
A Space Consumption Analysis By Abstract Interpretation

(extended version) ∗

Manuel Montenegro, Ricardo Peña and Clara Segura
montenegro@fdi.ucm.es {ricardo,csegura}@sip.ucm.es

November, 2009

Abstract

Safe is a first-order functional language with an implicit region-based memory system and explicit
destruction of heap cells. Its static analysis for inferring regions, and a type system guaranteeing the
absence of dangling pointers have been presented elsewhere.

In this paper we present a new analysis aimed at inferring upper bounds for heap and stack
consumption. It is based on abstract interpretation, being the abstract domain the set of all n-ary
monotonic functions from real non-negative numbers to a real non-negative result. This domain
turns out to be a complete lattice under the usual v relation on functions. Our interpretation is
monotonic in this domain and the solution we seek is the least fixpoint of the interpretation.

We first explain the abstract domain and some correctness properties of the interpretation rules
with respect to the language semantics, then present the inference algorithms for recursive functions,
and finally illustrate the approach with the upper bounds obtained by our implementation for some
case studies.

1 Introduction

The first-order functional language Safe has been developed in the last few years as a research platform for
analysing and formally certifying two properties of programs related to memory management: absence of
dangling pointers and having an upper bound to memory consumption. Two features make Safe different
from conventional functional languages: (a) a region based memory management system which does not
need a garbage collector; and (b) a programmer may ask for explicit destruction of memory cells, so that
they could be reused by the program. These characteristics, together with the above certified properties,
make Safe useful for programming small devices where memory requirements are rather strict and where
garbage collectors are a burden in service availability.

The Safe compiler is equipped with a battery of static analyses which infer such properties [12, 13, 10].
These analyses are carried out on an intermediate language called Core-Safe explained below. We have
developed a resource-aware operational semantics of Core-Safe [11] producing not only values but also
exact figures on the heap and stack consumption of a particular running. The code generation phases
have been certified in a proof assistant [5, 4], so that there is a formal guarantee that the object code
actually executed in the target machine (the JVM [9]) will exactly consume the figures predicted by the
semantics.

Regions are dynamically allocated and deallocated. The compiler ‘knows’ which data lives in each
region. Thanks to that, it can compute an upper bound to the space consumption of every region and
so and upper bound to the total heap consumption. Adding to this a stack consumption analysis would
result in having an upper bound to the total memory needs of a program.

In this work we present a static analysis aimed at inferring upper bounds for individual Safe functions,
for expressions, and for the whole program. These have the form of n-ary mathematical functions
relating the input argument sizes to the heap and stack consumption made by a Safe function, and
include as particular cases multivariate polynomials of any degree. Given the complexity of the inference
problem, even for a first-order language like Safe, we have identified three separate aspects which can

∗Work partially funded by the projects TIN2008-06622-C03-01/TIN (STAMP), S-0505/ TIC/ 0407 (PROMESAS) and
the MEC FPU grant AP2006-02154.

1

be independently studied and solved: (1) Having an upper bound on the size of the call-tree deployed
at runtime by each recursive Safe function; (2) Having upper bounds on the sizes of all the expressions
of a recursive Safe function. These are defined as the number of cells needed by the normal form of the
expression; and (3) Given the above, having an inference algorithm to get upper bounds for the stack
and heap consumption of a recursive Safe function.

Several approaches to solve (1) and (2) have been proposed in the literature (see the Related Work
section). We have obtained promising results for them by using rewriting systems termination proofs
[10]. In case of success, these tools return multivariate polynomials of any degree as solutions. This work
presents a possible solution to (3) by using abstract interpretation. It should be considered as a proof-
of-concept paper: we investigate how good the upper bounds obtained by the approach are, provided we
have the best possible solutions for problems (1) and (2). In the case studies presented below, we have
introduced by hand the bounds to the call-tree and to the expression sizes.

The abstract domain is the set of all monotonic, non-negative, n-ary functions having real number
arguments and real number result. This infinite domain is a complete lattice, and the interpretation is
monotonic in the domain. So, fixpoints are the solutions we seek for the memory needs of a recursive Safe
function. An interesting feature of our interpretation is that we usually start with an over-approximation
of the fixpoint, but we can obtain tighter and tighter safe upper bounds just by iterating the interpretation
any desired number of times.

The plan of the paper is as follows: Section 2 gives a brief description of our language; Section 3
introduces the abstract domain; Sections 4 and 5 give the abstract interpretation rules and some proof
sketches about their correctness, while Section 6 is devoted to our inference algorithms for recursive
functions; in Section 7 we apply them to some case studies, and finally in Section 8 we give some account
on related and future work.

2 Safe in a Nutshell

Safe is polymorphic and has a syntax similar to that of (first-order) Haskell. In Full-Safe in which
programs are written, regions are implicit. These are inferred when Full-Safe is desugared into Core-Safe
[13]. The allocation and deallocation of regions is bound to function calls: a working region called self
is allocated when entering the call and deallocated when exiting it. So, at any execution point only a
small number of regions, kept in an invocation stack, are alive. The data structures built at self will die
at function termination, as the following treesort algorithm shows:

treesort xs = inorder (mkTree xs)

First, the original list xs is used to build a search tree by applying function mkTree (not shown). The
tree is traversed in inorder to produce the sorted list. The tree is not part of the result of the function,
so it will be built in the working region and will die when the treesort function returns. The Core-Safe
version of treesort showing the inferred type and regions is the following:

treesort :: [a] @ rho1 -> rho2 -> [a] @ rho2

treesort xs @ r = let t = mkTree xs @ self

in inorder t @ r

Variable r of type rho2 is an additional argument in which treesort receives the region where the
output list should be built. This is passed to the inorder function. However self is passed to mkTree to
instruct it that the intermediate tree should be built in treesort’s self region.

Data structures can also be destroyed by using a destructive pattern matching, denoted by !, or
by a case! expression, which deallocates the cell corresponding to the outermost constructor. Using
recursion, the recursive portions of the whole data structure may be deallocated. As an example, we
show a Full-Safe insertion function in an ordered list, which reuses the argument list’s spine:

insertD x []! = x : []

insertD x (y:ys)! | x <= y = x : y : ys!

| x > y = y : insertD x ys!

Expression ys! means that the substructure pointed to by ys in the heap is reused. The following is the
(abbreviated) Core-Safe typed version:

2

E ` h, k, td , c ⇓ h, k, c, ([], 0, 1) [Lit]
E[x 7→ v] ` h, k, td , x ⇓ h, k, v, ([], 0, 1) [Var]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)
E[x 7→ p, r 7→ j] ` h, k, td , x@r ⇓ h′, k, p′, ([j 7→ m],m, 2)

[Var2]

fresh(q)
E[x 7→ p] ` h] [p 7→ w], k, td , x! ⇓ h] [q 7→ w], k, q, ([], 0, 1)

[Var3]

(f xin @ rj
l = e) ∈ Σ [xi 7→ E(ai)

n
, rj 7→ E(r′j)

l
, self 7→ k + 1] ` h, k + 1, n+ l, e ⇓ h′, k + 1, v, (δ,m, s)

E ` h, k, td , f ain @ r′j
l
⇓ h′|k, k, v, (δ|k,m,max{n+ l, s+ n+ l − td})

[App]

E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1,m1, s1)
E ∪ [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2,m2, s2)

E ` h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2,max{m1, |δ1|+m2},max{2 + s1, 1 + s2})
[Let1]

j ≤ k fresh(p) E ∪ [x1 7→ p] ` h] [p 7→ (j, C vi
n)], k, td + 1, e2 ⇓ h′, k, v, (δ,m, s)

E[ai 7→ vi
n, r 7→ j] ` h, k, td , let x1 = C ai

n@r in e2 ⇓ h′, k, v, (δ + [j 7→ 1],m+ 1, s+ 1)
[Let2]

C = Cr E ∪ [xri
7→ vi

nr] ` h, k, td+ nr, er ⇓ h′, k, v, (δ,m, s)
E[x 7→ p] ` h[p 7→ (j, C vi

n)], k, td , case x of Ci xijni → ei
n ⇓ h′, k, v, (δ,m, s+ nr)

[Case]

C = Cr E ∪ [xri
7→ vi

nr] ` h, k, td+ nr, er ⇓ h′, k, v, (δ,m, s)
E[x 7→ p] ` h] [p 7→ (j, C vi

n)], k, td , case! x of Ci xijni → ei
n ⇓ h′, k, v, (δ + [j 7→ −1],max{0,m− 1}, s+ nr)

[Case!]

Figure 1: Resource-Aware Operational semantics of Safe expressions

insertD :: Int -> [Int]! @ rho -> rho -> [Int] @ rho
insertD x ys @ r = case! ys of

[] -> let zs = [] @ r in let us = (x:zs) @ r in us
y:yy -> let b = x <= y in case b of

True -> let ys1 = (let yy1 = yy! in let as = (y:yy1) @ r in as) in
let rs1 = (x:ys1) @ r in rs1

False -> let ys2 = (let yy2 = yy! in insertD x yy2 @ r) in
let rs2 = (y:ys2) @ r in rs2

This function will run in constant heap space since, at each call, a cell is destroyed while a new one is
allocated at region r by the (:) constructor. Only when the new element finds its place a new cell is
allocated in the heap.

In Fig. 1 we show the Core-Safe big-step semantic rules in which a resource vector is obtained as
a side effect of evaluating an expression. A judgement has the form E ` h, k, td , e ⇓ h′, k, v, (δ,m, s)
meaning that expression e is evaluated in an environment E using the td topmost positions in the stack,
and in a heap (h, k) with 0..k active regions. As a result, a heap (h′, k) and a value v are obtained, and a
resource vector (δ,m, s) is consumed. Notice that k does not change because the number of active regions
increases by one at each application and decreases by one at each function return, and all applications
during e’s evaluation have been completed. A heap h is a mapping between pointers and constructor
cells (j, C vi

n), where j is the cell region. The first component of the resource vector is a partial function
δ : N → Z giving for each active region i the signed difference between the cells in the final and initial
heaps. A positive difference means that new cells have been created in this region. A negative one,
means that some cells have been destroyed. By dom(δ) we denote the subset of N in which δ is defined.
By |δ| we mean the sum

∑
n∈dom(δ) δ(n) giving the total balance of cells. The remaining components m

and s respectively give the minimum number of fresh cells in the heap and of words in the stack needed
to successfully evaluate e. When e is the main expression, these figures give us the total memory needs
of a particular run of the Safe program. For a full description of the semantics and the abstract machine
see [11].

