Up to index of Isabelle/HOL/SafeImp
theory SVMSemantics(* Title: Safe Virtual Machine Semantics Author: Ricardo Peņa Copyright: March 2008, Universidad Complutense de Madrid *) header {* Semantics of the SVM instructions *} theory SVMSemantics imports SVMState HaskellLib begin text{* \begin{itemize} \item 'execSVMInst' executes a single SafeImp instruction in a state and gives another state. \item 'execSVM' executes the next SafeImp instruction in a SVM program. \item 'execOp' operates two basic values with an operator. \end{itemize} *} consts execSVMInst :: "[SafeInstr,ConstructorTableFun,Heap,Region,PC,Stack] => (SVMState,SVMState) Either" consts item2Stack :: "Region => Stack => Item => StackObject" item2Val :: "Stack => Item => Val" text{* Auxiliary functions for BUILDENV and BUILDCLS *} fun stackOffset :: "Stack => nat => StackObject" (infix "!+" 110 ) where "(so # S) !+ 0 = so" | "(Val v # S) !+ n = S !+ (n - 1)" | "(Reg r # S) !+ n = S !+ (n - 1)" | "(Cont c # S) !+ n = S !+ (n - 2)" primrec "item2Stack k S (ItemConst v) = Val v" "item2Stack k S (ItemVar off) = S !+off" "item2Stack k S ItemRegSelf = Reg k" primrec "item2Val S (ItemConst v) = v" "item2Val S (ItemVar off) = (case S !+ off of Val v => v)" -- "We use fun here for full pattern matching" constdefs execSVM :: "SafeImpProg => SVMState => (SVMState,SVMState) Either" "execSVM prog state == ( case prog of ((code,cnt),q,ct,st) => case state of (h,k0,(l,i),S) => let codef = map_of code in execSVMInst (fst(the (codef l))!i) (map_of ct) h k0 (l,i) S)" consts execSVM_N :: "SafeImpProg => SVMState => nat => SVMState" primrec "execSVM_N prog s 0 = s " "execSVM_N prog s (Suc n) = (case execSVM prog s of Right s' => execSVM_N prog s' n)" text{* Function {\sl execSVMInst} executes a single SVM instruction. If it is POPCONT and there is no continuation in the stack, it returns the current state with the constructor Left. Otherwise, it returns the next state with the constructor Right. *} primrec "execSVMInst DECREGION ct h k0 pc S = Right (h \<down> k0,k0,incrPC pc,S)" "execSVMInst POPCONT ct h k0 pc S = (case S of v#[] => Left (h,k0,pc,S) | v#Cont (k0,l)#S' => Right (h,k0,(l,0),v#S'))" "execSVMInst (PUSHCONT p)ct h k0 pc S = Right (h,snd h,incrPC pc,Cont (k0,p)#S)" "execSVMInst COPY ct h k0 pc S = (case S of Val (Loc b)#Reg j#S' => if j ≤ snd h then let pair = copy h j b in case pair of (h',b') => Right (h',k0,incrPC pc,Val (Loc b')#S') else arbitrary)" "execSVMInst REUSE ct h k0 pc S = (case S of Val (Loc b)#S' => case h of (hm,k) => let cell = the (hm b); b' = getFresh hm in Right ((hm(b:=None)(b'\<mapsto> cell),k), k0,incrPC pc,Val (Loc b')#S'))" "execSVMInst (CALL p) ct h k0 pc S = (case h of (hm,k) => Right ((hm,k+1),k0,(p,0),S))" "execSVMInst (PRIMOP oper) ct h k0 pc S = (case S of Val v1#Val v2#S' => let v = execOp oper v1 v2 in Right (h,k0,incrPC pc,Val v#S'))" "execSVMInst (MATCH l ps) ct h k0 pc S = (case S!+l of Val (Loc b) => case (fst h) b of Some (j,C,vs) => case ct C of Some (_,r,_) => Right (h,k0,(ps!r,0),(map Val vs) @ S))" "execSVMInst (MATCHD l ps) ct h k0 pc S = (case S!+l of Val (Loc b) => case (fst h) b of Some (j,C,vs) => case ct C of Some (_,r,_) => let h' = ((fst h)(b:= None), snd h) in Right (h',k0,(ps!r,0),(map Val vs) @ S))" "execSVMInst (MATCHN l v m ps) ct h k0 pc S = (case S!+l of Val (IntT i) => let r = (nat i)- v; p = if r ≥ 0 ∧ r ≤ m - 1 then ps!r else ps!m in Right (h,k0,(p,0),S) | Val (BoolT b) => let p = if ¬ b then ps!0 else ps!1 in Right (h,k0,(p,0),S))" "execSVMInst (BUILDENV is) ct h k0 pc S = (let bs = map (item2Stack (snd h) S) is in Right (h,k0,incrPC pc,bs @ S))" "execSVMInst (BUILDCLS C is i) ct h k0 pc S = (case item2Stack (snd h) S i of Reg j => case h of (hm,k) => let vs = map (item2Val S) is; b = getFresh hm; h' = (hm (b \<mapsto> (j,C,vs)),k) in Right (h',k0,incrPC pc,Val (Loc b)#S))" "execSVMInst (SLIDE m n) ct h k0 pc S = Right (h,k0,incrPC pc,take m S @ drop (m+n) S)" text{* We convert function {\sl execSVM} into a reflexive transitive relation. Also, we define an inductive relation {\sl execSVMBalanced} giving us the list of all the states reachable from an initial one so that the stack does not decrease more than a given amount n. The list is given in reverse order.