Two Non-Determinism Analyses in Eden

Ricardo Pena Clara Segura

03 October 2000

Technical Report n® 108-00
Departamento de Sistemas Informaticos y Programacion
Universidad Complutense de Madrid

Abstract

Non-determinism may affect the referential transparency of the programs written in Eden: If a non-
deterministic expression is evaluated in different processes, the variable it is bound to it will denote possibly
different values. It would be desirable to warn the programmer about this situation, or to force the evaluation
of such an expression so that all the occurrences of the variable have the same value. Additionally there
exist sequential transformations that are incorrect when non-determinism is involved. Such transformations
should be applied only to those parts of the program that are sure to be deterministic. In this paper several
analyses of different efficiency and power are presented. Several techniques are used: A types annotation
system and abstract interpretation.

1 Introduction

The parallel-functional language Eden extends the lazy functional language Haskell by syntactic constructs
to explicitly define and communicate processes. The three main new concepts are process abstractions, process
instantiations and the non-deterministic process abstraction merge. Process abstractions of type Process a b can
be compared to functions of type a -> b, and process instantiations can be compared to function applications.
An instantiation is achieved by using the predefined infix operator (#) :: Process a b -> a -> b. Fach time
an expression el # e2 is evaluated, a new parallel process is created to evaluate (el e2).

Non-determinism is introduced in Eden by means of a predefined process abstraction merge :: Process [[all
[a] which fairly interleaves a set of input lists, to produce a single non-deterministic list. Its implementation
immediately copies to the output list any value appearing at any of the input lists. So, merge can profitably
be used to quickly react to requests coming in an unpredictable order from a set of processes. This feature is
essential in reactive systems and very useful in some deterministic parallel algorithms [KPRO0O0]. Eden is aimed
at both types of applications.

Eden has been implemented by modifying the Glasgow Haskell Compiler (GHC) [JHHT93]. GHC translates
Haskell into a minimal functional language called Core where a lot of optimizations [San95, PS98] are performed.
Some of them are incorrect in a non-deterministic environment. So, a non-determinism analysis is carried out
at Core level and, as a result, variables are annotated as deterministic or (possibly) non-deterministic. After
that, the dangerous transformations are disallowed if non-determinism is present.

The plan of the paper is as follows: In Section 2, we review some non-determinism approaches in functional
languages. In Section 3 we study the non-determinism in Eden. In Section 4 the intermediate language CoreEden
being analised is presented. In Section 5 a first analysis is presented. It is a type based analysis. This type
annotation system corresponds directly to an abstract interpretation, presented in Section 6. At the end of
this section we explain some limitations of this analysis and the reasons for them. In Section 7 a new abstract
interpretation based analysis is presented. It pretends to overcome the limitations of the first analysis. It is more
powerful but it is also more expensive. In Section 8 we prove that the first analysis is an upper approximation
to a widening of the second analysis. In Section 9 some related work is given and also some ideas about a third
analysis are presented. It pretends to be an intermediate analysis, both efficient and powerful.

2 Non-determinism in the functional languages

The introduction of non-determinism in functional languages has a long tradition and has been a source of strong
controversy. John McCarthy [McC63] introduced the operator amb :: a -> a -> a which non-deterministically
chooses between two values. Henderson [Hen82] introduced instead merge :: [a]l -> [a]l -> [a] which non-
deterministically interleaves two lists into a single list. Both operators violate referential transparency in the
sense that it is no longer possible to replace equals by equals. For instance,

let x = amb 0 1 in x + x # amb O 1 + amb 0 1

as the first expression may only evaluate to 0 or to 2, while the second one may also evaluate to 1.

Hughes and O’Donnell proposed in [HO90] a functional language in which non-determinism is compatible
with referential transparency. The idea is the introduction of the type Set a of sets of values to denote the result
of non-deterministic expressions. The programmer explicitly uses this type whenever an expression may return
one value chosen from a set of possible values. The implementation represents a set by a single value belonging
to the set. Once a set is created, the programmer cannot come back to single values. So, if a deterministic
function f is applied to a non-deterministic value (a set S), this must be expressed as £ * S where (x) :: (a ->
b) -> Set a -> Set b is the map function for sets. A limited amount of set operations are allowed. The most
important one is U (set union) that allows the creation of non-deterministic sets and can be used to simulate
amb. Other, such as choose :: Set a -> a or N (set intersection) are disallowed either because they violate
referential transparency or because they cannot be implemented by ‘remembering’ one value per set. In the
paper, a denotational semantics based on Hoare powerdomains is given for the language and a number of useful
equational laws are presented so that the programmer can formally reason about the (partial) correctness of
programs.

But the controversy goes further. In [SS90, SS92], the authors claim that what is really missing is an appro-
priate definition of referential transparency. They show that several apparently equivalent definitions (replacing
equals by equals, unfoldability of definitions, absence of side effects, definiteness of variables, determinism,
and others) have been around in different contexts and that they are not in fact equivalent in the presence of
non-determinism. To situate Eden in perspective, we reproduce here their main concepts:

Referential transparency Expression e is purely referential in position p iff
Vey,ex.[er] p = [e2] p =[e[er/p]] p = [ele2/p]] p

Operator op :: t1— --- t,— t is referentially transparent if for all expressions ed:efop ey -+ e, whenever
expression e;, 1 < ¢ < n is purely referential in position p, expression e is purely referential in position i.p.
A language is referentially transparent if so do all its operators.

Definiteness Definiteness property holds if a variable denotes the same single value in all its occurrences. For
instance, if variables are definite, the expression (Az.z — z)(amb 0 1) evaluates always to 0. If they are
not, it may also evaluate to 1 and —1.

