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Abstract

Safe is a first-order eager functional language with facilities for programmer controlled destruction and
copying of data structures. It provides also regions, i.e. disjoint parts of the heap, where the program
allocates data structures. A region is a collection of cells, each one is big enough to allocate a data
constructor. The runtime system does not need a garbage collector and all allocation/deallocation actions
are done in constant time. Deallocating cells or regions may create dangling pointers. The language is
aimed at inferring and certifying memory safety properties in a Proof Carrying Code environment. Some
of its analyses have been presented elsewhere. The one relevant to this paper is a type system and a type
inference algorithm guaranteeing that well-typed programs will be free of dangling pointers at runtime.
In this paper we present how to generate formal certificates of the absence of dangling pointers property
inferred by the compiler. The certificates are Isabelle/HOL proof scripts which can be proof-checked by this
tool when loaded with a database of previously proved theorems. The key idea is proving an Isabelle/HOL
theorem for each syntactic construction of the language, relating the static types inferred by the compiler
to the dynamic properties about the heap that will be satisfied at runtime.
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1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [7], these proofs should be
automatically checked by an appropriate tool. In our language Safe, we have chosen
the proof assistant Isabelle/HOL [9] both for constructing and checking proofs.

Safe, described below, is equipped with analyses for inferring regions where data
structures are located [4], and for detecting when a program with explicit deallo-
cation actions is free of dangling pointers [6]. These analyses have been manually
proved correct, but a certificate is a different matter than proving analyses correct:

• The proof it contains must be related to a specific program.
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• The proof must be automatically validated by a proof checker.

In this paper we describe how to create a certificate from the properties inferred
by the analyses. The key idea is creating a database of theorems, proved once
forever, relating these static properties to the dynamic ones the compiled programs
are expected to satisfy. There is one such theorem for each syntactic construction
of the language. Then, these theorems are considered as proof obligations which the
generated certificate must discharge.

In the rest of this section we describe the relevant aspects of Safe. In Sec. 2
a first set of proof obligations related to explicit deallocation is presented, while a
second set related to implicit region deallocation is explained in Sec. 3. Sec. 4 is
devoted to certificate generation and Sec. 5 concludes.

1.1 The language

Safe is a first-order eager language with a syntax similar to Haskell’s. Its runtime
system uses regions, i.e. disjoint parts of the heap where the program allocates data
structures. The smallest memory unit is the cell, a contiguous memory space big
enough to hold a data construction. A cell contains the mark of the constructor
and a representation of the free variables to which the constructor is applied. These
may consist either of basic values, or of pointers to other constructions. Each cell
is allocated at constructor application time. A region is a collection of cells. It is
created empty and it may grow and shrink while it is active. Region deallocation
frees all its cells. The allocation and deallocation of regions is bound to function
calls. A working region, denoted by self, is allocated when entering the call and
deallocated when exiting it. Inside the function, data structures not belonging to
the output may be built there. The region arguments are explicit in the intermediate
code but not in the source, since they are inferred by the compiler [4]. The following
list sorting function builds an intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference, the code is annotated with region arguments:
treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treeSort’s self region and deallocated upon termination
of treeSort. Besides regions, destruction facilities are associated to pattern matching.
For instance, we show here a constant space function appending two lists:

append []! ys = ys
append (x:xs)! ys = x : append xs ys

The ! mark is the way programmers indicate that the matched cell must be deleted.
The constant space consumption is due to that, at each recursive call, a cell is
deleted by the pattern matching while a new one is allocated by the (:).

