
An Inference Algorithm for Guaranteeing Safe
Destruction ?

Manuel Montenegro Ricardo Peña Clara Segura
montenegro@fdi.ucm.es {ricardo,csegura}@sip.ucm.es

Universidad Complutense de Madrid, Spain
C/ Prof. José Garćıa Santesmases s/n. 28040 Madrid.

Tel: 91 394 7646 / 7627 / 7625. Fax: 91 394 7529

Abstract. Safe is a first-order eager functional language with destruc-
tive pattern matching controlled by the programmer. A previously pre-
sented type system is used to avoid dangling pointers arising from the
inadequate usage of this facility. In this paper we present a type infer-
ence algorithm, prove its correctness w.r.t. the type system, describe its
implementation and give a number of successfully typed examples.
Keywords: memory management, type-based analysis, type inference.

1 Introduction

Safe1 [15, 11] was introduced as a research platform for investigating the suit-
ability of functional languages for programming small devices and embedded
systems with strict memory requirements. The final aim is to be able to infer
—at compile time— safe upper bounds on memory consumption for most Safe
programs. The compiler produces as target language Java bytecode, so that Safe
programs can be executed in most mobile devices and web navigators.

In most functional languages memory management is delegated to the run-
time system. Fresh heap memory is allocated during program evaluation as long
as there is enough free memory available. Garbage collection interrupts program
execution in order to copy or mark the live part of the heap so that the rest is
considered as free. This does not avoid memory exhaustion if not enough free
memory is recovered to continue execution. The main advantage of this approach
is that programmers do not have to bother about low level details concerning
memory management. Its main disadvantages are:

1. The time delay introduced by garbage collection may prevent the program
from providing an answer in a required reaction time.

2. Memory exhaustion may provoke unacceptable personal or economic damage
to program users.

3. It is difficult to predict at compile time when garbage collection will take
place during execution and consequently also to determine the lifetime of
data structures and to reason about memory consumption.

? Work supported by the projects TIN2008-06622-C03-01/TIN (STAMP), S-
0505/TIC/0407 (PROMESAS) and the MEC FPU grant AP2006-02154.

1 http://dalila.sip.ucm.es/safe

These reasons make this memory management unacceptable in small devices
where garbage collectors are a burden both in space and in service availability.
Programmers of such devices would like both to have more control over memory
and to be able to reason about the memory consumption of their programs. Some
works have been done in order to perform compile-time garbage collection [7–9],
or to detect safe destructive updates of data structures [6, 13]. However, these
implicit approaches do not avoid completely the need for a garbage collector.

Another possibility is to use heap regions, which are parts of the heap that
are dynamically allocated and deallocated. Many work has been done in order
to incorporate regions in functional languages. They were introduced by Tofte
and Talpin [17] in MLKit by means of a nested letregion construct inferred by
the compiler. The drawbacks of nested regions are well-known and they have
been discussed in many papers [4]. The main problem is that in practice data
structures do not have the nested lifetimes required by the stack-based region
discipline. In order to overcome this limitation several mechanisms have been
proposed. An extension of Tofte and Talpin’s work [3, 16] allows to reset all the
data structures in a region without deallocating the whole region. The AFL sys-
tem [1] inserts (as a result of an analysis) allocation and deallocation commands
separated from the letregion construct, which now only brings new regions into
scope. In [4] a comparison of these works is done. In both cases, although it is
not required to write in the program the memory commands, a deep knowledge
about the hidden mechanism is needed in order to optimize the memory usage.
In particular, it is required to write copy functions in the program which are
difficult to justify without knowing the annotations inferred by the compiler.

Another more explicit approach is to introduce a language construct to free
heap memory. Hofmann and Jost [5] introduce a match construct which destroys
individual constructor cells than can be reused by the memory management
system. This allows the programmer to control the memory consumed by her
program and to reason about it. However, this approach gives the programmer
the whole responsibility for reusing memory unless garbage collection is used.

Our functional language Safe is a semi-explicit approach to memory control
which combines regions and a deallocation construct but with a very low effort
from the programmer’s point of view.

Safe uses implicit regions to destroy garbage. In our language regions are
allocated/deallocated by following a stack discipline associated to function calls
and returns. Each function call allocates a local working region, which is deal-
located when the function returns. The compiler infers which data structures
may be allocated in this local region because they are not needed as part of the
result of the function. Region management does not add a significant runtime
overhead because its related operations run in constant time [14].

In order to overcome the problems related to nested regions, Safe also pro-
vides the programmer with a construct case! to deallocate individual cells of a
data structure, so that they can be reused by the memory management system.
Regions and explicit destruction are orthogonal mechanisms: we could have de-

struction without regions and the other way around. This combination of explicit
destruction and implicit regions is novel in the functional programming field.

Safe’s syntax is a first-order subset of Haskell extended with destructive pat-
tern matching. Consequently, programming in Safe is straightforward for Haskell
programmers. They only have to write a destructive pattern matching when they
want the cell to be reused (see the examples in Sec. 2). Programmer controlled
destruction may create dangling references as a side effect. For this reason, we
have defined a type system [11] guaranteeing that programmer destructions and
region management done by the system do not create dangling pointers in the
heap. A correct region inference algorithm was also described in [10].

The contribution of this paper is the description of an inference algorithm
for the type system presented in [11]. This task is not trivial as the rules in
the type system are non-deterministic and additionally some of them are not
syntax-directed. We provide a high level description of its implementation, give
some examples of its use, and also prove its correctness with respect to the type
system. Our algorithm has been fully implemented as a part of our Safe compiler
and has an average time cost near to Θ(n2) for each function definition, where
n is the size of its abstract syntax tree (see Sec. 4).

