
Rewriting Techniques for Analysing Termination

and Complexity Bounds of �afe Programs�

Salvador Lucas Ricardo Peña

Sistemas Informáticos y Computación Sistemas Informáticos y Computación
Universidad Politécnica de Valencia Universidad Complutense de Madrid

Camino de Vera s/n, 46022 Prof. J. Garćıa Santesmases s/n, 28040
slucas@dsic.upv.es ricardo@sip.ucm.es

Abstract. �afe is a first-order eager functional language with facilities
for programmer-controlled destruction and copying of data structures
and is intended for compile-time analysis of memory consumption. In
�afe, heap and stack memory consumption depends on the length of
recursive calls chains. Ensuring termination of �afe programs (or of par-
ticular function calls) is therefore essential to implement these features.
Furthermore, being able to give bounds to the chain length required by
such terminating calls becomes essential in computing space bounds.
In this paper, we investigate how to analyze termination of �afe pro-
grams by using standard term rewriting techniques, i.e., by transform-
ing �afe programs into term rewriting systems whose termination can
be automatically analysed by means of existing tools. Furthermore, we
investigate how to use proofs of termination which combine the depen-
dency pairs approach with polynomial interpretations to obtain suitable
bounds to the length of chains of recursive calls in �afe programs.
Keywords: Termination, Term Rewriting Systems, Space complexity.

1 Introduction

�afe [21, 18] is a first-order eager functional language with facilities for program-
mer controlled destruction and copying of data structures, intended for compile
time analysis of memory consumption. In �afe, the allocation and deallocation
of compiler-defined memory regions for data structures are associated with func-
tion application. So, heap memory consumption depends both on the number
of recursive calls and on the length of calls chains. In order to compute space
bounds for the heap it is essential to compute bounds to these figures and, in
turn, to previously ensure termination of such functions.
In this paper we investigate how to use rewriting techniques for proving ter-

mination of �afe programs and, at the same time, giving appropriate bounds to
the number of recursive calls as a first step to compute space bounds. In par-
ticular, we introduce a transformation for proving termination of �afe programs
by translating them into Term Rewriting Systems (TRS).

� Salvador Lucas was partially supported by the EU (FEDER) and the Spanish MEC
grant TIN 2007-68093-C02-02. Ricardo Peña was partially supported by the Madrid
Region Government under grant S-0505/TIC/0407 (PROMESAS).

43

Both termination and complexity bounds of programs have been investigated
in the abstract framework of Term Rewriting Systems [3, 20]. A suitable way to
prove termination of programs written in declarative programming languages like
Haskell or Maude is translating them into (variants of) term rewriting systems
and then using techniques and tools for proving termination of rewriting. See
[9, 10] for recent proposals of concrete procedures and tools which apply to the
aforementioned programming languages.
Polynomial interpretations have been extensively investigated as suitable

tools to address different issues in term rewriting [3]. For instance, the limits of
polynomial interpretations regarding their ability to prove termination of rewrite
systems were first investigated in [12] by considering the derivational complexity
of polynomially terminating TRSs, i.e., the upper bound of the lengths of arbi-
trary (but finite) derivations issued from a given term (of size n) in a terminating
TRS. Hofbauer has shown that the derivational complexity of a terminating TRS
can be better approximated if polynomial interpretations over the reals (instead
of the more traditional polynomial interpretations over the naturals) are used to
prove termination of the TRS [11].
Complexity analysis of first order functional programs (or TRSs) has also

been successfully addressed by using polynomial interpretations [4–6]. The aim
of these papers is to classify TRSs in different (time or space) complexity classes
according to the (least) kind of polynomial interpretation which is (weakly) com-
patible with the TRS. Recent approaches [5] combine the use of path orderings
[8] to ensure both termination together with suitable polynomial interpreta-
tions for giving bounds to the length of the rewrite sequences (which are known
finite due to the termination proof). Polynomials which are used in this set-
ting are weakly monotone, i.e., if x ≥ y then P (. . . , x, . . .) ≥ P (. . . , y, . . .).
This is in contrast with the use of polynomials in proofs of polynomial ter-
mination [15], where monotony is required (i.e., whenever x > y, we have
P (. . . , x, . . .) > P (. . . , y, . . .)). However, when using polynomials in proofs of
termination using the dependency pair approach [1], monotony is not longer
necessary and we can use weakly monotone polynomials again [7, 17]. The real
advantage is that, we can now avoid the use of path orderings to ensure termi-
nation: with the same polynomial interpretation we can both prove termination
and, as we show in this paper, obtain suitable complexity bounds. Furthermore,
since the limits of using path orderings to prove termination of rewrite systems
are well-known, and they obviously restrict the variety of programs they can
deal with, we are able to improve on the current techniques.