The Safe front-end desugars Full-Safe and produces a bare-bones functional lan-
guage called Core-Safe. The transformation starts with region inference and con-
tinues with Hindley-Milner type inference, pattern matching desugaring, and some
other simplifications. In Fig. 1 we show the syntax of Core-Safe. A program is a
sequence of possibly recursive polymorphic data and function definitions followed by
a main expression e whose value is the program result. The over-line abbreviation

2



de Dios, Peña and Montenegro

prog → datai
n; decj

m; e {Core-Safe program}
data → data T αi

n @ ρj
m = Ck tks

nk @ ρm
l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x @ r {copy data structure x into region r}
| x! {reuse data structure x}
| a1 ⊕ a2 {primitive operator application}
| f ain @ rj

l {function application}
| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e {case alternative}
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe syntax

xi
n stands for x1 · · ·xn. case! expressions implement destructive pattern match-

ing, constructions are only allowed in let bindings, and atoms —or just variables—
are used in function applications, case/case! discriminant, copy and reuse. Re-
gion arguments are explicit in constructor and function applications and in copy
expressions. As an example, we show the Core-Safe version of the above append
function:

append xs ys @ r = case! xs of

[ ] → ys

x : xx → let yy = append xx ys @ r in

let zz = x : yy @ r in zz

1.2 Operational Semantics

In Figure 2 we show the big-step operational semantics of the core language expres-
sions. We use v, vi, . . . to denote either heap pointers or basic constants, p, pi, q, . . .
to denote heap pointers, and a, ai, . . . to denote either program variables or basic
constants (atoms). The former are named x, xi, . . . and the latter c, ci etc. Finally,
we use r, ri, . . . to denote region variables.

A judgement of the form E ` h, k, e ⇓ h′, k, v states that expression e is suc-
cessfully reduced to normal form v under runtime environment E and heap h with
k + 1 regions, ranging from 0 to k, and that a final heap h′ with k + 1 regions is
produced as a side effect. Runtime environments E map program variables to values
and region variables to actual region numbers in the range {0 . . . k}. We adopt the
convention that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from pointers p to construction cells w of the form
(j, C vin), meaning that the cell resides in region j. By h[p 7→ w] we denote a heap
h where the binding [p 7→ w] is highlighted. On the contrary, by h ] [p 7→ w] we
denote the disjoint union of the heap h and the binding [p 7→ w], while h |k is the
heap obtained by deleting from h the bindings living in regions greater than k.

The semantics of a program d1; . . . ; dn; e is the semantics of the main expression e
in an environment Σ containing all the function declarations. We only comment the
rules related to allocation/deallocation actions, some of which may create dangling
pointers in the heap. The rest are the usual ones for an eager language.
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E ` h, k, c ⇓ h, k, c [Lit ] E[x 7→ v] ` h, k, x ⇓ h, k, v [Var1]

j ≤ k (h′, p′) = copy(h, p, j)
E[x 7→ p, r 7→ j] ` h, k, x@r ⇓ h′, k, p′

[Var2]
fresh(q)

E[x 7→ p] ` h ] [p 7→ w], k, x! ⇓ h ] [q 7→ w], k, q
[Var3]

Σ ` f xin@ rj
m = e [xi 7→ E(ai)

n
, rj 7→ E(r′j)

m
, self 7→ k + 1] ` h, k + 1, e ⇓ h′, k + 1, v

E ` h, k, f ain@ r′j
m ⇓ h′ |k, k, v

[App]

op⊕ v1 v2 = v

E[a1 7→ v1, a2 7→ v2] ` h, k, a1 ⊕ a2 ⇓ h, k, v
[Primop]

E ` h, k, e1 ⇓ h′, k, v1 E ∪ [x1 7→ v1] ` h′, k, e2 ⇓ h′′, k, v
E ` h, k, let x1 = e1 in e2 ⇓ h′′, k, v

[Let ]

j ≤ k fresh(p) E ∪ [x1 7→ p] ` h ] [p 7→ (j, C vin)], k, e2 ⇓ h′, k, v
E[r 7→ j, ai 7→ vi

n] ` h, k, let x1 = C ai
n@r in e2 ⇓ h′, k, v

[LetC ]

C = Cr E ∪ [xri 7→ vi
nr ] ` h, k, er ⇓ h′, k, v

E[x 7→ p] ` h[p 7→ (j, C vinr)], k, case x of Ci xijni → ei
m ⇓ h′, k, v

[Case]

C = Cr E ∪ [xri 7→ vi
nr ] ` h, k, er ⇓ h′, k, v

E[x 7→ p] ` h ] [p 7→ (j, C vinr)], k, case! x of Ci xijni → ei
m ⇓ h′, k, v

[Case!]