Unfoldability Unfoldability property holds if [(Az.e) e'] p = [e[e'/z]] p for all e,e’. In presence of non-
determinism, unfoldability is not compatible with definiteness. For instance, if variables are definite
[(Az.x — x)(amb 0 1)] p # [(amb 0 1) — (amb 0 1)] p.

In the above definitions, the semantics of an expression is a set of values in the appropriate powerdomain.
However, the environment p maps a variable into a single value in the case variables are definite (also called
singular semantics), and to a set of values in the case they are indefinite (also called plural semantics).

3 Non-determinism in Eden

In Eden, the only source of non-determinism is the predefined process merge. When instantiating a new process
by evaluating the expression el # e2, closure el, together with the closures of all the free variables referenced
there, are copied (possibly unevaluated) to another processor where the new process is instantiated. However,

within the same processor, a variable is evaluated at most once and its value is shared thereafter. We are still
developing a denotational semantics for the language but, for the purpose of this discussion, we will assume
that the denotation of an expression of type a is a (probably downwards and limit closed) set of values of
type a representing the set of possible values returned by the expression. If the expression is deterministic,
its denotation is a singleton. Under these premises, we can characterize Eden as follows with respect to the
previously defined concepts:

Referential transparency Eden is referentially transparent. The only difference with respect to Haskell is
that now, in a given environment p, an expression denotes a set of values instead of a single one. Inside an
expression, a non-deterministic subexpression can always been replaced by its denotation without affecting
the resulting set of values.

Definiteness Variables are definite within the same process and are not definite within different processes.
When an unevaluated non-deterministic free variable is duplicated in two different processes, it may
happen that the actual value computed by each process is different. However, denotationally both variables
represent the same set of values, so the semantics of the enclosing expressions will not change by the fact
that the variable is evaluated twice.

Unfoldability In general, in Eden we do not have the unfoldability property except in the case that the
unfolded expression is deterministic. This is a consequence of having definite variables within a process.

The motivation for a non-determinism analysis in Eden comes from the following two facts:

e In future, Eden’s programmers may wish to have definite variables in all situations. It is sensible to think
of having a compiler flag to select this semantic option. In this case, the analysis will detect the (possibly)
non-deterministic variables and the compiler will force their evaluation to normal form before being copied
to a different processor.

e At present, some transformations carried out by the compiler in the optimization phases are semantically
incorrect for non-deterministic expressions. In this case, they will be deactivated. They are full laziness
[JPS96], the static argument transformation [San95] and the specialization. The general reason for all
of them is the increasing of closure sharing: Before the transformation, several evaluation of a non-
deterministic expression can produce several different values; after the transformation, a shared non-
deterministic expression is once evaluated, yielding a unique value.

Lets see now in more detail the transformations mentioned above. In [PS00] a full study of the efects of
all the transformations done in GHC over Eden constructions is done, not only from the point of view of the
semantic correctness but also from the point of view of the efficiency. Here we only talk bout those affecting
the semantics when non-determinism is involved.

Full laziness This transformation floats a let binding outside a A-abstraction to share its evaluation between
all the applications of the function:

let let
r=e
9=)\y.l(iertl i,_ © = inlet
in g=Ay.e
o in ...

This transformation is correct only if e does not depend on y.
From the non-determinism point of view, the problem arises when the floated binding is non-deterministic. As
an example, lets consider the following definitions, that represent a function before and after the transformation:

f=Ay.let x = el f’ = let x = el
inx +y in Ay. x +y

If e1 is non-deterministic, the semantics of £ is a non-deterministic function, that is, it returns a non-single
set of values So [f 5 — f 5] p will deliver a non-single set of values as x is evaluated each time the lambda is
applied. The semantics of the expression bound to f’ is instead a set of deterministic functions and, due to the
definiteness of variables x and £, [f' 5 — f' 5] p evaluates always to {0}. So, the semantics has changed after
the full laziness transformation.

The compiler would detect the non-deterministic bindings and disallow the floating of a 1et out of a lambda
in these situations (see [PPRS00] for more details).

Static argument transformation This transformation is applied to recursive definitions. If there is an
argument such that in all the recursive calls of the function its value is always the same, it is called a static
argument. Then we can define a new function having the static argument as a free variable that behaves as the
original function. Lets see an example:

foldr f z 1 =
foldr f z 1= let foldr' | =
case [of case [of
[]— 2 = []— 2
(a:as) = let v = foldr f z as (a:as) = let v = foldr f z as
in fav in fav
in foldr' 1

The problem arises when the non-static part of the function, that is, the partial application of the function
to its static arguments (they must be explicit so that the transformation can be applied) is not a weak head
normal form. If it is, there is no problem as the new function is also a A-abstraction so its behaviour and
that of the partial application of the original function to its static arguments are exactly the same. But if it
is necessary to evaluate a non-deterministic expression to get a weak head normal form, then the new function
and the original may not have the same behaviour: Before the transformation, the non-deterministic expression
is evaluated in each recursive call, while after the transformation it is only evaluated once.

Specialization It transforms partial applications to types and dictionaries into let bindings:

g = Aty Adict.\y. —
let f = Aty Adict. —» e
in
let f' = f ty dict
in ' (f'y)

Lets assume in this example that e is an expression that generates non-deterministically a function. This means
that the two partial applications f ty dict appearing in g’s body denote potentially different functions. Once
the transformation has been applied, the first time f’ is evaluated, it will be updated with its weak head normal
form, so the two ocurrences of f’ do denote necessarily the same function. This means that we have lost
non-determinism.

g = Aty Adict.\y. —
let f = Aty M\dict. > e =
in f ty dict (f ty dict y)

4 Language definition

As Eden is implemented by modifying GHC, the language being analysed, CoreEden, is an extension of the
intermediate language Core of GHC. This is a simple functional language with second-order polymorphism, so
the language includes type abstraction and type application. The type information is available in Core at the
binders positions (that is, bound variables in let expressions, variables in the left hand side of a case alternative,
and in the arguments of a function). In Figure 1 the syntax of the language and of the type expressions are
shown. There, v denotes a variable, k denotes a literal and = denotes an atom (a variable or a literal).

