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Abstract

Safe is an eager language introduced as a research platform for programming small devices and embedded
systems with strict memory requirements. It follows a semi-explicit approach to memory control combining
regions and a deallocation construct but with a very low effort from the programmer’s point of view. Here
we describe our experiences in implementing a compiler for Safe using Haskell. We show how polymorphism,
higher-order functions, monads and different kinds of libraries have been useful in the implementation of
all compiler phases.
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1 Introduction

Safe 5 was introduced as a research platform for investigating the suitability of
functional languages for programming small devices and embedded systems with
strict memory requirements. The final aim is to infer, at compile time, safe upper
bounds on memory consumption. The compiler produces Java bytecode so Safe

programs can be executed in most mobile devices and web navigators.
In most functional languages memory management is delegated to the runtime

system. Fresh heap memory is allocated during program evaluation as long as there
is enough free memory available. Garbage collection interrupts program execution
in order to copy or mark the live part of the heap so that the rest is considered as
free. This does not avoid memory exhaustion if not enough free memory is recovered
to continue execution. The main advantage of this approach is that programmers
do not have to bother about low level details concerning memory management.
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Its main disadvantages are the time delay introduced by garbage collection, the
personal or economic damages provoked by memory exhaustion, and the difficulty
of reasoning about memory consumption. These reasons make automatic memory
management unacceptable in small devices where garbage collectors are a burden
both in space and in service availability. Programmers of such devices would like
both to have more control over memory and to be able to reason about the memory
consumption of their programs.

Our first-order functional language Safe is a semi-explicit approach to memory
control which combines regions and a deallocation construct. Implicit regions are
used to destroy garbage. They are allocated/deallocated by following a stack disci-
pline associated to function calls and returns. Each function call allocates a local
working region, which is deallocated when the function returns. The compiler infers
which data structures may be allocated in this local region because they are not
needed as part of the result of the function [9]. In order to overcome the prob-
lems related to nested regions, Safe provides a case! construct that deallocates the
individual cells of a data structure, so that they can be reused by the memory man-
agement system. Regions and explicit destruction are orthogonal mechanisms: we
could have destruction without regions and viceversa. This combination of explicit
destruction and implicit regions is novel in the functional programming field. We
have defined a type system [10] and a type inference algorithm [12] guaranteeing
that none of the two mechanisms create dangling pointers in the heap.

Safe’s syntax is a first-order subset of Haskell extended with destructive pat-
tern matching, so programming in Safe is straightforward for Haskell programmers.
They only have to write a destructive pattern matching, denoted by ! or a case!
expression, when they want a cell to be reused. As an example, we show an append
function destroying the first list’s spine, while keeping its elements in order to build
the result. Using recursion the recursive spine of the first list is deallocated:

appendD :: [a]! -> [a] -> [a]
appendD []! ys = ys
appendD (x:xs)! ys = x : appendD xs ys

This version needs constant additional heap space (a cell is destroyed and another
one is created at each call), while the usual one needs additional linear heap space.
Type [a]! denotes the type of a list being destroyed by the function.

In this paper we describe our experiences in implementing a compiler for Safe

using Haskell. In Section 2 we describe the different phases of the compiler. In
Section 3 we show how polymorphism, higher-order functions and monads provided
by Haskell have been used in several phases. In Section 4 we mention the libraries
we found useful for our implementation. In Section 5 we provide our conclusions.

2 A brief overview of the Safe’s compiler

The phases of the compiler’s frontend are shown in Fig. 1. First, the input is scanned
and parsed in order to obtain an abstract syntax tree (AST), which is represented
as a Haskell term of type Prog a, where a is a polymorphic decoration (Sec 3.1).
We have used standard tools (Alex [2] and Happy [8]) to implement these phases
(Sec. 4.1). Then, the following phases are performed:
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Lexer / Preprocessor / Parser

Renamer / contextual constraints check

Hindley-Milner and region inference

Core-Safe transformation

Sharing analysis

Destruction analysis

Full-Safe

Core-Safe

Fig. 1. Safe’s compiler frontend

• Renamer / Contextual constraints check: The analyses implemented in
the subsequent phases assume that all bound variables have different names, so
each variable is replaced by a fresh one. Additionally, we check the language’s
contextual constraints, e.g. that every variable is in scope, that functions and
data constructors are called with the right number of arguments, etc.

• Hindley-Milner type and region inference: This phase decorates every ex-
pression, data constructor and function definition with its corresponding type,
after inferring it. The AST is also decorated with information about the regions
in which each data structure lives. In particular, it determines whether a given
data structure is local or not to the current function call.