In Sec. 2 we summarize the language. The type system is presented in Sec. 3
and the corresponding inference algorithm is explained and proven correct in
Sec. 4. Section 5 shows some examples whose types have been successfully in-
ferred. Finally, Sec. 6 compares this work with related analyses in other languages
with memory management facilities.

2 Summary of Safe

Safe is a first-order polymorphic functional language with some facilities to man-
age memory. These are destructive pattern matching, copy and reuse of data
structures. We explain them with examples below.

Destructive pattern matching, denoted by ! or a case! expression, deallocates
the cell corresponding to the outermost constructor. In this case we say that
the data structure is condemned. As an example, we show an append function
destroying the first list’s spine, while keeping its elements in order to build the
result. Using recursion the recursive spine of the first list is deallocated:

concatD []! ys = ys

concatD (x:xs)! ys = x : concatD xs ys

This version of appending needs constant additional heap space (a cell is de-
stroyed and another one is created at each call), while the usual version needs
additional linear heap space. The fact that the first list is lost must be remem-
bered by the programmer as he will not be able to use it anymore in the program.
This is reflected in the type of the function: concatD :: [a]! -> [a] -> [a].

Data structures may also be copied by using a copy expression (denoted by
@). Only the recursive spine of the structure is copied, while the elements are
shared with the old one. This allows more control over sharing of data structures.
In the following function

prog → datai
n
; decj

m
; e

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x @ r {copy}
| x! {reuse}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe language definition

concat [] ys = ys @

concat (x:xs) ys = x : concat xs ys

the resulting list only shares the elements with the input lists. We could safely
destroy this list while preserving the original ones.

When a data structure is condemned by a destructive pattern matching, its
recursive children are also condemned in order to avoid dangling pointers (see
the type system of Sec. 3). This means that they cannot be returned as part
of the result of a function even when they are not explicitly destroyed. This
would force us to copy those data substructures if we want them as part of the
result, which would be costly. As an example, consider the following destructive
tail function: tailD (x:xs)! = xs@. The sublist xs is condemned so it cannot be
returned as result of tailD. We need to copy it if we want to keep safety. In
order to avoid this costly copies the language offers a safe reuse operator ! which
allows to turn a condemned data structure into a safe one so that it can be part
of the result of a function. The original reference is no longer accessible in order
to keep safety. In the previous example we would write tailD (x:xs)! = xs!.

We show another example whose type is successfully inferred. The following
function is the destructive version of insertion in a binary search tree:

insertD :: Int -> Tree Int! -> Tree Int

insertD x Empty! = Node Empty x Empty

insertD x (Node lt y rt)! | x == y = Node lt! y rt!

| x > y = Node lt! y (insertD x rt)

| x < y = Node (insertD x lt) y rt!

In the first guard the cell just destroyed must be built again since lt and rt are
condemned; they must be reused in order to be part of the result.

2.1 Core-Safe

Full-Safe is desugared into an intermediate language called Core-Safe where re-
gions are explicit. However, regions can be completely ignored in this paper, as
the inference algorithm explained here only concerns destruction. We just show
them for completeness. In Fig. 1 we show the syntax of Core-Safe. A program

τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region}

t → s {safe}
| d {condemned}

s → T s@ρ
| b

d → T t!@ρ

r → T s#@ρ
b → a {variable}

| B {basic}
tf → ti

n → ρj
l → T s@ρk

m {function}
| si

n → ρ→ T s@ρk
m {constructor}

σ → ∀a.σ
| ∀ρ.σ
| tf

Fig. 2. Type expressions

prog is a sequence of possibly recursive polymorphic data and function defini-
tions followed by a main expression e, using them, whose value is the program
result. The abbreviation xi

n stands for x1 · · ·xn. Destructive pattern matching is
desugared into case! expressions. Constructions are only allowed in let bindings,
and atoms are used in function applications, case/case! discriminant, copy and
reuse. Regions are explicit in constructor application and in the copy expression.
Function definitions have additional parameters rj l where data structures may
be built. In the right hand side expression only the rj and its local working
region may be used. As an example, let us consider the Core-Safe code of the
function concatD:

concatD zs ys @ r = case! zs of
[]→ ys
(x : xs)→ let x1 = concatD xs ys @ r in

let x2 = (x : x1)@r in x2

In this case the only regions involved are those of the input lists and the output
region r where the result is built. The local region of each concatD call remains
empty during its execution, since nothing is built there.

3 Safe Type System

In this section we briefly describe a polymorphic type system with algebraic data
types for programming in a safe way when using the destruction facilities offered
by the language (see [11] for more details). The syntax of type expressions is
shown in Fig. 2. As the language is first-order, we distinguish between functional,
tf , and non-functional types, t, r. Non-functional algebraic types may be safe
types s, condemned types d or in-danger types r. In-danger and condemned
types are respectively distinguished by a # or ! annotation. In-danger types
arise as an intermediate step during typing and are useful to control the side-
effects of the destructions. However, the types of functions only include either
safe or condemned types. The intended semantics of these types is the following:

– Safe types (s): A DS of this type can be read, copied or used to build
other DSs. They cannot be destroyed or reused by using the symbol !. The
predicate safe? tells us whether a type is safe.

– Condemned types (d): It is a DS directly involved in a case! action. Its
recursive descendants inherit the same condemned type. They cannot be used
to build other DSs, but they can be read or copied before being destroyed.
They can also be reused once. The predicate cdm? is true for them.

– In-danger types (r): This is a DS sharing a recursive descendant of a
condemned DS, so it can potentially contain dangling pointers. The predicate
danger? is true for these types. The predicate unsafe? is true for condemned
and in-danger types. Function danger(s) denotes the in-danger version of s.

We will write T@ρm instead of T s@ρm to abbreviate whenever the s are not
relevant. We shall even use T@ρ to highlight only the outermost region. A partial
order between types is defined: τ ≥ τ , T !@ρm ≥ T@ρm, and T#@ρm ≥ T@ρm.