2 Preliminaries

A binary relation R on a set A is terminating (or well-founded) if there is no
infinite sequence a1 R a2 R a3 · · ·. Throughout the paper, X denotes a count-
able set of variables and F denotes a signature, i.e., a set of function symbols
{f, g, . . .}, each having a fixed arity given by a mapping ar : F → N. The set
of terms built from F and X is T (F ,X). Positions p, q, . . . are represented by
chains of positive natural numbers used to address subterms of t. Positions are
ordered by the standard prefix ordering ≤. The set of positions of a term t is

44

Pos(t). The subterm at position p of t is denoted as t|p and t[s]p is the term
t with the subterm at position p replaced by s. A context is a term C[] with
a ‘hole’ (formally, a fresh constant symbol). A rewrite rule is an ordered pair
(l, r), written l → r, with l, r ∈ T (F ,X), l �∈ X and Var(r) ⊆ Var(l). A TRS
is a pair R = (F , R) where R is a set of rewrite rules. Given a TRS R, a term
t ∈ T (F ,X) rewrites to s (at position p ∈ Pos(t)), written t→R s, if there is a
position p ∈ Pos(t), a substitution σ, and a rule l→ r in R such that t|p = σ(l)
and s = t[σ(r)]p. The term t|p is called a redex of t. A term t ∈ T (F ,X) inner-

most rewrites to s, written t
i
→R s if t →R s at position p and t|p contains no

redex. A TRS R is (innermost) terminating if →R (resp.
i
→R) is terminating.

A conditional, oriented TRS (CTRS), has rules of the form l → r ⇐ C,
where C = s1 → t1, . . . , sk → tk is called an oriented condition. Given a CTRS
R, we let Ru be the set of rules Ru = {l → r | l → r ⇐ C ∈ R}. A CTRS
which satisfies Var(r) ⊆ Var(l) ∪ Var(C) for every conditional rule is called a
3-CTRS. It is deterministic if the variables of the right-hand side ti of every
condition si → ti of C are introduced before they are used in the left-hand side
sj of a subsequent condition sj → tj . A deterministic 3-CTRS R is syntactically
deterministic if, for every rule l → r ⇐ s1 → t1, . . . , sk → tk in R every term ti
is a constructor term or a ground normal form with respect to Ru.

3 The �afe language

�afe was introduced as a research platform to investigate analyses related to
sharing of data structures and to memory consumption. Currently it is equipped
with a type system guaranteeing that, in spite of the memory destruction facili-
ties of the language, all well-typed programs will be free of dangling pointers at
runtime. More information can be found at [21, 18] and [19].
There are two versions of �afe: full-Safe, in which programmers are supposed

to write their programs, and Core-Safe (the compiler transformed version of
full-Safe), in which all program analyses are defined.
Full-�afe syntax is close to Haskell’s. The main differences are that �afe is

eager and first-order. �afe admits two basic types (booleans and integers), alge-
braic datatypes (introduced by the usual data declarations), and the function
definitions by means of conditional equations with the usual facilitites for pat-
tern matching, use of let and case expressions, and where clauses. No recursion
is possible inside let expressions and where clauses and no local function def-
inition can be given. Additionally, the programmer can specify a destructive
pattern matching operation by using symbol ! after the pattern. The intended
meaning is the destruction of the cell associated with the constructor symbol,
thus allowing its reuse later. A �afe program consists of a sequence of (possibly
recursive) function definitions together with a main expression.
The merge-sort program of Figure 1 uses a constant heap space to implement

the sorting of the list. This is a consequence of the destructive constant-space
versions splitD and mergeD of the funtions which respectively split a list into two
pieces and merge two sorted lists. The types shown in the program are inferred
by the compiler. A symbol ! in a type signature indicates that the corresponding

45

splitD :: ∀a, ρ.Int → [a]!@ρ → ρ → ([a]@ρ, [a]@ρ)@ρ

splitD 0 xs! = ([], xs!)
splitD n []! = ([], [])
splitD n (x : xs)! = (x : xs1, xs2)

where (xs1, xs2) = splitD (n− 1) xs

mergeD :: ∀a, ρ.[a]!@ρ → [a]!@ρ → ρ → [a]@ρ

mergeD []! ys! = ys!
mergeD xs! []! = xs!
mergeD (x : xs)! (y : ys)!

| x ≤ y = x : mergeD xs (y : ys!)
| otherwise = y : mergeD (x : xs!) ys

msortD :: ∀a, ρ.[a]!@ρ → ρ → [a]@ρ

msortD xs

| n ≤ 1 = xs!
| otherwise = mergeD (msortD xs1) (msortD xs2)
where (xs1, xs2) = splitD (n ‘div ‘ 2) xs

n = length xs

Fig. 1. Mergesort program in full-�afe, using constant heap space

data structure is destroyed by the function. A symbol ! in a righthand side
variable expresses that a potentially condemned variable is reused. Variables ρ
are polymorphic and indicate the region where the data structure ‘lives’.

3.1 Core-�afe syntax

The �afe compiler first performs a region inference which determines which
region has to be used for each construction. A function has one or more associated
memory regions available for building constructions: a working region which
can be addressed by using the reserved identifier self and a possibly empty
collection of output regions which are passed as arguments. For this reason,
the low-level syntax, called Core-�afe requires additional region arguments both
in some function calls and in expressions such as (C xi

n)@r, which denotes
a construction, and x@r, which denotes the copy of the structure with root
labeled x into region r. The compiler also flattens the expressions in such a
way that applications of functions are made only to constants or to variables.
Also, where clauses are translated into let expressions, and boolean conditions
in the guards are translated into case expressions. Bound variables are also
conveniently renamed to avoid name clashes.