• Core-Safe transformation: The original Safe program is translated into a desug-
ared and semantically equivalent Core-Safe version. The previously inferred type
decorations are preserved.

• Sharing analysis: Given two variables belonging to the same function defini-
tion, it computes whether the respective data structures pointed to by them at
runtime may share memory locations. The program is decorated with this sharing
information [13], which is needed by the following phase.

• Destruction analysis: It infers a typing for the source program w.r.t. the type
system in [10], guaranteeing that dangling pointers are not generated as a conse-
quence of a case!.

The user can choose between different available backends. We have implemented
the translation from Core-Safe to the language of the Safe Virtual Machine [11],
which may be further translated into Java bytecode in order to produce platform-
independent executables. A certificate written in Isabelle/HOL is also generated
in order to prove the absence of dangling pointers at runtime. We have also im-
plemented the generation of Term Rewriting Systems [7], which may be used in
conjunction with existing tools for proving termination, such as AProVE or µ-Term.

3 Polymorphism, higher-order and monads

3.1 Polymorphic datatypes

The use of polymorphic datatypes is intensive along all the phases of the compiler.
First, they are used to represent the abstract syntax of programs and expressions:
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type Prog a = ([DataDec], [Def a], Exp a) -- programs
...
data Exp a = ConstE Lit a -- literal

| ConstrE String [Exp a] RegVar a -- constructor application
| VarE String a -- variable
| CopyE String RegVar a -- copy expression
| ReuseE String a -- reuse expression
| AppE String [Exp a] [RegVar] a -- function application
| LetE [Def a] (Exp a) a -- let expression
| CaseE (Exp a) [CaseAlt a] a -- non-destructive case
| CaseDE (Exp a) [CaseAlt a] a -- destructive case

The polymorphic argument a is used to decorate the abstract syntax tree with
different kinds of information:
• The Hindley-Milner inference phase decorates programs and expressions with

their types:
decorProg :: Assumps -> Prog a -> (Assumps, Prog TypeExp)

• The sharing analysis augments the decoration with information about sharing:
sharingProg :: Prog TypeExp -> Prog (TypeExp, SharingDec)

• The destruction analysis phase decorates programs with information about the
destructive nature of variables. When destructive pattern matching is not safely
used by the programmer an error is returned and the program is rejected:

destInferenceProg :: DestEnv -> Prog (TypeExp, SharingDec)
-> Either DestInferenceError (DestEnv, Prog DestDec)

Also, polymorphic types defined in libraries are instantiated in order to define many
different types used in the compiler, in particular Data.List, Data.Map, and Data.Set

where the standard functions for lists, maps from ordered keys to values (dictionar-
ies), and ordered sets are available. Both sets and maps are efficiently implemented
using size balanced binary trees. We use maps for defining:

• Environments containing information about functions and/or variables, such as
sharing signatures, destruction signatures, types etc:

type ShEnvironment = Map String ShSignature -- sharing signatures for functions
type Relations = Map Variable ShInfo -- sharing information for variables
type DestEnv = Map String DestSig -- destruction signatures for functions
type Assumps = Map String TypeExp -- HM types

• Substitutions, such as region substitutions obtained during region inference and
type substitutions obtained during type inference:

type RegSubst = Map TypeVar TypeVar -- region substitution
type Subst = Map TypeVar TypeExp -- type substitution

• Tables containing different kinds of auxiliary information, such as the number of
region parameters in data declarations, the recursive positions of each constructor
and the types of the recursive calls (Sec. 3.3):

type DecDataInfo = Map String Int -- number of region parameters of a data
type TablaRecPos = Map String [Int] -- recursive positions of a constructor
type RecCalls = Map RecId TypeExp -- types of recursive calls

We use in several places sets containing program or type variables. For example,
the decoration generated by the destruction analysis consists basically of four sets
of program variables (safe, condemned, in-danger and unknown [12]) :

type Variables = Set Variable
data DestDec = DD (Variables, Variables, Variables, Variables) ExpDepDec

We also use nested datatypes. For example, the sharing information is a map from
variable names to a tuple of seven sets of variables (see [13] for details):

type Relations = Map Variable ShInfo
type ShInfo = (Variables, Variables, Variables,Variables, Variables, Variables, Variables)
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3.2 Standard higher-order functions

