + 1), v

E ` (h, k), f ai
n@ r′j

m ⇓ (h′ |k, k), v
[App]

op⊕ v1 v2 = v

E[a1 7→ v1, a2 7→ v2] ` (h, k), a1 ⊕ a2 ⇓ (h, k), v
[Primop]

E ` (h, k), e1 ⇓ (h′, k), v1 E ∪ [x1 7→ v1] ` (h′, k), e2 ⇓ (h′′, k), v

E ` (h, k), let x1 = e1 in e2 ⇓ (h′′, k), v
[Let ]

j ≤ k fresh(p) E ∪ [x1 7→ p] ` (h ] [p 7→ (j, C vi
n)], k), e2 ⇓ (h′, k), v

E[r 7→ j, ai 7→ vi
n] ` (h, k), let x1 = C ai

n@r in e2 ⇓ (h′, k), v
[LetC ]

C = Cr E ∪ [xri 7→ vi
nr ] ` (h, k), er ⇓ (h′, k), v

E[x 7→ p] ` (h[p 7→ (j, C vi
nr )], k), case x of Ci xij

ni → ei
m ⇓ (h′, k), v

[Case]

(if ∃r . c = cr then ea = er else ea = ed) E ` (h, k), ea ⇓ (h′, k), v

E[x 7→ c] ` (h, k), case x of {ci → ei
m; → ed} ⇓ (h′, k), v

[CaseLit ]

C = Cr E ∪ [xri 7→ vi
nr ] ` (h, k), er ⇓ (h′, k), v

E[x 7→ p] ` (h ] [p 7→ (j, C vi
nr )], k), case! x of Ci xij

ni → ei
m ⇓ (h′, k), v

[Case!]

Fig. 2. Operational semantics of Safe expressions

Rules Lit and Var1 just say that basic values and heap pointers are normal
forms. Rule Var2 executes a copy expression copying the DS pointed to by p
and living in region j′ into a (possibly different) region j. The runtime system
function copy follows the pointers in recursive positions of the structure start-
ing at p and creates in region j a copy of all recursive cells. Some restricted
type informaton is available in our runtime system so that this function can
be implemented. The pointers in non recursive positions of all the copied cells
are kept identical in the new cells. This implies that both DSs may share some
sub-structures.

In the rule Var3 binding [p 7→ w] in the heap is deleted and a fresh binding
[q 7→ w] to cell w is added. This action may create dangling pointers in the live
heap, as some cells may contain free occurrences of p.

Rule App shows when a new region is allocated. Notice that the body of the
function is executed in a heap with k + 2 regions. The formal identifier self is
bound to the newly created region k + 1 so that the function body may create
DSs in this region or pass this region as a parameter to other function calls.
Before returning from the function, all cells created in region k + 1 are deleted.
This action is another source of possible dangling pointers.
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τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region}

t → s {safe}
| d {condemned}

s → T s@ρm

| b
d → T s!@ρm

r → T s#@ρm

b → a {variable}
| B {basic}

tf → ti
n → ρl → T s@ρm {function}

| tin → b
| si

n → ρ→ T s@ρm {constructor}
σ → ∀a.σ {type scheme}

| ∀ρ.σ
| tf

Fig. 3. Type expressions

Rules Let1, Let2, and Case are the usual ones for an eager language, while rule
Case! expresses what happens in a destructive pattern matching: the binding of
the discriminant variable disappears from the heap. This action is the last source
of possible dangling pointers.

Rule CaseLit for literal values could be considered as a particular case of rule
Case in which the constructors introduce no patterns. But in fact it is a different
rule because a default clause ed is also present . This alternative is taken when
it is no possible a match with any of the literals of the remaining alternatives.

By fv(e) we denote the set of free variables of expression e, excluding function
names and region variables, and by dom(h) the set {p | [p 7→ w] ∈ h}.

2.2 Safe Type System

In this section we describe a polymorphic type system with algebraic data types
for programming in a safe way when using the destruction facilities offered by
the language. The syntax of type expressions is shown in Fig. 3. As the language
is first-order, we distinguish between functional and non-functional types. Non-
functional algebraic types may be safe types (internally marked as s), condemned
types (marked as d), or in-danger types (marked as r). In-danger types arise as
an intermediate step during typing and are useful to control the side-effects of
destructions, but function arguments can only receive either safe or condemned
types. The intended semantics of these types is the following:

• Safe types (s): Data structures (DS) of this type can be read, copied or
used to build other DSs. They cannot be destroyed.
• Condemned types (d): A DS directly involved in a case! action. Its re-

cursive descendants inherit a condemned type. They cannot be used to build
other DSs, but they can be read/copied before being destroyed.
• In-danger types (r): A DS sharing a recursive descendant of a condemned

DS, so it can potentially contain dangling pointers.

Functional types can be polymorphic both in the Hindley-Milner sense and in
the region sense: they may contain polymorphic type variables (denoted ρ, ρ′ . . .)
representing regions. If a region type variable occurs several times in a type, then
the actual runtime regions of the corresponding arguments should be the same.
Constructor applications have one region argument r : ρ whose type occurs as
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Operator Γ1 • Γ2 defined if Result of (Γ1 • Γ2)(x)

+ dom(Γ1) ∩ dom(Γ2) = ∅ Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊗ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊕ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
∧ safe?(Γ1(x))

Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

�L ∀x ∈ dom(Γ1) ∩ dom(Γ2). utype?(Γ1(x), Γ2(x))
∧ ∀x ∈ dom(Γ1). unsafe?(Γ1(x))→ x /∈ L

Γ2(x) if x /∈ dom(Γ1)∨
x ∈ dom(Γ1) ∩ dom(Γ2) ∧ safe?(Γ1(x))

Γ1(x) otherwise

Fig. 4. Operators on type environments

the outermost region in the resulting algebraic type T s @ ρm (i.e. ρm = ρ).
Constructors are given types forcing its recursive substructures and the whole
structure to live in the same region. For example, for lists and trees:

[ ] : ∀a ρ . ρ→ [a] @ ρ
(:) : ∀a ρ . a→ [a] @ ρ→ ρ→ [a] @ ρ
Empty : ∀a ρ . ρ→ BSTree a @ ρ
Node : ∀a ρ . BSTree a @ ρ→ a→ BSTree a @ ρ→ ρ→ BSTree a @ ρ

Function types may have zero or more region arguments. For instance, the type
inferred for unshuffle is:

∀a ρ1 ρ2 ρ3 ρ4 . [a]! @ ρ4 → ρ1 → ρ2 → ρ3 → ([a] @ ρ1, [a] @ ρ2) @ ρ3

where ! is the external mark of a condemned type (internal mark d). Types
without external marks are assumed to be safe.

The constructor types are collected in an environment Σ, easily built from
the data type declarations. In typing environments Γ we can find region type
assumptions r : ρ, variable type assumptions x : t, and polymorphic scheme
assumptions for function symbols f : ∀a∀ρ.t. The operators between typing
environments used in the typing rules are shown in Fig. 4. The usual operator
+ demands disjoint domains. Operators ⊗ and ⊕ are defined only if common
variables have the same type, which must be safe in the case of ⊕. Operator �L is
an asymmetric composition used to type let expressions. Predicate utype?(t, t′)
tells whether the underlying types (i.e. without marks) of t and t′ are the same,
while unsafe? is true for types with a mark r or d.

We now explain in detail the typing rules. In Fig. 5 we present the rule
[FUNB] for function definitions. Notice that the only regions in scope are the
region parameters rj l and self , which gets a fresh region type ρself . The latter
cannot appear in the type of the result as self dies when the function returns its
value (ρself 6∈ regions(s)). To type a complete program the types of the functions
are accumulated in a growing environment and then the main expression is typed.

In Figure 6, the rules for typing expressions are shown. Function sharerec(x, e)
gives an upper approximation to the set of variables in scope in e which share
a recursive descendant of the DS starting at x. This set is computed by the
abstract interpretation based sharing analysis defined in [17].

One of the key points to prove the correctness of the type system with respect
to the semantics is an invariant of the type system (see Lemma 1) telling that if a
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fresh(ρself ), ρself 6∈ regions(s)

Γ + [xi : ti]
n

+ [rj : ρj ]
l
+ [self : ρself ] + [f : ti

n → ρj
l → s] ` e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(ti
n → ρj

l → s, Γ )]}
[FUNB]

Fig. 5. Rule for function definitions

variable appears as condemned in the typing environment, then those variables
sharing a recursive substructure appear also in the environment with unsafe
types. This is necessary in order to propagate information about the possibly
damaged pointers.

There are rules for typing literals ([LIT]), and variables of several kinds
([VAR], [REGION] and [FUNCTION]). Notice that these are given a type under
the smallest typing environment.

Rules [EXTS] and [EXTD] allow to extend the typing environments in a con-
trolled way. The addition of variables with safe types, in-danger types, region
types or functional types is allowed. If a variable with a condemned type is added,
all those variables sharing its recursive substructure but itself must be also added
to the environment with its corresponding in-danger type in order to preserve
the invariant mentioned above. Notation type(y) represents the Hindley-Milner
type inferred for variable y1.

Rule [COPY] allows any variable to be copied. This is expressed by extending
the previously defined partial order between types to environments:

Γ1 ≥e Γ2 ≡ dom(Γ2) ⊆ dom(Γ1)
∧ ∀x ∈ dom(Γ2).Γ1(x) ≥ Γ2(x)
∧ ∀x ∈ dom(Γ1). cmd?(Γ1(x))→
∀z ∈ sharerec(x, e).z ∈ dom(Γ1)

∧ unsafe?(Γ1(z))

The third conjunction of this definition enforces variables pointing to a recursive
substructure of a condemned variable in Γ1 to appear in this environment with
an unsafe type, so that the invariant of the type system still holds.

Rules [LET1] and [LET2] control the intermediate results by means of operator
�L. Rule [LET1] is applied when the intermediate result is safely used in the main
expression. Rule [LET2] allows the intermediate result x1 to be used destructively
in the main expression e2 if desired. In both let rules operator �, defined in
Figure 4, guarantees that:

1. Each variable y condemned or in-danger in e1 may not be referenced in e2
(i.e. y /∈ fv(e2)), as it could be a dangling reference.

2. Those variables marked as unsafe either in Γ1 or in Γ2 will keep those types
in the combined environment.

Rule [REUSE] establishes that in order to reuse a variable, it must have
a condemned type in the environment. Those variables sharing its recursive
descendants are given in-danger types in the environment.
1 The implementation of the inference algorithm proceeds by first inferring Hindley-

Milner types and then the destruction annotations
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Γ ` e : s x /∈ dom(Γ )
safe?(τ) ∨ danger?(τ) ∨ region?(τ) ∨ function?(τ)

Γ + [x : τ ] ` e : s
[EXTS]

Γ ` e : s x /∈ dom(Γ )
R = sharerec(x, e)− {x}

ΓR = {y : danger(type(y))| y ∈ R}
Γ ⊗ ΓR + [x : d] ` e : s

[EXTD]

∅ ` c : B
[LIT]

[x : s] ` x : s
[VAR]

[r : ρ] ` r : ρ
[REGION]

tf � σ

[f : σ] ` f : tf
[FUNCTION]

R = sharerec(x, x!)− {x}
ΓR = {y : danger(type(y))| y ∈ R}

ΓR + [x : T !@ρ] ` x! : T@ρ
[REUSE]

Γ1 ≥x@r [x : T@ρ′, r : ρ]

Γ1 ` x@r : T @ρ
[COPY]

Γ1 ` e1 : s1 Γ2 + [x1 : s1] ` e2 : s

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET1]

Γ1 ` e1 : s1 Γ2 + [x1 : d1] ` e2 : s utype?(d1, s1)

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET2]

ti
n → ρj

l → T @ρm E σ Γ = [f : σ] +
Ll

j=1[rj : ρj ] +
Ln

i=1[ai : ti]

R =
Sn

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cmd?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` f ai
n@ rj

l : T @ρm
[APP]

Σ(C) = σ si
n → ρ→ T @ρm � σ Γ =

Ln
i=1[ai : si] + [r : ρ]

Γ ` C ai
n@r : T @ρm [CONS]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ→ T @ρ� σi

Γ ≥case x of Ci xij
ni→ei

n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (x))

∀i ∈ {1..n}.Γ + [xij : τij ]
ni ` ei : s

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ→ T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
)− {x} ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R ∪ {x}, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij ]
ni ` ei : s

ΓR = {y : danger(type(y)) | y ∈ R}

ΓR ⊗ Γ + [x : T !@ρ] ` case! x of Ci xij
ni → ei

n
: s

[CASE!]

Fig. 6. Type rules for expressions

Rule [APP] deals with function application. The use of the operator ⊕ avoids
a variable to be used in two or more different positions unless they are all safe
parameters. Otherwise undesired side-effects could happen. The set R collects all
the variables sharing a recursive substructure of a condemned parameter, which
are marked as in-danger in environment ΓR.

Rule [CONS] is more restrictive as only safe variables can be used to construct
a DS.

Rule [CASE] allows its discriminant variable to be safe, in-danger, or con-
demned as it only reads the variable. Relation inh, defined in Figure 7, deter-
mines which types are acceptable for pattern variables according to the previ-
ously explained semantics. Apart from the fact that the underlying types are
correct from the Hindley-Milner point of view: if the discriminant is safe, so
must be all the pattern variables; if it is in-danger, the pattern variables may be
safe or in-danger; if it is condemned, recursive pattern variables are in-danger
while non-recursive ones are safe.
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inh(s, s, τ)↔ safe?(τ) ∨ dgr?(τ) ∨ (¬utype?(s, τ) ∧ cmd?(τ))
inh(danger(s), s, τ)↔ dgr?(τ) ∨ (utype?(s, τ) ∧ cmd?(τ))

inh!(s, s, d)↔ ¬utype?(s, d)
inh!(d, s, d)↔ utype?(s, d)

Fig. 7. Definitions of inheritance compatibility

In rule [CASE!] the discriminant is destroyed and consequently the text should
not try to reference it in the alternatives. The same happens to those variables
sharing a recursive substructure of x, as they may be corrupted. All those vari-
ables are added to the set R. Relation inh!, defined in Fig. 7, determines the types
inherited by pattern variables: recursive ones are condemned while non-recursive
ones must be safe.