Fig. 2. Operational semantics of Safe expressions

τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region}

t → s {safe}
| d {condemned}

s → T s@ρm

| b
d → T t!@ρm

r → T s#@ρm

b → a {variable}
| B {basic}

tf → ti
n → ρl → T s@ρm {function}

| tin → b

| sin → ρ→ T s@ρm {constructor}
σ → ∀a.σ

| ∀ρ.σ
| tf

Fig. 3. Type expressions

Rule Var2 executes a copy expression copying the data structure pointed to by
p and living in region j′ into a (possibly different) region j. The runtime system
function copy follows the pointers in recursive positions of the structure starting at
p and creates in region j a copy of all recursive cells. The non-recursive cells are
shared with the old structure. In rule Var3, the binding [p 7→ w] is deleted and a
fresh binding [q 7→ w] to cell w is added. This action may create dangling pointers,
as some cells may contain free occurrences of p. Rule App shows when a new region
is allocated. The formal identifier self is bound to the newly created region k + 1
so that the function body may create bindings in this region. Before returning, all
cells created in region k + 1 are deleted. This action is another source of possible
dangling pointers. Rule Case! expresses what happens in a destructive pattern
matching: the binding of the discriminant variable disappears from the heap. This
action is the last source of possible dangling pointers.

1.3 Safe Type System

The syntax of type expressions is shown in Fig. 3. As the language is first-order, we
distinguish between functional, tf , and non-functional types, t, r. Non-functional
algebraic types may be safe types s, condemned types d or in-danger types r. In-
danger and condemned types are respectively distinguished by a # or ! annotation.
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Operator Γ1 • Γ2 defined if Result of (Γ1 • Γ2)(x)

+ dom(Γ1) ∩ dom(Γ2) = ∅
Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

⊗ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

⊕
∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)

∧ safe?(Γ1(x))

Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

�L ∀x ∈ dom(Γ1) ∩ dom(Γ2). utype?(Γ1(x),Γ2(x))

∧ ∀x ∈ dom(Γ1). unsafe?(Γ1(x))→ x /∈ L

Γ2(x) if x /∈ dom(Γ1)∨

x ∈ dom(Γ1) ∩ dom(Γ2) ∧ safe?(Γ1(x))

Γ1(x) otherwise

Fig. 4. Operators on type environments

In-danger types arise as an intermediate step during typing and are useful to control
the side-effects of the destructions. But notice that the types of function arguments
only include either safe or condemned types. The intended semantics of these types
is the following:

• Safe types (s): A data structure (DS) of this type can be read, copied or used
to build other DSs. They cannot be destroyed or reused by using the symbol !.

• Condemned types (d): It is a DS directly involved in a case! action. Its
recursive descendants will inherit the same condemned type. They cannot be
used to build other DSs, but they can be read or copied before being destroyed.

• In-danger types (r): This is a DS sharing a recursive descendant of a con-
demned DS, so potentially it can contain dangling pointers.

Data constructors have one region argument r :: ρ reflected as the outermost region
variable of the resulting algebraic type T s@ρm. The constructors are given types
indicating that the recursive substructure and the structure itself must live in the
same region. For example, in the case of lists and trees:

[ ] : ∀a, ρ.ρ→ [a]@ρ

(:) : ∀a, ρ.a→ [a]@ρ→ ρ→ [a]@ρ

Empty : ∀a, ρ.ρ→ BSTree a@ρ

Node : ∀a, ρ.BSTree a@ρ→ a→ BSTree a@ρ→ ρ→ BSTree a@ρ

We assume that the types of the constructors are collected in an environment Σ,
easily built from the data type declarations. In type environments, Γ, we can find
region type assignments r : ρ, variable type assignments x : t, and polymorphic
scheme assignments to functions f : σ. The operators on type environments used
in the typing rules are shown in Fig. 4. The usual operator + demands disjoint
domains. Operators ⊗ and ⊕ are defined only if common variables have the same
type, which must be safe in the case of ⊕. Operator �L is an asymmetric com-
position used to type let expressions. The predicate utype?(t, t′) is true when the
underlying Hindley-Milner types of t and t′ are the same.