Predicates region?(τ) and function?(τ) respectively indicate that τ is a region
type or a functional type.

Constructor types have one region argument ρ which coincides with the out-
ermost region variable of the resulting algebraic type T s@ρm, and reflect that
recursive sharing can happen only in the same region. As example:

[] : ∀a, ρ.ρ→ [a]@ρ
(:) : ∀a, ρ.a→ [a]@ρ→ ρ→ [a]@ρ
Empty : ∀a, ρ.ρ→ Tree a@ρ
Node : ∀a, ρ.Tree a@ρ→ a→ Tree a@ρ→ ρ→ Tree a@ρ

We assume that the types of the constructors are collected in an environment
Σ, easily built from the data type declarations. In functional types there may
be several region arguments ρj

l where data structures may be built.
In the type environments, Γ , we can find region type assignments r : ρ, vari-

able type assignments x : t, and polymorphic scheme assignments to functions
f : σ. In the rules we will also use gen(tf , Γ) and tf � σ to respectively denote
(standard) generalization of a monomorphic type and restricted instantiation of
a polymorphic type with safe types.

Several operators on environments are used in the rules. The usual operator
+ demands disjoint domains. Operators ⊗ and ⊕ are defined only if common
variables have the same type, which must be safe in the case of ⊕. If one of this
operators is not defined in a rule, we assume that the rule cannot be applied.
Operator �L is explained below. The predicate utype?(t, t′) is true when the
underlying Hindley-Milner types of t and t′ are the same.

In Fig. 3, the rules for typing expressions are shown. Function sharerec(x, e)
gives an upper approximation to the set of variables in scope in e which share
a recursive descendant of the DS starting at x. This set is computed by the
abstract interpretation based sharing analysis defined in [15].

An invariant of the type system tells that if a variable appears as condemned
in the typing environment, then those variables sharing a recursive substructure
appear also in the environment with unsafe types. This is necessary in order to
propagate information about the possibly damaged pointers.

There are rules for typing literals ([LIT]), and variables of several kinds
([VAR], [REGION] and [FUNCTION]). Notice that these are given a type un-
der the smallest typing environment. Rules [EXTS] and [EXTD] allow to extend
the typing environments according to the invariant mentioned above. Notation
type(y) represents the Hindley-Milner type inferred for variable y2.
2 Inference implementation first infers H-M types and then destruction annotations

Γ ` e : s x /∈ dom(Γ)
safe?(τ) ∨ danger?(τ) ∨ region?(τ) ∨ function?(τ)

Γ + [x : τ] ` e : s
[EXTS]

Γ ` e : s x /∈ dom(Γ)
R = sharerec(x, e)− {x}

ΓR = {y : danger(type(y))| y ∈ R}
Γ ⊗ ΓR + [x : d] ` e : s

[EXTD]

∅ ` c : B
[LIT]

[x : s] ` x : s
[VAR]

[r : ρ] ` r : ρ
[REGION]

tf � σ

[f : σ] ` f : tf
[FUNCTION]

R = sharerec(x, x!)− {x}
ΓR = {y : danger(type(y))| y ∈ R}

ΓR + [x : T !@ρ] ` x! : T@ρ
[REUSE]

Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s utype?(τ1, s1)

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET]

Γ1 ≥x@r [x : T@ρ′, r : ρ]

Γ1 ` x@r : T @ρ
[COPY]

Σ(C) = σ si
n → ρ→ T @ρm � σ Γ =

Ln
i=1[ai : si] + [r : ρ]

Γ ` C ai
n@r : T @ρm [CONS]

ti
n → ρj

l → T @ρm E σ Γ = [f : σ] +
Ll

j=1[rj : ρj] +
Ln

i=1[ai : ti]

R =
Sn

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cdm?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` f ai
n@ rj

l : T @ρm
[APP]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ→ T @ρ� σi

Γ ≥case x of Ci xij
ni→ei

n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (x))

∀i ∈ {1..n}.Γ + [xij : τij]
ni ` ei : s

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ→ T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
)− {x} ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R ∪ {x}, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij]
ni ` ei : s

ΓR = {y : danger(type(y)) | y ∈ R}

ΓR ⊗ Γ + [x : T !@ρ] ` case! x of Ci xij
ni → ei

n
: s

[CASE!]

Fig. 3. Type rules for expressions

Rule [COPY] allows any variable to be copied. This is expressed by extending
the previously defined partial order between types to environments.

Rule [LET] controls the intermediate data structures, that may be safe, con-
demned or in-danger in the main expression (τ covers the three cases). Operator
�L guarantees that: (1) Each variable y condemned or in-danger in e1 may not
be referenced in e2 (i.e. y /∈ fv(e2)), as it could be a dangling reference. (2)
Those variables marked as unsafe either in Γ1 or in Γ2 will keep those types in
the combined environment.

Rule [REUSE] establishes that in order to reuse a variable, it must have
a condemned type in the environment. Those variables sharing its recursive
descendants are given in-danger types in the environment.

Rule [APP] deals with function application. The use of the operator ⊕ avoids
a variable to be used in two or more different positions unless they are all safe
parameters. Otherwise undesired side-effects could happen. The set R collects all
the variables sharing a recursive substructure of a condemned parameter, which
are marked as in-danger in environment ΓR. Rule [CONS] is more restrictive as
only safe variables can be used to construct a DS.

Rule [CASE] allows its discriminant variable to be safe, in-danger, or con-
demned as it only reads the variable. Relation inh determines which types are
acceptable for pattern variables. Apart from the fact that the underlying types

are correct from the Hindley-Milner point of view: if the discriminant is safe, so
must be all the pattern variables; if it is in-danger, the pattern variables may be
safe or in-danger; if it is condemned, recursive pattern variables are in-danger
while non-recursive ones are safe.

