A Space Consumption Analysis By Abstract Interpretation (extended version) *

Manuel Montenegro, Ricardo Peña and Clara Segura
montenegro@fdi.ucm.es \{ricardo,csegura\}@sip.ucm.es

November, 2009

Abstract

Safe is a first-order functional language with an implicit region-based memory system and explicit destruction of heap cells. Its static analysis for inferring regions, and a type system guaranteeing the absence of dangling pointers have been presented elsewhere.

In this paper we present a new analysis aimed at inferring upper bounds for heap and stack consumption. It is based on abstract interpretation, being the abstract domain the set of all n-ary monotonic functions from real non-negative numbers to a real non-negative result. This domain turns out to be a complete lattice under the usual \sqsubseteq relation on functions. Our interpretation is monotonic in this domain and the solution we seek is the least fixpoint of the interpretation.

We first explain the abstract domain and some correctness properties of the interpretation rules with respect to the language semantics, then present the inference algorithms for recursive functions, and finally illustrate the approach with the upper bounds obtained by our implementation for some case studies.

1 Introduction

The first-order functional language Safe has been developed in the last few years as a research platform for analysing and formally certifying two properties of programs related to memory management: absence of dangling pointers and having an upper bound to memory consumption. Two features make Safe different from conventional functional languages: (a) a region based memory management system which does not need a garbage collector; and (b) a programmer may ask for explicit destruction of memory cells, so that they could be reused by the program. These characteristics, together with the above certified properties, make Safe useful for programming small devices where memory requirements are rather strict and where garbage collectors are a burden in service availability.

The Safe compiler is equipped with a battery of static analyses which infer such properties $[12,13,10]$. These analyses are carried out on an intermediate language called Core-Safe explained below. We have developed a resource-aware operational semantics of Core-Safe [11] producing not only values but also exact figures on the heap and stack consumption of a particular running. The code generation phases have been certified in a proof assistant [5, 4], so that there is a formal guarantee that the object code actually executed in the target machine (the JVM [9]) will exactly consume the figures predicted by the semantics.

Regions are dynamically allocated and deallocated. The compiler 'knows' which data lives in each region. Thanks to that, it can compute an upper bound to the space consumption of every region and so and upper bound to the total heap consumption. Adding to this a stack consumption analysis would result in having an upper bound to the total memory needs of a program.

In this work we present a static analysis aimed at inferring upper bounds for individual Safe functions, for expressions, and for the whole program. These have the form of n-ary mathematical functions relating the input argument sizes to the heap and stack consumption made by a Safe function, and include as particular cases multivariate polynomials of any degree. Given the complexity of the inference problem, even for a first-order language like Safe, we have identified three separate aspects which can

[^0]be independently studied and solved: (1) Having an upper bound on the size of the call-tree deployed at runtime by each recursive Safe function; (2) Having upper bounds on the sizes of all the expressions of a recursive Safe function. These are defined as the number of cells needed by the normal form of the expression; and (3) Given the above, having an inference algorithm to get upper bounds for the stack and heap consumption of a recursive Safe function.

Several approaches to solve (1) and (2) have been proposed in the literature (see the Related Work section). We have obtained promising results for them by using rewriting systems termination proofs [10]. In case of success, these tools return multivariate polynomials of any degree as solutions. This work presents a possible solution to (3) by using abstract interpretation. It should be considered as a proof-of-concept paper: we investigate how good the upper bounds obtained by the approach are, provided we have the best possible solutions for problems (1) and (2). In the case studies presented below, we have introduced by hand the bounds to the call-tree and to the expression sizes.

The abstract domain is the set of all monotonic, non-negative, n-ary functions having real number arguments and real number result. This infinite domain is a complete lattice, and the interpretation is monotonic in the domain. So, fixpoints are the solutions we seek for the memory needs of a recursive Safe function. An interesting feature of our interpretation is that we usually start with an over-approximation of the fixpoint, but we can obtain tighter and tighter safe upper bounds just by iterating the interpretation any desired number of times.

The plan of the paper is as follows: Section 2 gives a brief description of our language; Section 3 introduces the abstract domain; Sections 4 and 5 give the abstract interpretation rules and some proof sketches about their correctness, while Section 6 is devoted to our inference algorithms for recursive functions; in Section 7 we apply them to some case studies, and finally in Section 8 we give some account on related and future work.

2 Safe in a Nutshell

Safe is polymorphic and has a syntax similar to that of (first-order) Haskell. In Full-Safe in which programs are written, regions are implicit. These are inferred when Full-Safe is desugared into Core-Safe [13]. The allocation and deallocation of regions is bound to function calls: a working region called self is allocated when entering the call and deallocated when exiting it. So, at any execution point only a small number of regions, kept in an invocation stack, are alive. The data structures built at self will die at function termination, as the following treesort algorithm shows:

```
treesort xs = inorder (mkTree xs)
```

First, the original list xs is used to build a search tree by applying function mkTree (not shown). The tree is traversed in inorder to produce the sorted list. The tree is not part of the result of the function, so it will be built in the working region and will die when the treesort function returns. The Core-Safe version of treesort showing the inferred type and regions is the following:

```
treesort :: [a] @ rho1 -> rho2 -> [a] @ rho2
treesort xs @ r = let t = mkTree xs @ self
    in inorder t @ r
```

Variable r of type rho2 is an additional argument in which treesort receives the region where the output list should be built. This is passed to the inorder function. However self is passed to mkTree to instruct it that the intermediate tree should be built in treesort's self region.

Data structures can also be destroyed by using a destructive pattern matching, denoted by !, or by a case! expression, which deallocates the cell corresponding to the outermost constructor. Using recursion, the recursive portions of the whole data structure may be deallocated. As an example, we show a Full-Safe insertion function in an ordered list, which reuses the argument list's spine:

```
insertD x []! = x : []
insertD x (y:ys)! | x <= y = x : y : ys!
    | x > y = y : insertD x ys!
```

Expression $y s$! means that the substructure pointed to by $y s$ in the heap is reused. The following is the (abbreviated) Core-Safe typed version:

$$
\begin{aligned}
& E \vdash h, k, t d, c \Downarrow h, k, c,([], 0,1)[L i t] \\
& E[x \mapsto v] \vdash h, k, t d, x \Downarrow h, k, v,([], 0,1)[\operatorname{Var}] \\
& \frac{j \leq k \quad\left(h^{\prime}, p^{\prime}\right)=\operatorname{copy}(h, p, j) \quad m=\operatorname{size}(h, p)}{E\left[x \mapsto p, r \mapsto j \vdash \vdash h, k, t d, x @ r \Downarrow h^{\prime}, k, p^{\prime},([j \mapsto m], m, 2)\right.}\left[\operatorname{Var}_{2}\right] \\
& \frac{\operatorname{fresh}(q)}{E[x \mapsto p] \vdash h \uplus[p \mapsto w], k, t d, x!\Downarrow h \uplus[q \mapsto w], k, q,([], 0,1)}\left[\operatorname{Var}_{3}\right] \\
& \frac{\left(f{\overline{x_{i}}}^{n} @{\overline{r_{j}}}^{l}=e\right) \in \Sigma \quad\left[{\overline{x_{i} \mapsto E\left(a_{i}\right)}}^{n},{\overline{r_{j} \mapsto E\left(r_{j}^{\prime}\right)}}^{l}, \text { self } \mapsto k+1\right] \vdash h, k+1, n+l, e \Downarrow h^{\prime}, k+1, v,(\delta, m, s)}{E \vdash h, k, t d,\left.f{\overline{a_{i}}}^{n} @{\overline{r_{j}^{\prime}}}^{l} \Downarrow h^{\prime}\right|_{k}, k, v,\left(\left.\delta\right|_{k}, m, \max \{n+l, s+n+l-t d\}\right)} \text { [App] } \\
& E \vdash h, k, 0, e_{1} \Downarrow h^{\prime}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right) \\
& \frac{E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h^{\prime}, k, t d+1, e_{2} \Downarrow h^{\prime \prime}, k, v,\left(\delta_{2}, m_{2}, s_{2}\right)}{E \vdash h, k, t d, \text { let } x_{1}=e_{1} \text { in } e_{2} \Downarrow h^{\prime \prime}, k, v,\left(\delta_{1}+\delta_{2}, \max \left\{m_{1},\left|\delta_{1}\right|+m_{2}\right\}, \max \left\{2+s_{1}, 1+s_{2}\right\}\right)}\left[\text { Let }_{1}\right] \\
& \left.\frac{j \leq k \quad \text { fresh }(p) \quad E \cup\left[x_{1} \mapsto p\right] \vdash h \uplus\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], k, t d+1, e_{2} \Downarrow h^{\prime}, k, v,(\delta, m, s)}{E\left[\overline{a_{i} \mapsto v_{i}}\right.}{ }^{n}, r \mapsto j\right] \vdash h, k, t d, \text { let } x_{1}=C{\overline{a_{i}}}^{n} @ r \operatorname{in} e_{2} \Downarrow h^{\prime}, k, v,(\delta+[j \mapsto 1], m+1, s+1) \quad\left[\text { Let }_{2}\right] \\
& \frac{C=C_{r} \quad E \cup\left[{\overline{x_{r_{i}} \mapsto v_{i}}}^{n_{r}}\right] \vdash h, k, t d+n_{r}, e_{r} \Downarrow h^{\prime}, k, v,(\delta, m, s)}{E[x \mapsto p] \vdash h\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], k, t d, \text { case } x \text { of }{\overline{C_{i}}{\overline{x_{i j}}}^{n_{i}} \rightarrow e_{i}}^{n} \Downarrow h^{\prime}, k, v,\left(\delta, m, s+n_{r}\right)} \text { [Case] }
\end{aligned}
$$

Figure 1: Resource-Aware Operational semantics of Safe expressions

```
insertD :: Int -> [Int]! @ rho -> rho -> [Int] @ rho
insertD x ys @ r = case! ys of
    [] -> let zs = [] @ r in let us = (x:zs) @ r in us
    y:yy -> let b = x <= y in case b of
        True -> let ys1 = (let yy1 = yy! in let as = (y:yy1) @ r in as) in
            let rs1 = (x:ys1) @ r in rs1
        False -> let ys2 = (let yy2 = yy! in insertD x yy2 @ r) in
            let rs2 = (y:ys2) @ r in rs2
```

This function will run in constant heap space since, at each call, a cell is destroyed while a new one is allocated at region r by the (:) constructor. Only when the new element finds its place a new cell is allocated in the heap.

In Fig. 1 we show the Core-Safe big-step semantic rules in which a resource vector is obtained as a side effect of evaluating an expression. A judgement has the form $E \vdash h, k, t d, e \Downarrow h^{\prime}, k, v,(\delta, m, s)$ meaning that expression e is evaluated in an environment E using the $t d$ topmost positions in the stack, and in a heap (h, k) with $0 . . k$ active regions. As a result, a heap $\left(h^{\prime}, k\right)$ and a value v are obtained, and a resource vector (δ, m, s) is consumed. Notice that k does not change because the number of active regions increases by one at each application and decreases by one at each function return, and all applications during e 's evaluation have been completed. A heap h is a mapping between pointers and constructor cells $\left(j, C \overline{v i}^{n}\right)$, where j is the cell region. The first component of the resource vector is a partial function $\delta: \mathbb{N} \rightarrow \mathbb{Z}$ giving for each active region i the signed difference between the cells in the final and initial heaps. A positive difference means that new cells have been created in this region. A negative one, means that some cells have been destroyed. By $\operatorname{dom}(\delta)$ we denote the subset of \mathbb{N} in which δ is defined. By $|\delta|$ we mean the sum $\sum_{n \in \operatorname{dom}(\delta)} \delta(n)$ giving the total balance of cells. The remaining components m and s respectively give the minimum number of fresh cells in the heap and of words in the stack needed to successfully evaluate e. When e is the main expression, these figures give us the total memory needs of a particular run of the Safe program. For a full description of the semantics and the abstract machine see [11].

3 Function Signatures

A Core-Safe function is defined as a $n+m$ argument expression:

$$
\begin{aligned}
& f:: t_{1} \rightarrow \ldots t_{n} \rightarrow \rho_{1} \rightarrow \ldots \rho_{m} \rightarrow t \\
& f x_{1} \cdots x_{n} @ r_{1} \cdots r_{m}=e_{f}
\end{aligned}
$$

A function may charge space costs to heap regions and to the stack. In general, these costs depend on the sizes of the function arguments. For example,

```
copy xs @ r = case xs of [] -> [] @ r
    y:ys -> let zs = copy ys @ r in
    let rs = (y:zs) @ r in rs
```

charges as many cells to region r as the input list size. We define the size of an algebraic type term to be the number of cells of its recursive spine and that of a boolean value to be zero. However, for a natural number we take its value because frequently space costs depend on the value of a numeric argument.

As a consequence, all the costs, sizes and needs of f can be expressed as functions $\eta:\left(\mathbb{R}^{+} \cup\{+\infty\}\right)^{n} \rightarrow$ $\mathbb{R} \cup\{+\infty,-\infty\}$ on f 's argument sizes. Infinite costs will be used to represent that we are not able to infer a bound (either because it does not exist or because the analysis is not powerful enough). Costs can be negative if the function destroys more cells than it builds. Currently we are restricting ourselves to functions where for each destructed cell at least a new cell is built in the same region. This covers many interesting functions where the aim of cell destruction is space reuse instead of pure destruction, e.g. function insertD shown in the previous section. This restriction means that the domain of the space cost functions is the following:

$$
\mathbb{F}=\left\{\eta:\left(\mathbb{R}^{+} \cup\{+\infty\}\right)^{n} \rightarrow \mathbb{R}^{+} \cup\{+\infty\} \mid \eta \text { is monotonic }\right\}
$$

The domain $(\mathbb{F}, \sqsubseteq, \perp, \top, \sqcup, \sqcap)$ is a complete lattice, where \sqsubseteq is the usual order between functions, and the rest of components are standard. Notice that it is closed by the operations $\{+, \sqcup, *\}$. We abbreviate $\lambda \overline{x_{i}}{ }^{n} . c$ by c, when $c \in \mathbb{R}^{+}$.

Function f above may charge space costs to a maximum of $n+m+1$ regions: It may destroy cells in the regions where $x_{1} \ldots x_{n}$ live; it may create/destroy cells in any output region $r_{1} \ldots r_{m}$, and additionally in its self region. Each region r has a region type ρ. We denote by $R_{i n}^{f}$ the set of input region types, and by $R_{\text {out }}^{f}$ the set of output region types. For example, $R_{\text {in }}^{\text {treesort }}=\left\{\rho_{1}\right\}$ and $R_{\text {out }}^{\text {treesort }}=\left\{\rho_{2}\right\}$. Looked from outside, the charges to the self region are not visible, as this region disappears when the function returns.

Summarising, let $R_{f}=R_{i n}^{f} \cup R_{\text {out }}^{f}$. Then $\mathbb{D}=\left\{\Delta: R_{f} \rightarrow \mathbb{F}\right\}$ is the complete lattice of functions that describe the space costs charged by f to every visible region. In the following we will call abstract heaps to the functions $\Delta \in \mathbb{D}$.

Definition 1. A function signature for f is a triple $\left(\Delta_{f}, \mu_{f}, \sigma_{f}\right)$, where Δ_{f} belongs to \mathbb{D}, and μ_{f}, σ_{f} belong to \mathbb{F}.

The aim is that Δ_{f} describes (an upper bound to) the space costs charged by f to every visible region, (i.e. the increment in live memory due to a call to f), and μ_{f}, σ_{f} respectively describe (an upper bound to) the heap and stack needs in order to execute f without running out of space (i.e. the maximal increment in live memory during f's evaluation). By [$]_{f}$ we denote the constant function $\lambda \rho \cdot \lambda \overline{x_{i}}{ }^{n} .0$, where we assume $\rho \in R_{f}$. By $|\Delta|$ we mean $\sum_{\rho \in \operatorname{dom}(\Delta)} \Delta \rho$.

4 Abstract Interpretation

In Figure 2 we show the abstract interpretation rules for the most relevant Core-Safe expressions. There, an atom a represents either a variable x or a constant c, and $|e|$ denotes the function obtained by the size analysis for expression e. We can assume that the abstract syntax tree is decorated with such information.