3 Function Signatures

A Core-Safe function is defined as a n+m argument expression:

f :: t1 → . . . tn → ρ1 → . . . ρm → t
f x1 · · ·xn @ r1 · · · rm = ef

A function may charge space costs to heap regions and to the stack. In general, these costs depend on
the sizes of the function arguments. For example,

3

copy xs @ r = case xs of [] -> [] @ r

y:ys -> let zs = copy ys @ r in

let rs = (y:zs) @ r in rs

charges as many cells to region r as the input list size. We define the size of an algebraic type term to be
the number of cells of its recursive spine and that of a boolean value to be zero. However, for a natural
number we take its value because frequently space costs depend on the value of a numeric argument.

As a consequence, all the costs, sizes and needs of f can be expressed as functions η : (R+∪{+∞})n →
R ∪ {+∞,−∞} on f ’s argument sizes. Infinite costs will be used to represent that we are not able to
infer a bound (either because it does not exist or because the analysis is not powerful enough). Costs
can be negative if the function destroys more cells than it builds. Currently we are restricting ourselves
to functions where for each destructed cell at least a new cell is built in the same region. This covers
many interesting functions where the aim of cell destruction is space reuse instead of pure destruction,
e.g. function insertD shown in the previous section. This restriction means that the domain of the
space cost functions is the following:

F = {η : (R+ ∪ {+∞})n → R+ ∪ {+∞} | η is monotonic}

The domain (F,v,⊥,>,t,u) is a complete lattice, where v is the usual order between functions, and
the rest of components are standard. Notice that it is closed by the operations {+,t, ∗}. We abbreviate
λxi

n.c by c, when c ∈ R+.
Function f above may charge space costs to a maximum of n + m + 1 regions: It may destroy

cells in the regions where x1 . . . xn live; it may create/destroy cells in any output region r1 . . . rm, and
additionally in its self region. Each region r has a region type ρ. We denote by Rfin the set of input region
types, and by Rfout the set of output region types. For example, Rtreesort

in = {ρ1} and Rtreesort
out = {ρ2}.

Looked from outside, the charges to the self region are not visible, as this region disappears when the
function returns.

Summarising, let Rf = Rfin ∪R
f
out. Then D = {∆ : Rf → F} is the complete lattice of functions that

describe the space costs charged by f to every visible region. In the following we will call abstract heaps
to the functions ∆ ∈ D.

Definition 1. A function signature for f is a triple (∆f , µf , σf), where ∆f belongs to D, and µf , σf
belong to F.

The aim is that ∆f describes (an upper bound to) the space costs charged by f to every visible
region, (i.e. the increment in live memory due to a call to f), and µf , σf respectively describe (an upper
bound to) the heap and stack needs in order to execute f without running out of space (i.e. the maximal
increment in live memory during f ’s evaluation). By []f we denote the constant function λρ.λxi

n.0,
where we assume ρ ∈ Rf . By |∆| we mean

∑
ρ∈dom(∆) ∆ ρ.

4 Abstract Interpretation

In Figure 2 we show the abstract interpretation rules for the most relevant Core-Safe expressions. There,
an atom a represents either a variable x or a constant c, and |e| denotes the function obtained by the
size analysis for expression e. We can assume that the abstract syntax tree is decorated with such
information.

When inferring an expression e, we assume it belongs to the body of a function definition f xin @ rj
m =

ef , that we will call the context function, and that only already inferred functions g yil @ rj
q = eg are

called. Let Σ be a global environment giving, for each Safe function g in scope, its signature (∆g, µg, σg),
let Γ be a typing environment containing the types of all the variables appearing in ef , and let td be a
natural number. The abstract interpretation [[e]] Σ Γ td gives a triple (∆, µ, σ) representing the space
costs and needs of expression e. The statically determined value td occurring as an argument of the
interpretation and used in rule App is the size of the top part of the environment used when compiling
the expression g ail @ rj

q. This size is also an argument of the operational semantics. See [11] for more
details.

Rules [Atom] and [Primop] exactly reflect the corresponding resource-aware semantic rules [11]. When
a function application g ail @ rj

q is found, its signature Σ g is applied to the sizes of the actual arguments,

|ai| xjn
l

which have the xn as free variables. Due to the application, some different region types of g

4

[[c]] Σ Γ td = ([]f , 0, 1) [Lit]

[[x]] Σ Γ td = ([]f , 0, 1) [Var]

Γ r = ρ |x| = η

[[x @ r]] Σ Γ td = ([ρ 7→ η], η, 2)
[Var2]

[[x!]] Σ Γ td = ([]f , 0, 1) [Var3]

[[a1 ⊕ a2]] Σ Γ td = ([]f , 0, 2) [Primop]

Σ g = (∆g, µg, σg) θ = unify Γ g ai
l rj

q

µ = λxn.µg (|ai| xn
l
) σ = λxn.σg (|ai| xn

l
) ∆ = θ ↓|ai| xnl ∆g

[[g ail @ rj
q]] Σ Γ td = (∆, µ,t{l + q, σ − td + l + q})

[App]

[[e1]] Σ Γ 0 = (∆1, µ1, σ1) [[e2]] Σ Γ (td + 1) = (∆2, µ2, σ2)
[[let x1 = e1 in e2]] Σ Γ td = (∆1 + ∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2})

[Let1]

Γ r = ρ [[e2]] Σ Γ (td + 1) = (∆, µ, σ)
[[let x1 = C ai

n @ r in e2]] Σ Γ td = (∆ + [ρ 7→ 1], µ+ 1, σ + 1)
[Let2]

(∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case x of Ci xijni → ei
n
]] Σ Γ td = (

⊔n
i=1 ∆i,

⊔n
i=1 µi,

⊔n
i=1(σi + ni))

[Case]

Γ x = Ttk
l@ρ (∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case! x of Ci xijni → ei
n
]] Σ Γ td = ([ρ 7→ −1] +

⊔n
i=1 ∆i,t(0,

⊔n
i=1 µi − 1),

⊔n
i=1(σi + ni))

[Case!]

Figure 2: Space inference rules for expressions with non-recursive applications

may instantiate to the same actual region type of f . That means that we must accumulate the memory
consumed in some formal regions of g in order to get the charge to an actual region of f . In Figure 2,
unify Γ g ai

l rj
q computes a substitution θ from g’s region types to f ’s region types. If θ ρg = ρf , this

means that the generic g’s region type ρg is instantiated to the f ’s actual region type ρf . Formally, if
Rg = Rgin ∪ R

g
out then θ :: Rg → Rf ∪ {ρself } is total. The extension of region substitutions to types is

straightforward.

Definition 2. Given a type environment Γ, a function g and the sequences ail and rj
q, we say that

θ = unify Γ g ai
l rj

q iff

Γ g = ∀α.ti
l → ρj

q → t and ∀i ∈ {1 . . . l}.θ ti = Γ ai and ∀j ∈ {1 . . . q}.θ ρj = Γ rj

As an example, let us assume g :: ([a]@ρg1, [[b]@ρ
g
2]@ρg1)@ρg3 → ρg2 → ρg4 → ρg5 → t and consider the

application g p @ r2 r1 r1 where p :: ([a]@ρf1 , [[b]@ρ
f
2]@ρf1)@ρf1 , r1 :: ρf1 and r2 :: ρf2 . The resulting

substitution would be:

θ = [ρg1 7→ ρf1 , ρ
g
2 7→ ρf2 , ρ

g
3 7→ ρf1 , ρ

g
4 7→ ρf1 , ρ

g
5 7→ ρf1]

The function θ ↓
ηi xnl ∆g converts an abstract heap for g into an abstract heap for f . It is defined

as follows:

θ ↓
ηi xj

nl ∆g = λρ . λxj
n.
∑
ρ′∈Rg

θ ρ′=ρ

∆g ρ
′ ηi xj

nl (ρ ∈ Rf ∪ {ρself }, ηi ∈ F)

In the example, we have:

∆ ρf2 = λxn.∆g ρ
g
2 (|ai| xn)

l

∆ ρf1 = λxn.∆g ρ
g
1 (|ai| xn)

l
+ ∆g ρ

g
3 (|ai| xn)

l
+ ∆g ρ

g
4 (|ai| xn)

l
+ ∆g ρ

g
5 (|ai| xn)

l

Rules [Let1] and [Let2] reflect the corresponding resource-aware semantic rules in [11]. Rules [Case]
and [Case!] use the least upper bound operators

⊔
in order to obtain an upper bound to the charge costs

and needs of the alternatives.

5

build(h, c,B) = ∅
build(h, p, T ti

n@ρim) = ∅ if p /∈ dom(h)
build(h, p, T ti

n@ρim) = [ρm → j] ∪
⋃nk

i=1 build(h, vi, tki) if p ∈ dom(h)
where h(p) = (j, Ck vink)

tki
nk → ρm → T ti

n@ρim E Σ(Ck)

Figure 3: Definition of build function.

5 Correctness of the Abstract Interpretation

Let f xin @ rj
m = ef , be the context function, which we assume well-typed according to the type system

in [12]. Let us assume an execution of ef under some E0, h0, k0 and td0:

E0 ` h0, k0, td0, ef ⇓ hf , k0, vf , (δ0,m0, s0) (1)

In the following, all ⇓–judgements corresponding to a given sub-expression of ef will be assumed to
belong to the derivation of (1).

The correctness argument is split into three parts. First, we shall define a notion of correct signature
which formalises the intuition of the inferred (∆, µ, σ) being an upper bound of the actual (δ,m, s). Then
we prove that the inference rules of Figure 2 are correct, assuming that all function applications are done
to previously inferred functions, that the signatures given by Σ for these functions are correct, and that
the size analysis is correct. Finally, the correctness of the signature inference algorithm is proved, in
particular when the function being inferred is recursive.

In order to define the notion of correct signature we have to give some previous definitions. We
consider region instantiations, denoted by Reg , Reg ′, . . ., which are partial mappings from region types ρ
to natural numbers i. Region instantiations are needed to specify the actual region i to which every ρ is
instantiated at a given execution point. An instantiation Reg is consistent with a heap h, an environment
E and a type environment Γ if Reg does not contradict the region instantiation obtained at runtime from
h, E and Γ, i.e. common type region variables are bound to the same actual region. A formal definition
of consistency can be found in [12], where we also proved that if a function is well-typed, consistency of
region instantiations is preserved along its execution.

The function build (defined in Fig 3) follows the pointer chain of a given structure in order to construct
a correspondence between region types and actual regions. The data structure is determined by the heap
and the pointer given as first and second parameters; the third one is the type of the data structure.