As recursive pattern variables inherit condemned types, the type environ-
ments for the alternatives contain all the variables sharing their recursive sub-
structures as in-danger. In particular x may appear with an in-danger type. In
order to type the whole expression we must change it to condemned.

Lemma 1. If Γ ` e : s and Γ (x) = d then:

∀y ∈ sharerec(x, e)− {x} : y ∈ dom(Γ ) ∧ unsafe?(Γ (y))

Proof: By induction on the depth of the type derivation. ut

An inference algorithm for this type system has been developed. A detailed
description can be found in [12].

3 Cell deallocation by destructive pattern matching

The idea of the certificate is to ask the compiler to deliver some static infor-
mation inferred during the type inference phase, and then to use a database of
previously proved lemmas relating this information with the dynamic properties
the program is expected to satisfy at runtime. In this case, the static informa-
tion consists of a mark m ∈ {s, r, d}—respectively meaning safe, in-danger, and
condemned type— for every variable, and the dynamic property the certificate
must prove is that the heap remains closed during evaluation.

By fv(e) we denote the set of free variables of expression e, excluding function
names and region variables, and by dom(h) the set {p | [p 7→ w] ∈ h}. A static
assertion has the form [[L, Γ ]], where L ⊆ dom(Γ ) is a set of program variables
and Γ a variable mark environment assigning a mark to each variable in L and
possibly to some other variables. We will write Γ [x] = m to indicate that x
has mark m ∈ {s, r, d} in Γ . We say that a Core-Safe expression e satisfies a
static assertion [[L, Γ ]] if fv(e) ⊆ L and some semantic conditions below hold.
Our certificate for a given program consists of proving a static assertion [[L, Γ ]]
for each Core-Safe expression e resulting from compiling the program.

If E is the runtime environment, the intuitive idea of a variable x being
typed with a safe mark s is that all the cells in the heap h reached at runtime by
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E(x) do not contain dangling pointers and they are disjoint from unsafe cells.
The idea behind a condemned variable x is that the cell pointed to by E(x)
will be removed from the heap and all live cells reaching any of E(x)’s recursive
descendants by following a pointer chain are in danger. We use the following
definitions, formally specified in Isabelle/HOL:

closure (E,X, h) Set of locations reachable in heap h by {E(x) | x ∈ X}
closure (v, h) Set of locations reachable in h by location v
live (E,L, h) Live part of h, i.e. closure (E,L, h)
scope (E, h) The part of h reachable from all variables in scope
recReach (E, x, h) Set of recursive descendants of E(x) including itself
recReach (v, h) Set of recursive descendants of v in h including itself
closed (E,L, h) There are no dangling pointers in h, i.e. closure (E,L, h) ⊆ dom(h)
p→∗h V There is a pointer path in h from p to a q ∈ V

By abuse of notation, we will write closure(E, x, h) and also closed(v, h). The
formal definitions of these predicates and functions are the following:

Definition 1. Given a heap h, we define the child (→h) and recursive child
(�h) relations on heap pointers as follows:

p→h q
def
= h(p) = C pi

n ∧ q = pi for some i ∈ {1..n}
p �h q

def
= h(p) = C pi

n ∧ q = pi for some i ∈ RecPos(C)

The reflexive and transitive closure of these relations are respectively denoted
by →∗h and �∗h.

Definition 2.

closure (E,X, h)
def
= {q | E(x)→∗h q ∧ x ∈ X}

closure (p, h)
def
= {q | p→∗h q}

live (E,L, h)
def
= closure (E,L, h)

scope (E, h)
def
= closure (E, dom(E), h)

recReach (E, x, h)
def
= {q | E(x) �∗h q}

recReach (p, h)
def
= {q | p �∗h q}

closed (E,L, h)
def
= live (E,L, h) ⊆ dom(h)

p→∗h V
def
= ∃q ∈ V. p→∗h q

We make note that these predicates are well defined even if for some x, x 6∈
dom(E) or E(x) 6∈ dom(h). In the first case closure (E, {x}, h) = ∅, and in the
second case closure (E, {x}, h) = {E(x)}.

Now, we define the following two sets, respectively of safe and unsafe heap
locations, as functions of L, Γ , E, and h:

SL,Γ,E,h
def=

⋃
x∈L,Γ [x]=s{closure(E, x, h)}

RL,Γ,E,h
def=

⋃
x∈L,Γ [x]=d{p ∈ live(E,L, h) | p→∗h recReach(E, x, h)}

11



In a Core-Safe program, an expression e belongs either to a function’s body
or to the main expression. In both cases it may contain applications to previously
defined functions. The relevant information about previously defined functions
will be kept in a function mark environment ΣM , which is a partial function ΣM :
string→ [mark ] from function names to marks. If ΣM (f) = mi

n, then f can be
safely called with marksmi in actual arguments ai. Due to restrictions of our type
system, these ‘top-level’ marks can only belong to {s, d}. This environment is
incrementally built as functions are certified. The following definitions introduce
two concepts: what is meant by an expression to satisfy an static assertion in
the context of a mark environment, and what is meant by an environment to be
valid.

Definition 3. Let e be a subexpression of f ’s body, L a set of program variables,
and Γ a variable mark environment. Given the following properties:

P1 ≡ E ` h, k, e ⇓ h′, k, v
P2 ≡ dom(Γ ) ⊆ dom(E)
P3 ≡ L ⊆ dom(Γ )
P4 ≡ fv(e) ⊆ L
P5 ≡ ∀x ∈ dom(E). ∀z ∈ L .

Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅ → x ∈ dom(Γ ) ∧ Γ [x] 6= s
P6 ≡ ∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′)→ x ∈ dom(Γ ) ∧ Γ [x] 6= s
P7 ≡ SL,Γ,E,h ∩RL,Γ,E,h = ∅
P8 ≡ closed(E,L, h)
P9 ≡ closed(v, h′)

having as free variables e, L, and Γ , we say that the expression e satisfies the
static assertion [[L, Γ ]] denoted e : [[L, Γ ]], if

P3 ∧ P4 ∧ (∀E h k h′ v . P1 ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9))

Definition 4. A mark environment ΣM is valid, denoted |= ΣM , if it can be
deduced from the following inductive rules.

1. The empty environment is valid, i.e. |= ∅.
2. If |= ΣM holds, function f is defined as f xi

n@ rj
m = ef , Lf = xi

n,
Γf = [xi 7→ mi

n], and ef : [[Lf , Γf ]] hold, then |= ΣM ] [f 7→ mi
n] also holds.

Property P1 defines any runtime evaluation of e. Properties P2 to P4 just
guarantee that each free variable has a type and a meaning. Properties P5 to
P7 formalise the meaning of safe and condemned types: if some variable can
share a recursive descendant of a condemned one, or its closure changes during
evaluation, it should occur as unsafe in the environment.

The key properties are P8 and P9. If they were proved for all subexpressions
of e, they guarantee that across the whole derivation of e the live part of the
heap would remain closed, hence there would not be dangling pointers. We have
proved that property P8 is an invariant propagating from an expression to its
subexpressions and from calling to callee function bodies, i.e. ‘upwards’ in the
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c,ΣM` (∅, ∅) LIT
x,ΣM` ({x}, Γ + [x : s])

VAR1
x ∈ dom Γ Γ well formed

x@r,ΣM` ({x}, Γ )
VAR2

Γ [x] = d Γ well formed

x!, ΣM` ({x}, Γ )
VAR3

L = {a1, a2} Γ = [a1 : s, a2 : s]

a1 ⊕ a2, ΣM` (L, Γ )
PRIMOP

e1 6= C ai
n e1, ΣM` (L1, Γ1) x1 6∈ L1 e2, ΣM` (L2, Γ

′
2 + [x1 : s]) def (Γ1 .

L2 Γ ′2)

let x1 = e1 in e2, ΣM` (L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ ′2)

LET1

e1 6= C ai
n e1, ΣM` (L1, Γ1) x1 6∈ L1 e2, ΣM` (L2, Γ

′
2 + [x1 : d]) def (Γ1 .

L2 Γ ′2)

let x1 = e1 in e2, ΣM` (L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ ′2)

LET2

L1 = {ai
n} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM` (L2, Γ

′
2 + [x1 : s]) def (Γ1 .

L2 Γ ′2)

let x1 = C ai
n@r in e2, ΣM` (L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ ′2)
LET1C

L1 = {ai
n} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM` (L2, Γ2 + [x1 : d]) def (Γ1 .

L2 Γ ′2)

let x1 = C ai
n@r in e2, ΣM` (L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ ′2)
LET2C

∀i . (ei, ΣM` (Li, Γi) ∀j.Γi[xij ] 6= d) Γ well-formed
Γ ⊇

N
i(Γi\{xij}) x ∈ dom(Γ ) L = {x} ∪ (

S
i(Li − {xij}))

case x of Cixij → ei, ΣM` (L, Γ )
CASE

∀i . (ei, ΣM` (Li, Γi)) Γ =
N

i Γi Γ [x] = s L = {x} ∪ (
S

i Li)

case x of {ci → ei
n; → en+1}, ΣM` (L, Γ )

CASEL

∀i . (ei, ΣM` (Li, Γi) ∀j . Γi[xij ] = d→ j ∈ RecPos(Ci)) Γ well formed
L′ =

S
i(Li − {xij}) Γ ⊇ (

N
i Γi\({xij} ∪ {x})) + [x : d] ∀z ∈ dom(Γ ) . Γ [z] 6= s→ (∀i . z 6∈ Li)

case! x of Cixij → ei, ΣM` (L′ ∪ {x}, Γ )
CASE !

ΣM (g) = mi
n L = {ai

n} Γ0 =
Ln

i=1[ai : mi] defined Γ ⊇ Γ0 Γ well formed

g ai
n@ rj

m, ΣM` (L, Γ )
APP

f xi
n@ rj

m = ef Lf = {xi
n} Γf = [xi 7→ mi

n] ef , ΣM ] [f 7→ mi
n]` (Lf , Γf )

ef , ΣM` (Lf , Γf )
REC

Fig. 8. Proof rules for explicit deallocation

⇓ derivation, while P9 propagates downwards. If P8 were proved for the initial
expression (the main expression) of a Safe program, it would hold for all the
executed subexpressions. But P8 trivially holds for the empty heap which is the
initial one. So, P8 and P9 respectively hold before and after evaluating each
subexpression during any ⇓ derivation, so guaranteeing that the heap remains
closed during any evaluation.

As a function may call other functions, in general a context environment is
needed in order to prove that an expression satisfies an assertion. We define the
precise meaning of this conditional satisfaction.

Definition 5. We say that expression e satisfies an assertion [[L, Γ ]] in the con-
text of a mark environment ΣM , denoted e,ΣM : [[L, Γ ]], if |= ΣM → e : [[L, Γ ]].

In Fig. 8 we inductively define a derivability relation e,ΣM` (L, Γ ) by means
of a set of syntax-driven proof-rules which will be used by the compiler to certify
concrete programs. The predicate ‘Γ well-formed ’ is equivalent to the property:

P3 ∧ P4 ∧ (∀E h k h′ v . P1 ∧ P2→ P5)
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It expresses that all the variables in scope that may share at runtime a recursive
descendant of a condemned one, should occur in Γ with unsafe marks. This
essentially asserts that the sharing analysis done by the compiler is sound, i.e.
that the set sharerec(x, e) occurring in some rules of the type system (see Fig. 6)
is a correct upper approximation of this set of variables. For the moment we have
done no attempt to certify this property. It would need a separate set of theorems
and a corresponding certificate, probably as complex as the one presented here.
This effort is foreseen as future work.

Notice that the APP rule can only be applied when the function called is
defined in the mark environment ΣM . This forces functions to be certified from
low-level ones not calling to any other function, to high-level ones which may
call to those functions already certified.

The following soundness theorem will be proved in Section 3.2 by induction
on the ` derivation:

Theorem 1 (soundness). If e,ΣM` (L, Γ ) then e,ΣM : [[L, Γ ]].

The REC proof-rule allows us to certify recursive functions. It first extends
the current environment ΣM with a set of marks mi

n given by the compiler.
It then derives ef , ΣM ] [f 7→ mi

n]` (Lf , Γf ). The rule gives us the derivation
ef , ΣM` (Lf , Γf ). By using the soundness theorem, we get ef , ΣM : [[Lf , Γf ]]
and this allow us to conclude |= ΣM ] [f 7→ mi

n] and then to use the new
environment for certifying subsequent functions.

3.1 Proof obligations discharged by the certificate

We explain in this section how the proof-rules are used in order to certify a
Core-Safe program. For each expression e, the compiler generates a pair (L, Γ ).
According to e’s syntax, the certificate will perform the following actions:

c The certificate checks (L, Γ ) = (∅, ∅) and applies the proof rule LIT .
x The certificate checks L = {x}, Γ [x] = s, and applies the proof rule VAR1 .
x@r The certificate checks L = {x}, x ∈ dom(Γ ), and applies the proof rule

VAR2 . The well-formedness of Γ make reference to the fact that all unsafe
variables in scope must satisfy property P5. There is nothing to check here
because the property is guaranteed by a sharing analysis manually proved
correct and whose correctness has not been incorporated in the proof rules.

x! The certificate checks L = {x}, Γ [x] = d, and applies the proof rule VAR3 .
As before, the well-formedness of Γ implies no extra checking.

a1 ⊕ a2 The certificate checks L = vars({a1, a2}),∀x ∈ L.Γ [x] = s, and applies
the proof rule PRIMOP .

let x1 = e1 in e2 Let us assume e1 6= C ai
n and Γ2[x1] = s. The certificate

has already derived e1, ΣM : ` (L1, Γ1) and e2, ΣM : ` (L2, Γ2), and receives
(L, Γ ) for the let expression. It checks Γ2 = Γ ′2 +[x1 : s], x1 6∈ L1, def (Γ1.