When inferring an expression e, we assume it belongs to the body of a function definition $f{\overline{x_{i}}}^{n} @{\overline{r_{j}}}^{m}=$ e_{f}, that we will call the context function, and that only already inferred functions $g{\overline{y_{i}}}^{l} @{\overline{r_{j}}}^{q}=e_{g}$ are called. Let Σ be a global environment giving, for each Safe function g in scope, its signature $\left(\Delta_{g}, \mu_{g}, \sigma_{g}\right)$, let Γ be a typing environment containing the types of all the variables appearing in e_{f}, and let $t d$ be a natural number. The abstract interpretation $\llbracket e \rrbracket \Sigma \Gamma t d$ gives a triple (Δ, μ, σ) representing the space costs and needs of expression e. The statically determined value $t d$ occurring as an argument of the interpretation and used in rule $A p p$ is the size of the top part of the environment used when compiling the expression $g{\overline{a_{i}}}^{l} @{\overline{r_{j}}}^{q}$. This size is also an argument of the operational semantics. See [11] for more details.

Rules [Atom] and [Primop] exactly reflect the corresponding resource-aware semantic rules [11]. When a function application $g{\overline{a_{i}}}^{l} @{\overline{r_{j}}}^{q}$ is found, its signature Σg is applied to the sizes of the actual arguments, $\overline{\left|a_{i}\right|{\overline{x_{j}}}^{n}}$ bhich have the \bar{x}^{n} as free variables. Due to the application, some different region types of g

$$
\begin{aligned}
& \llbracket c \rrbracket \Sigma \Gamma t d=\left([]_{f}, 0,1\right) \quad[L i t] \\
& \llbracket x \rrbracket \Sigma \Gamma t d=\left([]_{f}, 0,1\right) \quad[\text { Var }] \\
& \frac{\Gamma r=\rho \quad|x|=\eta}{\llbracket x @ r \rrbracket \Sigma \Gamma t d=([\rho \mapsto \eta], \eta, 2)}\left[\text { Var }_{2}\right] \\
& \llbracket x!\rrbracket \Sigma \Gamma t d=\left([]_{f}, 0,1\right) \quad\left[\text { Var }_{3}\right] \\
& \left.\llbracket a_{1} \oplus a_{2} \rrbracket \Sigma \Gamma t d=\left([]_{f}, 0,2\right) \quad \text { [Primop }\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\llbracket e_{1} \rrbracket \Sigma \Gamma 0=\left(\Delta_{1}, \mu_{1}, \sigma_{1}\right) \llbracket e_{2} \rrbracket \Sigma \Gamma(t d+1)=\left(\Delta_{2}, \mu_{2}, \sigma_{2}\right)}{\llbracket \operatorname{let} x_{1}=e_{1} \text { in } e_{2} \rrbracket \Sigma \Gamma t d=\left(\Delta_{1}+\Delta_{2}, \sqcup\left\{\mu_{1},\left|\Delta_{1}\right|+\mu_{2}\right\}, \sqcup\left\{2+\sigma_{1}, 1+\sigma_{2}\right\}\right)}\left[\text { Let }_{1}\right] \\
& \frac{\Gamma r=\rho \llbracket e_{2} \rrbracket \Sigma \Gamma(t d+1)=(\Delta, \mu, \sigma)}{\llbracket \text { let } x_{1}=C{\overline{a_{i}}}^{n} @ r \operatorname{in} e_{2} \rrbracket \Sigma \Gamma t d=(\Delta+[\rho \mapsto 1], \mu+1, \sigma+1)}\left[\text { Let }_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma x=T{\overline{t_{k}}}^{l} @ \rho \quad(\forall i) \llbracket e_{i} \rrbracket \Sigma \Gamma\left(t d+n_{i}\right)=\left(\Delta_{i}, \mu_{i}, \sigma_{i}\right)}{\llbracket \mathbf{c a s e}!x \text { of }{\overline{C_{i}}{\overline{x_{i j}}}^{n_{i}} \rightarrow e_{i}}^{n} \rrbracket \Gamma \Gamma t d=\left([\rho \mapsto-1]+\bigsqcup_{i=1}^{n} \Delta_{i}, \sqcup\left(0, \bigsqcup_{i=1}^{n} \mu_{i}-1\right), \bigsqcup_{i=1}^{n}\left(\sigma_{i}+n_{i}\right)\right)} \text { [Case!] }
\end{aligned}
$$

Figure 2: Space inference rules for expressions with non-recursive applications
may instantiate to the same actual region type of f. That means that we must accumulate the memory consumed in some formal regions of g in order to get the charge to an actual region of f. In Figure 2, unify $\Gamma g{\overline{a_{i}}}^{l}{\overline{r_{j}}}^{q}$ computes a substitution θ from g 's region types to f 's region types. If $\theta \rho_{g}=\rho_{f}$, this means that the generic g 's region type ρ_{g} is instantiated to the f's actual region type ρ_{f}. Formally, if $R_{g}=R_{\text {in }}^{g} \cup R_{\text {out }}^{g}$ then $\theta:: R_{g} \rightarrow R_{f} \cup\left\{\rho_{\text {self }}\right\}$ is total. The extension of region substitutions to types is straightforward.

Definition 2. Given a type environment Γ, a function g and the sequences ${\overline{a_{i}}}^{l}$ and ${\overline{r_{j}}}^{q}$, we say that $\theta=$ unify $\Gamma g{\overline{a_{i}}}^{l}{\overline{r_{j}}}^{q}$ iff

$$
\Gamma g=\forall \bar{\alpha} \cdot{\overline{t_{i}}}^{l} \rightarrow{\overline{\rho_{j}}}^{q} \rightarrow t \text { and } \forall i \in\{1 \ldots l\} . \theta t_{i}=\Gamma a_{i} \text { and } \forall j \in\{1 \ldots q\} . \theta \rho_{j}=\Gamma r_{j}
$$

As an example, let us assume $g::\left([a] @ \rho_{1}^{g},\left[[b] @ \rho_{2}^{g}\right] @ \rho_{1}^{g}\right) @ \rho_{3}^{g} \rightarrow \rho_{2}^{g} \rightarrow \rho_{4}^{g} \rightarrow \rho_{5}^{g} \rightarrow t$ and consider the application $g p @ r_{2} r_{1} r_{1}$ where $p::\left([a] @ \rho_{1}^{f},\left[[b] @ \rho_{2}^{f}\right] @ \rho_{1}^{f}\right) @ \rho_{1}^{f}, r_{1}:: \rho_{1}^{f}$ and $r_{2}:: \rho_{2}^{f}$. The resulting substitution would be:

$$
\theta=\left[\rho_{1}^{g} \mapsto \rho_{1}^{f}, \rho_{2}^{g} \mapsto \rho_{2}^{f}, \rho_{3}^{g} \mapsto \rho_{1}^{f}, \rho_{4}^{g} \mapsto \rho_{1}^{f}, \rho_{5}^{g} \mapsto \rho_{1}^{f}\right]
$$

The function $\theta \downarrow \overline{\eta_{i} \bar{x}^{n}} l \Delta_{g}$ converts an abstract heap for g into an abstract heap for f. It is defined as follows:

$$
\theta \downarrow \overline{{\overline{\eta_{i}} \overline{x_{j}}}^{n}} \Delta_{g}=\lambda \rho \cdot \lambda{\overline{x_{j}}}^{n} \cdot \sum_{\substack{\rho^{\prime} \in R_{g} \\ \theta \rho^{\prime}=\rho}} \Delta_{g} \rho^{\prime}{\left.\overline{\eta_{i}{\overline{x_{j}}}^{n}} l \quad\left(\rho \in R_{f} \cup\left\{\rho_{\text {self }}\right\}, \eta_{i} \in \mathbb{F}\right)\right)}^{l}
$$

In the example, we have:

$$
\begin{aligned}
& \Delta \rho_{2}^{f}=\lambda \bar{x}^{n} \cdot \Delta_{g} \rho_{2}^{g}{\overline{\left(\left|a_{i}\right| \bar{x}^{n}\right)}}_{l}^{l} \\
& \Delta \rho_{1}^{f}=\lambda \bar{x}^{n} \cdot \Delta_{g} \rho_{1}^{g} \overline{\left(\left|a_{i}\right| \bar{x}^{n}\right)}
\end{aligned}+\Delta_{g} \rho_{3}^{g}{\overline{\left(\left|a_{i}\right| \bar{x}^{n}\right)}}^{l}+\Delta_{g} \rho_{4}^{g}{\overline{\left(\left|a_{i}\right| \bar{x}^{n}\right)}}^{l}+\Delta_{g} \rho_{5}^{g}{\overline{\left(\left|a_{i}\right| \bar{x}^{n}\right)}}_{l}^{l} l
$$

Rules [Let $_{1}$] and [Let $_{2}$] reflect the corresponding resource-aware semantic rules in [11]. Rules [Case] and [Case!] use the least upper bound operators \bigsqcup in order to obtain an upper bound to the charge costs and needs of the alternatives.

$$
\begin{array}{rlr}
\operatorname{build}(h, c, B) & =\emptyset & \\
\operatorname{build}\left(h, p, T{\overline{t_{i}}}^{n} @{\overline{\rho_{i}}}^{m}\right) & =\emptyset & \text { if } p \notin \operatorname{dom}(h) \\
\operatorname{build}\left(h, p, T{\overline{t_{i}}}^{n} @{\overline{\rho_{i}}}^{m}\right) & =\left[\rho_{m} \rightarrow j\right] \cup \bigcup_{i=1}^{n_{k}} \operatorname{build}\left(h, v_{i}, t_{k i}\right) & \text { if } p \in \operatorname{dom}(h) \\
\text { where } & & h(p)=\left(j, C_{k}{\overline{v_{i}}}^{n_{k}}\right) \\
& {\overline{t_{k i}}}^{n} \rightarrow \rho_{m} \rightarrow T{\overline{t_{i}}}^{n} @{\overline{\rho_{i}}}^{m} \unlhd \Sigma\left(C_{k}\right) &
\end{array}
$$

Figure 3: Definition of build function.

5 Correctness of the Abstract Interpretation

Let $f{\overline{x_{i}}}^{n} @{\overline{r_{j}}}^{m}=e_{f}$, be the context function, which we assume well-typed according to the type system in [12]. Let us assume an execution of e_{f} under some E_{0}, h_{0}, k_{0} and $t d_{0}$:

$$
\begin{equation*}
E_{0} \vdash h_{0}, k_{0}, t d_{0}, e_{f} \Downarrow h_{f}, k_{0}, v_{f},\left(\delta_{0}, m_{0}, s_{0}\right) \tag{1}
\end{equation*}
$$

In the following, all \Downarrow-judgements corresponding to a given sub-expression of e_{f} will be assumed to belong to the derivation of (1).

The correctness argument is split into three parts. First, we shall define a notion of correct signature which formalises the intuition of the inferred (Δ, μ, σ) being an upper bound of the actual (δ, m, s). Then we prove that the inference rules of Figure 2 are correct, assuming that all function applications are done to previously inferred functions, that the signatures given by Σ for these functions are correct, and that the size analysis is correct. Finally, the correctness of the signature inference algorithm is proved, in particular when the function being inferred is recursive.

In order to define the notion of correct signature we have to give some previous definitions. We consider region instantiations, denoted by Reg, Reg',\ldots, which are partial mappings from region types ρ to natural numbers i. Region instantiations are needed to specify the actual region i to which every ρ is instantiated at a given execution point. An instantiation Reg is consistent with a heap h, an environment E and a type environment Γ if Reg does not contradict the region instantiation obtained at runtime from h, E and Γ, i.e. common type region variables are bound to the same actual region. A formal definition of consistency can be found in [12], where we also proved that if a function is well-typed, consistency of region instantiations is preserved along its execution.

The function build (defined in Fig 3) follows the pointer chain of a given structure in order to construct a correspondence between region types and actual regions. The data structure is determined by the heap and the pointer given as first and second parameters; the third one is the type of the data structure.

Notice that the build function always return a region instantiation whose domain is a subset of the region type variables appearing in the type under consideration, that is, dom build $(h, v, t) \subseteq \operatorname{regions}(t)$. However, there may exist region type variables in t which do not belong to the result of the resulting build. As an example, let us consider the following data declaration:

$$
\text { data EitherList ab@ } \rho_{1} \rho_{2} \rho_{3}=\operatorname{Left}\left([a] @ \rho_{1}\right) @ \rho_{3} \mid \operatorname{Right}\left([b] @ \rho_{2}\right) @ \rho_{3}
$$

Under the heap $h=\left[p_{1} \mapsto\left(2\right.\right.$, Left $\left.\left.p_{2}\right), p_{2} \mapsto(1,[])\right]$ we get:

$$
\operatorname{build}\left(h, p_{1}, \text { EitherList a b @ } \rho_{5} \rho_{6} \rho_{7}\right)=\left[\rho_{5} \mapsto 1, \rho_{7} \mapsto 2\right]
$$

where the region type variable ρ_{6} is not bound to any actual region.
It will be convenient to extend the notation of build to typing and value environments as follows:

$$
\operatorname{build}^{*}(h, E, \Gamma)=\bigcup_{\substack{x \in \operatorname{domE} \\ \rightarrow \text { regvar }(x)}} \text { build }(h, E x, \Gamma x) \cup \bigcup_{\substack{r \in \operatorname{domE} \\ \text { regvar }(r)}}[\Gamma r \mapsto E r]
$$

provided the result is well-defined, i.e. all occurring region instantiations are consistent with each other. This always holds, in particular, when the involved function is well-typed.

Definition 3. Given a pointer p belonging to a heap h, the function size returns the number of cells in h of the data structure starting at p :

$$
\operatorname{size}\left(h\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], p\right)=1+\sum_{i \in \operatorname{RecPos}(C)} \operatorname{size}\left(h, v_{i}\right)
$$

where $\operatorname{RecPos}(C)$ denotes the recursive positions of constructor C. We shall define in a similar way the function size ${ }^{+}$, which gives the number of cells of the whole DS pointed to by p.

$$
\operatorname{size}^{+}\left(h\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], p\right)=1+\sum_{i \in\{1 \ldots n\}} \operatorname{size}^{+}\left(h, v_{i}\right)
$$

For example, if p points to the first cons cell of the list $[1,2,3]$ in the heap h then $\operatorname{size}(h, p)=$ $\operatorname{size}^{+}(h, p)=4$. We assume that $\operatorname{size}(h, c)=0$ for every heap h and constant c.

Definition 4. Given a sequence of sizes ${\overline{s_{i}}}^{n}$ for the input parameters, a number k of regions and a region instantiation Reg, we say that

- Δ is an upper bound for δ in the context of ${\overline{s_{i}}}^{n}, k$ and Reg, denoted by $\Delta \succeq_{\bar{s}_{i}^{n}, k, \text { Reg }} \delta$ iff

$$
\forall j \in\{0 \ldots k\}: \sum_{\text {Reg } \rho=j} \Delta \rho{\overline{s_{i}}}^{n} \geq \delta j
$$

- μ is an upper bound for m, denoted $\mu \succeq{\overline{s_{i}}}^{n} m$, iff $\mu{\overline{s_{i}}}^{n} \geq m$; and
- σ is an upper bound for s, denoted $\sigma \succeq_{\overline{\bar{s}^{n}}} s$, iff $\sigma{\overline{s_{i}}}^{n} \geq s$.

A signature $\left(\Delta_{g}, \mu_{g}, \sigma_{g}\right)$ for a function g is said to be correct if the components $\left(\Delta_{g}, \mu_{g}, \sigma_{g}\right)$ are upper bounds to the actual (δ, m, s) obtained from any execution of g. This is formalised in the following definition.

Definition 5 (Correct signature). Let $\left(\Delta_{g}, \mu_{g}, \sigma_{g}\right)$ the signature of a function definition $g{\overline{y_{i}}}^{l} @{\overline{r_{j}^{\prime}}}^{q}=e_{g}$. This signature is said to be correct iff for all $h, h^{\prime}, k,{\overline{v_{i}}}^{l},{\overline{i_{j}}}^{q}, v, \delta, m, s, \Gamma, t,{\overline{s_{i}}}^{n}$ such that:

1. $E_{g}=\left[\overline{y_{i} \mapsto v_{i}} l,{\overline{r_{j}^{\prime}} \mapsto i_{j}^{q}}^{q}\right.$, self $\left.\mapsto k+1\right] \vdash h, k+1, l+q, e_{g} \Downarrow h^{\prime}, k+1, v,(\delta, m, s)$.
2. $\Gamma_{g} \vdash e_{g}: t$, according to the type system in [12].
3. $\forall i \in\{1 \ldots l\}: s_{i}=\operatorname{size}\left(h, v_{i}\right)$
then $\Delta_{g} \succeq_{\overline{s_{i}} l}, k$, Reg $\left.\right|_{k} \wedge \mu_{g} \succeq_{\overline{s_{i}}} m \wedge \sigma_{g} \succeq_{\overline{s_{i}}}$ s for every region instantiation Reg consistent with h, E_{g} and Γ_{g}.