Notice that the build function always return a region instantiation whose domain is a subset of the
region type variables appearing in the type under consideration, that is, dom build(h, v, t) ⊆ regions(t).
However, there may exist region type variables in t which do not belong to the result of the resulting
build . As an example, let us consider the following data declaration:

data EitherList a b @ ρ1 ρ2 ρ3 = Left ([a]@ρ1) @ ρ3 | Right ([b]@ρ2) @ ρ3

Under the heap h = [p1 7→ (2,Left p2), p2 7→ (1, [])] we get:

build(h, p1,EitherList a b @ ρ5 ρ6 ρ7) = [ρ5 7→ 1, ρ7 7→ 2]

where the region type variable ρ6 is not bound to any actual region.
It will be convenient to extend the notation of build to typing and value environments as follows:

build∗(h,E,Γ) =
⋃

x∈domE
¬regvar(x)

build(h,E x,Γ x) ∪
⋃

r∈domE
regvar(r)

[Γ r 7→ E r]

provided the result is well-defined, i.e. all occurring region instantiations are consistent with each other.
This always holds, in particular, when the involved function is well-typed.

Definition 3. Given a pointer p belonging to a heap h, the function size returns the number of cells in
h of the data structure starting at p:

size(h[p 7→ (j, C vi
n)], p) = 1 +

∑
i∈RecPos(C)

size(h, vi)

6

where RecPos(C) denotes the recursive positions of constructor C. We shall define in a similar way the
function size+, which gives the number of cells of the whole DS pointed to by p.

size+(h[p 7→ (j, C vi
n)], p) = 1 +

∑
i∈{1...n}

size+(h, vi)

For example, if p points to the first cons cell of the list [1, 2, 3] in the heap h then size(h, p) =
size+(h, p) = 4. We assume that size(h, c) = 0 for every heap h and constant c.

Definition 4. Given a sequence of sizes sin for the input parameters, a number k of regions and a region
instantiation Reg, we say that

• ∆ is an upper bound for δ in the context of sin, k and Reg, denoted by ∆ �si
n,k,Reg δ iff

∀j ∈ {0 . . . k} :
∑

Reg ρ=j

∆ ρ si
n ≥ δ j

• µ is an upper bound for m, denoted µ �si
n m, iff µ si

n ≥ m; and

• σ is an upper bound for s, denoted σ �si
n s, iff σ si

n ≥ s.

A signature (∆g, µg, σg) for a function g is said to be correct if the components (∆g, µg, σg) are upper
bounds to the actual (δ,m, s) obtained from any execution of g. This is formalised in the following
definition.

Definition 5 (Correct signature). Let (∆g, µg, σg) the signature of a function definition g yil @ r′j
q

= eg.
This signature is said to be correct iff for all h, h′, k, vil, ij

q
, v, δ, m, s, Γ, t, sin such that:

1. Eg = [yi 7→ vi
l, r′j 7→ ij

q
, self 7→ k + 1] ` h, k + 1, l + q, eg ⇓ h′, k + 1, v, (δ,m, s).

2. Γg ` eg : t, according to the type system in [12].

3. ∀i ∈ {1 . . . l} : si = size(h, vi)

then ∆g �si
l,k,Reg δ|k ∧ µg �si

l m ∧ σg �si
l s for every region instantiation Reg consistent with h,

Eg and Γg.

Definition 6 (Correct size analysis). Let f be the context function. The size analysis | · | is correct if
for all subexpressions e of its body such that the judgement:

E ` h, k0, td , e ⇓ h′, k0, v, (δ,m, s)

belongs to the derivation in (1) it holds that

∀x ∈ dom E : |x| sin ≥ size(h,E x) where si = size(h0, E0 xi) for each i ∈ {1 . . . n}

with E0, h0 and xi
n being respectively the initial value environment, the initial heap and the input

parameters corresponding to the context function.

The correctness of the abstract interpretation rules in Fig. 2 can be proven provided the type signa-
tures in Σ are correct.

Lemma 1. Let h be a fixed heap, t a nonfunctional type, and θ a region substitution such that regions(t) ⊆
dom θ. For every pointer p belonging to the domain of h:

dom(build(h, p, t)) ⊆ dom(build(h, p, θ t) ◦ θ)
∀ρ ∈ dom(build(h, p, t)) : build(h, p, t) ρ = build(h, p, θ t) (θ ρ)

provided both build(h, p, t) and build(h, p, θ t) are well-defined.

7

Proof. By induction on size+(h, p).
If size+(h, p) = 0 then we get a contradiction, as t would be a basic type B or an algebraic type with

p /∈ dom h. Therefore, we shall assume in what follows that t is an algebraic type and p ∈ dom h.
Assuming that t = T ti

l @ ρj
q, h(p) = (k,C vi

n), and that t′i
n
→ ρ′m → t is an instantiation of the

data constructor C, we shall prove:

[ρ 7→ j] ∈ build(h, p, t)⇒ [ρ 7→ j] ∈ build(h, p, θ t) ◦ θ

Firstly, we know that ρ ∈ dom θ, since ρ ∈ dom (build(h, p, t)) ⊆ regions(t). We can unfold the
definition of build(h, p, t) in order to get:

build(h, p, t) = [ρ′m 7→ k] ∪
n⋃
i=1

build(h, vi, t′i) (2)

and hence:

build(h, p, θ t) = [θ ρ′m 7→ k] ∪
n⋃
i=1

build(h, vi, θ t′i) (3)

On the one hand, if ρ = ρ′m then we get j = k from (2) and it holds that build(h, p, θ t) (θ ρ) = k = j
from (3). Therefore, the binding [ρ 7→ j] belongs to the result of build(h, p, θ t) ◦ θ. On the other hand,
if we assume that ρ 6= ρ′m then for some i ∈ {1 . . . n}:

[ρ 7→ j] ∈ build(h, vi, t′i) ⇒ [ρ 7→ j] ∈ build(h, vi, θ t′i) ◦ θ {by I.H.}
⇒ [θ ρ 7→ j] ∈ build(h, vi, θ t′i)
⇒ [θ ρ 7→ j] ∈ build(h, p, θ t)
⇒ [ρ 7→ j] ∈ build(h, p, θ t) ◦ θ

Lemma 2. Let f be the context function. Then, for every subexpression e of the body ef of the context
function and E, h, h′, v such that E ` h, k0, e ⇓ h′, k0, v belongs to the derivation (1), it holds that
∀x ∈ dom E : size(h,E x) ≥ size(h′, E x).

Proof. It is a property of the big-step semantics, which can be proven by simple inspection of the
corresponding rules.

Theorem 1 (Correctness of the type system). Let us assume that E ` h, k, e ⇓ h′′, k, v, (δ,m, s) and
that Γ ` e : t. If Reg = build∗(h,E,Γ) is well-defined then for every h′, E′ and Γ′ occurring in
these derivations, the region instantiation build∗(h′, E′,Γ′) is consistent with Reg and so is the result of
build(h, v, t).

Proof. It follows from the correctness theorem in [12].

The following theorem establishes the correctness of the abstract interpretation for non-recursive
functions.

Theorem 2. Let f a non-recursive context function. For each subexpression e of ef and E, Σ, Γ, td,
∆, µ, σ, h, ,h′, v, ,t, δ, m and s such that:

1. Every function call g ail @ r′j
q

in e satisfies g ∈ dom Σ and Σ(g) is correct

2. [[e]] Σ Γ td = (∆, µ, σ), where every occurrence of |x| in its derivation has been inferred with a
correct size analysis.

3. E ` h, k0, td , e ⇓ h′, k0, v, (δ,m, s), belonging to (1)

4. Γ ` e : t, according to the type system in [12].

then ∆ �si
n,k0,Reg δ, µ �si

n m and σ �si
n s, where si = size(h,E0 xi) for each i ∈ {1 . . . n}, and each

region instantiation Reg consistent with build∗(h,E,Γ) such that dom Reg = dom ∆.

8

Proof. By structural induction on e. In the following we shall leave out the sin and k0 subscripts in the
� relations for a better readability.

• Cases e ≡ c, e ≡ x and e ≡ x!

We get ∆ = []f = λρ.λxi
n.0, µ = λxi

n.0 and σ = λxi
n.1. We prove:

1. ∆ � δ
Since for every i ∈ {0 . . . k0} we get:∑

Reg ρ=i

∆ ρ si
n = 0 = δ i

2. µ � m, since µ sin = 0 = m

3. σ � s, since σ sin = 1 = s

• Case e ≡ x@r

Let m = size(h,E x). We prove:

1. ∆ � δ. By rule [V ar2] we get |x| = η, Γ r = ρ and

∆ = λρ′.

{
η if ρ′ = ρ
λxi

n.0 if ρ′ 6= ρ

Let i ∈ {0 . . . k0}. Firstly we assume i = E r. Since Γ r = ρ and Reg is consistent with
build∗(h,E,Γ), then Reg ρ = i. Therefore:∑

Reg ρ′=E r

∆ ρ′ si
n =

∑
Reg ρ′=E r

ρ′ 6=ρ

∆ ρ′ si
n + ∆ ρ si

n

= 0 + ∆ ρ si
n

= η si
n

= |x| sin
≥ size(h,E x) {by Definition 6}
= δ (E r)

For the remaining case, i 6= E r, every ρ′ such that Reg ρ′ = i 6= E r must be distinct from
ρ, as the consistency constraint of Reg forces Reg ρ = E r. Therefore:∑

Reg ρ′=i

∆ ρ′ si
n = (λxin.0) sin = 0 = δ i

2. µ � m, since:
µ si

n = η si
n = |x| sin ≥ size(h,E x) = m

3. σ � s, since:
σ si

n = 2 = s

• Case e ≡ let x1 = C ai
l@r in e2

Let us denote the extended environment and heap by E1 and h1:

E1 = E ∪ [x1 7→ p]
h1 = h]

[
p 7→ (j, C (E ai

l)
]

where j = E r

By the corresponding rules we get:

9

[[e2]] Σ Γ (td + 1) = (∆1, µ1, σ1)
E1 ` h1, k0, td + 1, e2 ⇓ h′, k0, v, (δ1,m1, s1)
Γ1 + [x1 : τ1] ` e2 : t

for some ∆1, µ1, σ1, δ1, m1, s1, τ1, t and Γ1. By the rules of the type system, Γ1 v Γ. By applying
the induction hypothesis we get ∆1 �si

n,k0,Reg′ δ1, µ1 � m1 and σ1 � s1, for every Reg ′ consistent
with build∗(h1, E1,Γ1). In particular, by Theorem 1 the current Reg satisfies this condition.