In Fig. 5 we show two rules of the type system to illustrate the use of the above
environment operators. For a complete description, see [5]. An inference algorithm
for this type system has been developed in [6].
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Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s utype?(τ1, s1)

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET]

ti
n → ρj

l → T @ρm E σ Γ = [f : σ] +
⊕l

j=1[rj : ρj ] +
⊕n

i=1[ai : ti]

R =
⋃n
i=1{sharerec(ai, f ain@rj l)− {ai} | cmd?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` f ain@ rj
l : T @ρm

[APP]

Fig. 5. Two Safe typing rules for expressions

2 Static Assertions

By fv(e) we denote the set of free variables of expression e, excluding function names
and region variables, and by dom(h) the set {p | [p 7→ w] ∈ h}. A static assertion has
the form [[L,Γ]], where L is a set of program variables and Γ a typing environment.
A Safe expression e satisfies a static assertion, denoted e : [[L,Γ]], if L = fv(e), there
exists a type t such that Γ ` e : t, and some semantic conditions below hold. Our
certificate for a given program consists of proving a static assertion [[L,Γ]] for each
Safe expression e resulting from compiling the program. We will write Γ[x] = m to
indicate that x has mark m ∈ {s, r, d} in Γ.

The intuitive idea of a variable x being typed with a safe mark s is that all the
cells in h reachable at runtime from E(x) do not contain dangling pointers and are
disjoint of unsafe cells. The idea behind a condemned variable x is that this cell will
be removed from the heap and all live cells reaching any of x’s recursive descendants
by following a pointer chain are in danger.

We use the following definitions, which have been formally specified in Isabelle:

closure (E,X, h) Set of locations reachable in heap h by {E(x) | x ∈ X}
closure (v, h) Set of locations reachable in h by location v

live (E,L, h) Live part of h, i.e. closure (E,L, h)

scope (E, h) The part of h reachable from all variables in scope

recReach (E, x, h) Set of recursive descendants of E(x) including itself

recReach (v, h) Set of recursive descendants of v in h including itself

closed (E,L, h) If there are no dangling pointers in live (E,L, h)

p→∗h V There is a pointer path in h from p to a q ∈ V

By abuse of notation, we will write closure(E, x, h) and also closed(v, h). Now,
we define the following two sets, respectively of safe and unsafe heap locations, as
functions of L, Γ, E, and h:

SL,Γ,E,h
def
=

S
x∈L,Γ[x]=s{closure(E, x, h)}

RL,Γ,E,h
def
=

S
x∈L,Γ[x]=d{p ∈ live(E,L, h) | p→∗h recReach(E, x, h)}

We say that two closures are identical, denoted closure(E, x, h) ≡ closure(E, x, h′),
if closure(E, x, h) = closure(E, x, h′) and ∀p ∈ closure(E, x, h) . h(p) = h′(p).

Definition 2.1 Let us give names to the following properties:
P1 E ` h, k, e ⇓ h′, k, v
P2 dom(Γ) ⊆ dom(E)

P3 L ⊆ dom(Γ)

P4 fv(e) ⊆ L
P5 ∀x ∈ dom(E). ∀z ∈ L . Γ[z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅ → x ∈ dom(Γ) ∧ Γ[x] 6= s

6



de Dios, Peña and Montenegro

c : [[∅, ∅]] LIT x : [[{x}, [x : s]]] VAR1

x ∈ dom Γ
x@r : [[{x},Γ]] VAR2

Γ[x] = d Γ well formed
x! : [[{x},Γ]] VAR3

L = {ai2} Γ =
⊕2

i=1[ai : s] defined
a1 ⊕ a2 : [[L,Γ]] PRIMOP

e1 6= C ai
n e1 : [[L1,Γ1]] x1 6∈ L1 e2 : [[L2,Γ2 + [x1 : s]]] def (Γ1 .