L2

Γ ′2), L = L1 ∪ (L2 − {x1}), Γ = Γ1 .
L2 Γ ′2, and then applies the proof rule

LET1 . If Γ2 = Γ ′2 + [x1 : d], then it applies the proof rule LET2 . Note that
there is no proof rule for Γ2[x1] = r. In fact this typing is not correct and it
should not occur in a well-typed program.
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If e1 = C ai
n, then the certificate checks that all the constructor arguments

which are variables have a safe mark in Γ1. The rest of checkings are similar
to the cases above. The corresponding proof rules are LET1C and LET2C .

case x of Cixij → ei The certificate has already derived ei, ΣM : ` (Li, Γi)
for all the subsidiary expressions, and receives (L, Γ ) for the whole case
expression. It then checks the premises of the CASE proof rule and applies
it. The premises ∀i j . Γi[xij ] 6= d and Γ ⊇

⊗
i(Γi\{xij}) hold for every

well-typed program, and express that case patterns are never condemned,
and that the rest of free variables occur with the same mark both in the
subsidiary environments Γi and in the whole one Γ . The rule CASEL is
invoked by the certificate when the type of the discriminant variable x is
a basic one (either an integer or a boolean). This fact is detected by the
compiler, which generates the appropriate certificate in each case.

case! x of Cixij → ei The differences with the conventional case are the fol-
lowing: (1) the discriminant variable x should occur as condemned in en-
vironment Γ ; (2) the condemned patterns must be recursive children of x
(function recPos(C) gives the recursive positions of constructor C); and (3)
the premise Γ [z] 6= s → (∀i . z 6∈ Li) requires that unsafe variables in Γ
should not occur free in the subsidiary expressions (this property holds for
well-typed programs).

g ai
n@ rj

m The certificate generated by the compiler contains the incremen-
tal definition of the function mark environment ΣM having the marks mi

assigned to the formal arguments of previously defined functions. Then, for
each application of g, the certificate gets this information from ΣM , and
checks that the given mark environment Γ contains the actual arguments
ai with these marks assigned. It also checks that operator

⊕
, requiring a

duplicated actual argument to be safe (see Fig. 4), is well-defined. Then, it
applies the APP proof rule.

3.2 Proof scheme of the soundness theorem

We previously give some infrastructure for the theorem. First, we enrich the
big-step semantics with a side-effect counter nf counting the maximum length
of the recursive call chains to a given function f . Then, E ` h, k, e ⇓f h′, k, v, nf
means that, in the derivation tree of expression e, there are 0 or more calls to
f , and the longest call-chain involving f and starting at e has a length nf ≥ 0.
A length nf = 0 means that there are no calls to f during e’s evaluation.

Definition 6. We define a restricted big-step semantics with an upper bound n
to the longest chain of f ’s:

E ` h, k, e ⇓f,n h′, k, v
def
= E ` h, k, e ⇓f h′, k, v, nf ∧ nf ≤ n

If we write P1(f, n) we refer to the following property:

E ` h, k, e ⇓f,n h′, k, v
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which is similar to P1 of Def. 3 but using the ⇓f,n relation instead of the ⇓ one.
The following lemma establishes that both semantics are in essence equivalent.

Lemma 2. E ` h, k, e ⇓ h′, k, v if and only if ∃n . E ` h, k, e ⇓f,n h′, k, v.

Proof. By induction on ⇓f,n the if direction, and by induction on ⇓ the only if
one.

We modify definitions 3, 4, and 5 in order to introduce the depth of the deriva-
tion:

Definition 7. Given the properties P1(f, n), P2, . . . , P9 as in Def. 3 except for
P1, we say that the subexpression e of f ’s body satisfies the assertion [[L, Γ ]] up
to depth n, denoted e :f,n [[L, Γ ]], if we have:

P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9))

Definition 8. A function mark environment Σ is valid up to depth n for func-
tion f , denoted |=f,n Σ, if it can be deduced from the following inductive rules.

1. An environment in which f is not defined is valid at any depth for f if it is
valid in general, i.e. if |= Σ and f 6∈ dom(Σ) then |=f,n Σ.

2. A valid environment can be extended with any marks for f at depth 0, i.e.
for all mi, if |= Σ then |=f,0 Σ ] {f 7→ mi}.

3. If |= Σ, function f is defined as f xi @ rj = ef , Lf = xi, Γf = [xi 7→ mi],
and ef :f,n [[Lf , Γf ]] hold, then |=f,n+1 Σ ] {f 7→ mi} also holds.

4. If |=f,n Σ, function g 6= f is defined as g yi @ rj = eg, Lg = yi, Γg =
[yi 7→ mi], and eg : [[Lg, Γg]] hold, then |=f,n Σ ] {g 7→ mi} also holds.

Definition 9. A subexpression e of f ’s body satisfies the assertion [[L, Γ ]] up to
depth n, in the context of Σ, denoted e,Σ :f,n [[L, Γ ]], if |=f,n Σ → e :f,n [[L, Γ ]].

The following lemmas relate satisfaction and validity at depth n with satis-
tacfion and validity in general.

Lemma 3. ∀n . e :f,n [[L, Γ ]] if and only if e : [[L, Γ ]].

Proof. By equational reasoning.

∀n . e :f,n [[L, Γ ]]
≡ {By Def. 7}
∀n . P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9))

≡ {By first-order logic}
P3 ∧ P4 ∧ (∀E h k h′ v . (∃n . P1(f, n)) ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9))

≡ {By Lemma 2}
P3 ∧ P4 ∧ (∀E h k h′ v . P1 ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9))

≡ {By Def. 3}
e : [[L, Γ ]] ut

Lemma 4. ∀n . |=f,n Σ if and only if |= Σ.
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Proof. We separatedly prove each direction:

(⇐) By induction on the |= relation. If Σ = ∅ then we must prove ∀n . |=f,n ∅,
which is trivial by Def. 8-1. If Σ = Σ′ ] [f ′ 7→ mi]] then must prove:

|= Σ′ ] [f ′ 7→ mi]⇒ ∀n . |=f,n Σ
′ ] [f ′ 7→ mi]

By applying Def. 4-2 of |=, this es equivalent to proving:

|= Σ′ ∧ ef ′ : [[Lf ′ , Γf ′ ]]⇒ ∀n . |=f,n Σ
′ ] [f ′ 7→ mi]

By induction hypothesis, we can also assume ∀n . |=f,n Σ
′. Now, we proceed

by cases on f ′:
f ′ = f We proceed by induction on n:

• If n = 0 we must prove |=f,0 Σ′ ] [f 7→ mi], which is trivial by
Def. 8-2.

• For n + 1 we must prove |=f,n+1 Σ
′ ] [f 7→ mi]. By Def. 8-3, this

is equivalent to proving |= Σ′ ∧ ef :f,n [[Lf , Γf ]]. But we have as
hypothesis |= Σ ∧ ef : [[Lf , Γf ]] which is stronger by Lemma 3.

f ′ 6= f We must prove ∀n. |=f,n Σ
′][f ′ 7→ mi]. By Def. 8-4, this is equivalent

to proving ∀n . |=f,n Σ′ ∧ ef ′ : [[Lf ′ , Γf ′ ]]. The first conjunct holds by
induction hypothesis, and the second one by hypothesis.

(⇒) We distinguish here two cases:
f 6∈ dom Σ By doing induction on |=f,n we get four cases corresponding to

those of Def. 8, all of them trivial.
f ∈ dom Σ We must prove f ∈ dom Σ ∧∀n . |=f,n Σ ⇒|= Σ. We will prove

the slightly stronger property f ∈ dom Σ ∧ ∀n > 0 . |=f,n Σ ⇒ |= Σ.
The proof is split into two pieces:

1. f ∈ dom Σ ∧ ∀n > 0 . |=f,n Σ ⇒ ∀n . ef :f,n [[Lf , Γf ]]
2. f ∈ dom Σ ∧ ∀n > 0 . |=f,n Σ ∧ ef : [[Lf , Γf ]]⇒ |= Σ

By Lemma 3, the conclusion of the first one implies the third premise
of the second one. Both proofs can easily be done by induction on the
|=f,n relation.

Lemma 5. If ∀n . e,Σ :f,n [[L, Γ ]] then e,Σ : [[L, Γ ]].

Proof. By equational reasoning.

∀n . e,Σ :f,n [[L, Γ ]]
≡ {By Def. 9}
∀n . |=f,n Σ → e :f,n [[L, Γ ]]

⇒ {By first-order logic}
(∀n . |=f,n Σ)→ (∀n . e :f,n [[L, Γ ]])

≡ {By lemmas 3 and 4}
|= Σ → e : [[L, Γ ]]

≡ {By Def. 5}
e,Σ : [[L, Γ ]] ut
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Having proved Lemma 5, the soundness of e,ΣM` (L, Γ ), stated as Theo-
rem 1, can be completed as follows:

Lemma 6 (soundness). If e,ΣM` (L, Γ ) then ∀n . e,ΣM :f,n [[L, Γ ]].

Proof. By induction on the e,ΣM` (L, Γ ) derivation, and by cases on the last
proof-rule applied. The cases are the following:

LIT See Lemma 7 in Section 3.3
VAR1 See Lemma 8 in Section 3.3
VAR2 See Lemma 9 in Section 3.3
VAR3 See Lemma 10 in Section 3.3
PRIMOP See Lemma 11 in Section 3.3
LET1 See Lemma 12 in Section 3.3
LET1C See Lemma 13 in Section 3.3

LET2 See Lemma 14 in Section 3.3
LET2C See Lemma 15 in Section 3.3

CASE See Lemma 16 in Section 3.3
CASEL See Lemma 17 in Section 3.3
CASE ! See Lemma 18 in Section 3.3
APP See Lemma 21 in Section 3.3
REC Let us assume that the last rule applied was REC . On the one hand, we

have:

ef , ΣM` (Lf , Γf )
≡ {By the REC rule}
f xi

n@ rj
m = ef ∧ Lf = {xin} ∧ Γf = [xi 7→ mi

n] ∧ ef , ΣM ] [f 7→ mi]` (Lf , Γf )
≡ {By induction hypothesis}
∀n . ef , ΣM ] [f 7→ mi] :f,n [[Lf , Γf ]]

≡ {By Def. 9}
∀n . |=f,n ΣM ] [f 7→ mi]→ ef :f,n [[Lf , Γf ]]

On the other hand, we must prove:

∀n . ef , ΣM :f,n [[Lf , Γf ]] i.e. ∀n . |=f,n ΣM → ef :f,n [[Lf , Γf ]]

We proceed by induction on n:
n = 0 We know |=f,0 ΣM ] [f 7→ mi]→ ef :f,0 [[Lf , Γf ]] from the hypothesis

and we must show |=f,0 ΣM → ef :f,0 [[Lf , Γf ]]. Assuming |=f,0 ΣM is
equivalent to assume |= ΣM , and this is in turn equivalent by Def. 8-2
to |=f,0 ΣM ] [f 7→ mi]. So we get ef :f,0 [[Lf , Γf ]] and we are done.

n > 0 By induction hypothesis we have |=f,n ΣM → ef :f,n [[Lf , Γf ]] and
we must prove |=f,n+1 ΣM → ef :f,n+1 [[Lf , Γf ]]. By Def. 8-1, assuming
|=f,n+1 ΣM is equivalent to assume |= ΣM , and this is in turn equivalent
to |=f,n ΣM . So we get ef :f,n [[Lf , Γf ]]. From this and from |= ΣM by
Def. 8-3 we get |=f,n+1 ΣM ] [f 7→ mi], and from the hypothesis we get
ef :f,n+1 [[Lf , Γf ]] as desired.

ut
Then, the lemmas 5 and 6 complete the proof of the Soundness Theorem 1.
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3.3 Proof schemes of the associated lemmas

LIT

Lemma 7. Given an arbitrary n, the lemma to be proved is:

c,ΣM :f,n [[∅, ∅]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove c :f,n [[∅, ∅]].
We must prove P3∧P4∧(∀E h k h′ v .P1(f, n)∧P2 → P5∧P6∧(P7∧P8 → P9)).
Properties P3, P4 hold trivially. Assuming property P1(f, n), by Def. 6 we get
P1 and then h = h′ and v = c. With this, property P6 holds trivially. Properties
P5, and P9 also hold trivially, so the assertion is true, even disregarding P7 and
P8. ut

VAR1

Lemma 8. Given an arbitrary n, the lemma to be proved is:

x,ΣM :f,n [[{x}, Γ + [x : s]]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove x :f,n [[∅, ∅]].
We must prove P3∧P4∧(∀E h k h′ v .P1(f, n)∧P2 → P5∧P6∧(P7∧P8 → P9)).
Properties P3 and P4 hold trivially. Assuming property P1(f, n) we get h = h′

and v = E(x). With this, property P6 trivially holds. Property P5 also holds triv-
ially. Assuming P8 = closed(E,L, h) we immediately get closed(E(x), h) which
is P9, so the assertion is true, even disregarding P7. ut

VAR2

Lemma 9. Given an arbitrary n, the lemma to be proved is:

x ∈ dom Γ Γ well-formed
x@r,ΣM :f,n [[{x}, Γ ]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove x@r :f,n
[[∅, ∅]]. We must prove P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2 → P5 ∧ P6 ∧ (P7 ∧
P8 → P9)). Property P4 holds trivially, and P3 holds by assumption. Assuming
P1(f, n) we get (h′, v) = copy(h,E(x), j); P5 is exactly the well-formedness of
Γ holding by assumption; P6 is true because no closure changes during the
evaluation of copy . This runtime function makes a copy of recReach(E, x, h)
and the resulting structure shares the rest of closure(E, x, h). This semantics
guarantees that closedness is preserved. Then, P8 implies P9 and we are done.

ut

19



VAR3

Lemma 10. Given an arbitrary n, the lemma to be proved is:

Γ [x] = d Γ well formed
x!, ΣM :f,n [[{x}, Γ ]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove x! :f,n [[∅, ∅]].
We must prove P3∧P4∧(∀E h k h′ v .P1(f, n)∧P2 → P5∧P6∧(P7∧P8 → P9)).
Properties P3 and P4 hold trivially. Assuming P1(f, n) we get h′ = h\[E(x) 7→
w] ] [v 7→ w], and fresh(v); P5 holds by the well-formedness assumption; P6

holds because the only closures changing during the evaluation of x! are those
including E(x). These are exactly the same ones considered in P5, so P5 implies
P6. Finally P8, and a lemma proving that starting from an empty heap the
semantics never creates cycles in it, imply P9. ut

PRIMOP

Lemma 11. Given an arbitrary n, the lemma to be proved is:

L = {a1, a2} Γ = [a1 : s, a2 : s]
a1 ⊕ a2, ΣM :f,n [[L, Γ ]] PRIMOP

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove a1⊕a2 :f,n
[[∅, ∅]]. We must prove P3∧P4∧(∀E h k h′ v .P1(f, n)∧P2 → P5∧P6∧(P7∧P8 →
P9)). Properties P3, P4 hold trivially. Assuming property P1(f, n) we get h = h′

and v is a constant. So, property P6 trivially holds; P5 and P9 also hold trivially,
so the assertion is true, even disregarding P2, P7, and P8. ut

LET1

Lemma 12. Given an arbitrary n, the lemma to be proved is:

e1 6= C ai
n e1, ΣM :f,n [[L1, Γ1]] x1 6∈ L1 e2, ΣM :f,n [[L2, Γ2 + [x1 : s]]] def (Γ1 .