In rule [CASE!] the discriminant is destroyed and consequently the text should
not try to reference it in the alternatives. The same happens to those variables
sharing a recursive substructure of x, as they may be corrupted. All those vari-
ables are added to the set R. Relation inh! determines the types inherited by
pattern variables: recursive ones are condemned while non-recursive ones are
safe. As recursive pattern variables inherit condemned types, the type environ-
ments for the alternatives contain all the variables sharing their recursive sub-
structures as in-danger. In particular x may appear with an in-danger type. In
order to type the whole expression we must change it to condemned.

4 Inference Algorithm

The typing rules presented in Sec. 3 allow in principle several correct typings
for a program. On the one hand, this is due to polymorphism and, on the other
hand, to the fact that it may assign more condemned and in-danger types that
those really needed. We are interested in minimal types in the sense of being as
much polymorphic as possible and having as few unsafe types as possible.

As an example, let us consider the following definition: f (x:xs) = xs@. The
type system can give f type [a]→ [a] but also the type [a]!→ [a]. Our inference
algorithm will return the first one.

Also, we are not interested in having mandatory explicit type declarations.
This is what the inference algorithm presented in this section achieves. It has two
different phases: a (modified) Hindley-Milner phase and an unsafety propagation
phase. The first one is rather straightforward with the added complication of
region inference, which is done at this stage. Its output consists of decorating
each applied occurrence of a variable and each defining occurrence of a function
symbol in the abstract syntax tree (AST) with its Hindley-Milner type. We will
not insist further in this phase here.

The second phase propagates unsafety information from the parts of the text
where condemned and in-danger types arise to the rest of the program text. As
the Hindley-Milner types are already available, the only additional information
needed for each variable is a mark telling whether it is a safe, in-danger or con-
demned one. Condemned and in-danger marks arise for instance in the [CASE!],
[REUSE], and [APP] typing rules while mandatory safe marks arise for instance
in rules for constructor applications. The algorithm generates minimal sets of
these marks in the program sites where they are mandatory and propagates this
information bottom-up in the AST looking for consistency of the marks. It may
happen that a safe mark is inferred for a variable in a program site and a con-
demned mark is inferred for the same variable in another site. This sometimes is
allowed by the type system —e.g. it is legal to read a variable in the auxiliary ex-
pression of a let and to destroy it in the main expression—, and disallowed some

c `inf (∅, ∅, ∅, ∅)
[LITI]

x `inf (∅, ∅, {x}, ∅)
[VARI]

x@r `inf (∅, ∅, ∅, {x})
[COPYI]

R = sharerec(x, x!)− {x} type(x) = T@ ρ

x! `inf ({x}, R, ∅, ∅)
[REUSEI]

∀i ∈ {1..n}.ai `inf (∅, ∅, Si, ∅)
C ai

n @r `inf (∅, ∅,
Sn

i=1 Si, ∅)
[CONSI]

∀i ∈ {1..n}.Di = {ai | i ∈ ID}
∀i ∈ {1..n}.Si = {ai | i ∈ IS}
∀i ∈ {1..n}.Ni = {ai | i ∈ IN}

`Sn
i=1Di

´
∩
`Sn

i=1 Si

´
= ∅`Sn

i=1Di

´
∩
`Sn

i=1Ni

´
= ∅

∀i, j ∈ {1..n} . i 6= j ⇒ Di ∩Dj = ∅

R ∩ (
Sn

i=1 Si) = ∅
R ∩ (

Sn
i=1Di) = ∅

R ∩ (
Sn

i=1Ni) = ∅
Σ ` f : (ID, ∅, IS , IN) R =

Sn
i=1

˘
sharerec(ai, f ai

n @rj
l)− {ai} | ai ∈ Di

¯
f ai

n @rj
l `inf

`Sn
i=1Di, R,

Sn
i=1 Si,

`Sn
i=1Ni

´
−
`Sn

i=1 Si

´´ [APPI]

e1 `inf (D1, R1, S1, N1) (D1 ∪R1) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) N = (N1 − (D2 ∪R2 ∪ S2)) ∪N2

(∅, ∅, N1 ∩ (D2 ∪R2 ∪ S2)) `check e1 (∅, ∅, (S1 ∪ {x1}) ∩N2) `check e2

let x1 = e1 in e2 `inf ((D1 ∪D2)− {x1}, R1 ∪ (R2 − (D1 ∪ {x1})),
((S1 −N2) ∪ S2)− ({x1} ∪D2 ∪R2), N − {x1})

[LETI]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}

type(x) =

8>><>>:
d if x ∈ D
r if x ∈ R
s if x ∈ S
n e. o. c.

def (tn
i=1(Di, Ri, Si, Ni, Pi))

∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

(D,R, S,N) = tn
i=1(Di, Ri, Si, Ni, Pi)

N ′ =


N if x ∈ D ∪R ∪ S
N ∪ {x} if x 6∈ D ∪R ∪ S

∀i ∈ {1..n} . ((D ∪D′i) ∩Ni, R ∪ ((R′i ∪R′′i ∪R′′′i)−Di), (S ∪ S′i) ∩Ni) `check ei

where D′i = ∅ R′i =


Reci if type(x) = d
∅ otherwise

S′i =

8>><>>:
Pi − Reci if type(x) = d
Pi −R′′i if type(x) = r
Pi if type(x) = s
∅ otherwise

R′′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni}
R′′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni} − (D ∩Ni)
R′′i ∩ (Si ∪ S′i) = ∅

case x of Ci xij
ni → ei

n `inf (D,R, S,N ′)
[CASEI]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
R = sharerec(x, case! x of Ci xij

ni → ei
n
)