L2 Γ2)
let x1 = e1 in e2 : [[L1 ∪ (L2 − {x1}),Γ1 .

L2 Γ2]]
LET1

Σ(f) = (f xin@ rj
m = ef ,mi

n) L = {ain}
Γ0 =

⊕n
i=1[ai : mi] defined Γ ⊇ Γ0 and well-formed

f ai
n@ r′j

m
: [[L,Γ]]

APP

L1 = {ain} Γ1 = [ai 7→ sn] x1 6∈ L1 e2 : [[L2,Γ2 + [x1 : s]]] def (Γ1 .
L2 Γ2)

let x1 = C ai
n@r in e2 : [[L1 ∪ (L2 − {x1}),Γ1 .

L2 Γ2]]
LET1C

e1 6= C ai
n e1 : [[L1,Γ1]] x1 6∈ L1 e2 : [[L2,Γ2 + [x1 : d]]] def (Γ1 .

L2 Γ2)
let x1 = e1 in e2 : [[L1 ∪ (L2 − {x1}),Γ1 .

L2 Γ2]]
LET2

L1 = {ain} Γ1 = [ai 7→ sn] x1 6∈ L1 e2 : [[L2,Γ2 + [x1 : d]]] def (Γ1 .
L2 Γ2)

let x1 = C ai
n@r in e2 : [[L1 ∪ (L2 − {x1}),Γ1 .

L2 Γ2]]
LET2C

∀i . (ei : [[Li,Γi]] Γi[xij ] 6= d) Γ ⊇
⊗

i(Γi/{xij}) x ∈ dom(Γ) L = {x} ∪ (
⋃
i(Li − {xij}))

case x of Cixij → ei : [[L,Γ]]
CASE

∀i . (ei : [[Li,Γi]] ∀j . Γi[xij ] = d→ j ∈ RecPos(Ci)) L =
⋃
i(Li − {xij}) Γ well formed

Γ ⊇ (
⊗

i(Γi/{xij} ∪ {x})) + [x : d] ∀z ∈ dom(Γ) . Γ[z] 6= s→ (∀i . z 6∈ Li)

case! x of Cixij → ei : [[L ∪ {x},Γ]]
CASE !

Fig. 6. Proof obligations for explicit deallocation (each one is an Isabelle/HOL theorem)

P6 ∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′)→ x ∈ dom(Γ) ∧ Γ[x] 6= s

P7 SL,Γ,E,h ∩RL,Γ,E,h = ∅
P8 closed(E,L, h)

P9 closed(v, h′)

We say that the expression e satisfies the static assertion [[L,Γ]], denoted e : [[L,Γ]],
if P1 ∧ P2→ P3 ∧ P4 ∧ P5 ∧ P6 ∧ (P7 ∧ P8→ P9).

The key properties are P8 and P9. They guarantee that across the whole deriva-
tion the live part of the head remains closed, hence there will not be dangling point-
ers. In Fig. 6 we show the proof obligations related to this property, which must be
discharged by the certificate. Each one is a separate theorem interactively proved
by Isabelle/HOL, which is kept in its database of proved theorems.

3 Region deallocation

In this section we define and prove correct a number of syntax-driven proof obli-
gations used to create certificates establishing that region deallocation does not
create dangling pointers in the heap. As before, the compiler delivers static infor-
mation about the region types used by program being compiled, and then the proof
obligations relate this static information to runtime properties about actual regions.