The syntax of Core-�afe is shown in Figure 2. We use the notation xi
n to

abbreviate the sequence x1 . . . xn.

Note that constructions can only occur on binding expressions (be) inside let
expressions. The normal form of an expression is either a basic constant c, or
a variable pointing to a construction. We assume the existence of a heap and
of a runtime environment, respectively mapping pointers to constructions and
program variables to heap pointers. The complete operational semantics can be
found in [21].

Function splitD defined in the �afe program of Figure 1 is translated into
Core-�afe definition shown in Figure 3.

46

prog → dec1; . . . ; decn; e

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x@r {copy}
| x! {reuse}

| f ai
n @ rj

l {function application}
| let x1 = be in e {non-recursive, monomorphic}

| case x of alt i
n
{read-only case}

| case! x of alt i
n
{destructive case}

alt → C xi
n → e

be → C ai
n @ r {constructor application}

| e

Fig. 2. Core-Safe language definition

splitD n xs @ r1 r2 r3 = case n of

0 -> let nil1 = []@r1 in let res1 = (nil1,xs!)@r3 in res1

_ -> case! xs of

[] -> let nil1 = []@r1 in let nil2 = []@r2 in

let res2 = (nil1,nil2)@r3 in res2

: x xx -> let z = let n’ = n-1 in splitD n’ xx @ r1 r2 r3 in

let xs1 = case z of (ys1,ys2) -> ys1 in

let xs2 = case z of (zs1,zs2) -> zs2 in

let xs1’ = (: x xs1)@r1 in

let res3 = (xs1’, xs2)@r3 in res3

Fig. 3. Core-�afe version of splitD

4 Transformation from Core-�afe to CTRS

In this section we describe a transformation from Core-�afe programs to condi-
tional term rewriting systems (CTRS). For the purpose of the transformation, we
can even simplify the Core-�afe syntax, because information concerning destruc-
tive patterns and regions is not relevant for termination purposes. In this way,
variable, copy, and reuse expressions are collapsed into the variable expression.
Also, the two variants of case are collapsed into one.
We assume that each case expression in a function definition has been la-

belled with a unique integer k. The transformation will be defined by using the
following auxiliary functions:

1. trP takes a sequence of Core-�afe function definitions and returns a CTRS.
Notice that the main expression is excluded.

2. trF takes a function definition and returns a set of conditional rewrite rules.
3. trR given an expression e (a binding expression be), the set V of its free
variables, and a condition C = s1 → t1, . . . , sk → tk consisting of atomic
(rewrite) conditions si → ti, returns the right-hand side of a rule together
with its conditional part, and an additional, possibly empty, set of condi-
tional rewrite rules. The condition C is treated as a list. If C = [], then the
generated right-hand side has no conditional part.

4. trL which, given an expression e and the set V of its free variables, yields
the left part of a condition, and a sequence of atomic conditions to its left.

47

trP(def i

n
)

def
=

Sn

i=1 trF (def i)

trF (f xi
n = e)

def
= f(x1, . . . , xn) → trR(e, fv(e), [])

trR(c, V, C)
def
= c ⇐ C

trR(x, V, C)
def
= x ⇐ C

trR(Cr ai
n, V, C)

def
= Cr(a1, . . . , an) ⇐ C

trR(f ai
n, V, C)

def
= f(a1, . . . , an) ⇐ C

trR(k : case x of Ci xij
ni → ei

n
, V, C)

def
=

{casek(x, var(V)) ⇐ C} ∪
{casek(Ci(xi1, . . . , xini

), var(V)) → trR(ei, fv(ei), []) | i ∈ {1..n}}

trR(let x1 = e1 in e2, V, C)
def
= trR(e2, fv(e2), C ++ [, trL(e1, fv(e1)) → x1])

trL(e, V)
def
= trR(e, V, []) if e ∈ {c, x, Cr ai

n, f ai
n, case}

trL(let x1 = e1 in e2, V)
def
= [trL(e1, fv(e1)) → x1,] ++ trL(e2, fv(e2))

Fig. 4. Transformation from Core-�afe to CTRS

Let us assume that var(V) assigns the variables in V to a given term t in a
fixed ordering. The complete transformation is given in Figure 4. Our running
example would be transformed into the following CTRS:

splitD(n,xs) -> case1(n,n,xs)

case1(0,n,xs) -> res1 <= Nil -> nil1, Tup(nil1,xs) -> res1

case1(S(x),n,xs) -> case2(xs,n)

case2(Nil,n) -> res2 <= Nil -> nil1, Nil -> nil2, Tup(nil1,nil2) -> res2

case2(Cons(x,xx),n) -> res3 <= pred(n) -> n’, splitD(n’,xx) -> z,

case3(z) -> xs1, case4(z) -> xs2,

Cons(x,xs1) -> xs1’, Tup(xs1’,xs2) -> res3

case3(Tup(ys1,ys2)) -> ys1

case4(Tup(zs1,zs2)) -> zs2

Proposition 1. Every Core-�afe program P is transformed into an oriented,
left-linear, non-overlapping, syntactically deterministic 3-CTRS trP(P) which
is, therefore, confluent.