L =
Sn

i=1 fv(ei)

def (tn
i=1(Di, Ri, Si, Ni, Pi))

∀i ∈ {1..n} . def (inh!(Di, Ri, Si, Pi,Reci))
R ∩ L = ∅ ∧ type(x) = T@ρ

(D,R′, S,N) = tn
i=1(Di, Ri, Si, Ni, Pi)

∀i ∈ {1..n} . ((D ∪ Reci) ∩Ni, R ∪R′ ∪ (R′i ∪R′′i)−Di, (S ∪ (Pi − Reci)) ∩Ni) `check ei

where R′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪ Reci) ∩Ni} − (Reci ∩Ni)
R′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ D ∩Ni} − (D ∩Ni)
R′i ∩ (Pi − Reci) = ∅ ∧ {y ∈ sharerec(z, ei) | z ∈ Reci} ∩ (Pi − Reci) = ∅

case! x of Ci xij
ni → ei

n `inf (D ∪ {x}, (R ∪R′)− {x}, S,N)
[CASE!I]

Fig. 4. Bottom-up inference rules

def (inh(n,Di, Ri, Si, Pi,Reci)) ≡ true
def (inh(s,Di, Ri, Si, Pi,Reci)) ≡ Pi ∩ (Di ∪Ri) = ∅
def (inh(r,Di, Ri, Si, Pi,Reci)) ≡ Pi ∩Di = ∅
def (inh(d,Di, Ri, Si, Pi,Reci)) ≡ Reci ∩ (Di ∪ Si) = ∅ ∧ (Pi − Reci) ∩ (Di ∪Ri) = ∅
def (inh!(Di, Ri, Si, Pi,Reci)) ≡ Reci ∩ (Ri ∪ Si) = ∅ ∧ (Pi − Reci) ∩ (Di ∪Ri) = ∅

Fig. 5. Predicates inh and inh!

def (tn
i=1(Di, Ri, Si, Ni, Pi)) ≡ ∀i, j ∈ {1..n} . i 6= j ⇒ (Di − Pi) ∩ (Rj − Pj) = ∅ ∧

(Di − Pi) ∩ (Sj − Pj) = ∅ ∧ (Ri − Pi) ∩ (Sj − Pj) = ∅

tn
i=1(Di, Ri, Si, Ni, Pi)

def
= (D,R, S,N) where


D =

Sn
i=1(Di − Pi) R =

Sn
i=1(Ri − Pi)

S =
Sn

i=1(Si − Pi) N =
`Sn

i=1(Ni − Pi)
´
− (D ∪R ∪ S)

Fig. 6. Least upper bound definitions

other times—e.g. in a case, it is not legal to have a safe type for a variable in
one alternative and a condemned or in-danger type for it in another alternative.

So, the algorithm has two working modes. In the bottom-up working mode,
it accumulates sets of marks for variables. In fact, it propagates bottom-up four
sets of variables (D,R, S,N) respectively meaning condemned, in-danger, safe,
and don’t-know variables in the corresponding expression. The fourth set arises
from the non-deterministic typing rules for [COPY] and [CASE] expressions.

The algorithm checks for consistency the information coming from two or
more different branches of the AST. This happens for instance in let and case
expressions. Even though the information is consistent it may be necessary to
propagate some information down the AST. For instance, x ∈ D1 and x ∈ N2 is
consistent in two different branches 1 and 2 of a case or a case!, but a D mark
for x must be propagated down the branch 2.

So, the algorithm consists of a single bottom-up traversal of the AST, oc-
casionally interrupted by top-down traversals when new information must be
propagated in one or more branches. If the propagation does not raise an error,
then the bottom-up phase is resumed.

In Fig. 4 we show the rules that drive the bottom-up working mode. A
judgement of the form e `inf (D,R, S,N) should be read as: from expression
e the 4-tuple (D,R, S,N) of marked variables is inferred. A straightforward
invariant of this set of rules is that the four sets inferred for each expression e
are pairwise disjoint and their union is a superset of e’s free variables. The set R
may contain variables in scope but not free in e. This is due to the use of the set
sharerec consisting of all variables in scope satisfying the sharing property. The
predicates and least upper bound appearing in the rules [CASEI] and [CASE!I]

are defined in Figs. 5 and 6.
In Fig. 7 we show the top-down checking rules. A judgement (D,R, S) `check

e should be understood that the sets of marked variables D,R, S are correctly
propagated down the expression e. One invariant in this case is that the three
sets are pairwise disjoint and that the union of D and S is contained in the fourth
set N inferred from the expression by the `inf rules. It can be seen that the `inf

rules may invoke the `check rules. However, the `check rules do not invoke the
`inf ones. The occurrences of `inf in the `check rules should be interpreted as a
remembering of the sets that were inferred in the bottom-up mode and that the
algorithm recorded in the AST. So there is no need to infer them again.

The rules [VARI], [COPYI] and [REUSEI] assign to the corresponding variable
a safe, don’t-know and condemned mark respectively. If a variable occurs as a
parameter of a data constructor then it gets a safe mark, as specified by the rule
[CONSI]. For the case of function application (rule [APPI]) we obtain from the
signature Σ the positions of the parameters which are known to be condemned

(∅, R, ∅) `check c
[LITC]

(∅, R, ∅) `check x
[VARC]

(∅, R, ∅) `check x!
[REUSEC]

({x}, R, ∅) `check x@r
[COPY1C]

(∅, R, ∅) `check x@r
[COPY2C]

(∅, R, {x}) `check x@r
[COPY3C]