*} constdefs execSVMAll :: "[SafeImpProg,SVMState,SVMState] => bool" ("_\<turnstile> _ -svm-> _" [61,61,61]60) "P \<turnstile> s -svm-> s' ≡ (s,s') ∈ {(s,t) . execSVM P s = Right t}^*" fun diffStack :: "SVMState => SVMState => nat => int" where "diffStack (h',k0',pc',S') (h,k0,pc,S) m = ( let n = length S; n' = length S' in int m + (int n' - int n))" fun instrSVM :: "SafeImpProg => SVMState => SafeInstr" where "instrSVM ((code,cnt),q,ct,st) (h,k0,(l,i),S) = fst(the (map_of code l))!i" inductive execSVMBalanced :: "[SafeImpProg,SVMState,nat list,SVMState list,nat list] => bool" ("_\<turnstile>_ , _ -svm-> _ , _" [61,61,61,61,61]60) where init: "P \<turnstile> s, n#ns -svm-> [s], n#ns" | step: "[| P \<turnstile> s, n#ns -svm-> s'#ss, m#ms; execSVM P s' = Right s''; m' = nat (diffStack s'' s' m); m' ≥ 0; ms' = (if pushcont (instrSVM P s') then 0#m#ms else if popcont (instrSVM P s') ∧ ms=m''#ms'' then (Suc m'')#ms'' else m'#ms)|] ==> P \<turnstile> s, n#ns -svm-> s''#s'#ss, ms'" lemma popcont_neq_pushcont: "popcont (instrSVM P s) ==> ¬pushcont (instrSVM P s)" by (case_tac "instrSVM P s",simp_all) lemma execSVMBalanced_n_step_aux [rule_format]: " P \<turnstile> s'', n''#ns'' -svm-> sss , n'''#ns''' --> (∀ s''' ss'' ss. sss = s'''#ss'' --> P \<turnstile> s', n'#ns' -svm-> s'' # ss', n''#ns'' --> ss = ss'' @ ss' --> P \<turnstile> s', n'#ns' -svm-> s'''# ss, n'''#ns''')" apply (rule impI) apply (erule execSVMBalanced.induct) apply simp apply (rule allI)+ apply (erule_tac x="s'a" in allE) apply (erule_tac x="ss" in allE) apply (erule_tac x="ss @ ss'" in allE) apply (rule impI)+ apply simp apply (elim conjE) apply (rule conjI) apply (rule impI) apply (rule conjI) apply (rule impI) apply simp apply (erule conjE) apply (frule popcont_neq_pushcont) apply simp apply (rule impI) apply simp apply (drule_tac t="ss''" in sym) apply simp apply (rule execSVMBalanced.step) apply simp apply simp apply simp apply simp apply simp apply (rule conjI) apply simp apply simp apply (rule impI) apply (rule conjI) apply (rule impI) apply simp apply (drule_tac t="ss''" in sym) apply simp apply (rule execSVMBalanced.step) apply simp apply simp apply simp apply simp apply simp apply (rule impI) apply simp apply (drule_tac t="ss''" in sym) apply simp apply (rule execSVMBalanced.step) apply simp apply simp apply simp apply simp apply (split split_if_asm) apply simp apply simp apply (rule impI) apply (elim conjE) apply (rule conjI) apply simp apply auto done lemma execSVMBalanced_n_step: "[|P \<turnstile> s', n'#ns' -svm-> s'' # ss', n''#ns''; P \<turnstile> s'', n''#ns'' -svm-> s'''# ss'', n'''#ns'''; ss = ss'' @ ss'|] ==> P \<turnstile> s', n'#ns' -svm-> s'''# ss, n'''#ns'''" apply (rule execSVMBalanced_n_step_aux) apply simp_all done end
lemma popcont_neq_pushcont:
popcont (instrSVM P s) ==> ¬ pushcont (instrSVM P s)
lemma execSVMBalanced_n_step_aux:
[| P\<turnstile>s'' , n'' # ns'' -svm-> sss , n''' # ns'''; sss = s''' # ss'';
P\<turnstile>s' , n' # ns' -svm-> s'' # ss' , n'' # ns''; ss = ss'' @ ss' |]
==> P\<turnstile>s' , n' # ns' -svm-> s''' # ss , n''' # ns'''
lemma execSVMBalanced_n_step:
[| P\<turnstile>s' , n' # ns' -svm-> s'' # ss' , n'' # ns'';
P\<turnstile>s'' , n'' # ns'' -svm-> s''' # ss'' , n''' # ns''';
ss = ss'' @ ss' |]
==> P\<turnstile>s' , n' # ns' -svm-> s''' # ss , n''' # ns'''