A program (prog) is a list of possibly recursive bindings (bind) from variables to expressions. Such expressions
(exzpr) may be Core expressions or any of the new Eden constructions. Core expressions include variables, lambda
abstractions, applications of a functional expression to an atom, constructor applications, primitive operators

prog — bindg;...;bind,,
bind — v = expr

| rec vy = expr,;...; vy, = expr,,

expr — expr
| Av.expr
| case ezpr of alts
| let bind in expr
| C L1 ---Tm
|opz1...2m
| z
| Aa.ezpr
| expr type
| v # x

| process v — expr

alts — Calty;...; Calty,; [Deft] m >0
| Lalty;. . .; Lalt,,; [Deft]

Calt — Cowvy...vy — expr
Lalt — k — expr
Deft — v — expr
type — K
| @

| T type, ...type,,

| type; — type,

| Process type, type,
| Va.type

{non-recursive binding}

{recursive binding}

{application to an atom}

{lambda abstraction}

{case expression}

{let expression}

{saturated constructor application}
{saturated primitive operator application}
{atom}

{type abstraction}

{type application}

{process instantiation}

{process abstraction}

{algebraic alternative}

{primitive alternative}

{default alternative}

{basic types: Integers, characters}
{type variables}

{type constructor application}
{function type}

{process type}

{polymorphic type}

Figure 1: Language definition and type expressions

applications, and also case and let expressions. Constructor and primitive operators applications are saturated.

The variables contain type information, so we will not write it explicitly in the expressions.

The new Eden expressions are a process abstraction process v — e, and a process instantiation v # z.
Each process abstraction has as input a single variable, as the A-abstractions have. In Core the applications
are made over atoms (literals or variables), so in a process instantiation the process must be a variable and the

input an atom.

There is also a new type Process t; t2, see Figure 1, representing the type of a process abstraction
process v — e where v has type ¢; and e has type ts.
tuple element represents an input or an output channel of the process. The rest of the types are the Core types:

Frequently #; and t» are tuple types, where each

Basic types, type variables, type constructor applications, function types and polymorphic types.

The program written in CoreEden is obtained by a translation from Core. In Core, the Eden constructions are
hidden: The process abstraction is hidden as a A-abstraction and the instantiation is hidden as the application

of a special instantiation function. For more details, see [PPRSO00].

5 The annotations

In this section a types annotation system is presented. As type information is already available in the language,

we just need to annotate types.

5.1 Introduction

The analysis attaches non-determinism annotations to types. These are basic annotations n or d, or tuples
of basic annotations. A basic annotation d in the type of an expression means that such expression is sure
to be deterministic. For example, an integer constant is deterministic. A basic annotation n means that the

expression may be non-deterministic. As process merge is the only source of non-determinism, we say that an
expression may be non-deterministic if it ’contains® an instantiation of merge, where this ’contains’ has to be
precisely explained.

Tuples of basic annotations correspond to expressions of tuple type (or processes/functions returning tuples,
see below) where each component carries its own annotation. The tuple type is treated in a special way; the rest
of data types just carry a basic annotation (the motivations and consequences of this are explained in Section
6.4). Processes usually have several input/output channels, and this fact is represented by using tuples. In
the implementation, an independent concurrent thread is provided for every output channel of a process. We
would like to express which ones are deterministic and which ones may be non-deterministic. For example, in
the following process abstraction

process v — case v Of
(’1}1,1)2) — let

Y1 =10

Y2 = merge # vo
in

(y1,y2)

we say that the first output is deterministic and that the second one may be non-deterministic. The same
happens to functions returning tuples. No nested tuples of annotations are generated. As the internal tuples do
not represent output channels only one level of tupling is maintained, they are treated as the rest of algebraic
types.

Lets see now what means to be deterministics or possibly non-determinstic. We have already said that the
constants are deterministic. A function/process is deterministic when it maintains the determinism level. For
example, the identity function/process is deterministic: When applied to a deterministic argument it returns a
deterministic result, and when applied to a non-deterministic argument, it returns a non-deterministic result.
The constant functions/processes are also deterministic, as they always return a deterministic argument, inde-
pendently from the input. It seems there are several levels of determinism that perhaps we should distinguish.
But at this moment we do not do it.

The consequences of this decision are not insignificant and they are explained in more detail in Section 6.4.
Lets say now that this decision makes the analysis simpler and efficient. It is simpler because it allows us to
consider that the determinism of a function/process depends exclusively on its body but not on the arguments
it is called with. So we can assume the arguments are deterministic: A function/process will be deterministic if
given deterministic arguments we obtain a deterministic result. If the result is non-deterministic for deterministic
arguments then the function/process will be considered as non-deterministic. This means we forget about the
dependency between the arguments and the result of the function/process, that is, we are losing information.