L2 Γ2)

let x1 = e1 in e2, ΣM :f,n [[L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ2]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove let x1 = e1 in e2 :f,n
[[L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ2]], i.e. P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2 → P5 ∧
P6 ∧ (P7 ∧ P8 → P9)) for the let. Assuming |=f,n ΣM converts the second and
fourth premises into respectively e1 :f,n [[L1, Γ1]] and e2 :f,n [[L2, Γ2 + [x1 : s]]].
The steps are the following:

1. P3 for e1 and P3 for e2 lead to P3 for let. Trivial from the definition of
Γ1 .

L2 Γ2.
2. P4 for e1 and P4 for e2 lead to P4 for let. Trivial from the definition of fv .
3. Assuming P1(f, n) for let (for E, h, k, h′′, v2), we show P1(f, n) for e1 (for
E, h, k, h′, v1) and P1(f, n) for e2 (for E ∪ [x1 7→ v1], h′, k, h′′) by using the
operational semantics rule Let1.
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4. Assuming P2 for let (for Γ = Γ1.
L2Γ2, E), we show P2 for e1 (for Γ1, E) and

P2 for e2 (for Γ2+[x1 : s], E∪[x1 7→ v1]). This comes from dom(Γ1), dom(Γ2) ⊆
dom(Γ1 .

L2 Γn2).
5. By hypothesis, we get P5, P6, and P7 ∧ P8→ P9 both for e1 and e2.
6. P5 and P6 for e1, and P5 and P6 for e2 lead to P5 and P6 for let. We must

prove:

P5 ≡ ∀x ∈ dom(E), z ∈ L . Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s

P6 ≡ ∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′′)
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s

First we prove P5. Let us assume z ∈ L, x ∈ dom(E), Γ [z] = d, and
recReach(E, z, h) ∩ closure(E, x, h) 6= ∅. We distinguish the following cases:
z ∈ L1, Γ1[z] = d Then, by P5 of e1 and the triangle properties, we conclude

x ∈ dom(Γ ) ∧ Γ [x] 6= s.
z ∈ L1, Γ1[z] = s Then, by the triangle properties Γ2[z] = d and z ∈ L2.

By P6 of e1 we have closure (E, z, h) ≡ closure (E, z, h′). Let us assume
closure (E, x, h) ≡ closure (E, x, h′). Otherwise by P6 of e1 we would
directly have the conclusion. Then recReach(E, z, h)∩ closure(E, x, h) 6=
∅ implies recReach(E, z, h′)∩ closure(E, x, h′) 6= ∅, and by P5 of e2, and
the triangle properties, we conclude x ∈ dom(Γ ) ∧ Γ [x] 6= s.

z ∈ L2, Γ2[z] = d We distinguish here two subcases:
closure (E, z, h) ≡ closure (E, z, h′) Following the same reasoning as above,

by P5 of e2 we would have the conclusion.
closure (E, z, h) 6≡ closure (E, z, h′) Then, by P6 of e1 we would have

z ∈ dom(Γ1)∧Γ1[z] 6= s. This combination of marks for z is forbidden
by the operator .L2 . So this case is not possible.

For P6, and assuming closure (E, x, h) 6≡ closure (E, x, h′′), we distinguish
two cases:
(a) closure (E, x, h) 6≡ closure (E, x, h′). Then, by P6 of e1 we have x ∈

dom(Γ1)∧ Γ1[x] 6= s, and by the triangle properties we have the conclu-
sion.

(b) closure(E, x, h) ≡ closure(E, x, h′)∧closure(E, x, h′) 6≡ closure(E, x, h′′).
Then, by P6 of e2 we have x ∈ dom(Γ2)∧ Γ2[x] 6= s, and by the triangle
properties we have the conclusion.

7. P7 for let (i.e. SL,Γ1.L2Γ2,E,h ∩RL,Γ1.L2Γ2,E,h = ∅), and P5 for e1 lead to P7

for e1 (i.e. SL1,Γ1,E,h ∩RL1,Γ1,E,h = ∅). The definitions of S1 and R1 are as
follows:
(a) S1 = S1s ∪ S1r ∪ S1d, where:

S1s
def=

⋃
x∈L1∧Γ1[x]=s∧Γ [x]=s{closure(E, x, h)}, S1s ⊆ S

S1r
def=

⋃
x∈L1∧Γ1[x]=s∧Γ [x]=r{closure(E, x, h)},

S1d
def=

⋃
x∈L1∧Γ1[x]=s∧Γ [x]=d{closure(E, x, h)},

(b) R1 =
⋃
x∈L1∧Γ1[x]=d

{p ∈ live(E,L1, h) | p→∗h recReach(E, x, h)}
We have the inclusion R1 ⊆ R because .L2 ensures that Γ1[x] = d implies
Γ [x] = d.
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Then, S∩R 6= ∅ implies S1s∩R1 6= ∅. We must show now (S1r∪S1d)∩R1 = ∅.
This follows from the hypothesis e1, ΣM :f,n [[L1, Γ1]]. Should this set be
non-empty, then there would exist x ∈ L1 ⊆ dom(E), z ∈ L1 such that
Γ1[z] = d, Γ1[x] = s, and recReach(E, z, h) ∩ closure(E, x, h) 6= ∅. Then, by
P5 of e1 we would have the contradiction Γ1[x] 6= s.

8. Assuming P8 for let, i.e. closed(E,L, h), leads to P8 for e1, i.e. closed(E,L1, h).
Trivial from L1 ⊆ L.

9. Now, by the hypothesis e1, ΣM :f,n [[L1, Γ1]] we get P9 for e1.
10. P5, P6 for e1, P5, P6 for e2, and P7 for let lead to P7 for e2. We must show:

SL2,Γ2+[x1:s],E∪[x1 7→v1],h′ ∩RL2,Γ2+[x1:s],E∪[x1 7→v1],h′ = ∅

The two sets associated to e2 are as follows:
(a) S2 = S2s∪closure(v1, h′), being S2s

⋃
x∈L2−{x1}∧Γ2[x]=s

{closure(E′, x, h′)}.
We have S2s ⊆ S because .L2 ensures that Γ2[x] = s implies Γ [x] = s.

(b) R2 =
⋃
x∈L2∧Γ2[x]=d

{p ∈ live(E′, L2, h
′) | p→∗h′ recReach(E, x, h′)}. We

have the inclusion R2 ⊆ R because .L2 ensures that Γ2[x] = d implies
Γ [x] = d and x 6∈  L1 ∨ Γ1[x] = s, and by P5 of e1 as before.

So, S∩R 6= ∅ implies S2s∩R2 6= ∅. We must show now closure (v1, h′)∩R2 =
∅. Should this not be the case, then by P5 of e2 we would have for x1 a mark
different from s which contradicts the hypothesis of the theorem.

11. Assuming P8 for let, and by P6, P9 for e1 we get P8 for e2, i.e. closed(E ∪
[x1 7→ v1], L2, h

′). We prove first

live (E2, L2 − {x1}, h) ≡ live (E2, L2 − {x1}, h′)

Should this not be true, by P6 of e1 we would have Γ1[z] 6= s for some
variable z ∈ L2−{x1}. This would contradict the definition of .L2 . In these
conditions, P8 for let and P9 for e1 imply P8 for e2.

12. Now, by the hypothesis e2, ΣM :f,n [[L2, Γ2 + [x1 : s]]] we get P9 for e2.
13. Finally, using P9 for e2, it is trivial to show P9 for let.

ut

LET1C

Lemma 13. Given an arbitrary n, the lemma to be proved is:

L1 = {ain} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM :f,n [[L2, Γ2 + [x1 : s]]] def (Γ1 .
L2 Γ2)

let x1 = C ai
n@r in e2, ΣM :f,n [[L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ2]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove let x1 = C ai
n@r in e2 :f,n

[[L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ2]]. Assuming |=f,n ΣM converts the fourth premise

into e2 :f,n [[L2, Γ2 + [x1 : s]]]. The steps are the following:

1-5 These steps are simplified versions of the equally numbered steps of LET1 ,
because only the subexpression e2 is involved.
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6. P5 and P6 for e2 leads to P5 and P6 for let. We must prove:

(∀x ∈ dom(E), z ∈ L . Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s)

∧ (∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′)
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s)

Let us call h+ = h ] [p 7→ (j, C vi)], where fresh(p), E(r) = j, and for all i,
vi = E(ai). We know:

(∀x ∈ dom(E) ∪ {x1}, z ∈ L2 . Γ2[z] = d ∧ recReach(E, z, h+) ∩ closure(E, x, h+) 6= ∅
→ x ∈ dom(Γ2) ∧ Γ2[x] 6= s)

∧ (∀x ∈ dom(E) ∪ {x1} . closure (E, x, h+) 6≡ closure (E, x, h′)
→ x ∈ dom(Γ2) ∧ Γ2[x] 6= s)

By being fresh(p) and h+ a conservative extension of h, we have:

closure(E, x, h+) ≡ closure(E, x, h)∧recReach(E, z, h+) ≡ recReach(E, z, h)

The rest follows from the properties of .L2 .
7-10 These are simplified versions of the steps (10) to (13) of LET1 .

ut

LET2

Lemma 14. Given an arbitrary n, the lemma to be proved is:

e1 6= C ai
n e1, ΣM :f,n [[L1, Γ1]] x1 6∈ L1 e2, ΣM :f,n [[L2, Γ2 + [x1 : d]]] def (Γ1 .

L2 Γ2)

let x1 = e1 in e2, ΣM :f,n [[L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ2]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove let x1 = e1 in e2 :f,n
[[L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ2]], i.e. P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2 → P5 ∧
P6 ∧ (P7 ∧ P8 → P9)) for the let. Assuming |=f,n ΣM converts the second and
fourth premises into respectively e1 :f,n [[L1, Γ1]] and e2 :f,n [[L2, Γ2 + [x1 : d]]].
The steps are the following:

1-9 The steps (1) to (9) are identical to the equally numbered steps of LET1 .
10. P5, P6 for e1, P5, P6 for e2, and P7 for let lead to P7 for e2. We must show:

SL2,Γ2+[x1:d],E∪[x1 7→v1],h′ ∩RL2,Γ2+[x1:d],E∪[x1 7→v1],h′ = ∅

The two sets associated to e2 are as follows:

(a) S2 =
⋃
x∈L2∧Γ2[x]=s

{closure(E, x, h′)}, S2 ⊆ S. This inclusion is be-
cause .L2 ensures that Γ2[x] = s implies Γ [x] = s, and because all values
{E(x) | x ∈ L2 ∧ Γ2[x] = s} in h, either they have not been used in e1,
or they have been used in read-only mode and are still in h′.
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(b) R2 = R2x1 ∪R2d, where:

R2x1

def= {p ∈ live(E′, L2, h
′) | p→∗h′ recReach(E′, x1, h

′)}
R2d =

⋃
x∈L2∧Γ2[x]=d

{p ∈ live(E,L2, h
′) | p→∗h′ recReach(E, x, h′)}

We have R2d ⊆ R because .L2 ensures that Γ2[x] = d implies Γ [x] = d,
and because all values {E(x) | x ∈ L2∧Γ2[x] = d} in h, either they have
not been used in e1, or they have been used in read-only mode and are
still in h′.
Then, R2d ∩ S2 = ∅ trivially holds. We must show R2x1 ∩ S2 = ∅. This
follows from the hypothesis e2, ΣM :f,n [[L2, Γ

′
2]], being Γ ′2[x1] = d.

11-13 These steps are identical to the equally numbered steps of LET1 .
ut

LET2C

Lemma 15. Given an arbitrary n, the lemma to be proved is:

L1 = {ain} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM :f,n [[L2, Γ2 + [x1 : d]]] def (Γ1 .
L2 Γ2)

let x1 = C ai
n@r in e2, ΣM :f,n [[L1 ∪ (L2 − {x1}), Γ1 .