Many standard higher-order functions available for lists, like folds and map, have
been intensively used in the compiler, as well as their counterparts in other polymor-
phic data types, e.g. sets and maps. We highlight an accumulating map function,
used almost in all the phases of the compiler, including code generation:

mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s’’,y:ys)

where (s’, y ) = f s x
(s’’,ys) = mapAccumL f s’ xs

It behaves as a combination of map and foldl: while applying the argument function
to each element of the list, it passes an accumulator from left to right, which is
returned as result together with the new list. This function has been useful whenever
an environment or a state must be accumulatively threaded while processing a
program, where different kinds of lists appear: function definitions, call arguments,
case alternatives etc. We have found it useful to define a monadic version:

mapAccumM :: Monad m => (acc -> x -> m (acc,y)) -> acc -> [x] -> m (acc, [y])
mapAccumM f acc [] = return (acc, [])
mapAccumM f acc (x:xs) = do (acc’,y) <- f acc x

(acc’’,ys) <- mapAccumM f acc’ xs
return (acc’’, y:ys)

3.3 Error and State Monads. Use of Laziness

An extensive use of the Monad Transformer Library(mtl) is done. This library,
inspired by [5], provides definitions of several monads and monad combinators.
The State monad encapsulates computations requiring the explicit propagation of a
state. It is used in the Hindley-Milner type and region inference phase. This phase
traverses the AST of a given definition and decorates it with a preliminary type,
while propagating an internal state, wrapped in the monad as follows:

type IntState = ([Equation],[Constraint], Set TypeVar, [TypeVar], [TypeVar],
[String], RecCalls)

type HMState = State IntState

During the AST traversal, several unification equations and constraints between
types are generated and stored in the first two components of the state. This may
involve the generation of fresh names for type and region type variables. These are
represented as lazy infinite lists in the fourth and fifth components of the state.
When one of these is needed, the head of the corresponding list is taken and its tail
is put back into the state. The set of explicit generated region variables, needed by
the region inference, is stored in the third component. In addition, the type assigned
to each recursive call is uniquely identified and stored in a separate table of type
RecCalls (seventh component), used later to infer polymorphic recursion over regions.
The recursive call identifiers are generated in the same way as type variables.

As an example, the following (simplified) code fragment decorates a let expres-
sion. The state is propagated from the auxiliary expression to the main one. We
compare below the monadic approach with an explicit state propagation approach:
Explicit propagation:

decorAndGenExp :: Assumps -> Exp a -> IntState -> (IntState, Exp a)
decorAndGenExp as (LetE defs exp _) st = (st2, LetE defs’ exp’ (decExp exp’))

where (st1, (as’,defs’)) = decorAndGenInnerDefs as stdefs st
(st2, exp’) = decorAndGenExp (M.union as as’) exp st1
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State monad:
decorAndGenExp :: Assumps -> Exp a -> HMState (Exp TypeExp)
decorAndGenExp as (LetE defs exp _) = do (as’,defs’) <- decorAndGenInnerDefs as defs

exp’ <- decorAndGenExp (M.union as as’) exp
return (LetE defs’ exp’ (decExp exp’))

A state-monadic computation is started by the function runST. It receives the monadic
computation to be executed and the initial state, and returns the result of the
computation (the decorated tree, in our case) together with the final state.

When dealing in Haskell with functions that may produce an error, there are
several approaches. The most popular one is the error function, which allows little
possibility of error handling. This can be solved by using the Either a b datatype,
so that the caller can establish whether the computation failed, and what kind of
error has taken place. Errors are handled in this fashion in the renaming phase, i.e.
the corresponding function may return either an error or the modified program:

sparser :: Show a => Prog a -> Either SemanticError (Prog a)

where the SemanticError datatype provides information about the error thrown. The
mtl library defines the datatype Either a as a monad, allowing to combine partial
computations. In this phase, the Either monad is combined with the State monad,
which propagates the arities of each type, constructor and function in the program:

data SemState = SemState { typeNames :: Map String Int, constrNames :: Map String Int,
funcNames :: Map String Int,...}

type Sem e a = StateT SemState (Either e) a

For example, the following code fragment checks a function application:
checkExp :: Exp a -> Sem DefError (Exp a)
checkExp (AppE f es rs dec) =

do -- We look up the arity of the function in the state
mar <- lookupT funcNames f
-- Is the function f defined?
ar <- maybe (throwError (ExpUndefinedId f)) return mar
-- Is the number of arguments correct? Partial applications are not supported.
when (ar /= length es) (throwError (HigherOrderApp f (length es) ar))
-- Perform the renaming on the arguments and return the result.
es’ <- mapM checkExp es
return (AppE f es’ rs dec)

where the maybe function is given a value of type Maybe as its third parameter. If its
value is Just x, the function passed as its second parameter is applied to x and the
result returned. If its value is Nothing, the first parameter is returned. The when ϕ

combinator executes a given action provided the condition ϕ is satisfied.