By S, Si, . . . we denote finite sets {ρ1, . . . , ρr} of region type variables. There is
a reserved identifier ρfself for every defined function f , denoting the type variable
assigned to the working region self of function f . By R,Ri, . . . we denote pairs
(S, ρ), where ρ is a highlighted region denoting the most external region type of a
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given expression, and S denote the rest of its region types. By abuse of notation,
sometimes we consider a pair R = (S, ρ) as the set S ∪ {ρ}. By θ, θi, . . . we denote
typing mappings from program variables and region variables to pairs (S, ρ) of region
type variables. The intended meaning of θ(x) = (S, ρ), ρ′ ∈ S ∪ {ρ} is that ρ′ is
one of the region types occurring in the type the compiler assigns to x. If ρ′ = ρ,
then it is the most external region type. For region variables, the pair has the form
θ(r) = ({ρ}, ρ), and we mean that ρ is the type the compiler assigns to r. We will
call range of a typing mapping θ to the set:

range (θ)
def
=

[
x∈dom(θ), (S, ρ)=θ(x)

(S ∪ {ρ})

By η, ηi, . . . we denote instantiation mappings from region type variables to actual
region identifiers in scope. Region identifiers k, ki, . . . are just natural numbers
denoting offsets of the actual regions from the bottom of the region stack. If k
if the topmost region in scope, then for all ρ, 0 ≤ η(ρ) ≤ k holds. The intended
meaning of k′ = η(ρ) is that, in a particular execution of the program, the region
type ρ has been instantiated to the actual region k′. We will apply a mapping η to
a pair R = (S, ρ) of region types, obtaining the set η(R) def= {η(ρ′) | ρ′ ∈ S ∪ {ρ}} of
actual regions. Admissible instantiation mappings should map ρself to the topmost
region and other region types to lower regions.

Definition 3.1 Assuming that k denotes the topmost region of a given heap, we
say that the mapping η is admissible, denoted admissible (η, k), if:

ρfself ∈ dom(η) ∧ ∀ρ ∈ dom(η) . (ρ = ρfself → η(ρ) = k) ∧ (ρ 6= ρfself → η(ρ) < k)

We introduce a notion of consistency between the static information θ, R and
the dynamic one E, η, h, h′. Essentially, consistency tells us that the static region
types, its instantiation to actual regions, and the actual regions where the data
structures are stored in the heap, do not contradict each other.

Definition 3.2 We say that the mappings θ, η, the runtime environment E, and
the heap h are consistent, denoted consistent (θ, η, E, h), if:

(i) ∀x ∈ dom(E) . θ(x) = (S, ρ) → regions (closure (E, x, h)− recReach (E, x, h)) ⊆ η(S)

∧ regions (recReach (E, x, h)) ⊆ η(ρ)

(ii) ∀r ∈ dom(E) . {E(r)} = (η · θ)(r)

(iii) self ∈ dom(E) ∧ θ(self ) = ρfself

Likewise, we define consistent (R, η, v, h) as:

regions (closure (v, h)− recReach (v, h)) ⊆ η(S) ∧ regions (recReach (v, h)) ⊆ η(ρ)

where regions (P, h) is defined as the set: regions (P, h) def= {j | p ∈ P, h(p) = (j, w)}

When dealing with function (constructor) application, the region types used in
the polymorphic signature of a function g (a constructor C) must be related to the
actual region types used in the invocation. Let us denote by µ the type instantiation
mapping used by the compiler. This mapping should correctly map the region types
of the formal arguments, to the types of the corresponding actual arguments.
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c ` θ ; (∅,⊥) LIT x ` θ ; θ(x) VAR1 x! ` θ ; θ(x) VAR3

θ(x) = (S, ρ) θ(r) = ({ρ′}, ρ′)
x@r ` θ ; (S, ρ′)

VAR2
e1 ` θ ; R1 e2 ` θ ∪ [x1 7→ R1] ; R2

let x1 = e1 in e2 ` θ ; R2
LET

C xi
n@r ` (θC , RT ) argP (θC , µ, θ) e2 ` θ ∪ [x1 7→ µ(RT )] ; R2

let x1 = C ai
n@r′ in e2 ` θ ; R2

LETC

∀i (Ci yij@r ` (θCi , RT ) θi = [xij 7→ µ(θCi(yij))] ei ` θ ∪ θi ; R) µ(RT ) = θ(x)

case x of Ci xij → ei
n ` θ ; R

CASE

∀i (Ci yij@r ` (θCi , RT ) θi = [xij 7→ µ(θCi(yij))] ei ` θ ∪ θi ; R) µ(RT ) = θ(x)

case! x of Ci xij → ei
n ` θ ; R

CASE !