(∅, R, ∅) `check C ai
n @r

[CONSC]

f ai
n @rj

l `inf (D,R, S,N)
∀ai ∈ Dp . (#j : 1 ≤ j ≤ n : ai = aj) = 1

(Dp, Rp, Sp) `check f ai
n@rj

l
[APPC]

e1 `inf (D1, R1, S1, N1) Rp ∩ S1 = ∅ ∧ ((Dp ∩N1) ∪Rp ∪R′′p) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) ∃z ∈ Dp ∩N2 . x1 ∈ sharerec(z, e2)⇒ x1 ∈ D2

(Dp ∩N1, Rp, Sp ∩N1) `check e1 (Dp ∩N2, Rp ∪ (R′p −D2), Sp ∩N2) `check e2
where R′p = {y ∈ ((Dp ∩N1) ∪D1) ∩ sharerec(z, e2) | z ∈ Dp ∩N2} − (N2 ∪ {x1})

R′′p = {y ∈ sharerec(z, e1) | z ∈ Dp ∩N1}
(Dp, Rp, Sp) `check let x1 = e1 in e2

[LETC]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
D =

Sn
i=1(Di − Pi)

type(x) =

8>><>>:
d if x ∈ Dp

r if x ∈ Rp

s if x ∈ Sp

n otherwise

x ∈ Dp ∪Rp ∪ Sp ⇒ ∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

∀i ∈ {1..n} . ((Dp ∪Dpi) ∩Ni, (Rp ∪Rpi ∪R′pi
∪R′′pi

)−Di, (Sp ∪ Spi) ∩Ni) `check ei

where Dpi = ∅ Rpi =


Reci if type(x) = d
∅ otherwise

Spi =

8>><>>:
Pi − Reci if type(x) = d
Pi −R′pi

if type(x) = r
Pi if type(x) = s
∅ otherwise

R′pi
= {y ∈ Pi ∩ sharerec(z, ei) | z ∈ Dp ∩Ni}

R′′pi
= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∩Ni)

R′pi
∩ (Si ∪ Spi) = ∅ ∧ Rp ∩ Si = ∅

(Dp, Rp, Sp) `check case x of Ci xij
ni → ei

n [CASEC]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
D =

Sn
i=1(Di − Pi)

∀i ∈ {1..n} . {y ∈ (Pi − Reci) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} = ∅
∀i ∈ {1..n} . (Dp ∩Ni, Rp ∪ (R′pi

−Di), Sp ∩Ni) `check ei

where R′pi
= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∪Ni)

(Dp, Rp, Sp) `check case! x of Ci xij
ni → ei

n [CASE!C]

Fig. 7. Top-down checking rules

(ID) and safe (IS). The remaining ones belong to the set IN of unknown posi-
tions. The actual parameters in the function application get the corresponding
mark. The disjointness conditions in the rule [APPI] prevent a variable from
occurring at two condemned positions, or at a safe and a condemned position
simultaneously. In rules [REUSEI] and [APPI] all variables belonging to the set R
are returned as in-danger, in order to preserve the invariant of the type system
mentioned above.

In rule [LETI], the results of the subexpressions e1 and e2 are checked by
means of the assumption (D1∪R1)∩fv(e2) = ∅, corresponding to the �L operator

of the type system. Moreover, if a variable gets a condemned, in-danger or safe
mark in e2 then it can’t be used destructively or become in danger in e1, because
of the operator �L. Hence this variable has to be propagated as safe through
e1 by means of a `check . According to the type system, the variables belonging
to R2 could also be propagated through e1 with an unsafe mark. However, the
inference algorithm resolves the non-determinism of the type system by assigning
a maximal number of safe marks.

To infer the four sets for a case/case! expression (rules [CASEI] and [CASE!I])
we have to infer the result from each alternative. The function RecPos returns
the recursive parameter positions of a given data constructor. The operator t
ensures the consistency of the marks inferred for a variable: if a variable gets
two different marks in two distinct branches then at least one of them must be
a don’t-know mark. On the other hand, the inherited types of the pattern vari-
ables in each branch are checked via the inh and inh! predicates. A mark may
be propagated top-down through the AST (by means of `check rules) in one of
the following cases:

1. A variable gets a don’t-know mark in a branch ej and a different mark in a
branch ek. The mark obtained from ek must be propagated through ej .

2. A pattern variable gets a don’t-know mark in a branch ej . Its inherited type
must be propagated through ej . That is what the sets D′i, R

′
i and S′i of the

rule [CASEI] achieve.
3. A variable belongs to R′′i or R′′′i (see below).

There exists an invariant in the `check rules (see below) which specifies the
following: if a variable x is propagated top-down with a condemned mark, those
variables sharing a recursive substructure with x either have been inferred pre-
viously as condemned (via the `inf rules) or have been propagated with an
unsafe (i.e. in-danger or condemned) mark as well. The sets R′′i and R′′′i occur
in the [CASEI] and [CASE!I] rules in order to preserve this invariant. The set R′′i
contains the pattern variables which may share a recursive substructure with
some condemned variable being propagated top-down through the ei. The set
R′′′i contains those variables that do not belong to any of the (Di, Ri, Si, Ni) sets
corresponding to the i-th case branch, but they share a recursive descendant
of a variable being propagated top-down through this branch as condemned. In
[12] a few explanatory examples on these sets are given.

The `check rules capture the same verifications as the `inf rules, but in a
top-down fashion. See [12] for more details about R′p in [LETC].

The algorithm is modular in the sense that each function body is indepen-
dently inferred. The result is reflected in the function type and this type is
available for typing the remaining functions. For typing a recursive function a
fixpoint computation is needed. In the initial environment a don’t-know mark is
assigned to each formal argument. After each iteration, some don’t-know marks
may have turned into condemned, in-danger or safe marks. This procedure con-
tinues until the mark for each argument stabilises. If the fixpoint assigns an
in-danger mark to an argument, this is rejected as a bad typing. Otherwise, if

any don’t-know mark remains, this is forced to be a safe mark by the algorithm
and propagated down the whole function body by using the `check rules once
more. As a consequence, if the algorithm succeeds, every variable inferred as
don’t-know during the bottom-up traversal will eventually get a d, r or s mark
(see [12] for a detailed proof).