Definition 6 (Correct size analysis). Let f be the context function. The size analysis $|\cdot|$ is correct if for all subexpressions e of its body such that the judgement:

$$
E \vdash h, k_{0}, t d, e \Downarrow h^{\prime}, k_{0}, v,(\delta, m, s)
$$

belongs to the derivation in (1) it holds that

$$
\forall x \in \operatorname{dom} E:|x|{\overline{s_{i}}}^{n} \geq \operatorname{size}(h, E x) \text { where } s_{i}=\operatorname{size}\left(h_{0}, E_{0} x_{i}\right) \text { for each } i \in\{1 \ldots n\}
$$

with E_{0}, h_{0} and ${\overline{x_{i}}}^{n}$ being respectively the initial value environment, the initial heap and the input parameters corresponding to the context function.

The correctness of the abstract interpretation rules in Fig. 2 can be proven provided the type signatures in Σ are correct.

Lemma 1. Let h be a fixed heap, t a nonfunctional type, and θ a region substitution such that regions $(t) \subseteq$ dom θ. For every pointer p belonging to the domain of h :

$$
\begin{gathered}
\operatorname{dom}(\operatorname{build}(h, p, t)) \subseteq \operatorname{dom}(\operatorname{build}(h, p, \theta t) \circ \theta) \\
\forall \rho \in \operatorname{dom}(\operatorname{build}(h, p, t)): \operatorname{build}(h, p, t) \rho=\operatorname{build}(h, p, \theta t)(\theta \rho)
\end{gathered}
$$

provided both build (h, p, t) and build $(h, p, \theta t)$ are well-defined.

Proof. By induction on $\operatorname{size}^{+}(h, p)$.
If size ${ }^{+}(h, p)=0$ then we get a contradiction, as t would be a basic type B or an algebraic type with $p \notin \operatorname{dom} h$. Therefore, we shall assume in what follows that t is an algebraic type and $p \in \operatorname{dom} h$.

Assuming that $t=T{\overline{t_{i}}}^{l} @{\overline{\rho_{j}}}^{q}, h(p)=\left(k, C{\overline{v_{i}}}^{n}\right)$, and that ${\overline{t_{i}^{\prime}}}^{n} \rightarrow \rho_{m}^{\prime} \rightarrow t$ is an instantiation of the data constructor C, we shall prove:

$$
[\rho \mapsto j] \in \operatorname{build}(h, p, t) \Rightarrow[\rho \mapsto j] \in \operatorname{build}(h, p, \theta t) \circ \theta
$$

Firstly, we know that $\rho \in \operatorname{dom} \theta$, since $\rho \in \operatorname{dom}(\operatorname{build}(h, p, t)) \subseteq \operatorname{regions}(t)$. We can unfold the definition of $\operatorname{build}(h, p, t)$ in order to get:

$$
\begin{equation*}
\operatorname{build}(h, p, t)=\left[\rho_{m}^{\prime} \mapsto k\right] \cup \bigcup_{i=1}^{n} \operatorname{build}\left(h, v_{i}, t_{i}^{\prime}\right) \tag{2}
\end{equation*}
$$

and hence:

$$
\begin{equation*}
\operatorname{build}(h, p, \theta t)=\left[\theta \rho_{m}^{\prime} \mapsto k\right] \cup \bigcup_{i=1}^{n} \operatorname{build}\left(h, v_{i}, \theta t_{i}^{\prime}\right) \tag{3}
\end{equation*}
$$

On the one hand, if $\rho=\rho_{m}^{\prime}$ then we get $j=k$ from (2) and it holds that build $(h, p, \theta t)(\theta \rho)=k=j$ from (3). Therefore, the binding $[\rho \mapsto j]$ belongs to the result of build $(h, p, \theta t) \circ \theta$. On the other hand, if we assume that $\rho \neq \rho_{m}^{\prime}$ then for some $i \in\{1 \ldots n\}$:

$$
\begin{aligned}
{[\rho \mapsto j] \in \operatorname{build}\left(h, v_{i}, t_{i}^{\prime}\right) } & \Rightarrow[\rho \mapsto j] \in \operatorname{build}\left(h, v_{i}, \theta t_{i}^{\prime}\right) \circ \theta \quad\{\text { by I.H. }\} \\
& \Rightarrow[\theta \rho \mapsto j] \in \operatorname{build}\left(h, v_{i}, \theta t_{i}^{\prime}\right) \\
& \Rightarrow[\theta \rho \mapsto j] \in \operatorname{build}(h, p, \theta t) \\
& \Rightarrow[\rho \mapsto j] \in \operatorname{build}(h, p, \theta t) \circ \theta
\end{aligned}
$$

Lemma 2. Let f be the context function. Then, for every subexpression e of the body e_{f} of the context function and E, h, h^{\prime}, v such that $E \vdash h, k_{0}, e \Downarrow h^{\prime}, k_{0}, v$ belongs to the derivation (1), it holds that $\forall x \in \operatorname{dom} E: \operatorname{size}(h, E x) \geq \operatorname{size}\left(h^{\prime}, E x\right)$.

Proof. It is a property of the big-step semantics, which can be proven by simple inspection of the corresponding rules.

Theorem 1 (Correctness of the type system). Let us assume that $E \vdash h, k, e \Downarrow h^{\prime \prime}, k, v,(\delta, m, s)$ and that $\Gamma \vdash e: t$. If Reg $=$ build $^{*}(h, E, \Gamma)$ is well-defined then for every h^{\prime}, E^{\prime} and Γ^{\prime} occurring in these derivations, the region instantiation build $\left(h^{\prime}, E^{\prime}, \Gamma^{\prime}\right)$ is consistent with Reg and so is the result of build (h, v, t).

Proof. It follows from the correctness theorem in [12].
The following theorem establishes the correctness of the abstract interpretation for non-recursive functions.

Theorem 2. Let f a non-recursive context function. For each subexpression e of e_{f} and $E, \Sigma, \Gamma, t d$, $\Delta, \mu, \sigma, h, h^{\prime}, v,, t, \delta, m$ and s such that:

1. Every function call $g{\overline{a_{i}}}^{l} @{\overline{r_{j}^{\prime}}}^{q}$ in e satisfies $g \in \operatorname{dom} \Sigma$ and $\Sigma(g)$ is correct
2. $\llbracket e \rrbracket \Sigma \Gamma t d=(\Delta, \mu, \sigma)$, where every occurrence of $|x|$ in its derivation has been inferred with a correct size analysis.
3. $E \vdash h, k_{0}, t d, e \Downarrow h^{\prime}, k_{0}, v,(\delta, m, s)$, belonging to (1)
4. $\Gamma \vdash e: t$, according to the type system in [12].
then $\Delta \succeq_{\bar{s}_{i} n}, k_{0}$, Reg $\delta, ~ \mu \succeq_{{\overline{s_{i}}}^{n}} m$ and $\sigma \succeq_{\bar{s}_{i}^{n}}$ s, where $s_{i}=\operatorname{size}\left(h, E_{0} x_{i}\right)$ for each $i \in\{1 \ldots n\}$, and each region instantiation Reg consistent with build ${ }^{*}(h, E, \Gamma)$ such that dom Reg $=$ dom Δ.

Proof. By structural induction on e. In the following we shall leave out the ${\overline{s_{i}}}^{n}$ and k_{0} subscripts in the \succeq relations for a better readability.

- Cases $e \equiv c, e \equiv x$ and $e \equiv x$!

We get $\Delta=[]_{f}=\lambda \rho \cdot \lambda{\overline{x_{i}}}^{n} \cdot 0, \mu=\lambda{\overline{x_{i}}}^{n} .0$ and $\sigma=\lambda{\overline{x_{i}}}^{n} .1$. We prove:

1. $\Delta \succeq \delta$

Since for every $i \in\left\{0 \ldots k_{0}\right\}$ we get:

$$
\sum_{\text {Reg } \rho=i} \Delta \rho{\overline{s_{i}}}^{n}=0=\delta i
$$

2. $\mu \succeq m$, since $\mu{\overline{s_{i}}}^{n}=0=m$
3. $\sigma \succeq s$, since $\sigma{\overline{s_{i}}}^{n}=1=s$

- Case $e \equiv x @ r$

Let $m=\operatorname{size}(h, E x)$. We prove:

1. $\Delta \succeq \delta$. By rule [$V a r_{2}$] we get $|x|=\eta, \Gamma r=\rho$ and

$$
\Delta=\lambda \rho^{\prime} \cdot \begin{cases}\eta & \text { if } \rho^{\prime}=\rho \\ \lambda \overline{x i}^{n} .0 & \text { if } \rho^{\prime} \neq \rho\end{cases}
$$

Let $i \in\left\{0 \ldots k_{0}\right\}$. Firstly we assume $i=E r$. Since $\Gamma r=\rho$ and Reg is consistent with build $^{*}(h, E, \Gamma)$, then Reg $\rho=i$. Therefore:

$$
\begin{array}{rlrl}
\sum_{\text {Reg }}^{\rho^{\prime}=E} r \\
\Delta \rho^{\prime}{\overline{s_{i}}}^{n} & =\sum_{\substack{\text { Reg } \rho^{\prime}=E r \\
\rho^{\prime} \neq \rho}} \Delta \rho^{\prime}{\overline{s_{i}}}^{n}+\Delta \rho{\overline{s_{i}}}^{n} & \\
& =0+\Delta \rho \overline{s_{i}} \\
& =\eta{\overline{s_{i}}}^{n} \\
& =|x|{\overline{s_{i}}}^{n} \\
& \geq \operatorname{size}(h, E x) & & \\
& =\delta(E r) & \text { \{by Definition } 6\}
\end{array}
$$

For the remaining case, $i \neq E r$, every ρ^{\prime} such that Reg $\rho^{\prime}=i \neq E r$ must be distinct from ρ, as the consistency constraint of Reg forces Reg $\rho=E r$. Therefore:

$$
\sum_{\text {Reg } \rho^{\prime}=i} \Delta \rho^{\prime}{\overline{s_{i}}}^{n}=\left(\lambda{\overline{x_{i}}}^{n} .0\right){\overline{s_{i}}}^{n}=0=\delta i
$$

2. $\mu \succeq m$, since:

$$
\mu{\overline{s_{i}}}^{n}=\eta{\overline{s_{i}}}^{n}=|x|{\overline{s_{i}}}^{n} \geq \operatorname{size}(h, E x)=m
$$

3. $\sigma \succeq s$, since:

$$
\sigma{\overline{s_{i}}}^{n}=2=s
$$

- Case $e \equiv$ let $x_{1}=C \overline{a_{i}} @ r$ in e_{2}

Let us denote the extended environment and heap by E_{1} and h_{1} :

$$
\begin{aligned}
& E_{1}=E \cup\left[x_{1} \mapsto p\right] \\
& h_{1}=h \uplus\left[p \mapsto\left(j, C\left(E{\overline{a_{i}}}^{l}\right)\right] \quad \text { where } j=E r\right.
\end{aligned}
$$

By the corresponding rules we get:

$$
\begin{aligned}
& \llbracket e_{2} \rrbracket \Sigma \Gamma(t d+1)=\left(\Delta_{1}, \mu_{1}, \sigma_{1}\right) \\
& E_{1} \vdash h_{1}, k_{0}, t d+1, e_{2} \Downarrow h^{\prime}, k_{0}, v,\left(\delta_{1}, m_{1}, s_{1}\right) \\
& \Gamma_{1}+\left[x_{1}: \tau_{1}\right] \vdash e_{2}: t
\end{aligned}
$$

for some $\Delta_{1}, \mu_{1}, \sigma_{1}, \delta_{1}, m_{1}, s_{1}, \tau_{1}, t$ and Γ_{1}. By the rules of the type system, $\Gamma_{1} \sqsubseteq \Gamma$. By applying the induction hypothesis we get $\Delta_{1} \succeq \overline{s_{i} n}, k_{0}, R e g^{\prime} \delta_{1}, \mu_{1} \succeq m_{1}$ and $\sigma_{1} \succeq s_{1}$, for every Reg' consistent with build ${ }^{*}\left(h_{1}, E_{1}, \Gamma_{1}\right)$. In particular, by Theorem 1 the current Reg satisfies this condition.

1. $\Delta \succeq \delta$. Let $i \in\left\{0 \ldots k_{0}\right\}$ a region number. If $i=j$, where j is the region where the new cell is created, then Reg $\rho=j$, since $\Gamma r=\rho, E r=j$ and Reg is consistent with $[\Gamma r \mapsto E r] \in$ build $^{*}(h, E, \Gamma)$. Hence:

$$
\begin{aligned}
\sum_{\text {Reg } \rho^{\prime}=j} \Delta \rho^{\prime}{\overline{s_{i}}}^{n} & =\sum_{\substack{\text { Reg } \rho^{\prime}=j \\
\rho^{\prime} \neq \rho}}\left(\Delta \rho^{\prime}{\overline{s_{i}}}^{n}\right)+\Delta \rho{\overline{s_{i}}}^{n} \\
& =\sum_{\substack{\text { Reg } \rho^{\prime}=j \\
\rho^{\prime} \neq \rho}}\left(\Delta_{1} \rho^{\prime}{\overline{S_{i}}}^{n}\right)+\Delta_{1} \rho{\overline{s_{i}}}^{n}+1 \\
& =\sum_{\substack{\text { Reg } \rho^{\prime}=j}}\left(\Delta_{1} \rho^{\prime}{\overline{s_{i}}}^{n}\right)+1 \\
& \geq\left(\delta_{1} j\right)+1 \\
& =\delta j
\end{aligned}
$$

On the other hand, if $i \neq j$ then for every ρ^{\prime} such that Reg $\rho^{\prime}=i$ it holds that Reg $\rho^{\prime} \neq j$, which implies $\rho^{\prime} \neq \rho$. Therefore:

$$
\sum_{\text {Reg } \rho^{\prime}=i} \Delta \rho^{\prime}{\overline{s_{i}}}^{n}=\sum_{\text {Reg } \rho^{\prime}=i} \Delta_{1} \rho^{\prime}{\overline{s_{i}}}^{n} \geq \delta_{1} i=\delta i
$$

2. $\mu \succeq m$. It follows trivially from the induction hypothesis:

$$
\mu{\overline{s_{i}}}^{n}=\mu_{1}{\overline{s_{i}}}^{n}+1 \geq m_{1}+1=m
$$

3. $\sigma \succeq s$. Similarly:

$$
\sigma{\overline{s_{i}}}^{n}=\sigma_{1}{\overline{s_{i}}}^{n}+1 \geq s_{1}+1=s
$$

- Case $e \equiv g{\overline{a_{i}}}^{l} @{\overline{r_{j}^{\prime}}}^{q}$

We shall assume that $\Sigma g \equiv g \bar{y}_{i}^{l} @{\overline{r_{j}^{\prime \prime}}}^{q}=e_{g}$ and, by using the corresponding rule:

$$
\left.\begin{array}{l}
E_{g} \vdash h, k_{0}+1, l+q, e_{g} \Downarrow h^{\prime}, k_{0}+1, v,\left(\delta_{g}, m_{g}, s_{g}\right) \\
\quad \text { where } E_{g}=\left[\overline{y_{i} \mapsto E a_{i}} l, \bar{r}_{j}^{\prime \prime} \mapsto r_{j}^{\prime}\right.
\end{array}, \text { self } \mapsto k_{0}+1\right]
$$

Moreover, we assume that the function g has already been inferred and that its signature ($\Delta_{g}, \mu_{g}, \sigma_{g}$) is correct. This implies, on the one hand, that the function g is well-typed and if $\Gamma g=\forall \bar{\alpha} \bar{\rho} . \bar{t}_{i}^{l} \rightarrow$ ${\overline{\rho_{j}}}^{q} \rightarrow t$ then we can build a typing environment $\Gamma_{g}=\Gamma^{\prime}+\left[{\overline{y_{i}: t_{i}}}^{l},{\overline{r_{j}^{\prime \prime}}: \rho_{j}}^{q}\right.$, self : $\left.\rho_{\text {self }}\right]$ such that $\Gamma_{g} \vdash e_{g}: t$. On the other hand, if $s_{i, g}$ denote the size of the i-th actual argument before evaluating the function's body (i.e. $\left.\forall i \in\{1 \ldots l\}: s_{i, g}=\operatorname{size}\left(h, E_{g} y_{i}\right)\right)$ then:

$$
\Delta_{g} \succeq \overline{\bar{s}_{i, g}} l, k_{0},\left.R e g^{\prime} \quad \delta_{g}\right|_{k_{0}} \quad \mu_{g} \succeq \overline{\overline{s_{i, g}}} l m_{g} \quad \sigma_{g} \succeq \overline{s_{i, g}} l
$$

for each $R e g^{\prime}$ consistent with build ${ }^{*}\left(h, E_{g}, \Gamma_{g}\right)$. Now we prove:

1. $\Delta \succeq_{\overline{s_{i}}}, k_{0}$, Reg δ. Let $i \in\left\{0 \ldots k_{0}\right\}$. By the definition of Δ :

$$
\sum_{\operatorname{Reg} \rho=i} \Delta \rho{\overline{s_{i}}}^{n}=\sum_{R e g ~}=i=1 \sum_{\theta} \Delta_{g} \rho^{\prime}={\overline{a_{i} \mid}{\overline{s_{i}}}^{l}}^{l}
$$

where $\theta=$ unify $\Gamma g{\overline{a_{i}}}^{l}{\overline{r_{j}^{\prime}}}^{q}$. By Definition 6 we get for each $i \in\{1 \ldots l\}$

$$
\begin{equation*}
\left|a_{i}\right| \overline{s i}^{n} \geq \operatorname{size}\left(h, E a_{i}\right)=\operatorname{size}\left(h, E_{g} y_{i}\right)=s_{i, g} \tag{4}
\end{equation*}
$$

and hence, because of the monotonicity of $\Delta_{g} \rho$ for every ρ :

$$
\sum_{R e g ~}^{\rho=i} \Delta \Delta{\overline{s_{i}}}^{n} \geq \sum_{\operatorname{Reg} \rho=i} \sum_{\theta} \Delta_{\rho^{\prime}=\rho} \rho^{\prime}{\overline{s_{i, g}}}_{l}^{l}=\sum_{(\text {Reg } \circ \theta)} \Delta_{g} \rho^{\prime}=i \overline{s_{i, g}} l
$$

By definition of $\left.\Delta_{g} \succeq_{h, k_{0},(\text { Reg } \circ \theta)} \delta_{g}\right|_{k_{0}}$ and because of the fact that $i \neq k_{0}+1$, we can get the desired result:

$$
\sum_{\text {Reg } \rho=i} \Delta \rho{\overline{s_{i}}}^{n} \geq\left.\delta_{g}\right|_{k_{0}} i=\delta i
$$

provided the involved region instantiation $(\operatorname{Reg} \circ \theta)$ is consistent with build ${ }^{*}\left(h, E_{g}, \Gamma_{g}\right)$. We shall prove this as follows: let us assume that $[\rho \mapsto k] \in \operatorname{Reg} \circ \theta$ (which, in turn, implies that $[\theta \rho \mapsto k] \in \operatorname{Reg})$ and that $\left[\rho \mapsto k^{\prime}\right] \in \operatorname{build}^{*}\left(h, E_{g}, \Gamma_{g}\right)$ for some k and k^{\prime}. We show that $k=k^{\prime}:$

- If $\left[\rho \mapsto k^{\prime}\right] \in \operatorname{build}\left(h, E_{g} y_{i}, \Gamma_{g} y_{i}\right)$ for some $i \in\{1 \ldots l\}$ then, by Lemma 1 we would get:

$$
\left[\theta \rho \mapsto k^{\prime}\right] \in \operatorname{build}\left(h, E_{g} y_{i}, \theta\left(\Gamma_{g} y_{i}\right)\right)=\operatorname{build}\left(h, E a_{i}, \Gamma a_{i}\right)
$$

with the last step justified by the definition of unify. However, in order to apply this Lemma we have to show that the involved region instantiations are well-defined. However, this follows trivially from Theorem 1, as build $\left(h, E_{g} y_{i}, \theta\left(\Gamma_{g} y_{i}\right)\right)=\operatorname{build}\left(h, E a_{i}, \Gamma a_{i}\right) \subseteq$ build $^{*}(h, E, \Gamma)$.
Therefore $\left[\theta \rho \mapsto k^{\prime}\right] \in$ build $^{*}(h, E, \Gamma)$. Since Reg is consistent with build ${ }^{*}(h, E, \Gamma)$ and $[\theta \rho \mapsto k] \in$ Reg, it follows that $k=k^{\prime}$.

- If $\left[\rho \mapsto k^{\prime}\right]=\left[\Gamma_{g} r_{j}^{\prime \prime} \mapsto E_{g} r_{j}^{\prime \prime}\right]$ for some $j \in\{1 \ldots q\}$ then we get $\left[\theta \rho \mapsto k^{\prime}\right]=\left[\theta\left(\Gamma_{g} r_{j}^{\prime \prime}\right) \mapsto\right.$ $\left.E_{g} r_{j}^{\prime \prime}\right]=\left[\Gamma a_{i} \mapsto E r r_{j}^{\prime}\right]$ and, by using the same reasoning as the previous case, $k=k^{\prime}$.

2. $\mu \succeq m$. We get:

$$
\begin{aligned}
\mu{\overline{s_{i}}}^{n} & =\mu_{g}{\overline{\left|a_{i}\right|}{\overline{s_{i}}}^{l}}^{l} & & \\
& \geq \mu_{g}{\overline{s_{i, g}} l} & & \text { \{because of (4) and monotonicity of } \left.\mu_{g}\right\} \\
& \geq m_{g} & & \left\{\text { since } \mu_{g} \succeq \overline{s_{i, g}} l\right. \\
& =m & &
\end{aligned}
$$

3. $\sigma \succeq s$. Similarly, for σ_{g} being monotonic:

$$
\begin{aligned}
\sigma{\overline{s_{i}}}^{n} & =\sqcup\left\{l+q, \sigma_{g} \overline{\left(\left|a_{i}\right|{\overline{s_{j}}}^{n}\right.}{ }^{l}-t d+l+q\right\} \\
& \geq \sqcup\left\{l+q, \sigma_{g} \overline{s_{j, g}} l-t d+l+q\right\} \\
& \geq \sqcup\left\{l+q, \sigma_{g} s_{1}-t d+l+q\right\} \\
& =s
\end{aligned}
$$

- Case $e \equiv$ let $x_{1}=e_{1}$ in e_{2}

Let us assume that, by the corresponding rules, we get $E \vdash h, k_{0}, 0, e_{1} \Downarrow h_{2}, k_{0}, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right)$ and $\llbracket e_{1} \rrbracket \Sigma \Gamma_{1} 0=\left(\Delta_{1}, \mu_{1}, \sigma_{1}\right)$ for some $\delta_{1}, m_{1}, s_{1}, \Gamma_{1}, \Delta_{1}, \mu_{1}$ and σ_{1}. In this case the induction hypothesis can be applied on e_{1}, so as to get:

$$
\Delta_{1} \succeq_{\bar{s}_{i} n, k_{0}, \text { Reg }^{\prime}} \delta_{1} \quad \mu_{1} \succeq_{\overline{s_{i}}} m_{1} \quad \sigma_{1} \succeq_{\overline{s_{i}}} s_{1}
$$

for every Reg' consistent with build ${ }^{*}\left(h, E, \Gamma_{1}\right)$, being Γ_{1} the type environment under which e_{1} is typed in the derivation $\Gamma \vdash e: t$. The current Reg meets trivially these constraints, so we can assume:

$$
\begin{equation*}
\Delta_{1} \succeq_{\overline{s_{i}} n, k_{0}, \text { Reg }} \delta_{1} \quad \mu_{1} \succeq_{\overline{s_{i}}}{ }^{n} m_{1} \quad \sigma_{1} \succeq_{\overline{s i}_{n}^{n}} s_{1} \tag{5}
\end{equation*}
$$

Similarly, we apply the induction hypothesis on e_{2}, in order to prove:

$$
\Delta_{2} \succeq{\overline{s_{i}}}^{n}, k_{0}, \text { Reg }^{\prime} \delta_{2} \quad \mu_{2} \succeq{\overline{s_{i}}}^{n} m_{2} \quad \sigma_{2} \succeq{\overline{s_{i}}}^{n} s_{2}
$$

for every Reg' consistent with build $\left(h, E_{2}, \Gamma_{2}\right)$, with Γ_{2} being the typing environment typing e_{2} in the derivation of $\Gamma \vdash e: t$. Again, by Theorem 1 we get:

$$
\begin{equation*}
\Delta_{2} \succeq \overline{s_{i}}, k_{0}, \text { Reg } \delta_{2} \quad \mu_{2} \succeq{\overline{s_{i}}}^{n} m_{2} \quad \sigma_{2} \succeq{\overline{s_{i}}}^{n} s_{2} \tag{6}
\end{equation*}
$$

Now the results in (5) and (6) are combined in order to get the desired result:

1. $\Delta \succeq \delta$. For each $i \in\left\{0 \ldots k_{0}\right\}$:

$$
\begin{aligned}
\sum_{\text {Reg } \rho=i}\left(\Delta_{1}+\Delta_{2}\right) \rho \overline{s_{i}} & =\sum_{\text {Reg } \rho=i}\left(\Delta_{1} \rho{\overline{s_{i}}}^{n}+\Delta_{2} \rho{\overline{s_{i}}}^{n}\right) \\
& =\sum_{\text {Reg } \rho=i}\left(\Delta_{1} \rho \overline{\bar{i}}^{n}\right)+\sum_{\text {Reg } \rho=i}\left(\Delta_{2} \rho{\overline{s_{i}}}^{n}\right) \\
& \geq\left(\delta_{1} i\right)+\left(\delta_{2} i\right) \\
& =\delta i
\end{aligned}
$$

2. $\mu \succeq m$. For every $\rho \in \operatorname{dom} \Delta_{1}$ there exists an $i \in\left\{0 \ldots k_{0}\right\}$ such that Reg $\rho=i$. This allows us to establish:

$$
\left|\Delta_{1}\right|{\overline{s_{i}}}^{n}=\sum_{\rho \in \operatorname{dom} \Delta_{1}} \Delta_{1} \rho{\overline{s_{i}}}^{n}=\sum_{i=0}^{k_{0}} \sum_{\text {Reg } \rho=i} \Delta_{1} \rho{\overline{s_{i}}}^{n} \geq \sum_{i=0}^{k_{0}} \delta_{1} i=\left|\delta_{1}\right|
$$

Therefore:

$$
\begin{aligned}
\mu{\overline{s_{i}}}^{n} & =\sqcup\left\{\mu_{1}{\overline{s_{i}}}^{n},\left|\Delta_{1}\right|{\overline{s_{i}}}^{n}+\mu_{2}{\overline{s_{i}}}^{n}\right\} \\
& \geq \sqcup\left\{m_{1},\left|\delta_{1}\right|+m_{2}\right\} \\
& =m
\end{aligned}
$$

3. $\sigma \succeq s$. It follows trivially from the induction hypothesis:

$$
\sigma{\overline{s_{i}}}^{n}=\sqcup\left\{2+\sigma_{1}{\overline{s_{i}}}^{n}, 1+\sigma_{2}{\overline{s_{i}}}^{n}\right\} \geq \sqcup\left\{2+s_{1}, 1+s_{2}\right\}=s
$$

- Case $e \equiv$ case x of ${\overline{C_{i}}{\overline{x_{i j}}}^{n i} \rightarrow e_{i}^{l}}_{l}$

We shall assume that the r-th branch is executed, that is, $h(E x)=\left(j, C_{r} \bar{v}_{i}^{n_{r}}\right)$ for some j, v_{1}, $\ldots, v_{n_{r}}$ and $r \in\{1 \ldots l\}$. Therefore the following judgements hold:

$$
\begin{aligned}
& \llbracket e_{r} \rrbracket \Sigma \Gamma_{r}\left(t d+n_{r}\right)=\left(\Delta_{r}, \mu_{r}, \sigma_{r}\right) \\
& E_{r} \vdash h, k_{0}, t d+n_{r}, e_{r} \Downarrow h^{\prime}, k_{0}, v,\left(\delta_{r}, m_{r}, s_{r}\right)
\end{aligned}
$$

for some $\Delta_{r}, \mu_{r}, \sigma_{r}, \delta_{r}, m_{r}, s_{r}$ and where E_{r} denote the extended environment:

$$
E_{r}=E \cup\left[{\overline{x_{r j}} \mapsto v_{j}}^{n}\right]
$$

From the induction hypothesis and Theorem 1 it follows that $\Delta_{r} \succeq_{h, k_{0}, \text { Reg }} \delta_{r}, \mu_{r} \succeq m_{r}$ and $\sigma_{r} \succeq s_{r}$, which allows us to prove:

1. $\Delta \succeq \delta$. Let $i \in\left\{0 \ldots k_{0}\right\}$

$$
\begin{aligned}
\sum_{\text {Reg } \rho=i}\left(\Delta \rho{\overline{s_{i}}}^{n}\right) & =\sum_{\text {Reg } \rho=i}\left(\left(\sqcup_{i=1}^{l} \Delta_{i}\right) \rho{\overline{s_{i}}}^{n}\right) \\
& =\sum_{\text {Reg } \rho=i} \max \left\{\Delta_{i} \rho{\overline{s_{i}}}^{n} \mid 1 \leq i \leq l\right\} \\
& \geq \sum_{\text {Reg } \rho=i} \Delta_{r} \rho{\overline{s_{i}}}^{n} \\
& \geq \delta_{r} i \\
& =\delta i
\end{aligned}
$$

2. $\mu \succeq m$, since:

$$
\begin{aligned}
\mu{\overline{s_{i}}}^{n} & =\sqcup_{i=1}^{l} \mu_{i}{\overline{s_{i}}}^{n} \\
& =\max \left\{\mu_{i} \overline{s_{i}} \mid 1 \leq i \leq l\right\} \\
& \geq \mu_{r}{\overline{s_{i}}}^{n} \\
& \geq m_{r} \\
& =m
\end{aligned}
$$

3. $\sigma \succeq s$, since:

$$
\begin{aligned}
\sigma{\overline{s_{i}}}^{n} & =\sqcup_{i=1}^{l}\left(\sigma_{i}+n_{i}\right){\overline{s_{i}}}^{n} \\
& =\max \left\{\sigma_{i}{\overline{s_{i}}}^{n}+n_{i} \mid 1 \leq i \leq l\right\} \\
& \geq \sigma_{r}{\overline{s_{i}}}^{n}+n_{r} \\
& \geq s_{r}+n_{r} \\
& =s
\end{aligned}
$$

- Case $e \equiv$ case! x of ${\overline{C_{i}}{\overline{x_{i j}}}^{n i} \rightarrow e_{i}^{l}}_{l}$

Again, we assume that the r-th branch is executed. By denoting by E_{r} the extended environment, the following judgements follow from their respective rules:

$$
\begin{aligned}
& \llbracket e_{r} \rrbracket \Sigma \Gamma_{r}\left(t d+n_{r}\right)=\left(\Delta_{r}, \mu_{r}, \sigma_{r}\right) \\
& E_{r} \vdash h_{r}, k_{0}, t d+n_{r}, e_{r} \Downarrow h^{\prime}, k_{0}, v,\left(\delta_{r}, m_{r}, s_{r}\right)
\end{aligned}
$$

where $h_{r}=\left.h\right|_{\text {dom }} ^{h-\{p\}}$. Again, the induction hypothesis and Theorem 1 may be applied in order to get $\Delta_{r} \succeq_{h_{r}, k_{0}, \text { Reg }} \delta_{r}, \mu_{r} \succeq m_{r}$ and $\sigma_{r} \succeq s_{r}$.

1. $\Delta \succeq \delta$. From the inference rules we have $\Gamma x=T @ \rho$ and $h(E x)=\left(j, C_{r}{\overline{v_{i}}}^{n_{r}}\right)$. Hence the binding $[\rho \mapsto j]$ belongs to build $(h, E x, \Gamma x)$. Since $\rho \in \operatorname{dom} \Delta$, we get $\rho \in \operatorname{dom} \operatorname{Reg}$ and hence $[\rho \mapsto j] \in$ Reg.

$$
\begin{aligned}
\sum_{\text {Reg } \rho^{\prime}=j}\left(\Delta \rho^{\prime}{\overline{s_{i}}}^{n}\right) & =\sum_{\substack{\text { Reg } \rho^{\prime}=j \\
\rho^{\prime} \neq \rho}}\left(\Delta \rho^{\prime}{\overline{s_{i}}}^{n}\right)+\Delta \rho{\overline{s_{i}}}^{n} \\
& =\sum_{\substack{\text { Reg } \\
\rho^{\prime} \neq \rho}}^{\rho^{\prime}=j} \\
& =\sum_{\left.\operatorname{Reg}\left\{\Delta_{i} \rho^{\prime}{\overline{s_{i}}}^{n} \mid 1 \leq i \leq l\right\}\right)}\left(\max \left\{\Delta_{i} \rho{\overline{s_{i}}}^{n} \mid 1 \leq i \leq l\right\}-1\right. \\
& \geq \sum_{\text {Reg } \rho^{\prime}=j}\left(\Delta_{r} \rho^{\prime}{\overline{s_{i}}}^{n}\right)-1 \\
& \geq \delta_{r} j-1 \\
& =\delta j
\end{aligned}
$$

With respect to the remaining regions $i \in\left\{0 \ldots k_{0}\right\}-\{j\}$, we can proceed similarly as in the nondestructive case.
2. $\mu \succeq m$.

$$
\begin{aligned}
\mu{\overline{s_{i}}}^{n} & =\max \left\{0, \sqcup_{i=1}^{l} \mu_{i}{\overline{s_{i}}}^{n}\right\} \\
& =\max \left\{0, \max \left\{\mu_{i}{\overline{s_{i}}}^{n}-1 \mid 1 \leq i \leq l\right\}\right\} \\
& \geq \max \left\{0, \mu_{r}{\overline{s_{i}}}^{n}-1\right\} \\
& \geq \max \left\{0, m_{r}-1\right\} \\
& =m
\end{aligned}
$$

3. $\sigma \succeq s$. The proof given for the nondestructive case may be applied here.