L2 Γ2]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove let x1 = C ai
n@r in e2 :f,n

[[L1 ∪ (L2 − {x1}), Γ1 .
L2 Γ2]]. Assuming |=f,n ΣM converts the fourth premise

into e2 :f,n [[L2, Γ2 + [x1 : d]]]. The steps are the following: The steps are the
following:

1-5 These steps are simplified versions of the equally numbered steps of LET1 ,
because only the subexpression e2 is involved.

6. P5 and P6 for e2 leads to P5 and P6 for let. This step is identical to the step
(6) of LET1C .

7-10 These are simplified versions of the steps (10) to (13) of LET2 .
ut

CASE

Lemma 16. Given an arbitrary n, the lemma to be proved is:

∀i . (ei, ΣM :f,n [[Li, Γi]] Γi[xij ] 6= d) Γ ⊇
⊗

i(Γi\{xij})
L = {x} ∪ (

⋃
i(Li − {xij})) x ∈ dom(Γ ) Γ well-formed

case x of Cixij → ei, ΣM :f,n [[L, Γ ]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove case x of Cixij → ei :f,n
[[L, Γ ]], i.e. we must prove P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2 → P5 ∧ P6 ∧
(P7∧P8 → P9)) for the case. Assuming |=f,n ΣM converts the first premise into
∀i . ei :f,n [[Li, Γi]]. The steps are the following:
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1. P3 for all the ei, and the premises given for L, x and Γ lead to P3 for case.
2. P4 for all the ei and the definition of fv lead to P4 for case.
3. Assuming P1(f, n) for case (for E, h, k, h′, v), we show P1(f, n) for one ei

(for Ei, h, k, h′, v), being Ci the constructor matched by x. It suffices to use
the operational semantics rule Case.

4. Assuming P2 for case (for Γ,E), we show P2 for ei (for Γi, Ei). This comes
from dom(Γi\{xij}) ⊆ dom(Γ ).

5. By the hypothesis ei, ΣM :f,n [[Li, Γi]] we get P5, P6, and P7 ∧ P8→ P9 for
ei.

6. The premise ‘Γ well-formed’ directly leads to P5 for case.
7. P6 for the executed ei leads to P6 for case. We must prove:

P6 ≡ ∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′)
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s

It is obtained by using that x ∈ dom(E) implies x ∈ dom(Ei), and Γi[x] 6= s
implies Γ [x] 6= s.

8. P7 for case leads to P7 for the executed ei. Let us call S, Si, R and Ri
to respectively SL,Γ,E,h, SLi,Γi,Ei,h, RL,Γ,E,h and RLi,Γi,Ei,h. We decompose
Si = S′i ∪ S′′i and Ri = R′i ∪R′′i , being their definitions as follows:

S′i
def=

⋃
z∈Li∩L,Γi[z]=s

{closure(Ei, z, h)}
S′′i

def=
⋃
z∈Li∩xij ,Γi[z]=s

{closure(Ei, z, h)}
R′i

def=
⋃
z∈Li∩L,Γi[z]=d

{p ∈ live(Ei, Li, h) | p→∗h recReach(Ei, z, h)}
R′′i

def=
⋃
z∈Li∩xij ,Γi[z]=d

{p ∈ live(Ei, Li, h) | p→∗h recReach(Ei, z, h)}

Obviously, S′i ⊆ S and R′i ⊆ R. So, S ∩ R = ∅ implies S′i ∩ R′i = ∅. Also,
no pattern xij has a mark Γi[xij ] = d. This is forbidden by the type system
and we include this fact as a premise of the lemma. So, the variables with
a condemned mark should belong to L, and consequently R′′i = ∅. Now, we
distinguish two cases according to the mark of the discriminant x:
Γ [x] = s For those xij such that Γi[xij ] = s we have closure (Ei, xij , h) ⊆

closure (E, x, h) ⊆ S. So, S′′i ⊆ S, concluding that Si ∩Ri = ∅.
Γ [x] 6= s For each pattern xij such that Γi[xij ] = s we distinguish two cases:

(a) There exists z ∈ L with Γi[z] = Γ [z] = d such that closure(Ei, xij , h)∩
recReach (Ei, z, h) 6= ∅. By P5 for ei we would have Γi[xij ] 6= s, a
contradiction. So, this case is not possible.

(b) For all z ∈ L with Γi[z] = Γ [z] = d we have closure (Ei, xij , h) ∩
recReach (Ei, z, h) = ∅. By definition of Ri, the contribution of xij to
S′′i does not intersect with Ri. So, also in this case we get Si∩Ri = ∅.

9. P8 for case leads to P8 for all the ei. By Li ⊆ L∪{xij} and Ei(xij) = bj we
have closure(Ei, Li, h) ⊆ closure(E,L, h) and then closed(E,L, h) implies
closed(Ei, Li, h).

10. Now, by the hypothesis ei, ΣM :f,n [[Li, Γi]] we get P9 for ei.
11. Finally, P9 for ei is the same property as P9 for case.

ut
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CASEL

Lemma 17. Given an arbitrary n, the lemma to be proved is:

∀i . (ei, ΣM :f,n [[Li, Γi]]) Γ =
⊗

i Γi Γ [x] = s L = {x} ∪ (
⋃
i Li)

case x of {ci → ei
n; → en+1}, ΣM :f,n [[L, Γ ]]

Proof. The steps are the same as the steps for Case but they are much simpler
because there are no patterns and we can also assume Γ [x] = s.

ut

CASE!

Lemma 18. Given an arbitrary n, the lemma to be proved is:

∀i . (ei, ΣM :f,n [[Li, Γi]] ∀j . Γi[xij ] = d→ j ∈ RecPos(Ci)) L =
⋃
i(Li − {xij})

Γ ⊇ (
⊗

i(Γi\{xij} ∪ {x})) + [x : d] Γ well formed
∀z ∈ dom(Γ ) . Γ [z] 6= s→ (∀i . z 6∈ Li)

case! x of Cixij → ei, ΣM :f,n [[L ∪ {x}, Γ ]]

Proof. Assuming |=f,n ΣM in the conclusion we must prove case! x of Cixij → ei :f,n
[[L, Γ ]], i.e. we must prove P3 ∧ P4 ∧ (∀E h k h′ v . P1(f, n) ∧ P2 → P5 ∧ P6 ∧
(P7 ∧ P8 → P9)) for the case!. Assuming |=f,n ΣM converts the first premise
into ∀i . ei :f,n [[Li, Γi]]. The steps are the following:

1-5 These steps are small variations of the equally numbered steps of CASE .
6. The premise ‘Γ well-formed’ directly leads to P5 for case!.
7. P6 for the executed ei leads to P6 for case!. We must prove:

P6 ≡ ∀y ∈ dom(E) . closure (E, y, h+) 6≡ closure (E, y, h′)
→ y ∈ dom(Γ ) ∧ Γ [y] 6= s

where h+ = h] [p 7→ w] and E(x) = p. Let us assume y ∈ dom(E) such that
closure (E, y, h+) 6≡ closure (E, y, h′). We distinguish two cases:
(a) closure(E, y, h+) 6≡ closure(E, y, h) In this case we have recReach(E, x, h)∩

closure (E, y, h) 6= ∅ and by P5 for case! we get y ∈ dom(Γ ) ∧ Γ [y] 6= s.
(b) closure (E, y, h+) ≡ closure (E, y, h) Then it must hold closure (E, y, h) 6≡

closure (E, y, h′). Then, by P6 for the executed ei we have y ∈ dom(Γi)∧
Γi[y] 6= s. By the properties of operator ⊗ we get Γ [y] 6= s.

8. P5, P7 for case, and P5 for the executed ei lead to P7 for ei. Let us call
S, Si, R andRi to respectively SL,Γ,E,h, SLi,Γi,Ei,h′ , RL,Γ,E,h andRLi,Γi,Ei,h′ .
We decompose Si = S′i ∪ S′′i and Ri = R′i ∪ R′′i , being their definitions as
follows:

S′i
def=

⋃
z∈Li∩L,Γi[z]=s

{closure(Ei, z, h′)}
S′′i

def=
⋃
z∈Li∩xij ,Γi[z]=s

{closure(Ei, z, h′)}
R′i

def=
⋃
z∈Li∩L,Γi[z]=d

{p ∈ live(Ei, Li, h′) | p→∗h′ recReach(Ei, z, h′)}
R′′i

def=
⋃
z∈Li∩xij ,Γi[z]=d

{p ∈ live(Ei, Li, h′) | p→∗h′ recReach(Ei, z, h′)}
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By P5 for case, clearly E(x) 6∈ S, so S′i ⊆ S. Also clearly, E(x) ∈ R, so,
it is possible that some p ∈ R′i such that p →∗h recReach(Ei, z, h), for some
z ∈ Li ∩L with Γ [z] = d, now it cannot reach it in h′ because the path in h
was through E(x). However, the rest of the paths are still in h′, so R′i ⊆ R.
Then, S ∩R = ∅ implies S′i ∩R′i = ∅.
By P5 for ei, S′′i ∩ Ri = ∅. Otherwise, there would exist xij shuch that
Γi[xij ] = s and Ei(xij) would reach a recursive descendant of a condemned
location. Property P5 would imply Γi[xij ] 6= s.
It remains to be shown S′i ∩R′′i = ∅. This comes from the premise Γi[xij ] =
d→ j ∈ RecPos(Ci), which implies R′′i ⊆ R.

9. P5 and P8 for case lead to P8 for all the ei. Eventhough Li ⊆ L∪ {xij} and
Ei(xij) = bj , we do not have in general closure(Ei, Li, h′) ⊆ closure(E,L, h)
because the heap h′ does not include the cell of h pointed to by E(x). By P5

for case we have that all variables z sharing E(x) are marked with Γ [z] 6= s.
The last lemma’s premise establishes that these variables do not belong to
any Li. In these conditions, closed(E,L, h) implies closed(Ei, Li, h′).

10. Now, by hypothesis ei, ΣM :f,n [[Li, Γi]] and then we get P9 for the executed
ei.

11. Finally, P9 for ei is the same property as P9 for case.
ut

APP We need first two auxiliary lemmas:

Lemma 19. If g xil @ rj
m = eg is g’s definition, and ΣM (g) = mi

l, and g 6= f ,
then eg, ΣM :f,n [[Lg, Γg]], being  Lg = {xil} and Γg ⊇ [xi 7→ mi

l].

Proof. eg, ΣM :f,n [[Lg, Γg]] is equivalent to |=f,n ΣM → eg :f,n [[Lg, Γg]]. Assum-
ing |=f,n ΣM , we make induction on the relation |=f,n by applying Def. 8. There
are two possibilities:

• Either cases 1, 2 or 3 apply and then there exists Σ′ ⊆ ΣM such that
g ∈ dom Σ′ and |= Σ′ hold.

• Or case 4 applies and then either eg : [[Lg, Γg]] holds, or there exists Σ′ ⊂ ΣM
such that g ∈ dom Σ′ and |=f,n Σ

′ hold.

In the first three cases, it is easy to show by induction on the relation |= that
eg : [[Lg, Γg]] must hold. Then, by Lemma 3, eg :f,n [[Lg, Γg]] also holds for all n.
The only remaining case is when we only know g ∈ dom Σ′ and |=f,n Σ

′. But
then by induction hypothesis we also get eg :f,n [[Lg, Γg]]. ut

Lemma 20. If f xi
l @ rj

m = ef is f ’s definition, and ΣM (f) = mi
l, then

|=f,n+1 ΣM → ef :f,n [[Lf , Γf ]], being  Lf = {xil} and Γf ⊇ [xi 7→ mi
l].

Proof. We make induction on the |=f,n relation. The only applicable cases of
Def. 8 are 3 and 4. If case 3 applies then the conclusion is immediate. If case 4
applies then there exists Σ′ ⊂ ΣM such that f ∈ dom Σ′ and |=f,n+1 Σ

′ hold.
Then by induction hypothesis the conclusion holds. ut
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Lemma 21. Given an arbitrary n, the lemma to be proved is:

ΣM (g) = mi
l L = {ail}

Γ0 =
⊕l

i=1[ai 7→ mi] defined Γ ⊇ Γ0 well-formed

g ai
l@ r′j

m
, ΣM :f,n [[L, Γ ]]

Proof. We must show |=f,n ΣM → g ai
l@ r′j

m
:f,n [[L, Γ ]]. If g 6= f , then by

Lemma 19 we know that eg, ΣM :f,n [[Lg, Γg]] holds. If g = f we distinguish
two cases: n = 0 or n > 0. If n = 0, then f ai

l@ r′j
m

:f,0 [[L, Γ ]] trivially holds
because P1(f, 0) is false (at least one call to f is being made by the expression
f ai

l@ r′j
m

). If n > 0, then by Lemma 20 we know that ef , ΣM :f,n−1 [[Lf , Γf ]]
holds.

We must prove P3∧P4∧(∀E h k h′ v.P1(f, n)∧P2 → P5∧P6∧(P7∧P8 → P9))
for the expression g ai

l@ r′j
m

. The steps are the following:

1. P3 and P4 for the application hold trivially.
2. Let us assume P1(f, n) for g ail, (respectively f ai

l, if g = f), i.e. E `
h, k, g ai

l@ r′j
m
⇓f,n h′ |k, k, v. This implies E0 ` h, k+ 1, eg ⇓f,n h′, k+ 1, v

(resp. E0 ` h, k + 1, ef ⇓f,n−1 h
′, k + 1, v), being

E0 = [xi 7→ E(ai)
l
, rj 7→ E(r′j)

m
, self 7→ k + 1]

by using the semantic rule App. Let us define Eg = E+E0. As, the only free
variables in eg are the xi, we trivially have Eg ` h, k+ 1, eg ⇓f,n h′, k′+ 1, v.
Then we get P1(f, n) for eg (resp. P1(f, n− 1) for ef ) for Eg, h, k + 1, h′, v.