1. ∆ � δ. Let i ∈ {0 . . . k0} a region number. If i = j, where j is the region where the
new cell is created, then Reg ρ = j, since Γ r = ρ, E r = j and Reg is consistent with
[Γ r 7→ E r] ∈ build∗(h,E,Γ). Hence:∑

Reg ρ′=j

∆ ρ′ si
n =

∑
Reg ρ′=j

ρ′ 6=ρ

(∆ ρ′ si
n) + ∆ ρ si

n

=
∑

Reg ρ′=j

ρ′ 6=ρ

(∆1 ρ
′ si

n) + ∆1 ρ si
n + 1

=
∑

Reg ρ′=j

(∆1 ρ
′ si

n) + 1

≥ (δ1 j) + 1

= δ j

On the other hand, if i 6= j then for every ρ′ such that Reg ρ′ = i it holds that Reg ρ′ 6= j,
which implies ρ′ 6= ρ. Therefore:∑

Reg ρ′=i

∆ ρ′ si
n =

∑
Reg ρ′=i

∆1 ρ
′ si

n ≥ δ1 i = δ i

2. µ � m. It follows trivially from the induction hypothesis:

µ si
n = µ1 si

n + 1 ≥ m1 + 1 = m

3. σ � s. Similarly:
σ si

n = σ1 si
n + 1 ≥ s1 + 1 = s

• Case e ≡ g ail @ r′j
q

We shall assume that Σ g ≡ g yil @ r′′j
q

= eg and, by using the corresponding rule:

Eg ` h, k0 + 1, l + q, eg ⇓ h′, k0 + 1, v, (δg,mg, sg)
where Eg =

[
yi 7→ E ai

l
, r′′j 7→ r′j

q
, self 7→ k0 + 1

]
Moreover, we assume that the function g has already been inferred and that its signature (∆g, µg, σg)
is correct. This implies, on the one hand, that the function g is well-typed and if Γ g = ∀α ρ.ti

l →
ρj
q → t then we can build a typing environment Γg = Γ′ + [yi : ti

l
, r′′j : ρj

q
, self : ρself] such that

Γg ` eg : t. On the other hand, if si,g denote the size of the i-th actual argument before evaluating
the function’s body (i.e. ∀i ∈ {1 . . . l} : si,g = size(h,Eg yi)) then:

∆g �si,g
l,k0,Reg′ δg|k0 µg �si,g

l mg σg �si,g
l s

for each Reg ′ consistent with build∗(h,Eg,Γg). Now we prove:

10

1. ∆ �si
n,k0,Reg δ. Let i ∈ {0 . . . k0}. By the definition of ∆:∑

Reg ρ=i

∆ ρ si
n =

∑
Reg ρ=i

∑
θ ρ′=ρ

∆g ρ
′ |ai| sin

l

where θ = unify Γ g ai
l r′j

q
. By Definition 6 we get for each i ∈ {1 . . . l}

|ai| sin ≥ size(h,E ai) = size(h,Eg yi) = si,g (4)

and hence, because of the monotonicity of ∆g ρ for every ρ:∑
Reg ρ=i

∆ ρ si
n ≥

∑
Reg ρ=i

∑
θ ρ′=ρ

∆g ρ
′ si,g

l =
∑

(Reg◦θ) ρ′=i

∆g ρ
′ si,g

l

By definition of ∆g �h,k0,(Reg◦θ) δg|k0 and because of the fact that i 6= k0 + 1, we can get the
desired result: ∑

Reg ρ=i

∆ ρ si
n ≥ δg|k0 i = δ i

provided the involved region instantiation (Reg ◦ θ) is consistent with build∗(h,Eg,Γg). We
shall prove this as follows: let us assume that [ρ 7→ k] ∈ Reg ◦ θ (which, in turn, implies that
[θ ρ 7→ k] ∈ Reg) and that [ρ 7→ k′] ∈ build∗(h,Eg,Γg) for some k and k′. We show that
k = k′:

– If [ρ 7→ k′] ∈ build(h,Eg yi,Γg yi) for some i ∈ {1 . . . l} then, by Lemma 1 we would get:

[θ ρ 7→ k′] ∈ build(h,Eg yi, θ(Γg yi)) = build(h,E ai,Γ ai)

with the last step justified by the definition of unify . However, in order to apply this
Lemma we have to show that the involved region instantiations are well-defined. However,
this follows trivially from Theorem 1, as build(h,Eg yi, θ(Γg yi)) = build(h,E ai,Γ ai) ⊆
build∗(h,E,Γ).
Therefore [θ ρ 7→ k′] ∈ build∗(h,E,Γ). Since Reg is consistent with build∗(h,E,Γ) and
[θ ρ 7→ k] ∈ Reg , it follows that k = k′.

– If [ρ 7→ k′] = [Γg r′′j 7→ Eg r
′′
j] for some j ∈ {1 . . . q} then we get [θ ρ 7→ k′] = [θ (Γg r′′j) 7→

Eg r
′′
j] = [Γ ai 7→ E r′j] and, by using the same reasoning as the previous case, k = k′.

2. µ � m. We get:

µ si
n = µg |ai| sin

l

≥ µg si,g
l {because of (4) and monotonicity of µg}

≥ mg {since µg �si,g
l mg}

= m

3. σ � s. Similarly, for σg being monotonic:

σ si
n = t {l + q, σg (|ai| sjn)

l
− td + l + q}

≥ t {l + q, σg sj,g
l − td + l + q}

≥ t {l + q, σg s1 − td + l + q}
= s

• Case e ≡ let x1 = e1 in e2

Let us assume that, by the corresponding rules, we get E ` h, k0, 0, e1 ⇓ h2, k0, v1, (δ1,m1, s1) and
[[e1]] Σ Γ1 0 = (∆1, µ1, σ1) for some δ1, m1, s1, Γ1, ∆1, µ1 and σ1. In this case the induction
hypothesis can be applied on e1, so as to get:

∆1 �si
n,k0,Reg′ δ1 µ1 �si

n m1 σ1 �si
n s1

11

for every Reg ′ consistent with build∗(h,E,Γ1), being Γ1 the type environment under which e1 is
typed in the derivation Γ ` e : t. The current Reg meets trivially these constraints, so we can
assume:

∆1 �si
n,k0,Reg δ1 µ1 �si

n m1 σ1 �si
n s1 (5)

Similarly, we apply the induction hypothesis on e2, in order to prove:

∆2 �si
n,k0,Reg′ δ2 µ2 �si

n m2 σ2 �si
n s2

for every Reg ′ consistent with build(h,E2,Γ2), with Γ2 being the typing environment typing e2 in
the derivation of Γ ` e : t. Again, by Theorem 1 we get:

∆2 �si
n,k0,Reg δ2 µ2 �si

n m2 σ2 �si
n s2 (6)

Now the results in (5) and (6) are combined in order to get the desired result:

1. ∆ � δ. For each i ∈ {0 . . . k0}:∑
Reg ρ=i

(∆1 + ∆2) ρ sin =
∑

Reg ρ=i

(∆1 ρ si
n + ∆2 ρ si

n)

=
∑

Reg ρ=i

(∆1 ρ si
n) +

∑
Reg ρ=i

(∆2 ρ si
n)

≥ (δ1 i) + (δ2 i)

= δ i

2. µ � m. For every ρ ∈ dom ∆1 there exists an i ∈ {0 . . . k0} such that Reg ρ = i. This allows
us to establish:

|∆1| sin =
∑

ρ∈dom ∆1

∆1 ρ si
n =

k0∑
i=0

∑
Reg ρ=i

∆1 ρ si
n ≥

k0∑
i=0

δ1 i = |δ1|

Therefore:
µ si

n = t{µ1 si
n, |∆1| sin + µ2 si

n}
≥ t{m1, |δ1|+m2}
= m

3. σ � s. It follows trivially from the induction hypothesis:

σ si
n = t{2 + σ1 si

n, 1 + σ2 si
n} ≥ t{2 + s1, 1 + s2} = s

• Case e ≡ case x of Ci xijni → ei
l

We shall assume that the r-th branch is executed, that is, h (E x) = (j, Cr vinr) for some j, v1,
. . . , vnr

and r ∈ {1 . . . l}. Therefore the following judgements hold:

[[er]] Σ Γr (td + nr) = (∆r, µr, σr)
Er ` h, k0, td + nr, er ⇓ h′, k0, v, (δr,mr, sr)

for some ∆r, µr, σr, δr, mr, sr and where Er denote the extended environment:

Er = E ∪ [xrj 7→ vj
nr]

From the induction hypothesis and Theorem 1 it follows that ∆r �h,k0,Reg δr, µr � mr and σr � sr,
which allows us to prove:

12

1. ∆ � δ. Let i ∈ {0 . . . k0}∑
Reg ρ=i

(∆ ρ si
n) =

∑
Reg ρ=i

((
tli=1∆i

)
ρ si

n
)

=
∑

Reg ρ=i

max{∆i ρ si
n | 1 ≤ i ≤ l}

≥
∑

Reg ρ=i

∆r ρ si
n

≥ δr i

= δ i

2. µ � m, since:

µ si
n = tli=1µi si

n

= max{µi sin | 1 ≤ i ≤ l}
≥ µr si

n

≥ mr

= m

3. σ � s, since:
σ si

n = tli=1(σi + ni) sin

= max{σi sin + ni | 1 ≤ i ≤ l}
≥ σr si

n + nr
≥ sr + nr
= s

• Case e ≡ case! x of Ci xijni → ei
l

Again, we assume that the r-th branch is executed. By denoting by Er the extended environment,
the following judgements follow from their respective rules:

[[er]] Σ Γr (td + nr) = (∆r, µr, σr)
Er ` hr, k0, td + nr, er ⇓ h′, k0, v, (δr,mr, sr)

where hr = h|dom h−{p}. Again, the induction hypothesis and Theorem 1 may be applied in order
to get ∆r �hr,k0,Reg δr, µr � mr and σr � sr.

1. ∆ � δ. From the inference rules we have Γ x = T@ρ and h (E x) = (j, Cr vinr). Hence the
binding [ρ 7→ j] belongs to build(h,E x,Γ x). Since ρ ∈ dom ∆, we get ρ ∈ dom Reg and
hence [ρ 7→ j] ∈ Reg .∑

Reg ρ′=j

(∆ ρ′ si
n) =

∑
Reg ρ′=j
ρ′ 6=ρ

(∆ ρ′ si
n) + ∆ ρ si

n

=
∑

Reg ρ′=j
ρ′ 6=ρ

(max{∆i ρ
′ si

n|1 ≤ i ≤ l})

+ max{∆i ρ si
n|1 ≤ i ≤ l} − 1

=
∑

Reg ρ′=j

(max{∆i ρ
′ si

n|1 ≤ i ≤ l})− 1

≥
∑

Reg ρ′=j

(∆r ρ
′ si

n)− 1

≥ δr j − 1
= δ j

With respect to the remaining regions i ∈ {0 . . . k0} − {j}, we can proceed similarly as in the
nondestructive case.

13

2. µ � m.

µ si
n = max{0,tli=1µi si

n}
= max{0,max{µi sin − 1 | 1 ≤ i ≤ l}}
≥ max{0, µr sin − 1}
≥ max{0,mr − 1}
= m

3. σ � s. The proof given for the nondestructive case may be applied here.

In order to prove the correctness of the algorithms shown in the following section for recursive
functions we need the abstract interpretation to be monotonic with respect to function signatures.