In order to prove the correctness of the algorithms shown in the following section for recursive functions we need the abstract interpretation to be monotonic with respect to function signatures.

Lemma 3. Let f be a context function. Given $\Sigma_{1}, \Sigma_{2}, \Gamma$, and td such that $\Sigma_{1} \sqsubseteq \Sigma_{2}$, then $\llbracket e \rrbracket \Sigma_{1} \Gamma t d \sqsubseteq$ $\llbracket e \rrbracket \Sigma_{2} \Gamma t d$.

Proof. By structural induction on e, because + and \sqcup are monotonic.

6 Space Inference Algorithms

Given a recursive function f with $n+m$ arguments, the algorithms for inferring Δ_{f} and σ_{f} do not depend on each other, while the algorithm for inferring μ_{f} needs a correct value for Δ_{f}. We will assume that μ_{f}, σ_{f}, and the cost functions in Δ_{f}, do only depend on arguments of f non-increasing in size. The consequence of this restriction is that the costs charged to regions, or to the stack, by the most external call to f are safe upper bounds to the costs charged by all the lower level internal calls. This restriction holds for the majority of programs occurring in the literature. Of course, it is always possible to design an example where the charges grow as we progress towards the leafs of the call-tree.

We assume that, for every recursive function f, there has been an analysis giving the following information as functions of the argument sizes ${\overline{x_{i}}}^{n}$:

1. $n r_{f}$, an upper bound to the number of calls to f invoking f again. It corresponds to the internal nodes of f 's call tree.
2. $n b_{f}$, an upper bound to the number of basic calls to f. It corresponds to the leaves of f 's call tree.
3. $l e n_{f}$, an upper bound to the maximum length of f 's call chains. It corresponds to the height of f 's call tree.

In general, these functions are not independent of each other. For instance, with linear recursion we have $n r_{f}=l e n_{f}-1$ and $n b_{f}=1$. However, we will not assume a fixed relation between them. If this relation exists, it has been already used to compute them. We will only assume that each function is a correct upper bound to its corresponding runtime figure. As a running example, let us consider the splitAt definition in Fig. 7(a). We would assume $n r_{\text {splitat }}=\lambda n x \cdot \min \{n, x-1\}, n b_{\text {splitat }}=\lambda n x .1$ and $l e n_{\text {splitAt }}=\lambda n x \cdot \min \{n+1, x\}$.

6.1 Counting the number of recursive calls

An important precondition for the correctness of the algorithms described in the following sections is the fact that the $n r_{f}, n b_{f}$ and $l e n_{f}$ are upper bounds of the actual number of recursive and base calls, and the maximum number of nested calls. In order to take these figures into account we add extra annotations to the big-step operational semantics of Figure 1. We will have judgments of the form:

$$
E \vdash h, k, t d, e \Downarrow h^{\prime}, k, v,(\delta, m, s),\left(n_{t}, n_{b}, l\right)_{f}
$$

where n_{t} is the total number of calls to f occurring in the evaluation of e (including the current call, since we assume that f is the context function) from which n_{b} calls correspond to base cases. The number of

$$
\begin{aligned}
& E \vdash h, k, t d, c \Downarrow h, k, c,(1,1,1)_{f}[L i t] \\
& E[x \mapsto v] \vdash h, k, t d, x \Downarrow h, k, v,(1,1,1)_{f}[\operatorname{Var}] \\
& \frac{j \leq k \quad\left(h^{\prime}, p^{\prime}\right)=\operatorname{copy}(h, p, j) \quad m=\operatorname{size}(h, p)}{E[x \mapsto p, r \mapsto j] \vdash h, k, t d, x @ r \Downarrow h^{\prime}, k, p^{\prime},(1,1,1)_{f}}\left[\operatorname{Var}_{2}\right] \\
& \frac{\operatorname{fresh}(q)}{E[x \mapsto p] \vdash h \uplus[p \mapsto w], k, t d, x!\Downarrow h \uplus[q \mapsto w], k, q,(1,1,1)_{f}}\left[\text { Var }_{3}\right] \\
& \begin{array}{c}
g \neq f \quad\left(g{\overline{x_{i}}}^{n} @{\overline{r_{j}}}^{t}=e\right) \in \Sigma \quad\left[{\overline{x_{i} \mapsto E\left(a_{i}\right)}}^{n},{\overline{r_{j} \mapsto E\left(r_{j}^{\prime}\right)}}^{t}, \text { self } \mapsto k+1\right] \vdash h, k+1, n+l, e \Downarrow h^{\prime}, k+1, v,\left(n_{t}, n_{b}, l\right)_{f} \\
E \vdash h, k, t d,\left.g{\overline{a_{i}}}^{n} @{\overline{r_{j}^{\prime}}}^{t} \Downarrow h^{\prime}\right|_{k}, k, v,\left(n_{t}, n_{b}, l\right)_{f} \\
\text { [App }- \text { NonRec }]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& E \vdash h, k, 0, e_{1} \Downarrow h^{\prime}, k, v_{1},\left(n_{t 1}, n_{b 1}, l_{1}\right)_{f} \\
& \frac{E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h^{\prime}, k, t d+1, e_{2} \Downarrow h^{\prime \prime}, k, v,\left(n_{t 2}, n_{b 2}, l_{2}\right)_{f}}{E \vdash h, k, t d, \text { let } x_{1}=e_{1} \text { in } e_{2} \Downarrow h^{\prime \prime}, k, v,\left(n_{t 1}+n_{t 2}-1, n_{b 1} \oplus_{n_{t 1}, n_{t 2}} n_{b 2}, \max \left\{l_{1}, l_{2}\right\}\right)_{f}}\left[\text { Let }_{1}\right] \\
& \frac{j \leq k \quad \operatorname{fresh}(p) \quad E \cup\left[x_{1} \mapsto p\right] \vdash h \uplus\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], k, t d+1, e_{2} \Downarrow h^{\prime}, k, v,\left(n_{t}, n_{b}, l\right)_{f}}{E\left[{\overline{a_{i}} \mapsto v_{i}}^{n}, r \mapsto j\right] \vdash h, k, t d, \text { let } x_{1}=C{\overline{a_{i}}}^{n} @ r \operatorname{in} e_{2} \Downarrow h^{\prime}, k, v,\left(n_{t}, n_{b}, l\right)_{f}}\left[\operatorname{Let}_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{C=C_{r} \quad E \cup\left[{\overline{x_{i}} \mapsto v_{i}}^{n}\right] \vdash h, k, t d+n_{r}, e_{r} \Downarrow h^{\prime}, k, v,\left(n_{t}, n_{b}, l\right)_{f}}{E[x \mapsto p] \vdash h \uplus\left[p \mapsto\left(j, C{\overline{v_{i}}}^{n}\right)\right], k, t d, \text { case! } x \text { of }{\overline{C_{i}}{\overline{x_{i j}}}^{n i} \rightarrow e_{i}}^{n} \Downarrow h^{\prime}, k, v,\left(n_{t}, n_{b}, l\right)_{f}} \text { [Case!] }
\end{aligned}
$$

Figure 4: Big-step operational semantics enriched with number of calls
recursive childs in the call tree can be obtained by substracting n_{b} from n_{t}. The maximum number of nested calls is reflected in l.

The resulting rules are shown in Figure 4. The (δ, m, s) annotations are left out for simplicity. All of them require no explanation, except the one corresponding to let expressions. In this case we sum the number of total calls from each subexpression and subtract 1 (otherwise we would count the actual call twice). With regard to the resulting n_{b}, if both subexpressions contain recursive calls we just add the corresponding n_{b} 's, otherwise we only consider the number of base calls of the subexpression not having recursive calls. This is specified by means of the \oplus operator, defined as follows:

$$
x \oplus_{n_{t 1}, n_{t 2}} y= \begin{cases}x & \text { if } n_{t 2}=1 \\ y & \text { if } n_{t 1}=1 \\ x+y & \text { e.o.c }\end{cases}
$$

By simple inspection of the rules one can prove that $n_{t} \geq n_{b}$ and hence the expression $n_{b 1} \oplus_{n_{t 1}, n_{t 2}} n_{b 2}$ in $\left[\right.$ Let $\left._{1}\right]$ is well-defined. The following Lemma shows an important property of these annotations.

Lemma 4. Let e be an expression such that the following judgment holds for some $E, h, k, t d_{i}, h^{\prime}, v, \delta$, m, s, n_{t}, n_{b} and l :

$$
\begin{equation*}
E \vdash h, k, t d, e \Downarrow h^{\prime}, k, v,(\delta, m, s),\left(n_{t}, n_{b}, l\right)_{f} \tag{7}
\end{equation*}
$$

Let us assume that there are p direct recursive calls to f in the derivation of (7). That is, for each $i \in\{1 \ldots p\}$ there exist some $E_{i}, h_{i}, h_{i}^{\prime}, v_{i}, \delta_{i}, m_{i}, s_{i}, n_{t, i}, n_{b_{i}}$ and l_{i} such that:

$$
E_{i} \vdash h_{i}, k+1, t d_{i}, e_{f} \Downarrow h_{i}^{\prime}, k+1, v_{i},\left(\delta_{i}, m_{i}, s_{i}\right),\left(n_{t, i}, n_{b, i}, l_{i}\right)_{f}
$$

belongs to (7). Therefore it holds that:

$$
n_{t}=1+\sum_{i=1}^{p} n_{t, i} \quad n_{b}=\sum_{i=1}^{p} n_{b, i}
$$

6.2 Splitting Core-Safe expressions

In order to do a more precise analysis, we separately analyse the base and the recursive cases of a Core-Safe function definition. Fig. 5 describes the functions splitExp and splitAlt which, given a Safe

$$
\begin{aligned}
& \operatorname{splitExp}_{f} \llbracket e \rrbracket=(e, \#) \quad \text { if } e=c, x, C{\overline{a_{i}}}^{n} @ r \text {, or } g{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m} \text { with } g \neq f \\
& \text { splitExp }_{f} \llbracket f{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m} \rrbracket=\left(\#, f{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m}\right) \\
& \operatorname{splitExp}_{f} \llbracket \text { let } x_{1}=e_{1} \text { in } e_{2} \rrbracket=\left(e_{b}, e_{r}\right) \\
& \text { where }\left(e_{1 b}, e_{1 r}\right)=\operatorname{splitExp}_{f} \llbracket e_{1} \rrbracket \\
& \left(e_{2 b}, e_{2 r}\right)=\operatorname{splitExp}_{f} \llbracket e_{2} \rrbracket \\
& e_{b}= \begin{cases}\# & \text { if } e_{1 b}=\# \text { or } e_{2 b}=\# \\
\text { let } x_{1}=e_{1 b} \text { in } e_{2 b} & \text { otherwise }\end{cases} \\
& e_{r}= \begin{cases}\# & \text { if } e_{1 r}=\# \text { and } e_{2 r}=\# \\
\text { let } x_{1}=e_{1} \text { in } e_{2 r} & \text { if } e_{1 r}=\# \text { and } e_{2 r} \neq \# \\
\text { let } x_{1}=e_{1 r} \text { in } e_{2} & \text { if } e_{1 r} \neq \# \text { and } e_{2 r}=\# \\
\sqcup\left\{\begin{array}{l}
\text { let } x_{1}=e_{1 b} \text { in } e_{2 r} \\
\text { let } x_{1}=e_{1 r} \text { in } e_{2}
\end{array}\right\} & \text { otherwise }\end{cases} \\
& \operatorname{splitExp}_{f} \llbracket \mathbf{c a s e}(!) x \text { of } \overline{\text { alt }}_{i}^{n} \rrbracket=\left(e_{b}, e_{r}\right) \\
& \text { where }\left({\overline{\text { alt }_{i b}}}^{n},{\overline{a^{\prime} t_{i r}}}^{n}\right)=\text { unzip (map splitAlt }{ }_{f}{\overline{a^{\prime l t}}}^{n} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { splitAlt }_{f} \llbracket C{\overline{x_{j}}}^{n} \rightarrow e \rrbracket=\left(\text { alt }_{b}, \text { alt }_{r}\right) \\
& \text { where }\left(e_{b}, e_{r}\right)=\operatorname{splitExp}_{f} e
\end{aligned}
$$

Figure 5: Function splitting a Core-Safe expression into its base and recursive cases
expression return the part of its body contributing to the base cases and the part contributing to the recursive cases. We introduce an empty expression \# in order not to lose the structure of the original one when some parts are removed. These empty expressions charge null costs to both the heap and the stack. Since it might be not possible to split a expression into a single pair with the base and recursive cases, we introduce expressions of the form $\sqcup e_{i}$, whose abstract interpretation is the least upper bound of the interpretations of the e_{i}. It will also be useful to define another function which splits a Core-Safe expression into those parts that execute before and including the last recursive call, and those executed after the last recursive call, In Fig. 6 we define such function, called $\operatorname{splitB} A_{f}$. In Fig. 7 we show a Full-Safe definition for a function splitAt splitting a list, and the result of applying splitExp and splitBA to its Core-Safe version.

If e_{f} is f 's body, in the following we will assume $\left(e_{r}, e_{b}\right)=\operatorname{splitExp}_{f} \llbracket e_{f} \rrbracket$ and $\left(e_{\text {bef }}, e_{a f t}\right)=\left(\bigsqcup_{i} e_{b e f}^{i}, \bigsqcup_{i} e_{a f t}^{i}\right)$, where $\left[\left(e_{b e f}^{i}, e_{a f t}^{i}\right)^{n}\right]=\operatorname{splitB} A_{f} \llbracket e_{r} \rrbracket$.

Lemma 5. Let $\left(e_{b}, e_{r}\right)=\operatorname{splitExp}_{f} e$. Then, $e_{b} \neq \#$ and $E \vdash h, k, t d, e_{b} \Downarrow h^{\prime}, k, v,(\delta, m, s)$ if and only if $E \vdash h, k, t d, e \Downarrow h^{\prime}, k, v,(\delta, m, s)$ such that there is no call to f in this derivation.

Proof. Both implications can be proved by induction on the depth of the \Downarrow-derivation. We distinguish cases according to the structure of e for (\Leftarrow) and e_{b} for (\Rightarrow).

- Cases c, x, x !, $x @ r$ and $C{\overline{a_{i}}}^{n} @ r$

Both implications hold trivially by hypothesis, by applying the same operational semantics rule since $e=e_{b}$ in all these cases.