If n is the size of the AST for a function body and m is the number of
its formal arguments, the algorithm runs in Θ(mn3) in the worst case. This
corresponds to m iterations of the fixpoint and a top-down traversal at each
intermediate expression. However in most cases it is near to Θ(n2), corresponding
to a single bottom-up traversal and two fixpoint iterations.

4.1 Correctness of the Inference Algorithm

Lemma 1. Let us assume that during the inference algorithm we have e `inf

(D,R, S,N) and (D′, R′, S′) `check e for an expression e. Then

1. D,R, S and N are pairwise disjoint.
2. D ∪ S ∪N ⊆ FV (e), R ⊆ scope(e) and D ∪R ∪ S ∪N ⊇ FV (e).
3.

⋃
z∈D sharerec(z, e) ⊆ D ∪R.

4. D′, R′ and S′ are pairwise disjoint.
5. D′ ∪ S′ ⊆ N , R′ ⊆ scope(e).
6.

⋃
z∈D′ sharerec(z, e) ⊆ D′ ∪R′ ∪D.

7. R′ ∩ S = ∅, R′ ∩D = ∅.

Proof. By induction on the corresponding `inf and `check derivations [12]. ut

A single subexpression e may suffer more than one `check during the inference
algorithm but always with different variables. This is due to the fact, not reflected
in the rules, that whenever some variables in the set N inferred for e are forced
to get a mark different from n, the decoration in the AST is changed to the new
marks. More precisely, if e `inf (D,R, S,N) and (D′, R′, S′) `check e, then the
decoration is changed to (D∪D′, R∪R′, S∪S′, N − (D′∪R′∪S′)). So, the next
`check for expression e will get a smaller set N − (D′ ∪ R′ ∪ S′) of don’t-know
variables and, by Lemma 1, only those variables can be forced to change its
mark. As a corollary, the mark for a variable can change during the algorithm
from n to d, r or s, but no other transitions between marks are possible.

Let (D′, R′, S′) `∗check e denote the accumulation of all the `check involving
e during the algorithm and let D′, R′ and S′ represent the union of respectively
all the marks d, r and s forced in these calls to `check . If e `inf (D,R, S,N)
represent the sets inferred during the bottom-up mode, then D′ ∪ R′ ∪ S′ ⊇ N
must hold, since every variable eventually gets a mark d, r or s.

The next theorem uses the convention Γ (x) = s (respectively, r or d) to
indicate that x has a safe type (respectively, an in danger or a condemned type)
without worrying about which precise type it has.

Theorem 1. Let us assume that the function declaration f xi
n @ rj

l = e has
been successfully typed by the inference algorithm and let e′ be any subexpression

of e for which the algorithm has got e′ `inf (D,R, S,N) and (D′, R′, S′) `∗check e′.
Then there exists a safe type s′ and a well-formed type environment Γ such that
Γ ` e′ : s′, and ∀x ∈ scope(e′):

[x ∈ D ∪D′ ↔ Γ (x) = d] ∧ [x ∈ S ∪ S′ ↔ Γ (x) = s] ∧ [x ∈ R ∪R′ ↔ Γ (x) = r]

Proof. By structural induction on e′ [12]. ut

5 Small Examples

In this section we show some examples. Firstly, we review the example of ap-
pending two lists (Core-Safe code of concatD in Sec. 2). We shall start with the
recursive call to concatD . Initially all parameter positions are marked as don’t-
know and hence the actual arguments xs and ys belong to set N . The variables
x and x1 get an s mark since they are used to build a DS. In addition to this,
x2 is returned as the function’s result, so it gets and s mark. Joining the results
of both auxiliary and main expressions in let we get the following sets: D = ∅,
R = ∅, S = {x}, N = {xs, ys}. With respect to the case! branch guarded by [],
the variable ys gets a safe mark (rule [VARI]). Information of both alternatives
in case! is gathered as follows:

([] guard) D1 = ∅ R1 = ∅ S1 = {ys} N1 = ∅ P1 = ∅ Rec1 = ∅
(x : xs guard) D2 = ∅ R2 = ∅ S2 = {x} N2 = {xs, ys} P2 = {x, xs} Rec2 = {xs}

Since ys has a safe mark in the branch guarded by [] and a don’t-know mark
in the branch guarded by (x : xs), the safe mark has to be propagated through
the latter by means of the `check rules. Moreover, the pattern variable xs is also
propagated as condemned. The first bottom-up traversal of the AST terminates
with the following result: D = {zs}, R = ∅, S = {ys} and N = ∅. Consequently
the type signature of concatD is updated: the first position is now condemned and
the second one is safe. Another bottom-up traversal is needed, as the fixpoint
has not been reached yet. Now variables xs and ys belong to sets D and S
respectively in the recursive call to concatD . Variable zs is also marked as in-
danger, since it shares a recursive structure with xs. However, neither xs nor zs
occur free in the main expression of let and hence the rule [LETI] may still be
applied. At the end of this iteration a fixpoint has been reached. The final type
signature for concatD without regions is ∀a.[a]!→ [a]→ [a].

The type of function insertD , defined in Sec. 2, is Int → Tree Int!→ Tree Int.
Other successfully typed destructive functions (whose code is not shown) are the
following for splitting a list and for inserting an element in an ordered list:

splitD :: ∀a.Int → [a]!→ ([a], [a]) insertLD :: ∀a.[a]!→ a→ [a]

6 Related Work

Our safety type system has some characteristics of linear types (see [18] as a
basic reference). A number of variants of linear types have been developed for

years for coping with the related problems of achieving safe updates in place
in functional languages [13] or detecting program sites where values could be
safely deallocated [9]. The work closest to Safe’s type system is [2], where the
authors present a type system for a language which explicitly reuses heap cells.
They prove that well-typed programs can be safely translated to an imperative
language with an explicit deallocation/reusing mechanism. We summarise here
the differences and similarities with our work.