5.2 Some notation

In Figures 3 and 4 the types annotation system is shown. There b is used to denote a basic annotation and a
to denote a basic annotation or a tuple of basic annotations:

Regarding the types, t is used to denote the unannotated ones, see Figure 1, and 7 or t* to denote the annotated
ones. So, if we write A F e :: t* we are making explicit the fact that a is the annotation of ¢. In the type
environments, A + [v :: t*] denotes the extension of environment A with the annotated typing for v. In the
typing rules of Figures 3 and 4, ¢ ranges from 1 to m and j from 1 to I;. Overlining is used to indicate an
indexed sequence. For example, A + [v; :: 7;] represents the extension of A with new typings for the variables
ViyeeoyUmy.

(bla"'abm)t: (bl,...,bm)
1 m
btr,otm) = (by--+5 D)

bt1~>t2 = btz
bProcess t1 to — btz
bya.t = by

by =0be.o.c

Figure 2: Adaptation function definition

An ordering between the annotations is stablished, d C n (naturally extended to tuples), and we define a
least upper bound operator (lub) Li:

nlUb = n
dub = b

This operator is overloaded as we use it also to distribute a basic annotation along a tuple:
bU (bi,...,bym) = (b1 Ub,... by LUD)

We use || or | | to denote several lub operations.
i J
We need an operator [to flatten the internal tuples so that nested tuples do not appear:

b = b
D(bl,...,bm) - lez

In the type rules it is necessary to adapt an annotation a to a type ¢ in some places. This adaptation is
represented as a; and it is defined in Figure 2.

5.3 The type system

Lets see now the types annotation rules, shown in Figures 3 and 4. Rule [VAR] is trivial. Rule [LIT] specifies
that constants of basic types are deterministic. There are two rules for constructors: One for tuples [TUP)]
and another one [CONS] for the rest. In the first case, we obtain the annotation of each component, flatten
them (if they are tuples, nesting must be eliminated) and give back the resulting tuple. In the second case,
we also obtain the components’ annotations, flatten them and finally apply the lub operator, so that a basic
annotation is obtained. This implies that, if any component of the construction may be non-deterministic, the
whole expression will be considered as possibly non-deterministic; the information about the components is lost.

We have already said that we are only interested in the result of the functions when they are applied to
deterministic arguments. So, in the rule [ABS] the annotation attached to the function is the one obtained
for the body when in the environment the argument is assigned a deterministic annotation. If the body gets
a deterministic annotation, the function is deterministic; but if the body may be non-deterministic then the
function may be non-deterministic. The deterministic annotation given to the argument is an adaptation of the
basic annotation d to the type of the argument, see Figure 2. For example, if it is a n-tuple, the annotation
should be an n-tuple (d, ...,d). If the argument were non-deterministic we are always assuming that the result
may be non-deterministic. This means that we are not expressing how the output depends on the input. In
Section 6.4 we will see that this leads to some limitations of the analysis. The lack of such information is
reflected in the [APPLY] rule. The result of the application may be non-deterministic either the function is
annotated as non-deterministic or the argument is annotated as non-deterministic. This is expressed by using
a lub operator. If the argument’s annotation is a tuple, then we have to previously flatten it as we cannot
use the information that its components provide. Such information (independent annotations) is used when

VAR ——— LIT

A+pwurt|FoeT AFk: K®
data T @ = C; t; op:ty = (ta = ...(tm — 1))
Al xj o [tijlag = tk]]aj Al xyty®™
L —— CONS — PRIM
_ LlHay L Da.
AFCi Ty (T ty)? AFopxy...xp it @
AbF ;o t,% .. a .t
g i /Ll\ /Ll\ TUP A"@..tl 4152 f}\"l’tl 2 APPLY
AF (@1,) 2 (e)) AF (e z) : tyHo)bm
A+ vt bent ABS A+vuth] et B
Ak (Qve) it St A& process v — e :: Process® t t/

Figure 3: Types annotation rules (I)

the components are separatedly used in different parts of the program, and this is what usually happens with
processes: Each output channel feeds a different process. Rules [PABS] and [PINST] are identical to [ABS]
and [APPLY].

In [PRIM] rule, primitive operators are considered as deterministic, so we just flatten the annotations of
the arguments and apply a lub operator to them. Finally, the annotation is adapted to the type of the result.

The [MERGE] rule specifies that merge may be a non-deterministic process (in fact, it is the source of non-
determinism). The [LETNONREC| and [LETREC] rules are the expected ones: The binders are added to the
environment with the annotations of the right hand sides of their bindings.

An algebraic case expression may be non-deterministic if either the discriminant expression (the choice
between the alternatives could be non-deterministic) or any of the expressions in the alternatives may be non-
deterministic. This is expressed in the [CASEALG] rule. However if the discriminant is a tuple, there is no
non-deterministic choice between the alternatives. This information is just passed to the right hand side of
the alternative, so that only if the non-deterministic variables are used there, the result will be annotated as
non-deterministic. This is reflected in the [CASETUP] rule. In general, the same applies to those types with
only one constructor, so it could be extended to all such types. In these two case rules, the annotation obtained
from the discriminant has to be adapted to the types of the variables in the left hand side of the alternatives. In
the [CASEALG] rule the discriminant annotation is just a basic annotation that represents the whole structure.
If it is deterministic, then we can say that each of the components of the value is deterministic; and in case
it is non-deterministic, we have to say that each component is non-deterministic, as we have lost information
when annotating the discriminant. In the [CASETUP] rule each component has its own annotation, so we
don’t lose so much information, but, as there are no nested tuples, we still have to adapt each annotation to
the component’s type. The optional default alternative has not been included in the figure for clarity but it is
easy to do. For example the [CASEALG] rule would be:

data T oy = C; t;j
Ate: (T E)b
A4 A; F e t% where A; = [vg; = tvg "], tvg; = tij [ag := tg]
A+ (T E)b] Fey ot

bu(|_| a;)Uay,
At caseeof C;v5; = ej;0 eyt 0

CASEALG

We have type polymorphism but not annotation polymorphism. In [TYABS] rule A,a means that « is a
type variable not free in A. When the instantiation of a polymorphic type takes place, see rule [TYAPP], it
is necessary to adapt the annotation of the polymorphic type to the instantiated type. This is necessary when
new structure arises from the instantiation. In the following section some examples are shown.