- Case $g{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m}$
(\Leftarrow) The absence of calls to f in the whole \Downarrow-derivation forces g to be distinct from f and in this case the implication holds trivially by hypothesis, since $e=e_{b}$.
(\Rightarrow) As $e_{b} \neq \#$, by definition of splitExp again $g \neq f$ and $e_{b}=e$, so the implication holds by hypothesis and because there is not mutual recursion in the language.
- Case let
(\Leftarrow) Let $e=$ let $x_{1}=e_{1}$ in e_{2}. We get:

```
splitBA \(A_{f} \llbracket e \rrbracket=[] \quad\) if \(e=\#, c, x, C{\overline{a_{i}}}^{n} @ r\), or \(g{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m}\) with \(g \neq f\)
splitBA \(A_{f} \llbracket \sqcup_{i=1}^{n} e_{i} \rrbracket=\operatorname{concat}\left[\right.\) splitBA \(\left.e_{i} \mid i \in\{1 \ldots n\}\right]\)
splitBA \(A_{f} \llbracket f{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m} \rrbracket=\left[\left(f{\overline{a_{i}}}^{n} @ \overline{r_{j}}{ }^{m}, \#\right)\right]\)
splitBA \(_{f} \llbracket\) let \(x_{1}=e_{1}\) in \(e_{2} \rrbracket=A+B\)
    where \(\left(e_{1 b}, e_{1 r}\right)=\operatorname{splitExp}_{f} \llbracket e_{1} \rrbracket\)
        \(\left(e_{2 b}, e_{2 r}\right)=\operatorname{splitExp}_{f} \llbracket e_{2} \rrbracket\)
        \(e_{1 r, s p l i t}=s p l i t B A \llbracket e_{1 r} \rrbracket\)
        \(e_{2 r, s p l i t}=s p l i t B A \llbracket e_{2 r} \rrbracket\)
        \(A=\left[\left(\right.\right.\) let \(x_{1}=e_{1}\) in \(e_{2 r, b}\),
            let \(x_{1}=\#\) in \(\left.\left.e_{2 r, a}\right) \mid\left(e_{2 r, b}, e_{2 r, a}\right) \in e_{2 r, s p l i t}\right]\)
        \(B= \begin{cases}{[]} & \text { if } e_{2 b}=\# \\ {\left[\left(\operatorname{let} x_{1}=e_{1 r, b} \text { in \#, }\right.\right.} \\ \frac{\left.\left.\text { let } x_{1}=e_{1 r, a} \text { in } e_{2 b}\right) \mid\left(e_{1 r, b}, e_{1 r, a}\right) \in e_{1 r, s p l i t}\right]}{} & \text { otherwise }\end{cases}\)
splitBA \(A_{f} \llbracket \mathbf{c a s e}(!) x\) of \({\overline{C_{i}}{\overline{x_{i j}}}^{n_{i}} \rightarrow e_{i}}^{n} \rrbracket \stackrel{ }{=}\)
    \(\left[\left(\operatorname{case}(!) x\right.\right.\) of \({\overline{C_{i}}{\overline{x_{i j}}}^{n} \rightarrow e_{i, b}}^{n}, \boldsymbol{\operatorname { c a s e } ( ! ) x}\) of \({\overline{C_{i}}{\overline{x_{i j}}}^{n} \rightarrow e_{i, a}}^{n})\)
    \(\left.\mid\left(e_{1, b}, e_{1, a}\right) \in \operatorname{splitB} A_{f} \llbracket e_{1} \rrbracket, \ldots,\left(e_{n, b}, e_{n, a}\right) \in \operatorname{splitB} A_{f} \llbracket e_{n} \rrbracket\right]\)
```

Figure 6: Function splitting a Core-Safe expression into its parts executing before and after the last recursive call

```
splitAt 0 xs = ([],xs)
splitAt n [] = ([],[])
splitAt n (x:xs) = (x:xs1,xs2)
    where (xs1,xs2) = split (n-1) xs
```

(a) Full-Safe version
splitAt n xs @ r1 r2 r3 =
case n of
_ -> case xs of
(: y1 y2) ->
let $\mathrm{y} 3=$ let $\mathrm{x} 6=-\mathrm{n} 1$ in
splitAt x6 y2 @ r1 r2 r3 in \#
(b) Core-Safe up to the last call
splitAt n xs @ r1 r2 r3 =
splitAt n xs @ r1 r2 r3 =
splitat n
case n of
case n of
case n of
_ $->$ case $x s$ of
$->$ case xs of
$\quad(: \mathrm{y} 1 \mathrm{y} 2)->$
let $\mathrm{y} 3=$ let $\mathrm{x} 6=-\mathrm{n} 1$ in
splitAt x6 y2 @ r1 r2 r3 in
let $\mathrm{xs} 1=$ case y 3 of $(\mathrm{y} 4, \mathrm{y5}) \rightarrow \mathrm{y} 4$ in
let $x s 2=$ case $y 3$ of $(y 6, y 7) \rightarrow y 7$ in
let $x 7=(: y 1$ xs1) @ r 2 in
let $x 8=(x 7, x s 2)$ @ r 3 in x 8
(d) Core-Safe recursive cases

```
splitAt n xs @ r1 r2 r3 =
```

 case \(n\) of
 \(0 \rightarrow\) let \(x 1=[]\) @ 2 in
 let \(x 2=(x 1, x s) @ r 3\) in \(x 2\)
 _ -> case xs of
 []\(\rightarrow\) let \(x 4=\) [] @ r2 in
 let \(\mathrm{x} 3=[]\) @ r1 in
 _ -> case xs of
 (: y1 y2) \(->\)
 let \(y 3=\) \# in
 let \(x 5=(x 4, x 3) @ r 3\) in \(x 5\)
 (c) Core-Safe base cases
 let \(\mathrm{xs} 1=\) case y 3 of \((\mathrm{y} 4, \mathrm{y} 5)->\mathrm{y} 4\) in
 let \(x s 1=\) case \(y 3\) of \((y 4, y 5)->y 4\) in
 let $x s 2=$ case $y 3$ of $(y 6, y 7)->y 7$ in
let $x 7=(: y 1$ xs1) @ r2 in
let $x 8=(x 7, x s 2)$ @ $r 3$ in $x 8$

Figure 7: Splitting a Core-Safe definition

$$
\begin{align*}
& E \vdash h, k, 0, e_{1} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right) \tag{A}\\
& E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h_{1}, k, t d+1, e_{2} \Downarrow h, k, v,\left(\delta_{2}, m_{2}, s_{2}\right)
\end{align*}
$$

with $\delta=\delta_{1}+\delta_{2}, m=\max \left\{m_{1},\left|\delta_{1}\right|+m_{2}\right\}$ and $s=\max \left\{2+s_{1}, 1+s_{2}\right\}$. We know that in the derivations of both (A) and (B) there are no calls to f. Let $\left(e_{1 b}, e_{1 r}\right)=\operatorname{splitExp} e_{1}$ and $\left(e_{2 b}, e_{2 r}\right)=$ splitExp e_{2}. By induction hypothesis $e_{1 b} \neq \#, e_{2 b} \neq \#$, and

$$
E \vdash h, k, 0, e_{1 b} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right)
$$

$$
E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h_{1}, k, t d+1, e_{2 b} \Downarrow h, k, v,\left(\delta_{2}, m_{2}, s_{2}\right)
$$

Since both $e_{1 b}$ and $e_{2 b}$ are nonempty we get $e_{b}=$ let $x_{1}=e_{1 b}$ in $e_{2 b} \neq \#$, and from the judgements $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ we can derive $E \vdash h, k, t d, e_{b} \Downarrow h^{\prime}, k, v,(\delta, m, s)$.
(\Rightarrow) Let $e_{b}=$ let $x_{1}=e_{1 b}$ in $e_{2 b}$. By definition of splitExp, $e=$ let $x_{1}=e_{1}$ in e_{2} where $\left(e_{1 b},,_{-}\right)=$splitExp e_{1} and $\left(e_{2 b},,_{-}\right)=\operatorname{splitExp} e_{2}$, and $e_{1 b}, e_{2 b} \neq \#$. Similarly to the proof of (\Leftarrow), this implication holds by applying induction hypothesis.

- Case case(!)
(\Leftarrow) Let $e=\mathbf{c a s e}(!) x$ of $\overline{a l t}_{i}{ }^{n}$, where alt ${ }_{i}=C_{i}{\overline{x_{i j}}}^{n}{ }^{n} \rightarrow e_{i}$. Assume $E(x)=p$ and $h(p)=$ $\left(j, C_{r}{\overline{v_{j}}}^{n_{r}}\right)$ for some $r \in\{1 \ldots n\}$. By the rules [Case] and [Case!] we get:
where the relationships between h, δ, m, s and $h_{r}, \delta_{r}, m_{r}, s_{r}$ are given by the corresponding rule ([Case] or [Case!]). Let $\left(e_{r b}, e_{r r}\right)=\operatorname{splitExp} e_{r}$. Since in the derivation above for e_{r} there is no call to f, we can apply the induction hypothesis in order to ensure that $e_{r b} \neq \#$ and that:

$$
E \cup\left[{\overline{x_{r j}} \mapsto v_{j}}^{n_{r}}\right] \vdash h_{r}, k, t d+n_{r}, e_{r b} \Downarrow h^{\prime}, k, v,\left(\delta_{r}, m_{r}, s_{r}\right)
$$

Moreover, and since $e_{r b} \neq \#$ we get $e_{b}=\mathbf{c a s e}(!) x$ of $\overline{a l t}_{i b}^{n} \neq \#$ and we can derive $E \vdash$ $h, k, t d, e_{b} \Downarrow h^{\prime}, k, v,(\delta, m, s)$ by applying the same rule ([Case] or [Case!]).
(\Rightarrow) Let $e_{b}=\mathbf{c a s e}(!) x$ of $\overline{a l t} i b^{n}$, where alt ${ }_{i b}=C_{i}{\overline{x_{i j}}}^{n_{i}} \rightarrow e_{i b}$. By definition of splitExp, $e=\mathbf{c a s e}(!) x$ of $\overline{a l t}_{i}^{n}$ such that $\left(\right.$ alt $\left._{i b},{ }_{-}\right)=$splitAlt alt ${ }_{i}$ for each $i \in\{1 . . n\}$ and there exists at least one $s \in\{1 . . n\}$ such that alt $s b \neq \#$.
By rule [Case] or [Case!], there exists $r \in\{1 . . n\}$ such that:

$$
E \cup\left[{\overline{x_{r j}} \mapsto v_{j}^{n}}^{n_{r}}\right] \vdash h_{r}, k, t d+n_{r}, e_{r b} \Downarrow h^{\prime}, k, v,\left(\delta_{r}, m_{r}, s_{r}\right)
$$

There is no operational rule for an empty expression, which implies that $e_{r b}$ must be nonempty. By applying induction hypothesis on alternative r we get the desired implication, in a similar way to (\Leftarrow).

As we have introduced a new Core-Safe expression $\sqcup_{i} e_{i}$, we must give its big-step operational semantics. The following non-deterministic rule does this:

$$
\frac{\exists j . E \vdash h, k, t d, e_{j} \Downarrow h^{\prime}, k, v,(\delta, m, s)}{E \vdash h, k, t d, \sqcup_{i} e_{i} \Downarrow h^{\prime}, k, v,(\delta, m, s)}[L u b]
$$

Lemma 6. Let $\left(e_{b}, e_{r}\right)=\operatorname{splitExp}_{f} e$. Then, $e_{r} \neq \#$ and $E \vdash h, k, t d, e_{r} \Downarrow h^{\prime}, k, v,(\delta, m, s)$ if and only if $E \vdash h, k, t d, e \Downarrow h^{\prime}, k, v,(\delta, m, s)$ such that there is at least one direct call to f in this derivation.

Proof. Both implications can be proved by induction on the depth of the \Downarrow-derivation. We distinguish cases according to the structure of e for (\Leftarrow) and e_{r} for (\Rightarrow). For the proof of (\Rightarrow), we use the fact that the structure of e_{r} is the same as the structure of e with the exception of the \sqcup case. But in this case we know that it always correspond to a let expression.

Cases $c, x, x!, x @ r, C{\overline{a_{i}}}^{n} @ r$ and $g{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m}$ with $g \neq f$
These cases are trivial in both directions as the corresponding hypotheses are false.
Case $f{\overline{a_{i}}}^{n} @{\overline{r_{j}}}^{m}$
Both implications hold trivially by hypothesis, since $e=e_{r}$.

Case let

(\Leftarrow) Let $e=$ let $x_{1}=e_{1}$ in e_{2}. By the operational semantics, we get:

$$
\begin{array}{ll}
(A) & E \vdash h, k, 0, e_{1} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right) \tag{A}\\
(B) & E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h_{1}, k, t d+1, e_{2} \Downarrow h, k, v,\left(\delta_{2}, m_{2}, s_{2}\right)
\end{array}
$$

with $\delta=\delta_{1}+\delta_{2}, m=\max \left\{m_{1},\left|\delta_{1}\right|+m_{2}\right\}$ and $s=\max \left\{2+s_{1}, 1+s_{2}\right\}$. Let $\left(e_{1 b}, e_{1 r}\right)=$ splitExp e_{1} and $\left(e_{2 b}, e_{2 r}\right)=$ splitExp e_{2}. We know that in the derivations of either (A), or (B), or both, there are direct calls to f. Let us distinguish these three cases:

1. There are calls in (A). By the induction hypothesis we get $e_{1 r} \neq \#$ and:

$$
E \vdash h, k, 0, e_{1 r} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right)
$$

As $e_{1 r}$ is non-empty, splitExp e gives either $e_{r}=$ let $x_{1}=e_{1 r}$ in e_{2} or:

$$
e_{r}=\bigsqcup\left\{\text { let } x_{1}=e_{1 b} \text { in } e_{2 r}, \text { let } x_{1}=e_{1 r} \text { in } e_{2}\right\}
$$

In both cases we get $e_{r} \neq \#$ and $E \vdash h, k, t d, e_{r} \Downarrow h^{\prime}, k, v,(\delta, m, s)$.
2. There are calls in (B) but not in (A). By the induction hypothesis $e_{2 r} \neq \#$. The reasoning is symmetrical to the previous case.
(\Rightarrow) Let $e_{r}=$ let $x_{1}=e_{1 r}$ in $e_{2 r}$. As $e_{r} \neq \#$, we have to distinguish two cases.
$e_{1 r}=\#, e_{2 r} \neq \#$ In this case $e_{1 r}=e_{1}$ and $\left(-, e_{2 r}\right)=\operatorname{splitExp} e_{2}$. By hypothesis on e_{1} and induction hypothesis on $e_{2 r}$ we prove this implication in a similar way to (\Leftarrow).
$e_{1 r} \neq \#, e_{2 r}=\#$ In this case $e_{2 r}=e_{2}$ and $\left(-, e_{1 r}\right)=$ splitExp e_{1}. . The reasoning is symmetrical to the previous case.

Case case(!)

(\Leftarrow) Let $e=\mathbf{c a s e}(!) x$ of $\overline{a l t}_{i}^{n}$, where $a l t_{i}=C_{i}{\overline{x_{i j}}}^{n} \rightarrow e_{i}$.
We assume $E(x)=p$ and $h(p)=\left(j, C_{l}{\overline{v_{j}}}^{n_{r}}\right)$ for some $l \in\{1 \ldots n\}$. By the rules [Case] and [Case!] we get:

$$
E \cup\left[{\overline{x_{l j}} \mapsto v_{j}}^{n}\right] \vdash h_{l}, k, t d+n_{l}, e_{l} \Downarrow h^{\prime}, k, v,\left(\delta_{l}, m_{l}, s_{l}\right)
$$

where the relationships between h, δ, m, s and $h_{l}, \delta_{l}, m_{l}, s_{l}$ are given by the corresponding rule ([Case] or [Case!]). Let $\left(e_{l b}, e_{l r}\right)=\operatorname{splitExp} e_{l}$. Since in the derivation above for e_{l} there are calls to f, we can apply the induction hypothesis on e_{l} and get $e_{l r} \neq \#$ and:

$$
E \cup\left[{\overline{x_{l j}} \mapsto v_{j}}^{n_{l}}\right] \vdash h_{l}, k, t d+n_{l}, e_{l r} \Downarrow h^{\prime}, k, v,\left(\delta_{l}, m_{l}, s_{l}\right)
$$

Moreover, and since $e_{l r} \neq \#$, by the definition of splitExp, we get $e_{r}=\mathbf{c a s e}(!) x$ of ${\overline{a l t}{ }_{i r}}^{n}$ and we can derive $E \vdash h, k, t d, e_{r} \Downarrow h^{\prime}, k, v,(\delta, m, s)$ by applying the same rule ([Case] or [Case!]).
(\Rightarrow) Let $e_{r}=\mathbf{c a s e}(!) x$ of $\overline{\text { alt }}_{\text {ir }}$ n , where alt ${ }_{i r}=C_{i}{\overline{x_{i j}}}^{n} \rightarrow e_{i r}$. By definition of splitExp, there exists $e=\mathbf{c a s e}(!) x$ of $\overline{a l t}_{i}^{n}$ such that $\left(-\right.$, alt $\left._{i r}\right)=$ splitAlt alt $_{i}$ for each $i \in\{1 . . n\}$ and there exists at least one $s \in\{1 . . n\}$ such that alt $_{\text {sr }} \neq \#$.
By rule [Case] or [Case!], there exists $l \in\{1 . . n\}$ such that:

$$
E \cup\left[\bar{x} l j \mapsto v_{j}^{n}{ }^{n_{l}}\right] \vdash h_{l}, k, t d+n_{l}, e_{l r} \Downarrow h^{\prime}, k, v,\left(\delta_{l}, m_{l}, s_{l}\right)
$$