Σ(g) = (g xin@ rj
m = eg) eg ` θg ; Rg argP (θg, µ, θf ) ρgself 6∈ Rg

g ai
n@ r′j

m ` θf ; µ(Rg)
APP

Fig. 7. Proof obligations (each one is an Isabelle/HOL theorem)

Definition 3.3 Given the typing mappings θg and θf , and a type instantiation
mapping µ, we say that the triple (θg, µ, θf ) is argument preserving, denoted
argP (θg, µ, θf ), if:

(∀i ∈ {1, . . . , n} . (µ · θg)(xi) = θf (ai)) ∧ (∀j ∈ {1, . . . ,m} . (µ · θg)(rj) = θf (r′j))

In the case of a constructor C of an algebraic type T , let us assume that the typing
system provides: C :: ∀ρj . ti

n → ρ→ T . Then, for arbitrary fresh names xi, 1 ≤ i ≤ n,
and r we can build θC = {xi 7→ (Si, ρi)

n} ∪ {r 7→ ({ρ}, ρ)} and RT = (S, ρ), being
ρi the most external region of type ti, Si the rest of its regions, ρ the most external
region of type T , and S the rest of its regions. Then, the pair (θC , RT ) is an
abstraction of the type signature of expression C xi

n@r.
Let C ai

n@r′ be a constructor application, where its free variables belong to the
domain of a typing mapping θf . Then, we can apply the Definition 3.3 above and
say that (θC , µ, θf ) is an argument preserving type instantiation mapping, if

(∀i ∈ {1, . . . , n} . (µ · θC)(xi) = θf (ai)) ∧ (µ · θC)(r) = θf (r′)

A judgement of the form e ` θ ; R states that, if expression e is evaluated
within an environment E, heap h, and region mapping η consistent with θ, then η,
the final heap h′, and the final value v are consistent with R. Formally:

Definition 3.4 An expression e satisfies the pair (θ,R), denoted e ` θ ; R if

∀E h k h′ v η . E ` h, k, e ⇓ h′, k, v ∧ dom(E) ⊆ dom(θ) ∧ range (θ) ⊆ dom(η)

∧ consistent (θ, η, E, h) ∧ admissible (η, k) → consistent (R, η, v, h′)

The key property here is admissible (η, k). It guarantees that only ρfself is mapped
to the topmost region k of f . Hence, when f terminates only the bindings there
are deleted. This, together with the static check that ρfself does not occur in f ’s
result type (see rule APP of Fig. 7), proves that region deallocation does not create
dangling pointers. In Fig. 7, we show the proof obligations for this property. As
before, each one is a theorem interactively proved by Isabelle/HOL.
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4 Certificate Generation

Given the above sets of already proved theorems, certificate generation for a given
program is a rather straightforward task. It consists of traversing the program
abstract syntax tree and producing the following information:

• A definition in Isabelle/HOL of the abstract syntax tree.
• A set of Isabelle/HOL definitions for the static objects inferred by the analyses:

sets of free variables, typing environments, sets of region types, etc.
• A set of Isabelle/HOL proof scripts proving a lemma for each expression, consist-

ing of first proving the premises of the proof obligation (theorem) associated to
the syntactic form of the expression, and then applying the theorem.

This strategy results in small certificates and short checking times as the total
amount of work is linear with program size. The heaviest part of the proof —the
database of proved theorems— has been done in advance and is reused by each
certified program.

5 Related Work

The first approaches to PCC generated type-based certificates at the assembly code
level [8]. In [1], a type system similar to ours is presented, but they lack certifi-
cate generation. Some recent work [2] connects the information provided by static
analyses to certificate generation. Our work is more closely related to [3], where a
resource property obtained by a special type system is transformed into a certifi-
cate. Our static assertions have been inspired by their derived assertions, used also
to connect static with dynamic properties.
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