5.4 Some examples

Lets see how the types annotation system works for some examples.

The identity process The identity process is defined as follows:
id = Aa.process v — v

We have already said it is a deterministic process:

VAR
A+vzallFvald

At process v — v :: Process® a a

PABS
TYABS

AF Aa.process v — v :: (Va.Process a a)?¢

An application of the identity process This example illustrates the need for adapting an annotation when
a polymorphic type is instatiated. Lets apply the identity process to a tuple of 5:

(id (Int, Int)) # (5,5)

We need to adapt d to the instantiated type Process (Int,Int) (Int, Int), which produces (d, d), see Figure
2. In Figure 5 the place where adaptation is made appears in bold face. The dots represent the previous
derivation for the identity process.

If the external structure was already a tuple the annotation is maintained. For example, in Aa.process © —
(z,x), with annotated type (Va.Process a (a, a))(d’d), the adaptation gives back the same annotation (d, d).
A case expression In a case expression it is also necessary to adapt the discriminant’s annotation to the
types of the components, in case these are tuples. This is reflected in the following example.

Aa.AB.Avy.process v — case v of
(v1,v2) — case vy of
(vi1,v12) = ((v2,v11),v12)

Lets call p this process. In Figure 6 each of the outputs of p is shown to be deterministic. The place where the
adaptation of the annotation is made is shown in bold face: When [CASETUP] rule is applied, the annotation
d is adapted to the type of vy, that is a tuple, so it is added to the type environment with (d, d) as annotation.

6 Abstract interpretation

The analysis of the previous section has several limitations, explained in Section 6.4. In this section an abstract
interpretation version of the analysis is presented. This version will lead us to develop a more powerful analysis,
also abstract interpretation based, in which we will be able to overcome these limitations. Such extension does
not seem so evident in the types annotation system.

The type system is directly related to an abstract interpretation where the domains corresponding to func-
tions/processes are identified with their range domains. This means there are no functional domains, so the
fixpoint calculation is less expensive. This abstract interpretation leads directly to an algorithm we have im-
plemented in Haskell, and we have executed with the examples of Section 5.4, and some more, one of which is
shown below. This algorithm uses syntax-driven recursive calls that accumulate variables in the environment
as necessary. This is equivalent to a bottom-to-top pass in the type annotation rules where only the type
environments are built. When recursive calls finish, lub operations are carried out. This is equivalent to the
application of the types annotation rules from top to bottom, once we have the appropriate environment.

6.1 The abstract domains

Figure 7 shows the abstract domains. There is a basic domain Basic that corresponds to the annotations d and
n in the previous section, with the same ordering. This is the abstract domain corresponding to basic types
and algebraic types (except tuples). Tuples are again specially treated, as tuples of basic abstract values. The
abstract domain corresponding to functions and processes is the abstract domain corresponding to the type of
the result. The abstract domain of a polymorphic type is that of its smallest instance, i.e. that one in which K
is substituted for the type variable. So the domain corresponding to a type variable is Basic.

A+vumlFenrm Abe

71
AFletv=e ine:n LETNONREC

A+vurlbeinn A+vanlbent
, LETREC

Abletrecv;=¢; ine:: 1

AFw:: Process® tt AFx:t?
= PINST
A F vftx o tP9% where b = Ua/ A+ merge :: Process™ [[a]] o] MERGE

Abe: (t,... ,tm)(bl""’b’") Aot e o
, CASETUP

At caseeof (v1,...,0) > € uT

data T oy = C; t;j
Are: (T t)°

A+ A; F e t% where A; = [y = tvijb‘”ii],tvij =t [ok := tg]

CASEALG
su(|] ai)
Al caseeof C;v;; —e;uit @
Aben Kb AFe; ot
= = CASEPRIM
bu(L] as)
At caseeof k; we; it @
Aalke:tt TYABS Ak e (Vat)” TYAPP

AF Aae:: (Va.t)® At (et') :: tinst®t where tinst = tfa ;= t']

Figure 4: Types annotation rules (IT)

10

uo1ssa1dxa asmo 91} JO UOIIRIOUUY :Q 9INJI

(g (0°L)) (L(G D)) (pepys52204d LA GAOA A 4

ES
SAVAL (g {(0°L)) (L(g D)) (pepyss9204d = (Fla‘(Tla‘Ca)) < (¥Ta‘Tla) Jo Ta ased « (% ‘Ta) Jo o ased « a ssed0id |
OLASYVO Savd QFESAGASV 1 (2T ‘(Tra‘ta)) <+ (CTa‘TTa) Jo Ta ased «+ (% ‘Ta) Jo a ased 4 ﬁ (p* EA “go)mal+y =1y
VA SVA (g)) a4ty IOLASYD QFEAQ“?“SV i (Bl (T ‘%)) ANSQSV Jo Ta ases 4[4 % 338:3 cla] 4+ 1y = oy
o 0) (Fa (00) [, 7 Pt o WA T =0 () E oy
dA.L welg 4 € LY i (1 ce € dvA
g P A @éeo)i (Mafea) 4 £y
diL —— -
p0 i a4 &7 ph T 4 &y
YA ——— VA ——
ssooo1d Limyuept o) jo uoryestidde uy :¢ oIndig
SN (popy (U HUT) 2 (G7Q) # ((4ug “pur) P2) AV
(#uF “2ur) (T JUT) (pip)S59004d 22 (U] “PUT) P2 AV oy (UL ug) 32 (6°0) 47
ddVAL dn.r (r'p)
© 0 ,§5900.4J OA Pl H Y UL G Y PG Y

LIT ——— LIT

Basic = {d,n} where dC n

Dg = Basic

D(tl,...,tm) = {(bh .- 7bm) | bi € {dvn}}
D7 ¢, ..+, = Basic

Dt1—>t2 = th

Dprocess t1 to — th

D, = Basic

DVa.t = Dt

Figure 7: Abstract domains

6.2 A simple abstract interpretation

In Figure 8 the abstract interpretation is shown. It is very similar to the type annotation system, so we just
outline some specific details.