Now we apply standard transformations from deterministic 3-CTRS to plain
TRSs [20, Def.7.2.48]. If R is a 3-CTRS, let us call U(R) to the resulting TRS.
For instance, in our running example U(R) would be the following TRS:

splitD(n,xs) -> case1(n,n,xs)

case1(0,n,xs) -> Tup(Nil,xs)

case1(S(x),n,xs) -> case2(xs,n)

case2(Nil,n) -> Tup(Nil,Nil)

case2(Cons(x,xx),n) -> U1(pred(n),x,xx)

U1(n’,x,xx) -> U2(splitD(n’,xx),x)

U2(z,x) -> U3(case3(z),x,z)

U3(xs1,x,z) -> U4(case4(z),x,xs1)

U4(xs2,x,xs1) -> Tup(Cons(x,xs1),xs2)

case3(Tup(ys1,ys2)) -> ys1

case4(Tup(zs1,zs2)) -> zs2

48

In the following, let RP denote the system U(trP(P)) resulting from applying
the two aforementioned transformations to the Core-�afe program P.

Proposition 2. For every Core-�afe program P, the TRS RP consists of non-
overlapping rules. Moreover, all the lefthand sides are of the form f(p1, . . . , pn)
where the pi are flat patterns.

Proof. Straightforward by Proposition 1 and the U transformation. �

It is a standard result [20, Prop. 7.2.50] that the termination of U(R) implies
the termination of R. Then, by Proposition 3, proving termination of RP implies
the termination of the �afe program P.

5 Termination of �afe programs

One of the main goals of this paper is providing suitable methods for proving
termination of �afe programs. The following result shows that the transforma-
tion introduced in the previous section is appropriate for this goal: it preserves
both termination and nontermination (i.e., characterizes termination) of �afe

programs.

Proposition 3. Given a Core-�afe program P and its transformed 3-CTRS
R = trP(P) the main expression e of P terminates according to �afe semantics
if and only if the term te associated with e terminates in R. Furthermore, in
every term (except the last one, if it exists) of the reduction sequence of te there
is only one innermost redex.

It is well-known that the transformation U which has been used to obtain a
TRS U(R) from a deterministic 3-CTRS R is also nontermination preserving
(see [20, Proposition 7.2.50]). Furthermore, for nonoverlapping, syntactically de-
terministic 3-CTRSs, termination of R and innermost termination of U(R) are
equivalent [20, Corollary 7.2.62]. According to Proposition 1, trP(P) is a non-
overlapping, syntactically deterministic 3-CTRS for every Core-�afe program P.
Thus, by combining these facts, we can say the following.

Theorem 1. A Core-�afe program P, excluding its main expression, is termi-
nating if and only if the TRS U(trP(P)) is innermost terminating.

Nowadays, several termination tools are able to prove (or disprove) innermost
termination of rewriting automatically (e.g., AProVE, mu-term, TTT, etc.).
Thanks to Theorem 1, they can be used now to prove termination (or nonter-
mination!) of Core-�afe programs by using the transformation trP .

6 Dependency graph and recursive calls

Termination of (innermost) rewriting can be proved by using the dependency
pairs approach [1]. Furthermore, our analysis of complexity bounds in Section

49

7 uses concepts coming from the dependency pairs approach. Thus, we briefly
introduce and exemplify it in the following.
Given a TRS R = (C�D, R) we consider F as the disjoint union F = C�D of

symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(l) | l→ r ∈ R} and C = F −D. The set DP(R) of dependency
pairs for R is given as follows: if f(t1, . . . , tm)→ r ∈ R and r = C[g(s1, . . . , sn)]
for some defined symbol g ∈ D, and context C[·], and s1, . . . , sn ∈ T (F ,X), then
f �(t1, . . . , tm)→ g�(s1, . . . , sn) ∈ DP(R), where f � and g� are new fresh symbols
associated with f and g respectively.

Example 1. The dependency pairs which correspond to the TRS RSplitD ob-
tained at the end of Section 4 are the following (as usual, we capitalize –or
duplicate– the first letter of a function name f to indicate its associated symbol
f �.):

[1] SPLITD(n,xs) -> CASE1(n,n,xs)

[2] CASE1(S(x),n,xs) -> CASE2(xs,n)

[3] CASE2(Cons(x,xx),n) -> UU1(pred(n),x,xx)

[4] CASE2(Cons(x,xx),n) -> PRED(n)

[5] UU1(n’,x,xx) -> UU2(splitD(n’,xx),x)

[6] UU1(n’,x,xx) -> SPLITD(n’,xx)

[7] UU2(z,x) -> UU3(case3(z),x,z)

[8] UU2(z,x) -> CASE3(z)

[9] UU3(xs1,x,z) -> UU4(case4(z),x,xs1)

[10] UU3(xs1,x,z) -> CASE4(z)

Termination of (innermost) rewriting is investigated by inspecting the cycles
of the dependency graph DG(R) associated with the TRS R. The nodes of the
dependency graph are the dependency pairs u → v in DP(R); there is an arc
from a node u → v to another node u� → v� ∈ DP(R) if there are substitutions
θ and θ� such that θ(v)→∗

R
θ�(u�).