Lemma 3. Let f be a context function. Given Σ1,Σ2, Γ, and td such that Σ1 v Σ2, then [[e]] Σ1 Γ td v
[[e]] Σ2 Γ td.

Proof. By structural induction on e, because + and t are monotonic.

6 Space Inference Algorithms

Given a recursive function f with n+m arguments, the algorithms for inferring ∆f and σf do not depend
on each other, while the algorithm for inferring µf needs a correct value for ∆f . We will assume that
µf , σf , and the cost functions in ∆f , do only depend on arguments of f non-increasing in size. The
consequence of this restriction is that the costs charged to regions, or to the stack, by the most external
call to f are safe upper bounds to the costs charged by all the lower level internal calls. This restriction
holds for the majority of programs occurring in the literature. Of course, it is always possible to design
an example where the charges grow as we progress towards the leafs of the call-tree.

We assume that, for every recursive function f , there has been an analysis giving the following infor-
mation as functions of the argument sizes xin:

1. nrf , an upper bound to the number of calls to f invoking f
again. It corresponds to the internal nodes of f ’s call tree.

2. nbf , an upper bound to the number of basic calls to f . It
corresponds to the leaves of f ’s call tree.

3. lenf , an upper bound to the maximum length of f ’s call chains.
It corresponds to the height of f ’s call tree.

In general, these functions are not independent of each other. For instance, with linear recursion we
have nrf = lenf − 1 and nbf = 1. However, we will not assume a fixed relation between them. If this
relation exists, it has been already used to compute them. We will only assume that each function is
a correct upper bound to its corresponding runtime figure. As a running example, let us consider the
splitAt definition in Fig. 7(a). We would assume nrsplitAt = λn x.min{n, x − 1}, nbsplitAt = λn x.1
and lensplitAt = λn x.min{n+ 1, x}.

6.1 Counting the number of recursive calls

An important precondition for the correctness of the algorithms described in the following sections is
the fact that the nrf , nbf and lenf are upper bounds of the actual number of recursive and base calls,
and the maximum number of nested calls. In order to take these figures into account we add extra
annotations to the big-step operational semantics of Figure 1. We will have judgments of the form:

E ` h, k, td , e ⇓ h′, k, v, (δ,m, s), (nt, nb, l)f

where nt is the total number of calls to f occurring in the evaluation of e (including the current call, since
we assume that f is the context function) from which nb calls correspond to base cases. The number of

14

E ` h, k, td , c ⇓ h, k, c, (1, 1, 1)f [Lit]

E[x 7→ v] ` h, k, td , x ⇓ h, k, v, (1, 1, 1)f [Var]
j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)

E[x 7→ p, r 7→ j] ` h, k, td , x@r ⇓ h′, k, p′, (1, 1, 1)f
[Var2]

fresh(q)
E[x 7→ p] ` h] [p 7→ w], k, td , x! ⇓ h] [q 7→ w], k, q, (1, 1, 1)f

[Var3]

g 6= f (g xin @ rj
t = e) ∈ Σ [xi 7→ E(ai)

n
, rj 7→ E(r′j)

t
, self 7→ k + 1] ` h, k + 1, n+ l, e ⇓ h′, k + 1, v, (nt, nb, l)f

E ` h, k, td , g ain @ r′j
t
⇓ h′|k, k, v, (nt, nb, l)f

[App −NonRec]

(f xin @ rj
t = e) ∈ Σ [xi 7→ E(ai)

n
, rj 7→ E(r′j)

t
, self 7→ k + 1] ` h, k + 1, n+ l, e ⇓ h′, k + 1, v, (nt, nb, l)f

E ` h, k, td , f ain @ r′j
t
⇓ h′|k, k, v, (nt + 1, nb, l + 1)f

[App − Rec]

E ` h, k, 0, e1 ⇓ h′, k, v1, (nt1, nb1, l1)f
E ∪ [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (nt2, nb2, l2)f

E ` h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (nt1 + nt2 − 1, nb1 ⊕nt1,nt2 nb2,max{l1, l2})f
[Let1]

j ≤ k fresh(p) E ∪ [x1 7→ p] ` h] [p 7→ (j, C vi
n)], k, td + 1, e2 ⇓ h′, k, v, (nt, nb, l)f

E[ai 7→ vi
n, r 7→ j] ` h, k, td , let x1 = C ai

n@r in e2 ⇓ h′, k, v, (nt, nb, l)f
[Let2]

C = Cr E ∪ [xri 7→ vi
nr] ` h, k, td+ nr, er ⇓ h′, k, v, (nt, nb, l)f

E[x 7→ p] ` h[p 7→ (j, C vi
n)], k, td , case x of Ci xijni → ei

n ⇓ h′, k, v, (nt, nb, l)f
[Case]

C = Cr E ∪ [xri 7→ vi
nr] ` h, k, td+ nr, er ⇓ h′, k, v, (nt, nb, l)f

E[x 7→ p] ` h] [p 7→ (j, C vi
n)], k, td , case! x of Ci xijni → ei

n ⇓ h′, k, v, (nt, nb, l)f
[Case!]

Figure 4: Big-step operational semantics enriched with number of calls

recursive childs in the call tree can be obtained by substracting nb from nt. The maximum number of
nested calls is reflected in l.

The resulting rules are shown in Figure 4. The (δ,m, s) annotations are left out for simplicity. All of
them require no explanation, except the one corresponding to let expressions. In this case we sum the
number of total calls from each subexpression and subtract 1 (otherwise we would count the actual call
twice). With regard to the resulting nb, if both subexpressions contain recursive calls we just add the
corresponding nb’s, otherwise we only consider the number of base calls of the subexpression not having
recursive calls. This is specified by means of the ⊕ operator, defined as follows:

x⊕nt1,nt2 y =

 x if nt2 = 1
y if nt1 = 1
x+ y e.o.c

By simple inspection of the rules one can prove that nt ≥ nb and hence the expression nb1⊕nt1,nt2 nb2
in [Let1] is well-defined. The following Lemma shows an important property of these annotations.

Lemma 4. Let e be an expression such that the following judgment holds for some E, h, k, td i, h′,v, δ,
m, s, nt, nb and l:

E ` h, k, td , e ⇓ h′, k, v, (δ,m, s), (nt, nb, l)f (7)

Let us assume that there are p direct recursive calls to f in the derivation of (7). That is, for each
i ∈ {1 . . . p} there exist some Ei, hi, h′i, vi, δi, mi, si, nt,i, nbi

and li such that:

Ei ` hi, k + 1, td i, ef ⇓ h′i, k + 1, vi, (δi,mi, si), (nt,i, nb,i, li)f

belongs to (7). Therefore it holds that:

nt = 1 +
p∑
i=1

nt,i nb =
p∑
i=1

nb,i

6.2 Splitting Core-Safe expressions

In order to do a more precise analysis, we separately analyse the base and the recursive cases of a
Core-Safe function definition. Fig. 5 describes the functions splitExp and splitAlt which, given a Safe

15

splitExpf [[e]] = (e,#) if e = c, x, C ai
n @ r, or g ain @ rj

m with g 6= f
splitExpf [[f ain @ rj

m]] = (#, f ain @ rj
m)

splitExpf [[let x1 = e1 in e2]] = (eb, er)
where (e1b, e1r) = splitExpf [[e1]]

(e2b, e2r) = splitExpf [[e2]]

eb =
{

if e1b = # or e2b =
let x1 = e1b in e2b otherwise

er =

if e1r = # and e2r =
let x1 = e1 in e2r if e1r = # and e2r 6= #
let x1 = e1r in e2 if e1r 6= # and e2r = #⊔{ let x1 = e1b in e2r

let x1 = e1r in e2

}
otherwise

splitExpf [[case(!) x of alt i
n
]] = (eb, er)

where (alt ib
n
, alt ir

n
) = unzip (map splitAltf alt i

n
)

eb =
{

if alt ib = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ib

n
otherwise

er =
{

if alt ir = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ir

n
otherwise

splitAltf [[C xj
n → e]] = (altb, altr)

where (eb, er) = splitExpf e

altb =
{

#→ # if eb = #
C xj

n → eb otherwise

altr =
{

#→ # if er = #
C xj

n → er otherwise

Figure 5: Function splitting a Core-Safe expression into its base and recursive cases

expression return the part of its body contributing to the base cases and the part contributing to the
recursive cases. We introduce an empty expression # in order not to lose the structure of the original
one when some parts are removed. These empty expressions charge null costs to both the heap and the
stack. Since it might be not possible to split a expression into a single pair with the base and recursive
cases, we introduce expressions of the form t ei, whose abstract interpretation is the least upper bound
of the interpretations of the ei. It will also be useful to define another function which splits a Core-Safe
expression into those parts that execute before and including the last recursive call, and those executed
after the last recursive call, In Fig. 6 we define such function, called splitBAf . In Fig. 7 we show a
Full-Safe definition for a function splitAt splitting a list, and the result of applying splitExp and splitBA
to its Core-Safe version.

If ef is f ’s body, in the following we will assume (er, eb) = splitExpf [[ef]] and (ebef , eaft) = (
⊔
i e

i
bef ,

⊔
i e

i
aft),

where [(eibef , e
i
aft)

n
] = splitBAf [[er]].

Lemma 5. Let (eb, er) = splitExpf e. Then, eb 6= # and E ` h, k, td , eb ⇓ h′, k, v, (δ,m, s) if and only
if E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) such that there is no call to f in this derivation.

Proof. Both implications can be proved by induction on the depth of the ⇓-derivation. We distinguish
cases according to the structure of e for (⇐) and eb for (⇒).

• Cases c, x, x!, x@r and C ai
n@r

Both implications hold trivially by hypothesis, by applying the same operational semantics rule
since e = eb in all these cases.

• Case g ain @ rj
m

(⇐) The absence of calls to f in the whole ⇓-derivation forces g to be distinct from f and in this
case the implication holds trivially by hypothesis, since e = eb.

(⇒) As eb 6= #, by definition of splitExp again g 6= f and eb = e, so the implication holds by
hypothesis and because there is not mutual recursion in the language.