In the recursive let we have to calculate a fixpoint, which can be obtained by using the Kleene’s ascending
chain:

llet rec {v; = e} in '] p = [¢'] (U, cx\'-p i = Tedd P (00))

where pg is an environment in which all variables have as abstract value the infimum 1; of its corresponding

abstract domain. :
le =114, =La=d

J—(tl,...,tn) = (d, ey d)

J—t1~>t2 = J—Process t1 to — J—tz
J—Vﬁ.t’ = 1y

Notice that for each type ¢, d; = L, (this can be proved easily by structural induction over t). At each iteration,
the abstract values of the bindings’ right hand sides are computed and the environment is updated until no
changes are found. Termination is assured, as the abstract domains corresponding to each type are finite.
The number of iterations are O(N), being N the total number of ‘components’ in the bindings: One for each
non-tuple variable and one for each component of a tuple variable.

The interpretation of the algebraic and primitive case can be expressed in a more intuitive way as:

_ ngif [e] p=n
[case e of C; T;; > ei] p= L] [e:] pi otherwise

where p; = p [vij = dy;;],vij = tij, e ot

neif [e] p=n
[case e of k; — e;] p= LI [e:] p otherwise
i

where e; :: t

In the case expression where the discriminant is of tuple type, m; represents the ith projection.

6.3 An example: Replicated workers

This example shows a simplified version of a replicated workers topology [KPR00]. We have a manager process
and n worker processes. The manager provides the workers with tasks. When any of the workers finishes its
task, it sends a message to the manager including the obtained results and asking for a new task. In order
the manager can receive the answers from the workers in any order, and inmediately assign new tasks to idle
processes, a merge process is needed.

The function rw representing this scheme when n = 2 is shown in Figure 9, where worker is the worker
process and ts is an initial list of tasks to be done by the workers. The output of the manager process manager
usually depends on both input lists, the initial one ts and that produced by the workers os. However, in order

12

[v] p=pv

[k] p=d R R

[[(561, s ,Cﬁm)]] p= (l—l/g[[wl]] p);-- 'vl—l([[xm]] p))
[Car...2n] p=L1]U([z] p)

3

[e 2] p = (O([e] p)) U]
[op @1 ...xn] p= (L U([z:] p)): where op ::ty — (t2 = ... (tn = 1))

(
[p#2] p=U0([=] p) U] p
[Mv.e] p=[e] p [v— di] where v ::t
[process v — €] p=[e] p [v — d¢] where v :: ¢
[merge] p=n
[let v=—eine] p=1[e] p [v— [e] p]
llet rec [o; = e} in '] p = ['] (fiz (\'p [= [7))
[case e of (vi,...,vm) = €] p=[€] p [vi = 7i([e] p);,] where v; :: ¢;
[case e of C; v;; = e;] p=0bU (L] [e:] pi)

where b = [e] p
pi = p [vij = big] vij ot
[case e of k; — e;] p=1[e] pU (L] [es] »)

[Aael p=[e] p
le t] p = ([e] p)tinst where (e t) :: tinst

Figure 8: Abstract interpretation

to compare the power of this analysis with that one presented in Section 7 we are assuming that manager is
defined as shown in Figure 9, where g, h and r are deterministic functions (i.e they have d as abstract value).
So, manager’s abstract value is (d,d,d). With this definition, the third component of the process output only
depends on the first input list. This means that the final result of the function rw only depends on the initial
tasks list. In Figure 9 the process topology with the annotations in each channel is shown. As there are mutually
recursive definitions, all of them get the n annotation. However, we know that that when ts is deterministic,
the result of the function is also deterministic, as it only depends on that initial list, and not on the one coming
from the merge process. The analysis answer is safe but just approximate. In Section 7 a more powerful analysis
is presented. There the results are more accurate.

6.4 Limitations

As we have previously said, there are no functional abstract domains in this analysis. This means that the
fixpoint calculation is not expensive, but it also imposes some limitations to the analysis. For instance, we
cannot express the dependency of the result with respect to the argument. As we have said before, in a function
application or process instantiation, we cannot fully use the information provided by the argument.

This happens, for example, when the function does not depend on any of its arguments. For example, if we
define the function f v = 5, the analysis tells us that the function is deterministic, but when we apply f to a
possibly non-deterministic value, the result of the application is stablished as possibly non-deterministic. This
is not true, as we will always obtain the same unique value. Of course this a safe approximation, but not a very
accurate one. The function g v = v would have the same abstract behaviour. Both f and g are deterministic
functions, but they have different levels of determinism: f does not depend on its argument, but g does. If
functions and processes were interpreted as functions, this limitation would be over. The abstract function f#
corresponding to f would be f# = Az.d, while that of g, g%, would be Az.z. Now, if we applied f# to n, we
would obtain d, but n in the case of g#. The same happens when tuples are involved. The abstract value of

h vy vo v3 = (v, V2, merge # vg)

is (d,d,n). But when we apply it, if any of the arguments has n as abstract value, the result will be (n,n,n).