3. Let us define Γg = Γ + [xi 7→ mi
l]. Assuming P2 for the application, we get

P2 for eg, i.e. dom(Γg) ⊆ dom(Eg).
4. Then, by eg, ΣM :f,n [[Lg, Γg]] (resp. ef , ΣM :f,n−1 [[Lf , Γf ]]) we get P5, P6,

and P7 ∧ P8→ P9 for eg.
5. P5 for g ail, i.e.

∀x ∈ dom(E). z ∈ L . Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅
→ x ∈ dom(Γ ) ∧ Γ [x] 6= s

is guaranteed by the premise ‘Γ well-formed’.
6. P6 for eg implies P6 for g ail, provided that removing from h′ the region k+1

does not modify closure (E, dom(E), h). This will need a lemma establishing
that deallocating the self region will not create dangling pointers in the heap.
This is done in Sec. 4.

7. Let us assume P7 for g ail, i.e. SL,Γ,E,h ∩RL,Γ,E,h = ∅. By the properties of⊕
, we may have Eg(xi) = Eg(xj) with i 6= j only when Γg[xi] = Γg[xj ] = s.

This leads to SLg,Γg,Eg,h = SL,Γ,E,h. Also, we have RLg,Γg,Eg,h = RL,Γ,E,h
because L,Lg, and Γ, Γg, and E,Eg are essentially the same. So, property
P7 holds for eg.

8. Let us assume P8 for g ail, i.e. closed(E,L, h). Then P8 for eg trivially holds.
9. Then we get P9 for eg, i.e. closed(v, h′).

10. In order to show P9 for g ail, i.e. closed(v, h′ |k), we must show that removing
from h′ the region k + 1 does not destroy the property closed(v, h′). This is
done in Sec. 4.

ut
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4 Region deallocation

We present here the proof rules certifying that region deallocation does not create
dangling pointers. As before, the compiler delivers static information about the
region types used by the program variables and expressions, and a soundness
theorem relates this information to the runtime properties of the actual regions.

In an algebraic type T ti
m@ ρj

l, the last region type variable ρl of the list is
always the most external one, i.e. the region where the cell of the most external
constructor is allocated. By regions (t) we denote the set of region type variables
occurring in the type t. There is a reserved identifier ρfself for every defined
function f , denoting the region type variable assigned to the working region self
of function f . We will assume that the expression e being certified belongs to
the body of a context function f or to the main expression.

By θ, θi, . . . we denote typing environments, i.e. mappings from program vari-
ables and region arguments to types. For region arguments, θ(r) = ρ means that
ρ is the type variable the compiler assigns to argument r.

In function or constructor applications, the set of generic region types used
in the signature of an applied function g (of a constructor C) must be related
to the actual region types used in the application. Also, some ordinary poly-
morphic type variables of the signature may become instantiated by algebraic
types introducing additional regions. Let us denote by µ the type instantiation
mapping used by the compiler. This mapping should correctly map the types of
the formal arguments to the types of the corresponding actual arguments.

Definition 10. Given the instantiated types ti
n, the instantiated region types

ρj
m, the arguments of the application ain, rjm, and the typing mapping θ, we say

that the application is argument preserving, denoted argP (ti
n
, ρj

m, ai
n, rj

m, θ),
if: ∀i ∈ {1..n} . ti = θ(ai) ∧ ∀j ∈ {1..m} . ρj = θ(rj).

For functions, the certificate incrementally constructs a global environment
ΣT keeping the most general types of the functions already certified. For con-
structors, the compiler provides a global environment ΓT giving its polymorphic
most general type. If ΓT (C) = ti

n → ρ → T tj
l@ ρi

m, the following property,
satisfied by the type system, is needed for proving the proof rules below:

Definition 11. Predicate wellT (ti
n
, ρ, T tj

l@ ρi
m), read well-typed, is defined

as ρm = ρ ∧ ρ 6∈ regions (tj
l) ∧

⋃n
i=1 regions (ti) ⊆ regions (T tj

l@ ρi
m).

So far for the static concepts. We move now to the dynamic or runtime
ones. By η, ηi, . . . we denote region instantiation mappings from region type
variables to runtime regions identifiers in scope. Region identifiers k, ki, . . . are
just natural numbers denoting offsets of the actual regions from the bottom of
the region stack. If k if the topmost region in scope, then for all ρ, 0 ≤ η(ρ) ≤ k
holds. The intended meaning of k′ = η(ρ) is that, in a particular execution
of the program, the region type ρ has been instantiated to the actual region
k′. Admissible region instantiation mappings should map ρfself to the topmost
region, and other region types to lower regions.
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Definition 12. Assuming that k denotes the topmost region of a given heap, we
say that the mapping η is admissible, denoted admissible (η, k), if:

ρfself ∈ dom(η) ∧ η(ρfself ) = k ∧ ∀ρ ∈ dom(η)− {ρfself } . η(ρ) < k

The important notion is consistency between the static information θ and the
dynamic one E, η, h, h′. Essentially, it tells us that the static region types, its
runtime instantiation to actual regions, and the actual regions where the data
structures are stored in the heap, do not contradict each other.

Definition 13. We say that the mappings θ, η, the runtime environment E,
and the heap h are consistent, denoted consistent (θ, η, E, h), if:

1. ∀x ∈ dom(E) . consistent (θ(x), η, E(x), h) where:
consistent (B, η, c, h) = true -- B denotes a basic type
consistent (a, η, v, h) = true -- a denotes a type variable
consistent (t, η, p, h) ⇐ p 6∈ dom(h)
consistent (T t′i

m
@ ρj

l, η, p, h)⇐ ∃j C vk
n µ tkC

n
ρjC

l . h(p) = (j, C vk
n)

∧ ρl ∈ dom(η) ∧ η(ρl) = j

∧ ΓT (C) = tkC
n → ρlC → T t′iC

m
@ ρjC

l

∧ µ(T t′iC
m

@ ρjC
l) = T t′i

m
@ ρj

l

∧ ∀k ∈ {1..n} . consistent (µ(tkC), η, vk, h))
2. ∀r ∈ dom(E) . θ(r) ∈ dom(η) ∧ E(r) = (η · θ)(r)
3. self ∈ dom(E) ∧ θ(self ) = ρfself

Notice in the third rule that a dangling pointer is consistent with any type. This
rule is needed because we cannot assume in the definition that the heap does
not contain dangling pointers, even if all these definitions and proof rules will
be used for proving their absence.

We are ready to define the satisfaction of a static assertion relating the static
and dynamic properties referred to regions: A judgement of the form e : [[θ, t]]
defines that, if expression e is evaluated with an environment E, a heap (h, k),
and an admissible mapping η consistent with θ, then η, the final heap h′, and
the final value v are consistent with t. Formally:

Definition 14. An expression e satisfies the pair (θ, t), denoted e : [[θ, t]] if

∀E h k h′ v η . E ` (h, k), e ⇓ (h′, k), v -- P1
∧ (fv(e) ∪ fregv(e)) ⊆ dom(E) -- P1′

∧ dom(E) ⊆ dom(θ) -- P2
∧ admissible (η, k) -- P3
∧ consistent (θ, η, E, h) -- P4
→ consistent (t, η, v, h′) -- P5

where fregv(e) denotes the free region variables of expression e.

Definition 15. A function typing environment ΣT is valid, denoted |= ΣT , if
it can be deduced from the following inductive rules.

1. The empty environment is valid, i.e. |= ∅.
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c,ΣT ` θ ; B
LIT

x,ΣT ` θ ; θ(x)
VAR1

x!, ΣT ` θ ; θ(x)
VAR3

θ(x) = T ti
m

@ ρ1 . . . ρl θ(r) = ρ′

x@r,ΣT ` θ ; T ti
m

@ ρ1 . . . ρl−1ρ
′ VAR2

e1, ΣT ` θ ; t1 e2, ΣT ` θ ] [x1 7→ t1] ; t2

let x1 = e1 in e2 ` θ ; t2
LET

Γ (C) = ti
n → ρ→ t wellT (ti

n
, ρ, t) e2, ΣT ` θ ] [x1 7→ µ(t)] ; t2 argP(µ(ti)

n
, µ(ρ), ai

n, r, θ)

let x1 = C ai
n @ r in e2 ` θ ; t2

LETC

∀i. (Γ (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t)) ∀i. ei, ΣT ` θ ] [xij → µ(tij)
ni

] ; t′ θ(x) = µ(t)

case x of Ci xij
ni → ei

n ` θ ; t′
CASE

∀i. (Γ (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t)) ∀i. ei, ΣT ` θ ] [xij → µ(tij)
ni

] ; t′ θ(x) = µ(t)

case! x of Ci xij
ni → ei

n ` θ ; t′
CASE !

ΣT (g) = ti
n→ ρj

m→ tg ρg
self 6∈ regions (tg) argP (µ(ti)

n
, µ(ρj)

m
, ai

n, rj
m, θ) t = µ(tg)

g ai
n@ rj

m, ΣT ` θ ; t
APP

f xi
n@ rj

m = ef

θf = [xi 7→ ti
n
, rj 7→ ρj

m, self 7→ ρself ] ef , ΣT ] {f 7→ ti
n → ρj

m → tf} ` θf ; tf

ef , ΣT ` θf ; tf
REC

Fig. 9. Proof rules for region deallocation

2. If |= ΣT , f xi
n@ rj

m = ef , θf = [xi 7→ ti
n
, rj 7→ ρj

m, self 7→ ρfself ], and
ef : [[θf , tf ]] hold, then |= ΣT ] [f 7→ ti

n→ ρj
m→ tf ] also holds.

As we have said, region allocation/deallocation takes place at function call/
return, so the absence of dangling pointers property should be apparent in the
function application rule. The key idea is showing that the data structure re-
turned by a function has no cells in the deallocated region. In this respect the
most relevant properties are P3, P4 and P5. In fact, we have proved that
P2, P3, P4 are upwards invariants in each evaluation and P5 is a downwards
invariant. So consistency holds across any evaluation of a Core-Safe program,
provided consistency holds at the beginning. But P2, P3 and P4 trivially hold
for the empty heap h0, dom(E0) = dom(θ0) = {self }, θ0(self ) = ρmain

self , k0 = 0,
and η0(ρmain

self ) = E0(self ) = 0, which are the ones corresponding to the initial
expression.

As a function may call other functions, in general a context environment is
needed in order to prove that an expression satisfies an assertion.

Definition 16. We say that expression e satisfies an assertion [[θ, t]] in the con-
text of a global type environment ΣT , denoted e,ΣT : [[θ, t]], if |= ΣT → e : [[θ, t]].

In Fig. 9 we inductively define a derivability relation e,ΣT ` θ ; t by means
of a set of syntax-driven proof-rules which will be used by the compiler to certify
concrete programs.show the proof rules related to regions.

The following soundness theorem will be proved in Section 4.2 by induction
on the ` derivation:

Theorem 2 (soundness). If e,ΣT ` θ ; t then e,ΣT : [[θ, t]].
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The REC proof-rule allows us to certify recursive functions. It first extends
the current environment ΣT with the type ti

n → ρj
m → tf given by the com-

piler. It then derives ef , ΣT ] {f 7→ ti
n → ρj

m → tf} ` θf ; tf . The rule gives
us the derivation ef , ΣT ` θf ; tf . By using the soundness theorem, we get
ef , ΣT : [[θf , tf ]] and this allow us to conclude |= ΣM ] {f 7→ ti

n → ρj
m → tf}

and then to use the new environment for certifying subsequent functions.

4.1 Proof obligations discharged by the certificate

For each expression e, the compiler generates a pair (θ, t). According to e’s
syntax, the certificate the certificate applies the corresponding proof rule by
previously discharging its premises, then deriving e ` θ ; t.

c The certificate checks that t = B and uses the proof rule LIT .
x The certificate checks that t = θ(x) and uses the proof rule VAR1 .
x! The certificate checks that t = θ(x) and uses the proof rule VAR3 .
x@r The certificate checks that t = T ti

m@ ρ1 . . . ρl−1ρ
′, θ(x) = T ti

m@ ρ1 . . . ρl,
and θ(r) = ρ′ and uses the proof rule VAR2 .

let x1 = e1 in e2 The certificate has already derived e1, ΣT ` θ ; t1, e2, ΣT ` θ2 ; t2,
and receives (θ, t) for the let expression. It checks θ2 = θ] [x1 7→ t1], t2 = t,
and uses the proof rule LET .

let x1 = C ai
n in e2 The certificate has already derived e2, ΣT ` θ2 ; t2, and

receives (θ, t′, µ) for the let expression. It gets C’s signature from Γ and
checks whether θ2 = θ ] [x1 7→ µ(t)], and t2 = t′ hold. It also checks the rest
of the premises of the proof rule LETC and applies it.

case x of Ci xijni → ei
n

The certificate has already derived ei, ΣT ` θi ; ti

for all the subsidiary expressions, and receives (θ, t′, µ) for the whole case
expression. It checks θ(x) = µ(t), and for each i ∈ {1 . . . n}, wellT (tij

ni , ρ, t),
θi = θ ] [xij 7→ µ(tij)

ni ], and ti = t′. Then, it applies the proof rule CASE .

case! x of Ci xijni → ei
n

The certificate does here the same checks as in a
case expression, but it applies the CASE ! proof rule instead.

g ai
n@ rj

m We assume that the most general type of the called function g is
kept in the incremental global environment ΣT . The certificate receives the
(θ, t, µ) for this particular application, and gets g’s signature fromΣT . It then
checks t = µ(tg), ρ

g
self 6∈ regions (tg), and argP (µ(ti)

n
, µ(ρj)

m
, ai

n, rj
m, θ).

Then, it applies the APP proof rule and derives g ain@ rj
m, ΣT ` θ ; t.

4.2 Proof scheme of the soundness theorem

The definitions and lemmas needed are very similar to those introduced in
Sec. 3.2. We show them below without proof.