There is no operational rule for an empty expression, which implies that $e_{l r}$ must be nonempty. By applying induction hypothesis on alternative r we get the desired implication, in a similar way to (\Leftarrow).
Case $e_{r}=\bigsqcup\left\{\begin{array}{l}\text { let } x_{1}=e_{1 b} \text { in } e_{2 r} \\ \text { let } x_{1}=e_{1 r} \text { in } e_{2}\end{array}\right\}$
This case has no sense for (\Leftarrow). In this case $e=$ let $x_{1}=e_{1}$ in e_{2} where $\left(e_{1 b}, e_{1 r}\right)=$ $\operatorname{splitExp}_{f} \llbracket e_{1} \rrbracket,\left(e_{2 b}, e_{2 r}\right)=\operatorname{splitExp}_{f} \llbracket e_{2} \rrbracket$ and both $e_{1 r}$ and $e_{2 r}$ are non-empty. By rule [Lub]
(1) $E \vdash h, k$, $t d$, let $x_{1}=e_{1 b}$ in $e_{2 r} \Downarrow h^{\prime}, k, v,(\delta, m, s)$
or
(2) $E \vdash h, k, t d$, let $x_{1}=e_{1 r}$ in $e_{2} \Downarrow h^{\prime}, k, v,(\delta, m, s)$

Consider first the case when (1) holds. Then

$$
\begin{align*}
& E \vdash h, k, 0, e_{1 b} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right) \tag{A1}\\
& E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h_{1}, k, t d+1, e_{2 r} \Downarrow h, k, v,\left(\delta_{2}, m_{2}, s_{2}\right) \tag{B1}
\end{align*}
$$

with $\delta=\delta_{1}+\delta_{2}, m=\max \left\{m_{1},\left|\delta_{1}\right|+m_{2}\right\}$ and $s=\max \left\{2+s_{1}, 1+s_{2}\right\}$. As there is no rule for an empty expression, $e_{1 b}$ must be non-empty, so by Lemma 5 :

$$
E \vdash h, k, 0, e_{1} \Downarrow h_{1}, k, v_{1},\left(\delta_{1}, m_{1}, s_{1}\right)
$$

As $e_{2 r}$ is non-empty, by induction hypothesis

$$
\left(B 1^{\prime}\right) \quad E \cup\left[x_{1} \mapsto v_{1}\right] \vdash h_{1}, k, t d+1, e_{2} \Downarrow h, k, v,\left(\delta_{2}, m_{2}, s_{2}\right)
$$

and there is a call to f in this derivation. So we can derive:

$$
E \vdash h, k, t d, \text { let } x_{1}=e_{1} \text { in } e_{2} \Downarrow h^{\prime}, k, v,(\delta, m, s)
$$

and there is a call to f in this derivation.
If (2) holds, the reasoning is similar. The difference is that we reason by induction on $e_{1 r} \neq \#$ and by hypothesis on e_{2}. In this case we do not need Lemma 5 .

6.3 Algorithm for computing Δ_{f}

The idea here is to separately compute the charges to regions of the recursive and non-recursive parts of f 's body, and then multiply these charges by respectively the number of internal and leaf nodes of f 's call-tree.

1. Set $\Sigma f=\left([]_{f}, 0,0\right)$.
2. Let $\left(\Delta_{r},-,-\right)=\llbracket e_{r} \rrbracket \Sigma \Gamma(n+m)$
3. Let $\left(\Delta_{b},-,-\right)=\llbracket e_{b} \rrbracket \Sigma \Gamma(n+m)$
4. Then, $\left.\Delta_{f} \stackrel{\text { def }}{=} \Delta_{r}\right|_{\rho \neq \rho_{\text {self }}} \times n r_{f}+\left.\Delta_{b}\right|_{\rho \neq \rho_{\text {self }}} \times n b_{f}$.

If we apply the abstract interpretation rules for the base cases of our splitAt example in Fig. 7(b) we get $\Delta_{b}=\left[\rho \mapsto \lambda n x .1 \mid \rho \in\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}\right]$. If we apply them to the recursive case in Fig. 7(d) we get $\Delta_{r}=\left[\rho \mapsto \lambda n x .1 \mid \rho \in\left\{\rho_{1}, \rho_{2}\right\}\right]$. The resulting $\Delta_{\text {splitat }}$ is shown in Fig. 10.

Lemma 7. If $n r_{f}, n b_{f}$, and all the size functions belong to \mathbb{F}, then all functions in Δ_{f} belong to \mathbb{F}.
Proof. This is a consequence of \mathbb{F} being closed by the operations $\{+, \sqcup, *\}$. Notice that it is critical that the final cost charged by Δ_{f} to any particular region be non-negative, i.e. destruction may be allowed only if it is compensated by allocation.

Lemma 8. Δ_{f} is a correct abstract heap for f.
Proof. This is a consequence of $n r_{f}, n b_{f}$, and all the size functions being upper bounds of their respective runtime figures, and of Δ_{r}, Δ_{b} being upper bounds of respectively the f 's call-tree internal and leaf nodes heap charges.

Let us call $\mathbb{I}_{\Delta}: \mathbb{D} \rightarrow \mathbb{D}$ to an iteration of the interpretation function, i.e. $\mathbb{I}_{\Delta}\left(\Delta_{1}\right)=\Delta_{2}$, being Δ_{2} the abstract heap obtained by initially setting $\Sigma f=\left(\Delta_{1}, 0,0\right)$, then computing $\left(\Delta_{-},,_{-}\right)=\llbracket e_{r} \rrbracket \Sigma \Gamma(n+m)$, and then defining $\Delta_{2}=\left.\Delta\right|_{\rho \neq \rho_{\text {self }}}$.

Lemma 9. For all $n, \mathbb{I}_{\Delta}^{n}\left(\Delta_{f}\right)$ is a correct abstract heap for f.
Proof. This is a consequence of \mathbb{D} being a complete lattice, \mathbb{I}_{Δ} being monotonic in \mathbb{D}, and $\mathbb{I}_{\Delta}\left(\Delta_{f}\right) \sqsubseteq \Delta_{f}$. As \mathbb{I}_{Δ} is reductive at Δ_{f} then, by Tarski's fixpoint theorem, $\mathbb{I}_{\Delta}^{n}\left(\Delta_{f}\right)$ is above the least fixpoint of \mathbb{I}_{Δ} for all n. We prove now that \mathbb{I}_{Δ} is reductive, i.e. $\mathbb{I}_{\Delta}\left(\Delta_{f}\right) \sqsubseteq \Delta_{f}$. Let us assume that there are n recursive calls to f in e_{r} and that $\overline{a_{j i}}$ are the arguments of the recursive call j. We also assume that region $\rho_{\text {self }}$ is ignored in all the interpretations below:

$$
\begin{array}{lll}
& \pi_{1}\left(\mathbb{I}_{\Delta}\left(\Delta_{f}\left(\overline{x_{i}}\right)\right),-,-\right) & \\
= & \pi_{1}\left(\llbracket e_{r} \rrbracket \sum\left[f \mapsto \Delta_{f}\right] \Gamma(n+m)\right) & \text {-- by definition of } \mathbb{I}_{\Delta} \\
= & \sum_{j=1}^{n} \Delta_{f}\left(\overline{a_{j i}}\right)+\Delta_{r}\left(\overline{x_{i}}\right) & \text {-- rules for interpreting } \Delta \text { are additive } \\
=\sum_{j=1}^{n}\left(\Delta_{r}\left(\overline{a_{j i}}\right) \times n r\left(\overline{a_{j i}}\right)+\Delta_{b}\left(\overline{a_{j i}}\right) \times n b\left(\overline{a_{j i}}\right)\right)+\Delta_{r}\left(\overline{x_{i}}\right) & \text {-- by definition of } \Delta_{f} \\
\sqsubseteq\left(\sqcup_{j=1}^{n} \Delta_{r}\left(\overline{a_{j i}}\right)\left(\sum_{j=1}^{n} n r\left(\overline{a_{j i}}\right)\right)\right. & \\
& +\left(\sqcup_{j=1}^{n} \Delta_{b}\left(\overline{a_{j i}}\right)\right)\left(\sum_{j=1}^{n} n b\left(\overline{a_{j i}}\right)\right)+\Delta_{r}\left(\overline{x_{i}}\right) & \text {-- mathematics } \\
\sqsubseteq \Delta_{r}\left(\overline{x_{i}}\right)\left(\sum_{j=1}^{n} n r\left(\overline{a_{j i}}\right)+\Delta_{b}\left(\overline{x_{i}}\right)\left(\sum_{j=1}^{n} n b\left(\overline{a_{j i}}\right)\right)+\Delta_{r}\left(\overline{x_{i}}\right)\right. & --a_{j i} \sqsubseteq x_{i} \text { and } \Delta_{r}, \Delta_{b} \text { monotonic } \\
\sqsubseteq \Delta_{r}\left(\overline{x_{i}}\right)\left(n r\left(\overline{x_{i}}\right)-1\right)+\Delta_{b}\left(\overline{x_{i}}\right) n b\left(\overline{x_{i}}\right)+\Delta_{r}\left(\overline{x_{i}}\right) & --\sum_{j=1}^{n} n r\left(\overline{a_{j i}}\right) \sqsubseteq n r\left(\overline{x_{i}}\right)-1 \text { and } \\
= & --\sum_{j=1}^{n} n b\left(\overline{a_{j i}}\right) \sqsubseteq n b\left(\overline{x_{i}}\right)
\end{array}
$$

Notice the assumption on well-behaviour of functions $n r$ and $n b$.
As the algorithm for μ_{f} critically depends on how good is the result for Δ_{f}, it is advisable to spend some time iterating the interpretation \mathbb{I}_{Δ} in order to get better results for μ_{f}.

6.4 Algorithm for computing μ_{f}

We separately infer the part $\mu_{\text {self }}$ of μ_{f} due to space charges to the self region of f. As the self regions for f are stacked, this part only depends on the longest f 's call chain, i.e. on the height of the call-tree.

1. Set $\Sigma f=\left([]_{f}, 0,0\right)$.
2. Let $\left({ }_{-}, \mu_{b},{ }_{-}\right)=\llbracket e_{b} \rrbracket \Sigma \Gamma(n+m)$, i.e. the heap needs of the non-recursive part of $f^{\prime} s$ body.
3. Let $\left(\left[\rho_{\text {self }} \mapsto \mu_{\text {self }}\right],,_{-}\right)=\llbracket e_{\text {bef }} \rrbracket \Sigma \Gamma(n+m)$, i.e. the charges to $\rho_{\text {self }}$ made by the part of $f^{\prime} s$ body before (and including) the last recursive call.
4. Let $\left(-, \mu_{b e f},_{-}\right)=\left.\left(\llbracket e_{b e f} \rrbracket \Sigma \Gamma(n+m)\right)\right|_{\rho \neq \rho_{\text {self }}}$, i.e. the heap needs of $f^{\prime} s$ body before the last recursive call, without considering the self region.
5. Let $\left(-, \mu_{a f t},{ }_{-}\right)=\llbracket e_{a f t} \rrbracket \Sigma \Gamma(n+m)$, i.e. the heap needs of $f^{\prime} s$ body after the last recursive call.
6. Then, $\mu_{f} \stackrel{\text { def }}{=}\left|\Delta_{f}\right|+\mu_{\text {self }} \times\left(\right.$ len $\left._{f}-1\right)+\sqcup\left\{\mu_{\text {bef }}, \mu_{b}, \mu_{\text {aft }}\right\}$.

The intuitive idea is that the charges to regions other than self are considered from the last but one call to f of the longest chain call.

In our example, if we take as $e_{b}, e_{\text {bef }}$ and $e_{a f t}$ the definitions of Fig. 7 , we get $\mu_{\text {self }}=0, \mu_{b}=3$, $\mu_{\text {bef }}=0$, and $\mu_{\text {aft }}=2$. Hence $\mu_{f}=\lambda n x .2 \min (n, x-1)+6$.

Lemma 10. If the functions in Δ_{f}, len n_{f}, and the size functions belong to \mathbb{F}, then μ_{f} belongs to \mathbb{F}.
Proof. This is a consequence of \mathbb{F} being closed by the operations $\{+, \sqcup, *\}$ and $l e n_{f} \sqsupseteq 1$.
Lemma 11. μ_{f} is a safe upper bound for f 's heap needs.
Proof. (Proof sketch)

1. $\left|\Delta_{f}\right|$ is a safe upper bound of the live memory during the evaluation of f, observed at any point of f 's body and disregarding $\rho_{\text {self }}$, because it is the live memory at f 's end.
2. $\mu_{\text {self }} \times\left(l e n_{f}-1\right)$ is an upper bound of the live memory at $\rho_{\text {self }}$ when executing the last but one call of the longest f 's call chain.
3. $\sqcup\left\{\mu_{\text {bef }}, \mu_{b}, \mu_{a f t}\right\}$ is an upper bound of the peak memory needed by all regions but $\rho_{\text {self }}$ before calling f for the last time, and of the peak memory needed in all regions by the last call to f, and of the peak memory needed in all regions when returning from the last call and executing the 'after' portion of the previous call to f.

In turn, all this is a consequence of the correctness of the abstract interpretation rules, and of $\Delta_{f}, l e n_{f}$, and the size functions being upper bounds of their respective runtime figures.

Figure 8: Intuitive meaning of the \mathcal{S} function

As in the case of Δ_{f}, we can define an interpretation \mathbb{I}_{μ} taking any upper bound μ_{1} as input, and producing a better one $\mu_{2}=\mathbb{I}_{\mu}\left(\mu_{1}\right)$ as output.

Lemma 12. For all $n, \mathbb{I}_{\mu}^{n}\left(\mu_{f}\right)$ is a safe upper bound for f 's heap needs.
Proof. This is a consequence of \mathbb{F} being a complete lattice, \mathbb{I}_{μ} being monotonic in \mathbb{F}, and \mathbb{I}_{μ} being reductive at μ_{f}. We prove now that \mathbb{I}_{μ} is reductive, i.e. $\mathbb{I}_{\mu}\left(\mu_{f}\right) \sqsubseteq \mu_{f}$. For simplicity, let us assume that there is only one recursive call to f in e_{r} and that $\mu^{\prime}, \Delta^{\prime}, \ldots$ denote the corresponding functions μ, Δ, \ldots applied to the arguments $\overline{a_{i}}$ of the recursive call.

$$
\begin{array}{rll}
& \pi_{2}\left(,, \mathbb{I}_{\mu}\left(\mu_{f}\right),-\right) & \\
= & \pi_{2}\left(\llbracket e_{r} \rrbracket \Sigma\left[f \mapsto \mu_{f}\right] \Gamma(n+m)\right) & - \text { by definition of } \mathbb{I}_{\mu} \\
= & \left|\Delta_{f}^{\prime}\right|+\mu_{\text {self }}^{\prime} \times\left(\text { len }_{f}^{\prime}-1\right)+\sqcup\left\{\mu_{\text {bef }}^{\prime}, \mu_{b}^{\prime}, \mu_{\text {aft }}^{\prime}\right\}+\left|\Delta_{r}\right|+\mu_{\text {self }} & \text {-- rules for interpreting } \mu \text { are additive } \\
\sqsubseteq & \left|\Delta_{f}\right|+\mu_{\text {self }}^{\prime} \times\left(\text { len }_{f}^{\prime}-1\right)+\sqcup\left\{\mu_{\text {bef }}^{\prime}, \mu_{b}^{\prime}, \mu_{\text {aft }}^{\prime}\right\}+\mu_{\text {self }} & --n r_{f}^{\prime} \sqsubseteq n r_{f}-1 \text { implies } \Delta_{f}^{\prime} \sqsubseteq \Delta_{f}-\Delta_{r} \\
\sqsubseteq\left|\Delta_{f}\right|+\mu_{\text {self }} \times\left(\text { len }_{f}-1\right)+\sqcup\left\{\mu_{\text {bef }}^{\prime}, \mu_{b}^{\prime}, \mu_{\text {aft }}^{\prime}\right\} & -- \text { len }_{f}^{\prime} \sqsubseteq l e n_{f}-1 \\
\sqsubseteq & \left|\Delta_{f}\right|+\mu_{\text {self }} \times\left(\text { len }_{f}-1\right)+\sqcup\left\{\mu_{\text {bef }}, \mu_{b}, \mu_{\text {aft }}\right\} & --a_{i} \sqsubseteq x_{i} \text { and } \mu_{\text {bef }}, \mu_{b}, \mu_{\text {aft }} \text { monotonic }
\end{array}
$$

$$
=\mu_{f}
$$

Notice the assumption on well-behaviour of function len.