13

rw = X worker.\ ts.
let rec
t = (ts, is)
ys = manager # t
yl = case ys of (z1,z2,z3) — z1
y2 = case ys of (ul,u2,u3) — u2
y3 = case ys of (v1,v2,v3) — v3
ol = worker # yl
02 = worker # y2
os = [ol, o02]
is = merge # os
in y3

y2

merge

manager = process ts — case ts of
(t1, t2) — (g t1 t2,h t1 t2,r t1)

Figure 9: Replicated workers process structure where n = 2.

If the abstract value were
B 0 # wo® wg® = (1%, v n)

then we would not lose so much information, for example h# d n d = (d,n,n).

Although this analysis will be more precise, it will be also more expensive, as we need to represent functions
and also to calculate the fixpoint, which implies it is necessary to compare functions. So it is exponential. It
has all the problems of the typical strictness analysis [BHA86, MH87, Hun91]. In the simple analysis of the
previous sections, the fixpoint calculation is linear in the number of components in the let bindings.

With respect to the algebraic types we have represented the whole structure with a single basic abstract
value (except in the tuples). This means for example, that if any element of a list is non-deterministic, then
the whole list is considered as non-deterministic. Is much information lost in this way? Lets concentrate in the
integer lists List Int. In the type system we could annotate the type of the elements to indicate if these have
been generated in a deterministic or non-deterministic way, and also the external list to indicate if the list itself
has been generated in a deterministic way or not.

For example, List™ Int® would represent a list of deterministic integers that has been generated in a non-
deterministic way. This would be the case of merge#[[0,0..],[1,1..]]. But in this case when an element is taken
from the list, for example the head of the list, we have to forget about the way in which the elements have been
generated as we do not know which value appears in that position. So it does not seem very useful to know
how the elements have been generated when the list itself is non-deterministic.

List? Int™ would represent a list whose elements are non-deterministic that has been generated in a determin-
istic way (for example just by applying the list constructor). This kind of lists would admit some deterministic
queries; for example, the function length applied to it should return d as result.

Finally we have List? Int? and List™ Int". These are in fact the cases we are considering in the analysis.
In the analysis we are identifying all the cases in which an n appears in any position with List" Int". It seems
we are not losing so much that it is worthwhile to introduce such level of detail, but perhaps a more detailed
study would be useful.

14

Basic = {d,n} where dC n
Dy = Basic

Dsp 4, ..+, = Basic
D2(t1,...,tm) = D2t1 X ... X D2t
D2t1—>t2 = [D2t1 — Dth]
D2Process t1 to — [D2t1 — Dth]
Dy = Basic

D2VB.t = Day

m

Figure 10: Abstract domains for the refined analysis

7 A refinement of the analysis

To overcome the limitations of the first analysis, we define a new abstract interpretation based analysis, where the
dependency between the argument and the result in a function can be expressed by interpreting the functions
and processes as abstract functions. As we have previously said, this allows us to express several levels of
determinism and non-determinism.

7.1 The abstract domains

In Figure 10 the abstract domains for the new analysis are shown. An index 2 is used to distinguish them from
the previous analysis, that will be indexed with a 1.

As in the previous analysis, the abstract domain corresponding to the basic types is the basic domain Basic.
For the algebraic data types (except for tuples) we maintain Basic as abstract domain, following the same
previous ideas. The abstract domain of a tuple type is the cartesian product of the domains corresponding to
the types of the components. So now we can have nested tuples. In this way we can maintain more information
than in the previous analysis; as now functions are interpreted as abstract functions, we would like that those
appearing inside a tuple (for example, if a process produces a function as result) are not lost because of a
flattening. The domains corresponding to functions and processes are the domains of continuous functions
between the domains of the argument and the result.

7.2 Abstract interpretation

In Figure 11 the abstract interpretation is shown. The interpretation of a variable is the abstract value assigned
in the environment p,. Literals are deterministic. The interpretation of a tuple is now a tuple of the abstract
values of the components. The interpretation of a constructor belongs to Basic, so we have to take the lub
of the abstract values of the components. But now, each z; :: ¢; has an abstract value belonging to Dsy,, so
we can not apply directly the lub. First we have to flatten the information of each component. The function
responsible for doing this is called the abstraction function oy and it is defined in the following section. For
each type t, a; transforms an abstract value belonging to Ds; in an abstract value belonging to Basic. This is
done not only in a safe way but also in a careful way (if a; takes any value in Do, to n, it would also be a safe
function).

Functions and process abstractions are interpreted as abstract functions taking an abstract value z and
returning the abstract value of the body of the function in an extension of the original environment where
the argument v is bound to the abstract value z. So the abstract interpretation of an application e z is the
application of the abstract funtion (abstract interpretation of e) to the abstract value of the argument z. The
interpretation of a process instantiation v#z is similar.

The interpretation of a non-recursive let expression is the interpretation of the main expression in an exten-
sion of the original environment where the variable in the binding has as abstract value the interpretation of
the expression on the right hand side of the binding.