Remark 1. Proofs of termination of innermost rewriting using dependency pairs
actually use an innermost dependency graph which is a subset of the standard
one. In our context, though, both of them are identical due to the special shape
of the rules in RP . Thus, we will not further insist on that.

In general, the dependency graph of a TRS is not computable and we need to
use some approximation of it (e.g., the estimated dependency graph, see [1]).
Figure 5 shows the estimated dependency graph for RSplitD. Note that there is
only one cycle: � = {1, 2, 3, 6}.
Due to the special structure of the rules in RP (see Proposition 2), it is clear

that for every recursive call issued from f(δ1, . . . , δn), where δ1, . . . , δn ∈ T (C,X)
there is a minimal cycle in the dependency graph ofR which contains a left-hand
side f(x1, . . . , xn) thus closing a (minimal) cycle in the estimated dependency
graph. Here, by a minimal cycle we mean a cycle which does not contain any
proper subcycle.

Proposition 4. Given a Core-�afe program P, there is a bijection between min-
imal cycles in the dependency graph of the TRS RP and recursive calls in P.

50

�

�

�

�

�

�

�

�

���

Fig. 5. Dependency graph for the transformed RSplitD

For instance, in our running example, the only existing cycle � in the dependency
graph contains the following dependency pairs:

[1] SPLITD(n,xs) -> CASE1(n,n,xs)

[2] CASE1(S(x),n,xs) -> CASE2(xs,n)

[3] CASE2(Cons(x,xx),n) -> UU1(pred(n),x,xx)

[6] UU1(n’,x,xx) -> SPLITD(n’,xx)

This cycle corresponds to the internal recursive call of splitD .

7 Explicit polynomial complexity bounds for �afe

The second main goal of this paper is developing methods for giving explicit com-
plexity bounds to time/space consumption in �afe computations. Intuitively, a
measure [[]] aiming at associating a given complexity value to a particular func-
tion call f(δ1, . . . , δk) for constructor terms δ1, . . . , δk has to take into account
the role of the arguments δ1, . . . , δk in the computation of such value. Roughly
speaking, we must associate a suitable k-ary mapping [[f]] to symbol f . In this
paper we assume that [[f]] is a polynomial for all function symbols f .
In particular, [[f �]] is the polynomial interpreting the symbol f � associated to

the Core-�afe function symbol f . Moreover, assume that the dependency graph
of RP contains only one cycle involving f

�. Then, Theorem 2 below shows how
(and when) the polynomial interpretation can be used to give explicit bounds
to the number of calls to f in a given computation. First, we need to introduce
some preliminary notions. Roughly speaking, the usable rules U(R,�) associated
to a cycle � in the dependency graph of R are obtained by first considering the
rules f(l1, . . . , ln)→ r ∈ R for all (unmarked, defined) symbols f ∈ D occurring
in the right-hand sides v of the dependency pairs u→ v ∈ � and then recursively
adding the rules defining symbols in the right-hand sides of r [1, Definition 32]:

Definition 1 (Usable rules). Let R be a TRS. For any symbol f let Rules(R, f)
be the set of rules defining f and such that the left-hand side l has no redex as
proper subterm. For any term t the set of basic usable rules U(R, t) is as follows:

U(R, x) = ∅
U(R, f(t1, . . . , tn)) = Rules(R, f) ∪

S

1≤i≤ar(f)

U(R�, ti) ∪
S

l→r∈Rules(R,f)

U(R�, r)

51

where R�= R−Rules(R, f). If � ⊆ DP(R), then U(R,�) =
�

l→r∈�

U(R, r).

For instance, for cycle � corresponding to our running example, the set of us-
able rules consists of a single rule: pred(s(n)) -> n. The following proposition
shows why usable rules are interesting in our setting.

Proposition 5. Let R be a TRS, t, s, u ∈ T (F ,X), and σ be a substitution such

that s = σ(t) and ∀x ∈ Var(t), σ(x) is a normal form. Then, s
i

−→∗
R
u if and

only if s
i

−→∗

U(R,t)u.

The following theorem is the main result of this section. It shows that explicit
polynomial bounds can be given to the number of function calls issued from a
term f(δ1, . . . , δn) where δ1, . . . , δn are normal forms.

Theorem 2 (Explicit polynomial bounds). Let R = (F , R) be a TRS and
f ∈ D be such that DG(R) contains only one cycle � involving f �. Let [[]] be
a polynomial interpretation over the naturals satisfying that (1) [[s]] ≥ [[t]] for
all s → t ∈ U(R,�) ∪ �; and (2) [[u]] > [[v]] for at least one u → v ∈ �. Let
t = f(δ1, . . . , δn) where δ1, . . . , δn are normal forms.Then, the number Nf (t) of
calls to f during the innermost normalization of t is bounded by [[f �(δ1, . . . , δn)]]:
Nf (t) ≤ [[f

�(δ1, . . . , δn)]] + 1.