Definition 17. Given the properties P1(f, n), P2, . . . , P9 as in Def. 14 except
for P1, we say that the subexpression e of f ’s body satisfies the assertion [[θ, t]]
up to depth n, denoted e :f,n [[θ, t]], if we have:

∀E h k h′ v η . P1(f, n) ∧ P1′ ∧ P2 ∧ P3 ∧ P4→ P5
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Definition 18. A global type environment ΣT is valid up to depth n for function
f , denoted |=f,n ΣT , if it can be deduced from the following inductive rules.

1. An environment in which f is not defined is valid at any depth for f if it is
valid in general, i.e. if |= ΣT and f 6∈ dom(ΣT ) then |=f,n ΣT .

2. A valid environment can be extended with any type for f at depth 0, i.e. for
all t, if |= ΣT then |=f,0 ΣT ] {f 7→ t}.

3. If |= ΣT , function f is defined as f xi @ rj = ef , θf = [xi 7→ ti, rj 7→ ρj , self 7→
ρfself ], and ef :f,n [[θf , tf ]] hold, then |=f,n+1 ΣT ] {f 7→ ti→ ρj→ tf} also
holds.

4. If |=f,n ΣT , function g 6= f is defined as g yi @ rj = eg, θf = [yi 7→ ti, rj 7→ ρj ,
self 7→ ρgself ], and eg : [[θg, tg]] holds, then |=f,n ΣT ] {g 7→ ti→ ρj→ tg} also
holds.

Definition 19. A subexpression e of f ’s body satisfies the assertion [[θ, t]] up to
depth n, in the context of ΣT , denoted e,ΣT :f,n [[θ, t]], if |=f,n ΣT → e :f,n [[θ, t]].

The following lemmas relate satisfaction and validity at depth n with satis-
tacfion and validity in general.

Lemma 22. ∀n . e :f,n [[θ, t]] if and only if e : [[θ, t]].

Lemma 23. ∀n . |=f,n ΣT if and only if |= ΣT .

Lemma 24. If ∀n . e,ΣT :f,n [[θ, t]] then e,ΣT : [[θ, t]].

Given Lemma 24, the soundness of e,ΣT ` θ ; t, stated as Theorem 2, can
be completed as follows:

Lemma 25 (soundness). If e,ΣT ` θ ; t then ∀n . e,ΣT :f,n [[θ, t]].

Proof. By induction on the e,ΣT ` θ ; t derivation, and by cases on the last
proof-rule applied. The cases are the following:

LIT See Lemma 26 in Section 4.3
VAR1 See Lemma 27 in Section 4.3
VAR2 See Lemma 28 in Section 4.3
VAR3 See Lemma 29 in Section 4.3
LET See Lemma 30 in Section 4.3
LETC See Lemma 31 in Section 4.3

CASE See Lemma 33 in Section 4.3

CASE ! See Lemma 34 in Section 4.3
APP See Lemma 36 in Section 4.3
REC The proof follows the same pattern as that of Lemma 6.

ut
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4.3 Proof schemes of the proof rules

LIT

Lemma 26. Given an arbitrary n, the lemma to be proved is:

c,ΣT :f,n [[θ,B]]

Proof. As the premise |=f,n ΣT is not used, then it suffices to prove c :f,n [[θ,B]].
We must prove ∀E h k h′ v η . P1 ∧P2 ∧P3 ∧P4→ P5. As c is a normal form, P5

is of the form consistent (B, η, c, h), which is true by Def. 13. So, the predicate
holds.

VAR1

Lemma 27. Given an arbitrary n, the lemma to be proved is:

x,ΣT :f,n [[θ, θ(x)]]

Proof. As the premise |=f,n ΣT is not used, then it suffices to prove x :f,n
[[θ, θ(x)]]. We must prove ∀E h k h′ v η . P1 ∧P2 ∧P3 ∧P4→ P5. In this case, P4

implies consistent (θ(x), η, E(x), h) which it is exactly P5.

VAR2

Lemma 28. Given an arbitrary n, the lemma to be proved is:

θ(x) = T ti
m@ ρ1 . . . ρl θ(r) = ρ′

x@r,ΣT :f,n [[θ, T ti
m@ ρ1 . . . ρl−1ρ

′]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove x@r :f,n
[[θ, T ti

m@ ρ1 . . . ρl−1ρ
′]]. We must prove ∀E h k h′ v η . P1 ∧ P2 ∧ P3 ∧ P4→ P5.

The steps are the following:

1. By P1 we know E[x 7→ p, r 7→ j] ` h, k, x@r ⇓ h′, k, p′, where j ≤ k and
(h′, p′) = copy(h, p, j).

2. The semantics of copy(h, p, j) is creating in region j an exact copy of the
recursive part of the DS2 pointed to by p, while the non-recursive parts of
p′ are shared with the corresponding non-recursive parts of p. This implies
that the constructors contained in corresponding cells are the same.

3. By P4 we know consistent (T ti
m@ ρj

l, η, p, h). We must show P5, i.e.
consistent (T ti

m@ ρ1 . . . ρl−1ρ
′, η, p′, h′).

4. We can prove consistency of the root cell pointed to by p′ and of all its recur-
sive descendants, by using the using a modified version µ′ of the instantiation
mapping µ used to guarantee consistent (T ti

m@ ρj
l, η, p, h). This modified

version µ′ maps the most external region type of the constructor to ρ′ instead
of to ρl. Also, by consistent (T ti

m@ ρj
l, η, p, h) we have ρ′ = θ(r) ∈ dom(η)

and E(r) = j = η(ρ′). The consistency of the non-recursive substructures is
trivially guaranteed by consistent (T ti

m@ ρj
l, η, p, h).

2 Data Structure.
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VAR3

Lemma 29. Given an arbitrary n, the lemma to be proved is:

x!, ΣT :f,n [[θ, θ(x)]]

Proof. As the premise |=f,n ΣM is not used, then it suffices to prove x! :f,n
[[θ, θ(x)]]. We must prove ∀E h k h′ v η . P1 ∧ P2 ∧ P3 ∧ P4→ P5. The steps are
the following:

1. By P1 we have E[x 7→ p] ` h1, k, x! ⇓ h2, k, q, where h1 = h ] [p 7→ w],
h2 = h ] [q 7→ w] and fresh(q).

2. By P4 we have consistent (θ(x), η, p, h1).
3. We must prove consistent (θ(x), η, q, h2). This follows because the cell w

assigned to q in h2 is a copy (in the same region) of the cell asigned to p
in h1. A non shown hypothesis on the coherence between the constructor
typing environment Γ and the constructor table RecPos mentioned in Def. 1
is needed. Also, some auxiliary lemmas are needed about the absence of
cyclic structures in the heap.

LET

Lemma 30. Given an arbitrary n, the lemma to be proved is:

e1, ΣT :f,n [[θ, t1]] e2, ΣT :f,n [[θ ] [x1 7→ t1], t2]]
let x1 = e1 in e2, ΣT :f,n [[θ, t2]]

Proof. Assuming |=f,n ΣT in the conclusion we must prove let x1 = e1 in e2 :f,n
[[θ, t2]], i.e. ∀E h k h′ v η .P1∧P2∧P3∧P4→ P5 for the let expression. Assuming
|=f,n ΣT converts the two premises into respectively e1 :f,n [[θ, t1]] and e2 :f,n
[[θ ] [x1 7→ t1], t2]]. The steps are the following:

1. P1 for let leads to P1 for e1. In effect, E ` h, k, let ⇓ h′′, k, v2 leads to
E ` h, k, e1 ⇓ h′, k, v1 and E ] [x1 7→ v1] ` h′, k, e2 ⇓ h′′, k, v2 by the
operational semantics. Let us call E2 to E ] [x1 7→ v1].

2. P2 for let leads to P2 for e1 because E and θ are the same.
3. P3 for let and P3 for e1 are the same property, i.e. admissible (η, k).
4. P4 for let and P4 for e1 are the same property, i.e. consistent (θ, η, E, h).
5. Then, by hypothesis, we can assume that P5 for e1, i.e. consistent(t, η, v1, h′),

holds.
6. P1 for let leads to P1 for e2, i.e. E2 ` h′, k, e2 ⇓ h′′, k, v2.
7. P2 for let leads to P2 for e2 because dom(E2) = dom(E) ] {x1} and

dom(θ2) = dom(θ) ] {x1}.
8. P3 for let and P3 for e2 are the same property, i.e. admissible (η, k).
9. P4 for let and P5 for e1 lead to P4 for e2. We must show that

consistent (θ2, η, E2, h
′) = consistent (θ, η, E, h′) ∧ consistent (t1, η, v1, h′)

holds. The second part is P5 for e1, and the first one comes from P4 for let,
i.e. consistent (θ, η, E, h), and the property of the semantics that, during
evaluation, a pointer either disappears from the heap domain, or it remains
pointing to the same cell, but it is never updated.
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10. Then, by hypothesis, we can assume that P5 for e2, i.e. consistent(t2, η, v2, h′′),
holds. This is the same property as P5 for let, so we are done.

LETC

Lemma 31. Given an arbitrary n, the lemma to be proved is:

Γ (C) = ti
n → ρ→ t wellT (ti

n
, ρ, t)

t′ = µ(t) e2, ΣT :f,n [[θ ] [x1 7→ t′] , t′′]] argP(µ(ti)
n
, µ(ρ), ain, r, θ)

let x1 = C ai
n @ r in e2, ΣT :f,n [[θ, t′′]]

Proof. Assuming |=f,n ΣT in the conclusion we must prove let x1 = C ai
n@r in e2 :f,n

[[θ, t′′]], i.e. ∀E h k h′ v η .P1∧P2∧P3∧P4→ P5 for the let expression. Assuming
|=f,n ΣT converts the fourth premise into e2 :f,n [[θ ] [x1 7→ t′] , t′′]]. The steps
are the following:

1. P1 for e2 follows from P1 for let, since

E ∪ [x1 7→ p] ` h ]
[
p 7→ (E(r), C E(ai)

n
)
]
, k, e2 ⇓ h′, k, v

where p is a pointer not occurring in dom(h).
2. P2 for e2 holds, since dom(θ) ⊆ dom(E) implies dom(θ)∪{x1} ⊆ dom(E)∪
{x1}.

3. P3 holds for e2 if it holds for let, since η and k are the same.
4. Let us denote the extended environments and heap by E+, θ+ and h+. We

must prove consistent (θ+, η, E+, h+). We need the following lemma:

Lemma 32. For all h and h′ such that h v h′ it holds that:

consistent (t, η, p, h)⇒ consistent (t, η, p, h′)

for all t, η and p provided closure (p, h) ∩ (dom(h′)− dom(h)) = ∅.

5. For every variable x distinct from x1 and from P4 for let it follows
consistent(θ(x), η, E(x), h), and by Lemma 32 it does consistent(θ(x), η, E(x), h+).

6. We prove consistency for x1, that is, consistent (t′, η, p, h+). Let us assume
Γ (C) = ti

n → ρ → T@ρm. By using the wellT assumption we get ρ = ρm
and hence we can ensure that µ(Γ (C)) has the form t′i

n
→ ρ′ → T@ρ′ for

some t′i
n

and ρ′. By the definition of argP we get θ(r) = ρ′. Since P4 holds
for let we get θ(r) ∈ dom(η) and hence ρ′ ∈ dom(η). Moreover, η(ρ′) =
η(θ(r)) = E(r), which corresponds exactly to the first component in h(p).
Finally we prove ∀i ∈ {1 . . . n}. consistent (t′i, η, E(ai), h+) as follows:

consistent (θ, η, E, h) {by P4 for let}
⇒ ∀i ∈ {1 . . . n} . consistent (θ(ai), η, E(ai), h)
⇒ ∀i ∈ {1 . . . n} . consistent (θ(ai), η, E(ai), h+) {by Lemma 32}
⇒ ∀i ∈ {1 . . . n} . consistent (t′i, η, E(ai), h+) {by argP}

7. By hypothesis we get P5 for e2, i.e. consistent (t′′, η, v, h′), which is exactly
the same property P5 for let.
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CASE

Lemma 33. Given an arbitrary n, the lemma to be proved is:

∀i. (Γ (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t))
∀i. ei, ΣT :f,n [[θ ] [xij → µ(tij)

ni ], t′]] θ(x) = µ(t)

case x of Ci xijni → ei
m
, ΣT :f,n [[θ, t′]]

Proof. Assuming |=f,n ΣT in the conclusion we must prove case x of Ci xijni → ei
m

:f,n
[[θ, t′]], i.e. ∀E h k h′ v η .P1∧P2∧P3∧P4→ P5 for the case expression. Assum-
ing |=f,n ΣT converts the second premise into ∀i . ei :f,n [[θ ] [xij → µ(tij)

ni ], t′]].
The steps are the following:

1. By P1 for case we get, for some r ∈ {1 . . . n}, the corresponding P1 for er:

E ∪ [xrj 7→ vj
nr ] ` h, k, er ⇓ h′, k, v

where E(x) = p and h(p) = (l, Cr vjnr ). In the following we shall show P2,
P3 and P4 for the expression er.

2. P2 for er follows trivally from dom(E) ⊆ dom(θ).
3. P3 for er is the same judgement as P3 for the whole case, so it also holds.
4. We denote the extended environments by θr and Er. We must check whether

consistent (θr, η, Er, h) holds. Let z ∈ dom(θr). If z ∈ dom(θ) consistency
follows trivially from P4 for case. If z /∈ dom(θ) then z = xrj for some
j ∈ {1 . . . nr}. In this case we prove consistent (µ(trj), η, vj , h) as follows:

consistent (θ, η, E, h) {P4 for case}
⇒ consistent (θ(x), η, E(x), h)
≡ consistent (µ(t), η, p, h) {assumptions in rule Case}
⇒ ∀k ∈ {1 . . . nr}. consistent (µ(trk), η, vk, h)
⇒ consistent (µ(trj), η, vj , h)

5. By hypothesis we get P5 for er, which is the same as P5 for case.

CASE!