• Case let

(⇐) Let e = let x1 = e1 in e2. We get:

16

splitBAf [[e]] = [] if e = #, c, x, C ai
n @ r, or g ain @ rj

m with g 6= f
splitBAf [[tni=1ei]] = concat [splitBA ei | i ∈ {1 . . . n}]
splitBAf [[f ain @ rj

m]] = [(f ain @ rj
m,#)]

splitBAf [[let x1 = e1 in e2]] = A++ B
where (e1b, e1r) = splitExpf [[e1]]

(e2b, e2r) = splitExpf [[e2]]
e1r,split = splitBA [[e1r]]
e2r,split = splitBA [[e2r]]
A = [(let x1 = e1 in e2r,b,

let x1 = # in e2r,a) | (e2r,b, e2r,a) ∈ e2r,split]

B =

 [] if e2b = #
[(let x1 = e1r,b in #,

let x1 = e1r,a in e2b) | (e1r,b, e1r,a) ∈ e1r,split] otherwise
splitBAf [[case(!) x of Ci xijni → ei

n
]] =[(

case(!) x of Ci xijni → ei,b
n
, case(!) x of Ci xijni → ei,a

n
)

| (e1,b, e1,a) ∈ splitBAf [[e1]], . . . , (en,b, en,a) ∈ splitBAf [[en]]
]

Figure 6: Function splitting a Core-Safe expression into its parts executing before and after the last
recursive call

splitAt 0 xs = ([],xs)
splitAt n [] = ([],[])
splitAt n (x:xs) = (x:xs1,xs2)

where (xs1,xs2) = split (n-1) xs

(a) Full-Safe version

splitAt n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

splitAt x6 y2 @ r1 r2 r3 in #

(b) Core-Safe up to the last call

splitAt n xs @ r1 r2 r3 =
case n of
0 -> let x1 = [] @ r2 in

let x2 = (x1,xs) @ r3 in x2
_ -> case xs of

[] -> let x4 = [] @ r2 in
let x3 = [] @ r1 in
let x5 = (x4,x3) @ r3 in x5

(c) Core-Safe base cases

splitAt n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

splitAt x6 y2 @ r1 r2 r3 in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(d) Core-Safe recursive cases

splitAt n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = # in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(e) Core-Safe after the last call

Figure 7: Splitting a Core-Safe definition

(A) E ` h, k, 0, e1 ⇓ h1, k, v1, (δ1,m1, s1)
(B) E ∪ [x1 7→ v1] ` h1, k, td + 1, e2 ⇓ h, k, v, (δ2,m2, s2)

with δ = δ1 + δ2, m = max{m1, |δ1| + m2} and s = max{2 + s1, 1 + s2}. We know that in
the derivations of both (A) and (B) there are no calls to f . Let (e1b, e1r) = splitExp e1 and
(e2b, e2r) = splitExp e2. By induction hypothesis e1b 6= #, e2b 6= #, and

(A′) E ` h, k, 0, e1b ⇓ h1, k, v1, (δ1,m1, s1)
(B′) E ∪ [x1 7→ v1] ` h1, k, td + 1, e2b ⇓ h, k, v, (δ2,m2, s2)

Since both e1b and e2b are nonempty we get eb = let x1 = e1b in e2b 6= #, and from the
judgements (A′) and (B′) we can derive E ` h, k, td , eb ⇓ h′, k, v, (δ,m, s).

(⇒) Let eb = let x1 = e1b in e2b. By definition of splitExp, e = let x1 = e1 in e2 where
(e1b,) = splitExp e1 and (e2b,) = splitExp e2, and e1b, e2b 6= #. Similarly to the proof of
(⇐), this implication holds by applying induction hypothesis.

• Case case(!)

17

(⇐) Let e = case(!) x of alt i
n
, where alt i = Ci xij

ni → ei. Assume E(x) = p and h(p) =
(j, Cr vjnr) for some r ∈ {1 . . . n}. By the rules [Case] and [Case!] we get:

E ∪ [xrj 7→ vj
nr] ` hr, k, td + nr, er ⇓ h′, k, v, (δr,mr, sr)

where the relationships between h, δ, m, s and hr, δr, mr, sr are given by the corresponding
rule ([Case] or [Case!]). Let (erb, err) = splitExp er. Since in the derivation above for er there
is no call to f , we can apply the induction hypothesis in order to ensure that erb 6= # and
that:

E ∪ [xrj 7→ vj
nr] ` hr, k, td + nr, erb ⇓ h′, k, v, (δr,mr, sr)

Moreover, and since erb 6= # we get eb = case(!) x of altib
n 6= # and we can derive E `

h, k, td , eb ⇓ h′, k, v, (δ,m, s) by applying the same rule ([Case] or [Case!]).

(⇒) Let eb = case(!) x of alt ib
n
, where alt ib = Ci xij

ni → eib. By definition of splitExp,
e = case(!) x of alt i

n
such that (alt ib,) = splitAlt alt i for each i ∈ {1..n} and there exists

at least one s ∈ {1..n} such that altsb 6= #.
By rule [Case] or [Case!], there exists r ∈ {1..n} such that:

E ∪ [xrj 7→ vj
nr] ` hr, k, td + nr, erb ⇓ h′, k, v, (δr,mr, sr)

There is no operational rule for an empty expression, which implies that erb must be non-
empty. By applying induction hypothesis on alternative r we get the desired implication, in
a similar way to (⇐).

As we have introduced a new Core-Safe expression tiei, we must give its big-step operational seman-
tics. The following non-deterministic rule does this:

∃j . E ` h, k, td , ej ⇓ h′, k, v, (δ,m, s)
E ` h, k, td ,tiei ⇓ h′, k, v, (δ,m, s)

[Lub]

Lemma 6. Let (eb, er) = splitExpf e. Then, er 6= # and E ` h, k, td , er ⇓ h′, k, v, (δ,m, s) if and only
if E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) such that there is at least one direct call to f in this derivation.

Proof. Both implications can be proved by induction on the depth of the ⇓-derivation. We distinguish
cases according to the structure of e for (⇐) and er for (⇒). For the proof of (⇒), we use the fact that
the structure of er is the same as the structure of e with the exception of the t case. But in this case
we know that it always correspond to a let expression.

Cases c, x, x!, x@r, C ai
n@r and g ai

n @ rj
m with g 6= f

These cases are trivial in both directions as the corresponding hypotheses are false.

Case f ain @ rj
m

Both implications hold trivially by hypothesis, since e = er.

Case let

(⇐) Let e = let x1 = e1 in e2. By the operational semantics, we get:

(A) E ` h, k, 0, e1 ⇓ h1, k, v1, (δ1,m1, s1)
(B) E ∪ [x1 7→ v1] ` h1, k, td + 1, e2 ⇓ h, k, v, (δ2,m2, s2)

with δ = δ1 + δ2, m = max{m1, |δ1| + m2} and s = max{2 + s1, 1 + s2}. Let (e1b, e1r) =
splitExp e1 and (e2b, e2r) = splitExp e2. We know that in the derivations of either (A), or
(B), or both, there are direct calls to f . Let us distinguish these three cases:

18

1. There are calls in (A). By the induction hypothesis we get e1r 6= # and:

(A′) E ` h, k, 0, e1r ⇓ h1, k, v1, (δ1,m1, s1)

As e1r is non-empty, splitExp e gives either er = let x1 = e1r in e2 or:

er =
⊔
{let x1 = e1b in e2r, let x1 = e1r in e2}

In both cases we get er 6= # and E ` h, k, td , er ⇓ h′, k, v, (δ,m, s).
2. There are calls in (B) but not in (A). By the induction hypothesis e2r 6= # . The reasoning

is symmetrical to the previous case.

(⇒) Let er = let x1 = e1r in e2r. As er 6= #, we have to distinguish two cases.

e1r = #, e2r 6= # In this case e1r = e1 and (, e2r) = splitExp e2. By hypothesis on e1 and
induction hypothesis on e2r we prove this implication in a similar way to (⇐).

e1r 6= #, e2r = # In this case e2r = e2 and (, e1r) = splitExp e1. . The reasoning is sym-
metrical to the previous case.

Case case(!)

(⇐) Let e = case(!) x of alt i
n
, where alt i = Ci xij

ni → ei.
We assume E(x) = p and h(p) = (j, Cl vjnr) for some l ∈ {1 . . . n}. By the rules [Case] and
[Case!] we get:

E ∪ [xlj 7→ vj
nl] ` hl, k, td + nl, el ⇓ h′, k, v, (δl,ml, sl)

where the relationships between h, δ, m, s and hl, δl, ml, sl are given by the corresponding
rule ([Case] or [Case!]). Let (elb, elr) = splitExp el. Since in the derivation above for el there
are calls to f , we can apply the induction hypothesis on el and get elr 6= # and:

E ∪ [xlj 7→ vj
nl] ` hl, k, td + nl, elr ⇓ h′, k, v, (δl,ml, sl)

Moreover, and since elr 6= #, by the definition of splitExp, we get er = case(!) x of altir
n

and
we can derive E ` h, k, td , er ⇓ h′, k, v, (δ,m, s) by applying the same rule ([Case] or [Case!]).

(⇒) Let er = case(!) x of alt ir
n
, where alt ir = Ci xij

ni → eir. By definition of splitExp, there
exists e = case(!) x of alt i

n
such that (, alt ir) = splitAlt alt i for each i ∈ {1..n} and there

exists at least one s ∈ {1..n} such that altsr 6= #.
By rule [Case] or [Case!], there exists l ∈ {1..n} such that:

E ∪ [xlj 7→ vj
nl] ` hl, k, td + nl, elr ⇓ h′, k, v, (δl,ml, sl)

There is no operational rule for an empty expression, which implies that elr must be non-
empty. By applying induction hypothesis on alternative r we get the desired implication, in
a similar way to (⇐).

Case er =
⊔{ let x1 = e1b in e2r

let x1 = e1r in e2

}
This case has no sense for (⇐). In this case e = let x1 = e1 in e2 where (e1b, e1r) =
splitExpf [[e1]], (e2b, e2r) = splitExpf [[e2]] and both e1r and e2r are non-empty. By rule [Lub]

(1) E ` h, k, td , let x1 = e1b in e2r ⇓ h′, k, v, (δ,m, s)

or
(2) E ` h, k, td , let x1 = e1r in e2 ⇓ h′, k, v, (δ,m, s)

Consider first the case when (1) holds. Then

(A1) E ` h, k, 0, e1b ⇓ h1, k, v1, (δ1,m1, s1)
(B1) E ∪ [x1 7→ v1] ` h1, k, td + 1, e2r ⇓ h, k, v, (δ2,m2, s2)

19

with δ = δ1 + δ2, m = max{m1, |δ1| + m2} and s = max{2 + s1, 1 + s2}. As there is no rule
for an empty expression, e1b must be non-empty, so by Lemma 5:

(A1′) E ` h, k, 0, e1 ⇓ h1, k, v1, (δ1,m1, s1)

As e2r is non-empty, by induction hypothesis

(B1′) E ∪ [x1 7→ v1] ` h1, k, td + 1, e2 ⇓ h, k, v, (δ2,m2, s2)

and there is a call to f in this derivation. So we can derive:

E ` h, k, td , let x1 = e1 in e2 ⇓ h′, k, v, (δ,m, s)

and there is a call to f in this derivation.
If (2) holds, the reasoning is similar. The difference is that we reason by induction on e1r 6= #
and by hypothesis on e2. In this case we do not need Lemma 5.