The polynomials which are necessary in Theorem 2 for obtaining polynomial
bounds can be obtained in practice as part of the innermost termination proof for
the TRSR using the dependency pairs approach which emphasizes the use of the
dependency graph to obtain the proofs (DG-termination [1]). In our setting, we
use the termination tool mu-term [16] to obtain the polynomial interpretations.
For instance, consider the TRS RSplitD obtained in Section 4 for our running
example. The following polynomial intepretation:

[pred](X) = X [case2](X1,X2) = 0 [case4](X) = 0

[S](X) = X [Cons](X1,X2) = X2 + 1 [U5](X1,X2) = 0

[splitD](X1,X2) = 0 [U1](X1,X2,X3) = 0 [SPLITD](X1,X2) = X2 + 1

[case1](X1,X2,X3) = 0 [U2](X1,X2) = X1 [UU1](X1,X2,X3) = X3 + 1

[0] = 0 [U3](X1,X2,X3) = 0 [CASE2](X1,X2) = X1

[Tup](X1,X2) = 0 [case3](X) = 0 [CASE1](X1,X2,X3) = X3 + 1

[Nil] = 0 [U4](X1,X2,X3) = 0

which is obtained by mu-term can be used in Theorem 2 to bound calls of the
form splitD(δ1, δ2) for constructor terms δ1, δ2.

Remark 2. Although our results concern the use of polynomial interpretations
over the naturals, they could be easily extended to a more general setting like
the one described in [17] for polynomial interpretations over the reals.

The previous result can be further generalized to arbitrary terms as follows
(the main difference with Theorem 2 is that all rules in the TRS R must be
compatible with the ordering ≥ induced by the interpretation).

52

Corollary 1 (Explicit polynomial bounds II). Let R = (F , R) be a TRS
and f ∈ D be such that DG(R) contains only one cycle � involving f �. Let [[]]
be a polynomial interpretation over the naturals satisfying that (1) [[s]] ≥ [[t]]
for all s → t ∈ R ∪ �; and (2) [[u]] > [[v]] for at least one u → v ∈ �. Let
t = f(t1, . . . , tn) ∈ T (F ,X).Then, the number Nf (t) of recursive calls to f
during the innermost normalization of t is bounded by [[f �(t1, . . . , tn)]]: Nf (t) ≤
[[f �(t1, . . . , tn)]] + 1.

7.1 Bounding the number of calls using the size of the arguments

Provided that the polynomial interpretation associated to the constructor sym-
bols c ∈ C has the following shape:

[[c]](x1, . . . , xn) = c1x1 + · · ·+ cnxn + c0

with 0 ≤ ci ≤ 1 for all i, 0 ≤ i ≤ n, we obviously have that the size of a
constructor term δ ∈ T (C,X) is bounded from below by its interpretation, i.e.,
|δ| ≥ [[δ]]. Therefore, since [[f �]] has no negative coefficient and hence it is weakly
monotone, we have that

1 + [[f �]](|δ1|, . . . , |δn|) ≥ 1 + [[f
�]]([[δ1]], . . . , [[δn]]) = 1 + [[f

�(δ1, . . . , δn)]] ≥ Nf (t)

Furthermore, if constant constructor symbols c are interpreted by [[c]] = 1; and
for any other n-ary constructor symbol f (with n > 0) we have ci = 1 for all i,
1 ≤ i ≤ n and c0 = 0, then |δ| = [[δ]]. Hence,

1 + [[f �]](|δ1|, . . . , |δn|) = 1 + [[f
�(δ1, . . . , δn)]] ≥ Nf (t)

i.e., we can think of the arguments x1, . . . , xn of the polynomial [[f
�]](x1, . . . , xn)

as representing sizes of constructor terms and still giving appropriate bounds to
the number of calls to f in any derivation from f(δ1, . . . , δn) for terms δi of size
xi for each i, 1 ≤ i ≤ n.

7.2 Space bounds and polynomial bounds

The relationship of the inferred polynomials with the space bounds we wish to
infer is the following:

• Each function builds constructor cells in different heap regions which the
compiler ‘knows’ because they are explicit in the text (they have been in-
ferred in an early stage).

• The compiler infers an upper bound to the number of cells a single call
to the function will build in each available region. This in general will be
a polynomial because it may depend on calls to other functions. As these
functions have already been inferred, the compiler knows the space costs
charged by these functions to each region.

• Once we have the above, the function heap cost is obtained multiplying the
(bound to the) number of recursive calls by the (bound to the) space cost of
each call.

As the cell size is fixed for a given program, the compiler can compute an
upper bound to the heap memory in terms of words or bytes. For stack con-
sumption, the inference is even easier as the stack is not split into regions.