In the first place, there are non-essential differences such as: (1) They only
admit algorithms running in constant heap space, i.e. for each allocation there
must exist a previous deallocation. (2) They use at the source level an explicit
parameter d representing a pointer to the cell being reused. (3) They distinguish
two different cartesian products depending on whether there is sharing or not
between the tuple components.

Also, there are the following obvious similarities: (1) They allow several ac-
cesses to the same variable, provided that only the last one is destructive. (2)
They express the nature of arguments (destructive, read-only and shared, or
just read-only) in the function type. (3) They need information about sharing
between the variables and the final result of expressions.

But, in our view, the following more essential differences makes our language
and type system more powerful than theirs:

1. Their uses 2 and 3 (read-only and shared, or just read-only) could be roughly
assimilated to our use s (read-only), and their use 1 (destructive), to our use
d (condemned). We add a third use r (in-danger) arising from a sharing
analysis based on abstract interpretation. This use allows us to know more
precisely which variables are in danger when some other is destroyed.

2. Their uses form a total order 1 < 2 < 3. A type assumption can always
be worsened without destroying the well-typedness. Our marks s, r, d do not
form a total order. Only in some expressions (case and COPY) we allow
the partial order s ≤ r and s ≤ d. It is not clear whether that order gives
more power to the system or not. In principle it will allow different uses of
a variable in different branches of a conditional being the use of the whole
conditional the worst one. For the moment our system does not allow this.

3. Their system forbids non-linear applications such as f(x, x). We allow them
for s-type arguments.

4. Our typing rules for let x1 = e1 in e2 allow more combinations than theirs.
Let i ∈ {1, 2, 3} the use assigned to x1, be j the use of a variable z in e1 and
be k the use of the same variable z in e2. We allow the following combinations
(i, j, k) that they forbid: (1, 2, 2), (1, 2, 3) and (2, 2, 2). The deep reason is
our more precise sharing information and the new in-danger type. Examples
of Safe programs using respectively the combinations (1, 2, 3) and (1, 2, 2)
are the following, where x and z get an s-type in our type system:

let x = z : [] in case! x of . . . case z of . . .
let x = z : [] in case! x of . . . z

Both take profit from the fact that z is not a recursive descendant of x.

Summarising our contribution, we have developed an inference algorithm for
safe destruction which improves on previous attempts on this area, has a low
cost, and can be applied to other functional languages smilar to Safe (i.e. eager
and first-order). In particular, Hofmann and Jost’s language [5] could benefit
from the work described here.

References

1. A. Aiken, M. Fähndrich, and R. Levien. Better Static Memory Management:
Improving Region-based Analysis of Higher-order Languages. In PLDI’95, pages
174–185. ACM, 1995.

2. D. Aspinall, M. Hofmann, and M. Konečný. A Type System with Usage Aspects.
Journal of Functional Programming, 18(2):141–178, 2008.

3. L. Birkedal, M. Tofte, and M. Vejlstrup. From Region Inference to von Neumann
Machines via Region Representation Inference. In POPL’96, pages 171–183. ACM,
1996.

4. F. Henglein, H. Makholm, and H. Niss. A Direct Approach to Control-flow Sensitive
Region-based Memory Management. In PPDP’01, pages 175–186. ACM, 2001.

5. M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-order
Functional Programs. In POPL’03, pages 185–197. ACM, 2003.

6. P. Hudak. A Semantic Model of Reference Counting and its Abstraction. In Lisp
and Functional Programming Conference, pages 351–363. ACM Press, 1986.

7. K. Inoue, H. Seki, and H. Yagi. Analysis of Functional Programs to Detect Run-
Time Garbage Cells. ACM TOPLAS, 10(4):555–578, 1988.

8. S. B. Jones and D. Le Metayer. Compile Time Garbage Collection by Sharing
Analysis. In FPCA’89, pages 54–74. ACM Press, 1989.

9. N. Kobayashi. Quasi-linear Types. In POPL’99, pages 29–42. ACM Press, 1999.
10. M. Montenegro, R. Peña, and C. Segura. A Simple Region Inference Algorithm

for a First-Order Functional Language. In TFP’08, pages 194–208, 2008.
11. M. Montenegro, R. Peña, and C. Segura. A Type System for Safe Memory Man-

agement and its Proof of Correctness. In PPDP’08, pages 152–162. ACM, 2008.
12. M. Montenegro, R. Peña, and C. Segura. An Inference Algorithm for Guarantee-

ing Safe Destruction (extended version). Technical report, SIC-8-08. UCM, 2008.
http://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-8-08.pdf.

13. M. Odersky. Observers for Linear Types. In ESOP’92, LNCS 582, pages 390–407.
Springer-Verlag, 1992.

14. R. Peña and C. Segura. Formally Deriving a Compiler for SAFE. In IFL’06, pages
429–446, 2006.

15. R. Peña, C. Segura, and M. Montenegro. A Sharing Analysis for Safe. In Trends
in Functional Programming (Vol. 7), pages 109–128. Intellect, 2007.

16. M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, and P. Sestoft.
Programming with regions in the MLKit (revised for version 4.3.0). Technical
report, IT University of Copenhagen, Denmark, 2006.

17. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

18. P. Wadler. Linear types can change the world! In IFIP TC 2 Working Conference
on Programming Concepts and Methods, pages 561–581. North Holland, 1990.