6.3 Algorithm for computing ∆f

The idea here is to separately compute the charges to regions of the recursive and non-recursive parts of
f ’s body, and then multiply these charges by respectively the number of internal and leaf nodes of f ’s
call-tree.

1. Set Σ f = ([]f , 0, 0).

2. Let (∆r, ,) = [[er]] Σ Γ (n+m)

3. Let (∆b, ,) = [[eb]] Σ Γ (n+m)

4. Then, ∆f
def= ∆r |ρ 6=ρself

×nrf + ∆b |ρ6=ρself
×nbf .

If we apply the abstract interpretation rules for the base cases of our splitAt example in Fig. 7(b)
we get ∆b = [ρ 7→ λn x.1 | ρ ∈ {ρ1, ρ2, ρ3}]. If we apply them to the recursive case in Fig. 7(d) we get
∆r = [ρ 7→ λn x.1 | ρ ∈ {ρ1, ρ2}]. The resulting ∆splitAt is shown in Fig. 10.

Lemma 7. If nrf ,nbf , and all the size functions belong to F, then all functions in ∆f belong to F.

Proof. This is a consequence of F being closed by the operations {+,t, ∗}. Notice that it is critical that
the final cost charged by ∆f to any particular region be non-negative, i.e. destruction may be allowed
only if it is compensated by allocation.

Lemma 8. ∆f is a correct abstract heap for f .

Proof. This is a consequence of nrf , nbf , and all the size functions being upper bounds of their respective
runtime figures, and of ∆r, ∆b being upper bounds of respectively the f ’s call-tree internal and leaf nodes
heap charges.

Let us call I∆ : D→ D to an iteration of the interpretation function, i.e. I∆(∆1) = ∆2, being ∆2 the
abstract heap obtained by initially setting Σ f = (∆1, 0, 0), then computing (∆, ,) = [[er]] Σ Γ (n+m),
and then defining ∆2 = ∆ |ρ 6=ρself

.

Lemma 9. For all n, In∆(∆f) is a correct abstract heap for f .

Proof. This is a consequence of D being a complete lattice, I∆ being monotonic in D, and I∆(∆f) v ∆f .
As I∆ is reductive at ∆f then, by Tarski’s fixpoint theorem, In∆(∆f) is above the least fixpoint of I∆ for
all n. We prove now that I∆ is reductive, i.e. I∆(∆f) v ∆f . Let us assume that there are n recursive
calls to f in er and that aji are the arguments of the recursive call j. We also assume that region ρself
is ignored in all the interpretations below:

20

π1(I∆(∆f (xi)), ,)
= π1 ([[er]] Σ[f 7→ ∆f] Γ (n+m)) -- by definition of I∆

=
∑n
j=1 ∆f (aji) + ∆r(xi) -- rules for interpreting ∆ are additive

=
∑n
j=1(∆r(aji)× nr(aji) + ∆b(aji)× nb(aji)) + ∆r(xi) -- by definition of ∆f

v (tnj=1∆r(aji))(
∑n
j=1 nr(aji))

+(tnj=1∆b(aji))(
∑n
j=1 nb(aji)) + ∆r(xi) -- mathematics

v ∆r(xi)(
∑n
j=1 nr(aji)) + ∆b(xi)(

∑n
j=1 nb(aji)) + ∆r(xi) -- aji v xi and ∆r,∆b monotonic

v ∆r(xi)(nr(xi)− 1) + ∆b(xi)nb(xi) + ∆r(xi) --
∑n
j=1 nr(aji) v nr(xi)− 1 and

--
∑n
j=1 nb(aji) v nb(xi)

= ∆f

Notice the assumption on well-behaviour of functions nr and nb.

As the algorithm for µf critically depends on how good is the result for ∆f , it is advisable to spend
some time iterating the interpretation I∆ in order to get better results for µf .

6.4 Algorithm for computing µf

We separately infer the part µself of µf due to space charges to the self region of f . As the self regions
for f are stacked, this part only depends on the longest f ’s call chain, i.e. on the height of the call-tree.

1. Set Σ f = ([]f , 0, 0).

2. Let (, µb,) = [[eb]] Σ Γ (n+m), i.e. the heap needs of the non-recursive part of f ′s body.

3. Let ([ρself 7→ µself], ,) = [[ebef]] Σ Γ (n+m), i.e. the charges to ρself made by the part of f ′s body
before (and including) the last recursive call.

4. Let (, µbef ,) = ([[ebef]] Σ Γ (n+m)) |ρ 6=ρself
, i.e. the heap needs of f ′s body before the last recursive

call, without considering the self region.

5. Let (, µaft ,) = [[eaft]] Σ Γ (n+m), i.e. the heap needs of f ′s body after the last recursive call.

6. Then, µf
def= |∆f | +µself × (lenf − 1) + t{µbef , µb, µaft}.

The intuitive idea is that the charges to regions other than self are considered from the last but one
call to f of the longest chain call.

In our example, if we take as eb, ebef and eaft the definitions of Fig. 7, we get µself = 0, µb = 3,
µbef = 0, and µaft = 2. Hence µf = λn x.2 min(n, x− 1) + 6.

Lemma 10. If the functions in ∆f , lenf , and the size functions belong to F, then µf belongs to F.

Proof. This is a consequence of F being closed by the operations {+,t, ∗} and lenf w 1.

Lemma 11. µf is a safe upper bound for f ’s heap needs.

Proof. (Proof sketch)

1. |∆f | is a safe upper bound of the live memory during the evaluation of f , observed at any point
of f ’s body and disregarding ρself , because it is the live memory at f ’s end.

2. µself × (lenf − 1) is an upper bound of the live memory at ρself when executing the last but one
call of the longest f ’s call chain.

3. t{µbef , µb, µaft} is an upper bound of the peak memory needed by all regions but ρself before
calling f for the last time, and of the peak memory needed in all regions by the last call to f ,
and of the peak memory needed in all regions when returning from the last call and executing the
‘after’ portion of the previous call to f .

In turn, all this is a consequence of the correctness of the abstract interpretation rules, and of ∆f , lenf ,
and the size functions being upper bounds of their respective runtime figures.

21

time

Stack words

Before last
recursive call

S 〚ebef 〛 nm

Figure 8: Intuitive meaning of the S function

As in the case of ∆f , we can define an interpretation Iµ taking any upper bound µ1 as input, and
producing a better one µ2 = Iµ(µ1) as output.

Lemma 12. For all n, Inµ(µf) is a safe upper bound for f ’s heap needs.

Proof. This is a consequence of F being a complete lattice, Iµ being monotonic in F, and Iµ being
reductive at µf . We prove now that Iµ is reductive, i.e. Iµ(µf) v µf . For simplicity, let us assume that
there is only one recursive call to f in er and that µ′,∆′, . . . denote the corresponding functions µ,∆, . . .
applied to the arguments ai of the recursive call.

π2(, Iµ(µf),)
= π2 ([[er]] Σ[f 7→ µf] Γ (n+m)) -- by definition of Iµ
= |∆′f | +µ′self × (len ′f − 1) + t{µ′bef , µ′b, µ′aft}+ |∆r | +µself -- rules for interpreting µ are additive
v |∆f | +µ′self × (len ′f − 1) + t{µ′bef , µ′b, µ′aft}+ µself -- nr ′f v nrf − 1 implies ∆′f v ∆f −∆r

v |∆f | +µself × (lenf − 1) + t{µ′bef , µ′b, µ′aft} -- len ′f v lenf − 1
v |∆f | +µself × (lenf − 1) + t{µbef , µb, µaft} -- ai v xi and µbef , µb, µaft monotonic
= µf

Notice the assumption on well-behaviour of function len.

6.5 Algorithm for computing σf

The algorithm for inferring µf traverses f ’s body from left to right because the abstract interpretation
rules for µ need the charges to the previous heaps. For inferring σf we can do it better because its rules
are symmetrical. The main idea is to count only once the stack needs due to calling to external functions.

1. Let (, , σb) = [[eb]] Σ Γ (n+m).

2. Let (, , σbef) = [[ebef]] Σ[f 7→ (, , σb)] Γ (n + m), i.e. the stack needs before the last recursive
call, assuming as f ’s stack needs those of the base case. This amounts to accumulating the cost of
a leaf to the cost of an internal node of f ’s call tree.

3. Let (, , σaft) = [[eaft]] Σ Γ (n+m).

22

4. We define the following function S returning a natural number. Intuitively it computes an upper
bound to the difference in words between the initial stack in a call to f and the stack just before
ebef is about to jump to f again (Fig. 8):

S [[let x1 = e1 in #]] td = 2 + S [[e1]] 0

S [[let x1 = e1 in e2]] td =
{

1 + S [[e2]] (td + 1) if f /∈ e1

t{2 + S [[e1]] 0, 1 + S [[e2]] (td + 1)} if f ∈ e1

S [[case x of Ci xijni → ei
n
]] td =

⊔n
r=1(nr + S [[er]] (td + nr))

S [[g aip @ rj
q]] td = p+ q − td

S [[e]] td = 0 otherwise

5. Then, σf = (S [[ebef]] (n+m)) ∗ t{0, lenf − 2}+ t{σbef , σaft , σb}

In our example, if we denote by esplitAtbef the definition of Fig. 7(b) we get S [[esplitAtbef]] (2 + 3) = 9
and, by applying the abstract interpretation rules to the definitions in Fig. 7(c),(b) and (e) we obtain
σb = λn x.4, σbef = λn x.13 and σaft = λn x.9. Hence σf = 9 min{n−1, x−2}+13 = 9 min{n, x−1}+4.

Lemma 13. If lenf , and all the size functions belong to F, then σf belongs to F.

Proof. The result of S [[ef]] td is nonnegative when td = n+m. Moreover, the results of σbef , σaft and
σb are monotonic functions.

Lemma 14. σf is a safe upper bound for f ’s stack needs.

Proof. (Sketch) This is a consequence of the correctness of the abstract interpretation rules, and of lenf
being an upper bound to f ’s call-tree height.

time

Stack
words

lenf−2∗S 〚ebef〛 nm

bef

1 2 3 len
f
-1 len

f

...

The result of S [[ebef]] (n + m) ∗ (lenf − 2) is an upper bound to the stack length before the last
recursive case, since we are taking into account the maximum number of nested recursive calls and words
pushed between calls. The term t{σbef , σb , σaft} correctly approximates the stack cost of the last but
one recursive call.

Also in this case, it makes sense iterating the interpretation as we did with ∆f and µf , since it holds
that Iσ(σf) v σf .