53

�afe function Polynomial inferred Constructor interpretation

splitD(n, x) x + 1 cons(y, ys) = ys + 1
mergeD(x, y) two cycles

length(x) x cons(y, ys) = ys + 1
append(x, y) x cons(y, ys) = ys + 1
insert(x, t) t + 1 Node(t, x, t�) = t + t� + 1

listInsert(x, y) y cons(y, ys) = ys + 1
insSortD(x) x cons(y, ys) = ys + 1
msortD(x) No proof obtained
mkTree(x) x cons(y, ys) = ys + 1
inorder(t) t Node(t, x, t�) = t + t� + 1

Fig. 6. Polynomials obtained for several Core-�afe functions

8 Case studies

We have applied the results in previous section to the TRS’s obtained by trans-
forming the Core-�afe functions presented in Section 3 and some other examples
such as length, append, insert, listInsert, insSort, mkTree, inorder, which
respectively gives the length of a list, appends two lists, inserts an element in a
search tree, inserts an element in a sorted list, sorts a list by insertion, builds a
search tree from a list, and does an inorder traversal of a tree, with the obvious
definitions. We have obtained the polynomials shown in Figure 6.

From the above results, and interpreting the argument variables as charac-
terizing the size of the corresponding data structures, we are glad to see that the
bounds obtained are rather accurate. According to Section 7.1, in order to see
whether interpreting argument variables as sizes is correct or not we must pay
attention to the interpretation given to data constructors. During the execution
of a function f , the formal arguments of f will be replaced by actual ones and
these consist just of ground terms formed by data constructors. By knowing
the polynomial interpretation obtained for these constructors, we can know the
polynomial associated to the whole term representing the actual data structure
passed to f as actual argument. By restricting the coefficients of these interpreta-
tions to 0 and 1 as explained in Section 7.1 we have obtained the interpretations
shown in the table above. Then, the polynomial associated to a complete list
is just its length and the one associated to a binary tree will coincides with its
cardinality. This allows us to interpret argument variables as sizes.

The polynomial obtained for length is actually exact, the polynomial obtained
for splitD is very accurate and shows the linear dependency with the size of the
list: in the worst case, when the splitting position n exceeds the length of the
list, splitD will be called as many times as the length of the list. The bound for
insert is also accurate as the binary tree needs not be balanced: in the worst
case, the number of recursive calls grows linearly with the tree size. We could
not apply our results to merge because there are two minimal cycles which
induce different polynomial interpretations for merge�: [[merge�]](x, y) = x and
[[merge�]](x, y) = y+1, respectively. Since it is unclear (by now) how to combine
different polynomial interpretations (in general), we cannot assert that, e.g.,
[[merge�]](x, y) = x+ y + 1.

54

We have not obtained a termination proof for msortD. We must be prepared
for that due to the incompleteness of any termination proving algorithm. Appar-
ently, the current TRS termination proving technology is not able to detect that
the sizes of the lists passed as arguments to msortD in the two recursive calls
are strictly smaller that the list of the external call. Due to cases such as this,
we plan to include in the source language the possibility of manually annotating
the non-inferred functions with a polynomial.

9 Hierarchical composition of �afe programs

When proving termination and complexity bounds of �afe programs, two strate-
gies can be applied:

1. Either the whole program is transformed into a TRS, and then it is submitted
to a termination prover tool such as MU-TERM.

2. Or else, each function is separately analyzed for termination, assuming that
the functions possibly called from the analized one in turn terminate.

Approach (1) is more realistic in the sense that the TRS exactly corresponds
to the original Core-�afe program. In particular, constructor and function sym-
bols are global to the whole program and the polynomials obtained for them, in
case of success, guarantee that every term will be finitely rewritten.
However, programs can be huge and the time needed by the termination tool

will increase more than linearly with program size. So, it is worthwhile to inves-
tigate the modularity properties of the TRS obtained from the transformation
of �afe programs. Intuitively, if we get a polynomial bounding the number of
recursive calls of a particular function f , this is a property which depends on
the definition of f (and, of the definition of all the functions used by f) but not
on its use in enclosing contexts. So, we expect that the polynomial of a function
f , once obtained, will remain stable along the function definitions following that
of f in the �afe text. In this case, f ’s polynomial would not need to be inferred
again when analyzing the functions that follows f .
Data constructors are global to the whole program. We believe that it would

be desirable to force a fixed interpretation for them, automatically derived from
the datatype definitions, conveying the intuitive notion of size for the corre-
sponding data structure. Also, when inferring the polynomial for a particular
function f , we could force the interpretation of the functions defined previously
to f to the polynomials obtained for them. So, the termination tool would infer
only the polynomials for the new defined symbols.
Current TRS termination proving tools are not prepared for this mixed work-

ing mode in which some polynomials are forced and the rest are inferred. We
are currently adapting our termination tool to this setting.

10 Related and Future Work

We have already cited in the introduction the works ([4–6]) aiming to classify
TRS’s in time and space complexity classes by using polynomial interpretations.