Lemma 34. Given an arbitrary n, the lemma to be proved is:

∀i. (Γ (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t))
∀i. ei, ΣT :f,n [[θ ] [xij → µ(tij)

ni ], t′]] θ(x) = µ(t)

case! x of Ci xijni → ei
m
, ΣT :f,n [[θ, t′]]

Proof. The rule for case! is similar to that of case, and its proof follows a
similar pattern. The fact that a cell is removed before branching to the executed
alternative makes things more difficult. In particular, some auxiliary lemmas
are needed showing that creating dangling pointers does not destroy consistency
(remember that consistency is a property telling where the cells live in the heap,
so removing cells does not change the regions where the remaining cells live).
Also a non-shown additional premise about the coherence between the type of
constructors and the RecPos table is needed.
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APP We assume that g’s most general type is kept in the accumulated global
environment ΣT . We know that |=f,n ΣT and ΣT (g) = ti

n→ ρj
m→ tg is equiv-

alent to:

g xi
n @ rj

m = eg is g’s definition for some xi, rj , eg
θg = [xi 7→ ti

n
, rj 7→ ρj

m, self 7→ ρgself ] has been defined, and
eg, ΣT :f,n [[θg, tg]] has been proved

We need the following auxiliary

Lemma 35. If µ maps range (θ) to some other region types, and polymorphic
type variables of the types in θ to arbitrary types, and e :f,n [[θ, t]] holds, then
e :f,n [[µ(θ), µ(t)]] also holds.

Proof. Let us assume that e :f,n [[θ, t]] holds, and some E, h, k, he, ve, η satisfying
P1(f, n) to P4. We choose η′ such that η′ · µ = η.

Now, let E′, h′ be an environment and a heap such that dom(E′) = dom(E)
and consistent (µ(θ), η′, E′, h′) hold, and constructed in such a way that for all
xi, closure (E(xi), h) and closure (E′(xi), h′) are identical except for the sub-
values v in the first one satisfying consistent (t, η, v, h) with the type t being
a polymorphic type variable, which have been replaced in the second one by
arbitrary values v′ satisfying consistent (µ(t), η′, v′, h′). Formally, we require for
all x ∈ dom(E), instance (θ(x), η, E(x), h, µ(θ(x)), η′, E′(x), h′) to hold, where
we define:

instance (B, η, c, h,B, η′, c, h′) = true
instance (a, η, v, h, µ(a), η′, v′, h′) = consistent (µ(a), η′, v′, h′)
instance (T ti

m@ ρj
l, η, p, h, µ(T ti

m@ ρj
l), η′, p′, h′) =

∀j, C, vk, µ′ . h(p) = (j, C, vkn) ∧ (µ′(Γ (C)) = tk
n → ρl → T ti

m@ ρj
l)→ ∃vk .

(h′(p′) = (j, C, v′k
n
) ∧ ∀k ∈ {1..n} . instance (tk, η, vk, h, µ(tk), η′, v′k, h

′))

It is easy to show by structural induction on e that it must exist v′e, h
′
e such

that E′ ` h′, k, e ⇓ h′e, k, v′e and instance (t, η, ve, he, µ(t), η′, v′e, h
′
e) hold. So,

consistent (t, η, ve, he) implies consistent (µ(t), η′, v′e, h
′
e)

Then E′, h′, k, h′e, v
′
e, η
′ satisfy P1 to P5, and we are done. ut

Lemma 36. Given an arbitrary n, the lemma to be proved is:

ΣT (g) = ti
n→ ρj

m→ tg ρgself 6∈ regions (tg)
argP (µ(ti)

n
, µ(ρj)

m
, ai

n, r′j
m
, θ) t = µ(tg)

g ai
n@ r′j

m
, ΣT :f,n [[θ, t]]

Proof. We must prove that |=f,n ΣT implies ∀E h k h′ v η . P1(f, n)∧P2 ∧P3 ∧
P4→ P5 for the application expression. The steps are the following:

1. P1(f, n) for the application, i.e. E ` h, k, g ai
n@ r′j

m
⇓ h′, k, vg implies

Eg ` h, k + 1, eg ⇓ hg, k + 1, vg, where

Eg = [xi 7→ E(ai)
n
, rj 7→ E(r′j)

m
, self 7→ k + 1] and h′ = hg |k
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2. By hypothesis ΣT (g) = ti
n→ ρj

m→ tg we know eg, ΣT :f,n [[θg, tg]]. We
define θ′g = [xi 7→ µ′(ti)

n
, rj 7→ µ′(ρj)

n
, self 7→ µ′(ρgself )], where µ′ is the

identity for ρgself and identical to µ for the rest of region types. Then, θ′g =
µ′(θg).

3. By Lemma 35, we have eg :f,n [[µ′(θg), µ′(tg)]].
4. Let us assume that E, h, k, h′, vg, η satisfy P1 and P2 in the conclusion.

Obviously, P1 and P2 hold for Eg, h, k + 1, hg, vg in the premise. Let us
define η′ = η ] {ρgself 7→ k + 1}. Then P3, i.e. admissible (η′, k + 1), also
holds.

5. By consistent (θ, η, E, h), and argP (µ(ti)
n
, µ(ρj)

m
, ai

n, r′j
m
, θ), and ρgself 6∈

range (θ) we have consistent (µ′(θg), η′, Eg, h).
6. Then by eg :f,n [[µ′(θg), µ′(tg)]], P5 holds, i.e. consistent (µ′(tg), η′, vg, hg).
7. By ρgself 6∈ regions (tg), admissible (η′, k+1), and consistent (µ′(tg), η′, vg, hg)

we have that closure (vg, hg) does not have any cell in region k + 1. So,
consistent (µ(tg), η, vg, h′) holds and we are done.

5 Certificate generation

Given the above sets of already proved theorems, certificate generation for a given
program is a rather straightforward task. It consists of traversing the program
abstract syntax tree and producing the following information:

• A definition in Isabelle/HOL of the abstract syntax tree.
• A set of Isabelle/HOL definitions for the static objects inferred by the anal-

yses: sets of free variables, mark environments, typing environments, type
instantiation mappings, etc.

• A set of Isabelle/HOL proof scripts proving a lemma for each expression,
consisting of first checking the premises of the proof rule associated to the
syntactic form of the expression, and then applying the proof rule.

This strategy results in small certificates and short checking times as the total
amount of work is linear with program size. The heaviest part of the proof —the
database of proved proof rules— has been done in advance and is reused by each
certified program.

In Fig. 10 we show the Isabelle/HOL definitions for the elementary Core-
Safe expressions of the unshuffle function defined in Sec. 2, together with the
components L and Γ of the static assertions proving the absence of dangling
pointers for cell deallocation. They are arranged bottom-up, from simple to
compound expressions, because this is the order required by Isabelle/HOL for
applying the proof rules.

In Fig. 11 we show (this time top-down for a better understanding) the
components θ, t, and µ of the static assertions for the expressions of Fig. 10,
proving the absence of dangling pointers for region deallocation. We show also
the most general types of the constructors given by the global environment Γ .

The Core-Safe text for unshuffle consists of about 50 lines, while the certifi-
cate for it is about 1000 lines long, 300 of which are devoted to definitions. This
expansion factor of 20 is approximately the same for all the examples we have
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Expression L Γ

e1
def
= unshuffle x50 @ r2 r1 self {x50} [x50 : d, x34 : r]

e2
def
= x45 {x45} [x45 : s, x34 : r]

e3
def
= case x40 of (x45, x46)→ e2 {x40} [x40 : s, x34 : r]

e4
def
= x48 {x48} [x48 : s, x34 : r]

e5
def
= case x40 of (x47, x48)→ e4 {x40} [x40 : s, x34 : r]

e6
def
= x39 {x39} [x39 : s, x34 : r]

e7
def
= let x39 = (x38, x15) @ r3 in e6 {x15, x38} [x15 : s, x38 : s, x34 : r]

e8
def
= let x38 = x49 : x16 @ r1 in e7 {x15, x16, x49} [x15 : s, x16 : s, x49 : s, x34 : r]

e9
def
= let x16 = e5 in e8 {x15, x40, x49} [x15 : s, x40 : s, x49 : s, x34 : r]

e10
def
= let x15 = e3 in e9 {x40, x49} [x40 : s, x49 : s, x34 : r]

e11
def
= let x40 = e1 in e10 {x49, x50} [x49 : s, x50 : d, x34 : r]

e12
def
= x37 {x37} [x37 : s, x34 : r]

e13
def
= let x37 = (x36, x35) @ r3 in e12 {x35, x36} [x35 : s, x36 : s, x34 : r]

e14
def
= let x35 = [ ] @ r2 in e13 {x36} [x36 : s, x34 : r]

e15
def
= let x36 = [ ] @ r1 in e14 { } [x34 : r]

e16
def
= case! x34 of {x49 : x50 → e11; [ ]→ e15} {x34} [x34 : d]

Fig. 10. Isabelle/HOL definitions of Core-Safe expressions, free variables, and mark
environments for unshuffle

certified so far, so confirming that certificate size grows linearly with program
size. There is room for optimisation by defining an Isabelle/HOL tactic for each
proof rule. This reduces both the size and the checking time of the certificate.
We have implemented this idea in the region deallocation part.

The Isabelle/HOL proof scripts for the cell deallocation proof rules reach
8 000 lines, while the ones devoted to region deallocation proof rules tally up to
4 000 lines more. Together they represent about 1.5 person-year effort. All the
theories are available at http://dalila.sip.ucm.es/safe/certifdangling. There
is also an on-line version of the Safe compiler at http://dalila.sip.ucm.es/~safe
where users may remotely submit source files and browse all the generated in-
termediate files, including certificates.

6 Related work and conclusion

Introducing pointers in a Hoare-style assertion logic and using a proof assistant
for proving pointer programs goes back to the late seventies [9], where the Stan-
ford Pascal Program Verifier was used. A more recent reference is [5], using the
Jape proof editor. A formalisation of Bornat’s ideas in Isabelle/HOL was done by
Metha and Nipkow in [10], where they add a complete soundness proof. All these
systems are aimed at conducting interactive proofs, while ours is automatically
generated by the compiler.

A type system allowing safe heap destruction was studied in [1] and [2]. In
[11] we made a detailed comparison with those works showing that our system
accepts as safe some programs that their system rejects. Another difference is
that we have developed a type inference algorithm [12] which they lack.
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θ16
def
= [x34 : [a]@ρ4, r1 : ρ1, r2 : ρ2, r3 : ρ3, self : ρself ] t16

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ15
def
= θ16 t15

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ14
def
= θ15 + [x36 : [a]@ρ1] t14

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ13
def
= θ14 + [x35 : [a]@ρ2] t13

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ12
def
= θ13 + [x37 : ([a]@ρ1, [a]@ρ2)@ρ3] t12

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ11
def
= θ16 + [x49 : a, x50 : [a]@ρ4] t11

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ10
def
= θ11 + [x40 : ([a]@ρ2, [a]@ρ1)@ρself ] t10

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ9
def
= θ10 + [x15 : [a]@ρ2] t9

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ8
def
= θ9 + [x16 : [a]@ρ1] t8

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ7
def
= θ8 + [x38 : [a]@ρ1] t7

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ6
def
= θ7 + [x39 : ([a]@ρ1, [a]@ρ2)@ρ3] t6

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ5
def
= θ9 t5

def
= [a]@ρ1

θ4
def
= θ5 + [x47 : [a]@ρ2, x48 : [a]@ρ1] t4

def
= [a]@ρ1

θ3
def
= θ10 t3

def
= [a]@ρ2

θ2
def
= θ3 + [x45 : [a]@ρ2, x46 : [a]@ρ1] t2

def
= [a]@ρ2

θ1
def
= θ11 t1

def
= ([a]@ρ2, [a]@ρ1)@ρself

µ1
def
= {a 7→ a, ρ4 7→ ρ4, ρ1 7→ ρ2, ρ2 7→ ρ1, ρ3 7→ ρself } Γ ((,)) = a1 → a2 → ρ1 → (a1, a2)@ρ1

µ3
def
= {a1 7→ [a]@ρ2, a2 7→ [a]@ρ1, ρ1 7→ ρself } Γ ([ ]) = ρ1 → [a]@ρ1

µ7
def
= {a1 7→ [a]@ρ1, a2 7→ [a]@ρ2, ρ1 7→ ρ3} Γ (:) = a→ [a]@ρ1 → ρ1 → [a]@ρ1

µ8
def
= {a 7→ a, ρ1 7→ ρ1} µ5 = µ3

µ14
def
= {a 7→ a, ρ1 7→ ρ2} µ13 = µ7

µ16
def
= {a 7→ a, ρ1 7→ ρ4} µ15 = µ8

Fig. 11. Isabelle/HOL definitions of typing mappings, and types for unshuffle

Connecting the results of a static analysis with the generation of certificates
was done from the beginning of the PCC paradigm (see for instance [15]). A
more recent work is [3].

Our work is more closely related to [4], where a resource consumption prop-
erty obtained by a special type system developed in [8] is transformed into a
certificate. The compiler is able to infer a linear upper bound on heap consump-
tion and to certify this property by emitting an Isabelle/HOL script proving it.
Our static assertions have been inspired by their derived assertions, used also
there to connect static with dynamic properties. However, their heap is simpler
to deal with than ours since it essentially consists of a free list of cells, and the
only data type available is the list. We must also deal with regions and with any
user-defined data type. This results in our complex notion of consistency.

They conjecture a set of proof rules and claim they could be used to prove
the safety of destruction in the above mentioned [1] type system. But in fact
they do not provide an Isabelle/HOL or a manual proof of them. Our experience
in proving the proof rules of Sec. 3 is that it is a rather daunting task full of
unexpected difficulties which have forced us to frequently modify the proof rules.

Appart from the proofs themselves, our contribution has been defining the
appropriate functions, predicates and relations such as closure, recReach, live,
closed, consistent,. . . relating the static information with the dynamic one, such
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that the proof rules could be proved correct. We are not aware of any other
system automatically producing certificates on the absence of dangling pointers
property.
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