7 Case Studies

In Fig. 9 we show a Full-Safe version of the mergesort algorithm (the code for splitAt was presented
in Fig. 7) with the types inferred by the compiler. Region ρ1 is used inside msort for the internal call
splitAt n’ xs @ r1 r1 self, while region ρ2 receives the charges made by merge. Notice that some
charges to msort’s self region are made by splitAt. In Fig. 10 we show the results of our interpretation
for this program as functions of the argument sizes. Remember that the size of a list (the number of its
cells) is the list length plus one. The functions shown have been simplified with the help of a computer
algebra tool. We show the fixpoints framed in grey. The upper bounds obtained for length, splitAt,
and merge are exact and they are, as expected, fixpoints of the inference algorithm. For msort we show
three iterations for ∆ and σ, and another three for µ by using the last ∆. The upper bounds for ∆ and

23

length [] = 0
length (x:xs) = 1 + length xs

splitAt :: Int → [a]@ρ1 → ρ1 → ρ2 → ρ3 → ([a]@ρ2, [a]@ρ1)@ρ3
length :: [a]@ρ1 → Int
merge :: [a]@ρ1 → [a]@ρ1 → ρ1 → [a]@ρ1
msort :: [a]@ρ1 → ρ1 → ρ2 → [a]@ρ2

merge [] ys = ys
merge (x:xs) [] = x : xs
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| x > y = y : merge (x:xs) ys

msort [] = []
msort (x:[]) = x:[]
msort xs = merge (msort xs1) (msort xs2)

where (xs1,xs2) = splitAt (length xs / 2) xs

Figure 9: Full-Safe mergesort program

Function Heap charges ∆ Heap needs µ Stack needs σ
length(x) [] 0 5x− 4

splitAt(n, x)

ρ1 7→ 1
ρ2 7→ min(n, x− 1) + 1

ρ3 7→ min(n, x− 1) + 1

 2 min(n, x− 1) + 6 9 min(n, x− 1) + 4

merge(x, y)
[
ρ1 7→ max(1, 2x+ 2y − 5)

]
max(1, 2x+ 2y − 5) 11(x+ y − 4) + 20

msort1(x)
[
ρ1 7→ x2

2 −
1
2

ρ2 7→ 2x2 − 3x+ 3

]
0.31x2 + 0.25x log(x+ 1) + 14.3x

+ 0.75 log(x+ 1) + 10.3 max(80, 13x− 10)

msort2(x)
[
ρ1 7→ x2

4 + x− 1
4

ρ2 7→ x2 + x+ 1

]
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

msort3(x)

[
ρ1 7→ x2

8 + 7x
4 + 9

8

ρ2 7→ x2

2 + 4x+ 1
2

]
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

Figure 10: Cost results for the mergesort program

µ are clearly over-approximated, since a term in x2 arises which is beyond the actual space complexity
class O(x log x) of this function. Let us note that the quadratic term’s coefficient quickly decreases at
each iteration in the inference of ∆. Also, µ and σ decrease in the second iteration but not in the third.
This confirms the predictions of lemmas 9 and 12.

We have tried some more examples and the results inferred for µ and σ after a maximum of three
iterations are shown in Fig. 11, where the fixpoints are also framed in grey. There is a quicksort function
using two auxiliary functions partition and append respectively classifying the list elements into those
lower (or equal) and greater than the pivot, and appending two lists. We also show the destructive
insertD function of Sec. 2, and a destructive version of the insertion in a search tree (its code is shown
in Fig. 12). Both consume constant heap space. The next one shown is the usual Fibonacci function
with exponential time cost, and using a constructed integer in order to show that an exponential heap
space is inferred. Finally, we show two simple summation functions (its code also appears in Fig. 12), the
first one being non-tail recursive, and the second being tail-recursive. Our abstract machine consumes
constant stack space in the second case (see [11]). It can be seen that our stack inference algorithm is
able to detect this fact.

8 Related and Future Work

Hughes and Pareto developed in [7] a type system and a type-checking algorithm which guarantees safe
memory upper bounds in a region-based first-order functional language. Unfortunately, the approach
requires the programmer to provide detailed consumption annotations, and it is limited to linear bounds.
Hofmann and Jost’s work [6] presents a type system and a type inference algorithm which, in case of
success, guarantees linear heap upper bounds for a first-order functional language, and it does not require
programmer annotations.

The national project AHA [15] aims at inferring amortised costs for heap space by using a variant of
sized-types [8] in which the annotations are polynomials of any degree. They address two novel problems:
polynomials are not necessarily monotonic and they are exact bounds, as opposed to approximate upper
bounds. Type-checking is undecidable in this system and in [16, 14] they propose an inference algorithm
for a list-based functional language with severe restrictions in which a combination of testing and type-
checking is done. The algorithm does not terminate if the input-output size relation is not polynomial.

In [2], the authors directly analyse Java bytecode and compute safe upper bounds for the heap

24

Function Heap needs µ Stack needs σ
partition(p, x) 3x − 1 9x − 5
append(x, y) x − 1 max(8, 7x− 6)
quicksort(x) 3x2 − 20x+ 76 max(40, 20x− 27)
insertD(e, x) 1 9x− 1

insertTD(x, t) 2 11
2 t+ 7

2

fib(n) 2n + 2n−3 + 2n−4 − 3 max(10, 7n− 11)
sum(n) 0 3n+ 6

sumT (a, n) 0 5

Figure 11: Cost results for miscellaneous Safe functions

sum 0 = 0
sum n = n + sum (n - 1)

sumT acc 0 = acc
sumT acc n = sumT (acc + n) (n - 1)

insertTD x Empty! = Node (Empty) x (Empty)
insertTD x (Node lt y rt)!

| x == y = Node lt! y rt!
| x > y = Node lt! y (insertTD x rt)
| x < y = Node (insertTD x lt) y rt!

Figure 12: Two summation functions and a destructive tree insertion function

allocation made by a program. The approach uses the results of [1], and consists of combining a code
transformation to an intermediate representation, a cost relations inference step, and a cost relations
solving step. The second one combines ranking functions inference and partial evaluation. The results
are impressive and go far beyond linear bounds. The authors claim to deal with data structures such
as lists and trees, as well as arrays. Two drawbacks compared to our results are that the second step
performs a global program analysis (so, it lacks modularity), and that only the allocated memory (as
opposed to the live memory) is analysed. Very recently [3] they have added an escape analysis to each
method in order to infer live memory upper bounds. The new results are very promising.

The strengths of our approach can be summarised as follows: (a) It scales well to large programs as
each Safe function is separately inferred. The relevant information about the called functions is recorded
in the signature environment; (b) We can deal with any user-defined algebraic datatype. Most of other
approaches are limited to lists; (c) We get upper bounds for the live memory, as the inference algorithms
take into account the deallocation of dead regions made at function termination; (d) We can get bounds
of virtually any complexity class; and (e) It is to our knowledge the only approach in which the upper
bounds can be easily improved just by iterating the inference algorithm.

The weak points that still require more work are the restrictions we have imposed to our functions:
they must be non-negative and monotonic. This exclude some interesting functions such as those that
destroy more memory than they consume, or those whose output size decreases as the input size increases.
Another limitation is that the arguments of recursive Safe functions related to heap or stack consumption
must be non-increasing. This limitation could be removed in the future by an analysis similar to that
done in [1] in which they maximise the argument sizes across a call-tree by using linear programming
tools. Of course, this could only be done if the size relations are linear.

Another open problem is inferring Safe functions with region-polymorphic recursion. Our region
inference algorithm [13] frequently infers such functions, where the regions used in an internal call may
differ from those used in the external one. This feature is very convenient for maximising garbage (i.e.
allocations to the self region) but it makes more difficult the attribution of costs to regions.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Re-
currence Relations in Cost Analysis. In Static Analysis Symposium, SAS’08, pages 221–237. LNCS
5079, Springer, 2008.

[2] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java Bytecode. In Proc.
Int. Symp. on Memory Management, ISMM’07, Montreal, Canada, pages 105–116. ACM, 2007.

25

[3] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages with
Garbage Collection. In Proc. Int. Symp. on Memory Management, ISMM’09, Dublin, Ireland,
pages 129–138. ACM, 2009.

[4] J. de Dios and R. Peña. A Certified Implementation on top of the Java Virtual Machine. In Formal
Method in Industrial Critical Systems, FMICS’09, Eindhoven (The Netherlands), pages 1–16. LNCS
(to appear), Springer, November 2009.

[5] J. de Dios and R. Peña. Formal Certification of a Resource-Aware Language Implementation. In Int.
Conf. on Theorem Proving in Higher Order Logics, TPHOL’09, Munich (Germany), pages 1–15.
LNCS 5674 (to appear), Springer, August 2009.

[6] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In
Proc. 30th ACM Symp. on Principles of Programming Languages, POPL’03, pages 185–197. ACM
Press, 2003.

[7] R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded Space; Towards
Embedded ML Programming. In Proc. Int. Conf. on Functional Programming, ICFP’99, Paris,
pages 70–81. ACM Press, Sept. 1999.

[8] R. J. M. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems Using Sized
Types. In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT, pages 410–423,
1996.

[9] T. Lindholm and F. Yellin. The Java Virtual Machine Sepecification Second Edition. The Java
Series. Addison-Wesley, 1999.

[10] S. Lucas and R. Peña. Rewriting Techniques for Analysing Termination and Complexity Bounds
of SAFE Programs. In Proc. Logic-Based Program Synthesis and Transformation, LOPSTR’08,
Valencia, Spain, pages 43–57, July 2008.

[11] M. Montenegro, R. Peña, and C. Segura. A Resource-Aware Semantics and Abstract Machine for
a Functional Language with Explicit Deallocation. In Workshop on Functional and (Constraint)
Logic Programming, WFLP’08, Siena, Italy July, 2008 (to appear in ENTCS), pages 47–61, 2008.

[12] M. Montenegro, R. Peña, and C. Segura. A Type System for Safe Memory Management and its
Proof of Correctness. In ACM Principles and Practice of Declarative Programming, PPDP’08,
Valencia, Spain, July. 2008, pages 152–162, 2008.

[13] M. Montenegro, R. Peña, and C. Segura. A simple region inference algorithm for a first-order
functional language. In S. Escobar, editor, Int. Work. on Functional and (Constraint) Logic Pro-
gramming, WFLP 2009, Brasilia, pages 63–77, 2009.

[14] A. Tamalet, O. Shkaravska, and M. van Eekelen. Size Analysis of Algebraic Data Types. In
Peter Achten, Pieter Koopman, and Marco T. Morazán, editors, Trends in Functional Programming
Volume 9 (TFP’08), pages 33–48. Intellect, 2009.

[15] M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smetsers. AHA:
Amortized Space Usage Analysis. In Selected Papers Trends in Functional Programming, TFP’07,
New York, pages 36–53. Intellect, 2008.

[16] R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-monotonically sized types
through testing. In Proc. Work. on Functional and (Constraint) Logic Programming, WFLP’07,
Paris, France. ENTCS, Elsevier, 2007.

26