4 External libraries

4.1 Parsing and pretty printing tools

Haskell provides many different tools for helping in the initial phases of the compiler:
lexical analysis or scanning, and syntactic analysis or parsing. We have chosen to
use the scanner generator Alex [2] and the parser generator Happy [8].

The first one receives as input a regular grammar describing the lexical units
—or tokens— of the input language, and produces as output a scanner written in
Haskell which, when executed, scans the input language and, provided there are
no lexical errors, produces a list of tokens as output. Alex gives facilities to anno-
tate tokens with its position (line and column numbers) in the input text. This is
useful for generating meaningful errors, but we also used the column positions to
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implement the layout rule of some functional languages, included Safe: the starting
column of the text has syntactic meaning, as it can be used to open a new decla-
ration (by starting it in the same column as the previous one), to close the current
declaration block (by moving some columns to the left), or to continue with the
current declaration (by moving to the right).

The parser generator Happy receives as input an LALR-(1) grammar describing
the input language, and produces as output a parser written in Haskell which, when
executed, parses the list of tokens produced by the scanning phase and, provided
there are no syntactic errors, produces the abstract syntax tree of the program being
compiled. Our grammar has 31 terminal symbols, 43 non-terminal and 120 rules.
The LALR-(1) automaton generated by Happy has 243 states.

We also use a pretty printing library in order to present the different intermediate
files in an easy-to-read format. The one chosen is PPrint [6] by D. Leijen, based
on the P. Wadler paper [14], based in turn on the famous J. Hughes combinator
library [4]. This library is claimed to be 30% shorter and 30% faster than Hughes’s
one. It provides a class Pretty with the overloaded function pretty :: Pretty a => a

-> Doc which creates pretty-printed versions of some simple types such as integers,
booleans, tuples, and lists. All we had to do is overload the function pretty with
the Haskell types describing our intermediate files. Most of these are differently
decorated versions of the abstract syntax tree. Some other are the token list returned
by the scanning phase, and the instruction lists returned by the different code
generation phases. A number of combinators to indent, concatenate, group, etc.,
pretty documents is provided by the library to define the different instances of pretty.

4.2 Web interface support

We are building a web-based version of the compiler in which a remote user may
interactively activate each compiler’s phase and browse or change the intermediate
files produced. This compiler generates XML versions of the files so that the user
may browse them in a web browser. To this aim, we use the library HaXml, 6 and
other related tools such as DrIFT [15] and polyparse, 7 which provide support for
translating Haskell types into XML, and vice versa. This version of the compiler,
each time it is invoked, only executes a given phase. All of them expect and produce
XML files.

5 Conclusions

Summarising our experiences in using Haskell for building the Safe’s compiler, we
believe that that Haskell has reached a high level of maturity, both from the point of
view of its offered constructs, and from its available tools such as the GHC compiler,
the various libraries, and other related programs. Without the use of higher-order
functions (such as mapAccumL, zipWith, map, foldr, ...) and polymorphism,
the Safe compiler would have been much more longer and painful to build. The rest
of language features, such as laziness, monads, type classes, etc., have contributed in

6 Available at: http://www.cs.york.ac.uk/fp/HaXml/
7 Available at: http://www.cs.york.ac.uk/fp/polyparse/
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a positive way to specific parts of the compiler. The specialised libraries for scanner
and parser generation, and for web-interfacing have also saved a lot of work.

Perhaps, we have missed a better aid for debugging. The official supported tool
in the ghc library is the function trace, which is very primitive. More sophisticated
tools such as Hat [1] and Hood [3] are supported for earlier versions of GHC, but
not for the current ones (we have used ghc 6.10). It is a pity that such useful tools
are not adequately maintained in order to conform to the latest GHC versions.

Our development has spanned four years of non-continuous work, around ten
people have participated in different parts of the compiler, and this is still growing.
The current figures are: about 20.000 lines of code, including comments, distributed
among 40 Haskell modules, some of them automatically generated by other tools.

A last remark is that the module called AbstractSyntax has been very useful in
achieving good compiler modularity. The abstract syntax tree constitutes the main
interface between most compiler phases, as many of them need a syntax tree either
as input, or as output, or both. This has allowed us to work in parallel in different
modules without major interferences between programmers.
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