55

We make note that some results by these authors concern the computation of
bounds for the size of the normal form term resulting from a rewriting sequence.
In our context, it would be the size of the data structure returned by a function.
This size is in principle not related to the heap space needed to compute the
result, which is the topic of this paper. Closer to the research in this paper is
the work about derivation heights by Hofbauer and others (see [12] and [11]).
However, these works try to bound the length of rewriting sequences issued for
terms in (polynomially) terminating TRSs. They pay no attention to the steps
that correspond to particular symbols as done in this paper.
In the area of programming languages, there have been some attempts to infer

complexity space bounds by using specialized type systems. The two following
works compute linear space bounds of first order functional programs:

• Hughes and Pareto [14] incorporate in Embedded-ML the concept of re-
gion and their sized-types system is able to type-check heap and stack linear
bounds from annotations given by the programmer.

• More recently, in a proof carrying code framework, Hofmann and Jost [13]
have developed a type system to infer linear bounds on heap consumption.
The underlying machinery is a Linear Programming system which solves the
restrictions generated during type inference.

Related to the latter there has been the successful EU funded project Mobile
Resources Guarantees [2] which, in addition to inferring space bounds, produces
formal certificates of this property. These certificates can be verified by a proof-
checker. A follow-on project is the Netherlands funded one AHA [22], which tries
to extend the above results to space bounds beyond linear ones. Our approach
seems promising with respect to these works in that any polynomial can be
inferred by current termination proving tools.
The experiments reported in this paper encourages us to continuing the ex-

ploration of the approach of using TRS termination tools to infer polynomial
bounds on the number of recursive calls of real programs. However, much work
remains to be done. In particular, bounding the number of recursive calls when
several cycles are associated to the same symbol is an immediate goal. This cor-
responds either to multiple-recursive �afe functions or to single recursive ones
with mutually exclusive calls. It is important to distinguish both cases when the
goal is bounding the length of recursive calls chains.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236(1-2):133–178, 2000.
2. D. Aspinall, S. Gilmore, M. Hofmann, D. Sanella, and I. Stark. Mobile Resources

Guarantees for Smart Devices. In Proceedings of the Int. Workshop CASSIS’05,
pages 1–26. LNCS 3362, Springer, 2005.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, 1998.

4. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial
interpretation termination proof. Journal of Functional Programming, 11(1):33–53,
2001.

56

5. G. Bonfante, J.-Y. Marion, and J.Y. Moyen. Quasi-interpretations and Small Space
Bounds. In J. Giesl, editor, 16th Int. Conf. on Rewriting Techniques and Applica-

tions, RTA’05, volume 3467 of LNCS, pages 150–164. Springer-Verlag, 2005.
6. A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of

algorithms. In D. Kapur, editor, 11th International Conference on Automated

Deduction, CADE’92, volume 607 of Lecture Notes in Artificial Intelligence, pages
139–147. Springer-Verlag, 1992.

7. E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reasoning,
34(4):315–355, 2006.

8. N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–
301, 1982.

9. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-

putation, page to appear, 2007.
10. Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann. Au-

tomated Termination Analysis for Haskell: From Term Rewriting to Programming
Languages. In Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in

Computer Science, pages 297–312. Springer, 2006.
11. D. Hofbauer. Termination Proofs by Context-Dependent Interpretations. In

A. Middeldorp, editor, 12th International Conference on Rewriting Techniques and

Applications, RTA’01, volume 2051 of Lecture Notes in Computer Science, pages
108–121. Springer-Verlag, 2001.

12. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In N. Dershowitz, editor, 3rd International Conference on Rewriting Techniques

and Applications, RTA’89, volume 355 of Lecture Notes in Computer Science, pages
167–177. Springer-Verlag, 1989.

13. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In POPL’03, pages 185–197. ACM Press, 2003.

14. R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in
Bounded Space; Towards Embedded ML Programming. In ICFP’99, pages 70–
81. ACM Press, 1999.

15. D.S. Lankford. On proving term rewriting systems are noetherian. Technical
report, Louisiana Technological University, 1979.

16. S. Lucas. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewrit-
ing. In Vincent van Oostrom, editor, RTA, volume 3091 of Lecture Notes in Com-

puter Science, pages 200–209. Springer, 2004.
17. S. Lucas. Polynomials over the reals in proofs of termination: from theory to

practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.
18. M. Montenegro, R. Peña, and C. Segura. A Type System for Safe Memory Man-

agement and its Proof of Correctness. In PPDP’08. ACM Press, 2008. To appear.
19. M. Montenegro, R. Peña, and C. Segura. An Inference Algorithm for Guaranteeing

Safe Destruction. In Accepted for presentation in LOPSTR’08, Valencia, Spain,
pages 1–15, July 2008.

20. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
21. R. Peña, C. Segura, and M. Montenegro. A Sharing Analysis for Safe. In Proceed-

ings of the Seventh Symposium on Trends in Functional Programming, TFP’06,
pages 205–221, 2006.

22. M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smet-
sers. AHA: Amortized Space Usage Analysis. In Proceedings of the 8th Symposium

on Trends in Functional Programming, TFP’07, New York, April 2-4, pages 1–16,
Chapter XVI, 2007.

57