6.5 Algorithm for computing σ_{f}

The algorithm for inferring μ_{f} traverses f 's body from left to right because the abstract interpretation rules for μ need the charges to the previous heaps. For inferring σ_{f} we can do it better because its rules are symmetrical. The main idea is to count only once the stack needs due to calling to external functions.

1. Let $\left(-,-, \sigma_{b}\right)=\llbracket e_{b} \rrbracket \Sigma \Gamma(n+m)$.
2. Let $\left(-,-, \sigma_{b e f}\right)=\llbracket e_{b e f} \rrbracket \Sigma\left[f \mapsto\left(-,-, \sigma_{b}\right)\right] \Gamma(n+m)$, i.e. the stack needs before the last recursive call, assuming as f 's stack needs those of the base case. This amounts to accumulating the cost of a leaf to the cost of an internal node of f 's call tree.
3. Let $\left(-,-, \sigma_{a f t}\right)=\llbracket e_{a f t} \rrbracket \Sigma \Gamma(n+m)$.
4. We define the following function \mathcal{S} returning a natural number. Intuitively it computes an upper bound to the difference in words between the initial stack in a call to f and the stack just before $e_{b e f}$ is about to jump to f again (Fig. 8):

$$
\begin{aligned}
& \mathcal{S} \llbracket \text { let } x_{1}=e_{1} \text { in \#】td } \quad=2+\mathcal{S} \llbracket e_{1} \rrbracket 0 \\
& \mathcal{S} \llbracket \text { let } x_{1}=e_{1} \text { in } e_{2} \rrbracket t d \quad= \begin{cases}1+\mathcal{S} \llbracket e_{2} \rrbracket(t d+1) & \text { if } f \notin e_{1}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S} \llbracket g{\overline{a_{i}}}^{p} @{\overline{r_{j}}}^{q} \rrbracket t d=\quad=\quad+q-t d \\
& \mathcal{S} \llbracket e \rrbracket t d \quad=0 \quad \text { otherwise }
\end{aligned}
$$

5. Then, $\sigma_{f}=\left(\mathcal{S} \llbracket e_{\text {bef }} \rrbracket(n+m)\right) * \sqcup\left\{0\right.$, len $\left._{f}-2\right\}+\sqcup\left\{\sigma_{b e f}, \sigma_{a f t}, \sigma_{b}\right\}$

In our example, if we denote by $e_{b e f}^{\text {splitAt }}$ the definition of Fig. 7(b) we get $\mathcal{S} \llbracket e_{b e f}^{\text {splitAt }} \rrbracket(2+3)=9$ and, by applying the abstract interpretation rules to the definitions in Fig. 7(c),(b) and (e) we obtain $\sigma_{b}=\lambda n x .4, \sigma_{b e f}=\lambda n x .13$ and $\sigma_{a f t}=\lambda n x .9$. Hence $\sigma_{f}=9 \min \{n-1, x-2\}+13=9 \min \{n, x-1\}+4$.

Lemma 13. If len n_{f}, and all the size functions belong to \mathbb{F}, then σ_{f} belongs to \mathbb{F}.
Proof. The result of $\mathcal{S} \llbracket e_{f} \rrbracket t d$ is nonnegative when $t d=n+m$. Moreover, the results of $\sigma_{b e f}, \sigma_{\text {aft }}$ and σ_{b} are monotonic functions.

Lemma 14. σ_{f} is a safe upper bound for f 's stack needs.
Proof. (Sketch) This is a consequence of the correctness of the abstract interpretation rules, and of $l e n_{f}$ being an upper bound to f 's call-tree height.

The result of $\mathcal{S} \llbracket e_{b e f} \rrbracket(n+m) *\left(l e n_{f}-2\right)$ is an upper bound to the stack length before the last recursive case, since we are taking into account the maximum number of nested recursive calls and words pushed between calls. The term $\sqcup\left\{\sigma_{b e f}, \sigma_{b}, \sigma_{a f t}\right\}$ correctly approximates the stack cost of the last but one recursive call.

Also in this case, it makes sense iterating the interpretation as we did with Δ_{f} and μ_{f}, since it holds that $\mathbb{I}_{\sigma}\left(\sigma_{f}\right) \sqsubseteq \sigma_{f}$.

7 Case Studies

In Fig. 9 we show a Full-Safe version of the mergesort algorithm (the code for splitAt was presented in Fig. 7) with the types inferred by the compiler. Region ρ_{1} is used inside msort for the internal call splitAt n' xs @ r1 r1 self, while region ρ_{2} receives the charges made by merge. Notice that some charges to msort's self region are made by splitAt. In Fig. 10 we show the results of our interpretation for this program as functions of the argument sizes. Remember that the size of a list (the number of its cells) is the list length plus one. The functions shown have been simplified with the help of a computer algebra tool. We show the fixpoints framed in grey. The upper bounds obtained for length, splitat, and merge are exact and they are, as expected, fixpoints of the inference algorithm. For msort we show three iterations for Δ and σ, and another three for μ by using the last Δ. The upper bounds for Δ and

```
length [] }=0
length [] }=
merge [] ys = ys
merge (x:xs) [] = x : xs
merge (x:xs) (y:ys)
    | x <= y = x : merge xs (y:ys)
    | x > y = y : merge (x:xs) ys
```

```
splitAt \(\quad::\) Int \(\rightarrow[a] @ \rho_{1} \rightarrow \rho_{1} \rightarrow \rho_{2} \rightarrow \rho_{3} \rightarrow\left([a] @ \rho_{2},[a] @ \rho_{1}\right) @ \rho_{3}\)
length \(\quad::[a] @ \rho_{1} \rightarrow\) Int
merge \(\quad::[a] @ \rho_{1} \rightarrow[a] @ \rho_{1} \rightarrow \rho_{1} \rightarrow[a] @ \rho_{1}\)
msort \(\quad::[a] @ \rho_{1} \rightarrow \rho_{1} \rightarrow \rho_{2} \rightarrow[a] @ \rho_{2}\)
msort [] \(=\) []
msort \((x:[])=x:[]\)
msort xs \(\quad=\) merge (msort xs1) (msort xs2)
                                where (xs1,xs2) = splitAt (length xs / 2) xs
```

Figure 9: Full-Safe mergesort program

Function	Heap charges Δ	Heap needs μ	Stack needs σ
length(x)	[]	0	$5 x-4$
$\operatorname{splitAt}(n, x)$	$\left[\begin{array}{l}\rho_{2} \mapsto \min (n, x-1)+1 \\ \rho_{3} \mapsto \min (n, x-1)+1\end{array}\right]$	$2 \min (n, x-1)+6$	$9 \min (n, x-1)+4$
$\operatorname{merge}(x, y)$	$\left[\rho_{1} \mapsto \max (1,2 x+2 y-5)\right]$	$\max (1,2 x+2 y-5)$	$11(x+y-4)+20$
$m s o r t ~(~(x) ~$	$\left[\begin{array}{l} \rho_{1} \mapsto \frac{x^{2}}{2}-\frac{1}{2} \\ \rho_{2} \mapsto 2 x^{2}-3 x+3 \end{array}\right]$	$\begin{gathered} 0.31 x^{2}+0.25 x \log (x+1)+14.3 x \\ +0.75 \log (x+1)+10.3 \end{gathered}$	$\max (80,13 x-10)$
$m s o r t ~ 2 ~(x) ~$	$\left[\begin{array}{l} \rho_{1} \mapsto \frac{x^{2}}{4}+x-\frac{1}{4} \\ \rho_{2} \mapsto x^{2}+x+1 \end{array}\right]$	$0.31 x^{2}+8.38 x+13.31$	$\max (80,11 x-25)$
$m s o r t ~ 3 ~(x) ~$	$\left[\begin{array}{l}\rho_{1} \mapsto \frac{x^{2}}{8}+\frac{7 x}{4}+\frac{9}{8} \\ \rho_{2} \mapsto \frac{x^{2}}{2}+4 x+\frac{1}{2}\end{array}\right]$	$0.31 x^{2}+8.38 x+13.31$	$\max (80,11 x-25)$

Figure 10: Cost results for the mergesort program
μ are clearly over-approximated, since a term in x^{2} arises which is beyond the actual space complexity class $O(x \log x)$ of this function. Let us note that the quadratic term's coefficient quickly decreases at each iteration in the inference of Δ. Also, μ and σ decrease in the second iteration but not in the third. This confirms the predictions of lemmas 9 and 12 .

We have tried some more examples and the results inferred for μ and σ after a maximum of three iterations are shown in Fig. 11, where the fixpoints are also framed in grey. There is a quicksort function using two auxiliary functions partition and append respectively classifying the list elements into those lower (or equal) and greater than the pivot, and appending two lists. We also show the destructive insertD function of Sec. 2, and a destructive version of the insertion in a search tree (its code is shown in Fig. 12). Both consume constant heap space. The next one shown is the usual Fibonacci function with exponential time cost, and using a constructed integer in order to show that an exponential heap space is inferred. Finally, we show two simple summation functions (its code also appears in Fig. 12), the first one being non-tail recursive, and the second being tail-recursive. Our abstract machine consumes constant stack space in the second case (see [11]). It can be seen that our stack inference algorithm is able to detect this fact.

8 Related and Future Work

Hughes and Pareto developed in [7] a type system and a type-checking algorithm which guarantees safe memory upper bounds in a region-based first-order functional language. Unfortunately, the approach requires the programmer to provide detailed consumption annotations, and it is limited to linear bounds. Hofmann and Jost's work [6] presents a type system and a type inference algorithm which, in case of success, guarantees linear heap upper bounds for a first-order functional language, and it does not require programmer annotations.

The national project AHA [15] aims at inferring amortised costs for heap space by using a variant of sized-types [8] in which the annotations are polynomials of any degree. They address two novel problems: polynomials are not necessarily monotonic and they are exact bounds, as opposed to approximate upper bounds. Type-checking is undecidable in this system and in $[16,14]$ they propose an inference algorithm for a list-based functional language with severe restrictions in which a combination of testing and typechecking is done. The algorithm does not terminate if the input-output size relation is not polynomial.

In [2], the authors directly analyse Java bytecode and compute safe upper bounds for the heap

Function	Heap needs μ	Stack needs σ
partition (p, x)	$3 x-1$	$9 x-5$
$\operatorname{append}(x, y)$	$x-1$	$\max (8,7 x-6)$
quicksort (x)	$3 x^{2}-20 x+76$	$\max (40,20 x-27)$
$\operatorname{insertD}(e, x)$	1	$9 x-1$
$\operatorname{insertTD}(x, t)$	2	$\frac{11}{2} t+\frac{7}{2}$
$\operatorname{fib}(n)$	$2^{n}+2^{n-3}+2^{n-4}-3$	$\max (10,7 n-11)$
$\operatorname{sum}(n)$	0	$3 n+6$
$\operatorname{sum} T(a, n)$	0	5

Figure 11: Cost results for miscellaneous Safe functions

```
sum 0 = 0
sum n = n + sum (n - 1)
sumT acc 0 = acc
| x > y = Node lt! y (insertTD x rt)
sumT acc n = sumT (acc + n) (n - 1) | x < y = Node (insertTD x lt) y rt!
```

Figure 12: Two summation functions and a destructive tree insertion function
allocation made by a program. The approach uses the results of [1], and consists of combining a code transformation to an intermediate representation, a cost relations inference step, and a cost relations solving step. The second one combines ranking functions inference and partial evaluation. The results are impressive and go far beyond linear bounds. The authors claim to deal with data structures such as lists and trees, as well as arrays. Two drawbacks compared to our results are that the second step performs a global program analysis (so, it lacks modularity), and that only the allocated memory (as opposed to the live memory) is analysed. Very recently [3] they have added an escape analysis to each method in order to infer live memory upper bounds. The new results are very promising.

The strengths of our approach can be summarised as follows: (a) It scales well to large programs as each Safe function is separately inferred. The relevant information about the called functions is recorded in the signature environment; (b) We can deal with any user-defined algebraic datatype. Most of other approaches are limited to lists; (c) We get upper bounds for the live memory, as the inference algorithms take into account the deallocation of dead regions made at function termination; (d) We can get bounds of virtually any complexity class; and (e) It is to our knowledge the only approach in which the upper bounds can be easily improved just by iterating the inference algorithm.

The weak points that still require more work are the restrictions we have imposed to our functions: they must be non-negative and monotonic. This exclude some interesting functions such as those that destroy more memory than they consume, or those whose output size decreases as the input size increases. Another limitation is that the arguments of recursive Safe functions related to heap or stack consumption must be non-increasing. This limitation could be removed in the future by an analysis similar to that done in [1] in which they maximise the argument sizes across a call-tree by using linear programming tools. Of course, this could only be done if the size relations are linear.

Another open problem is inferring Safe functions with region-polymorphic recursion. Our region inference algorithm [13] frequently infers such functions, where the regions used in an internal call may differ from those used in the external one. This feature is very convenient for maximising garbage (i.e. allocations to the self region) but it makes more difficult the attribution of costs to regions.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis. In Static Analysis Symposium, SAS'08, pages 221-237. LNCS 5079, Springer, 2008.
[2] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java Bytecode. In Proc. Int. Symp. on Memory Management, ISMM'07, Montreal, Canada, pages 105-116. ACM, 2007.
[3] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages with Garbage Collection. In Proc. Int. Symp. on Memory Management, ISMM'09, Dublin, Ireland, pages 129-138. ACM, 2009.
[4] J. de Dios and R. Peña. A Certified Implementation on top of the Java Virtual Machine. In Formal Method in Industrial Critical Systems, FMICS'09, Eindhoven (The Netherlands), pages 1-16. LNCS (to appear), Springer, November 2009.
[5] J. de Dios and R. Peña. Formal Certification of a Resource-Aware Language Implementation. In Int. Conf. on Theorem Proving in Higher Order Logics, TPHOL'09, Munich (Germany), pages 1-15. LNCS 5674 (to appear), Springer, August 2009.
[6] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In Proc. 30th ACM Symp. on Principles of Programming Languages, POPL'03, pages 185-197. ACM Press, 2003.
[7] R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded Space; Towards Embedded ML Programming. In Proc. Int. Conf. on Functional Programming, ICFP'99, Paris, pages 70-81. ACM Press, Sept. 1999.
[8] R. J. M. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems Using Sized Types. In Conference Record of POPL '96: The $23^{\text {rd }}$ ACM SIGPLAN-SIGACT, pages 410-423, 1996.
[9] T. Lindholm and F. Yellin. The Java Virtual Machine Sepecification Second Edition. The Java Series. Addison-Wesley, 1999.
[10] S. Lucas and R. Peña. Rewriting Techniques for Analysing Termination and Complexity Bounds of SAFE Programs. In Proc. Logic-Based Program Synthesis and Transformation, LOPSTR'08, Valencia, Spain, pages 43-57, July 2008.
[11] M. Montenegro, R. Peña, and C. Segura. A Resource-Aware Semantics and Abstract Machine for a Functional Language with Explicit Deallocation. In Workshop on Functional and (Constraint) Logic Programming, WFLP'08, Siena, Italy July, 2008 (to appear in ENTCS), pages 47-61, 2008.
[12] M. Montenegro, R. Peña, and C. Segura. A Type System for Safe Memory Management and its Proof of Correctness. In ACM Principles and Practice of Declarative Programming, PPDP'08, Valencia, Spain, July. 2008, pages 152-162, 2008.
[13] M. Montenegro, R. Peña, and C. Segura. A simple region inference algorithm for a first-order functional language. In S. Escobar, editor, Int. Work. on Functional and (Constraint) Logic Programming, WFLP 2009, Brasilia, pages 63-77, 2009.
[14] A. Tamalet, O. Shkaravska, and M. van Eekelen. Size Analysis of Algebraic Data Types. In Peter Achten, Pieter Koopman, and Marco T. Morazán, editors, Trends in Functional Programming Volume 9 (TFP'08), pages 33-48. Intellect, 2009.
[15] M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smetsers. AHA: Amortized Space Usage Analysis. In Selected Papers Trends in Functional Programming, TFP'07, New York, pages 36-53. Intellect, 2008.
[16] R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-monotonically sized types through testing. In Proc. Work. on Functional and (Constraint) Logic Programming, WFLP'07, Paris, France. ENTCS, Elsevier, 2007.

[^0]: ${ }^{*}$ Work partially funded by the projects TIN2008-06622-C03-01/TIN (STAMP), S-0505/ TIC/ 0407 (PROMESAS) and the MEC FPU grant AP2006-02154.