In a recursive let expression the fixpoint can be calculated using Kleene’s ascending chain:

llet ree {0 = e in €', po = [, (U, iy (b-p Tor = [eil 251" (002))

15

[v]; p2 = p2(v)

[k]y p2 =d

[(@1,. . zm)ly p2 = ([21]y p2,- -, [2m], p2)

[C zi...xn], p2 =] o, ([xi], p2) where z; :: t;

[e z], p2 = ([e]; p2) ([2], p2)

00 71 .-y 3 = (op (@) (1] 2) - (Bl p2) where op s oy
[v#z], p2 = ([v], p2) ([2]5 p2)

[Av.e], p2 = Az.[€], p2 [v — 2]

[process v — €], p2 = Az.[e], p2 [v = 2]

[merge], p2 = Az.n

llet v = e in €], ps =[], p2 [0 = [e, p2]

[let rec {v; = e;} in €], p2 = [€'], (fix (Aph.p2 [vi = [ei], pb)))

[case e of (v1,...,vm) = €], p2 =[]y p2 [vi = mi([e], p2)]
S 7(n) if Jely p2 =n
[case e of C; vij — ei], p2 = L| [es], p2i otherwise

where pa; = p2 [vi; = Ye,; ()], 05 = tij et
_ Ye(n) if [e], p2 =n
[case e of k; — e;], p2 = L [e:]5 p2 otherwise

K3
where e; :: ¢

Figure 11: Abstract interpretation of the refined analysis

where pgo is the initial environment where each variable v :: ¢t has 1o, as abstract value, that is the infimum of
Ds;. Such infimum can be written in the following way:

Llog =lor ¢ 4, =d

J—2(t1,...,tm) = (J-2t1 I J—2tm)
J-2151—>t2 = L2Process t1 to — AZ-J-th

We have three different kinds of case expressions. If the discriminant e is of tuple type, its abstract value is
a tuple of abstract values. The abstract value of the case expression is the abstract value of the alternative’s
right hand side €’ in an extension of the original environment where each variable on the left hand side has as
abstract value the corresponding component of e’s abstract value.

If e is of another algebraic type, things are more complex. Recall that e’s abstract value, let us call it b,
belongs to Basic. That is, when it was interpreted we lost the information about the components. We want now
to interpret each alternative’s right hand side in an extended environment with abstract values for the variables
in the left hand side of the alternative. But we do not have such information, but a basic abstract value that
represents all of them. We have to find a safe representative of b in each domain Dy, .

This is obtained with a function ¢, which we will call a concretisation function. Given a value in Basic, it
returns a value in Do, that represents it. In particular n is represented by the top of the domain Ds,, and d,
by a value in Doy (y:(d)) that reflects our original idea of determinism: the maintaining of determinism. All the
values below it will have different levels of determinism. So, we will see that ~;(d) is the biggest value in Do,
that has the property of maintaining the determinism. As an example, in Int — Int, v;(d) = A\z.z, while Az.d
is below it and it also has the property. This function and a; have several properties we will study forwards.

To conclude, if the discriminant has as abstract value n, then the whole case expression is non-deterministic
and consequently it has as abstract value 7;(n) (it is like the adaptation of n to the type t). If it has d as
abstract value, the right hand sides of the alternatives are interpreted in extended environments where each v;;
has v, (d) as abstract value, and the lub of the resulting abstract values is calculated.

The primitive case expression is similar but then it is not necessary to extend the environments.

We have again considered that all the primitive operators are deterministic. So we choose v, (d) as abstract
value of an operator op :: t,,. Another, more accurate option, would be to provide an initial environment with

16

manager

g% =h# = Xt As.tUs

r# = \t.t

manager® = \t.(m1 (t) U mo(t),

¥2 T (t) U ma(t), i (1))
rw# = Aw.\l.1

merge

Figure 12: Results of the refined analysis for the example of Figure 9

the abstract values of all the primitive operators.

Replicated workers topology Using this analysis in the example of Figure 9 we obtain more accurate
information than in the first analysis. We have assumed that g, h and r are deterministic functions. But now
we have to provide abstract functions as their abstract values. We assume that their abstract values are: g# =
h# = At.As.t Us and r# = At.t. These are Yrni—srnt—rnt(d) and Yrne— rnt(d), that is, the ‘biggest’ deterministic
functions of the corresponding types. Then, the abstract value of manager is manager® = \t.(m; (t)Ums (), 71 ()L
m2(t), 1 (t)). This means that ys has as abstract value ys# = (n,n,l) where [is the abstract value of the
argument ts. So the abstract value of rw is 7w# = Aw.Al.l. This result tells us that the abstract value of the
worker process is ignored and that if ts is deterministic (I = d), then the result of the function is deterministic
as well. In Figure 12 the process topology with the new abstract values in each channel is shown together with
the abstract values of the functions involved.

We have previously said that in this scheme the third component of the manager process usually depends
not only on the initial list of tasks but also on the list produced by the worker processes. In such case also in
the second analysis we would obtain an n abstract value in channel y3.

However in the applications of this scheme (for example, Mandelbrot’s algorithm [Rub99]), an ordering
process is used to produce the final ouput of the topology, so that it is deterministic. So, the topology happens
to be deterministic although the internal part is non-deterministic. This fact can not be detected with an
analysis. It would be necessary that the user marked in any way that process as an ’antimerge’, that undoes
the efect of the merge process.

From now on, to avoid confusion, we will use e; to represent the values belonging to the domains D»;, and
B or ' to represent type variables, so that we can distinguish them from the abstraction function .

7.3 Polymorphism (I)

Polymorphism is now incorporated to the refined analysis. In Figure 13 the abstract interpretation of a type
abstraction and a type application is shown.

17

[AB.€]y p2 = [e], p2

le tl, p2 = Vertinst ([e]y p2) where e :: VB.8, tinst = t'[3 := t]

Figure 13: Abstract interpretation of the type abstraction and application

The abstract interpretation of a polymorphic expression is the abstract interpretation of its ‘smallest in-
stance’, i.e. that instance where K (the basic type) is substituted for the type variables. This is the reason
why the abstract domain corresponding to a type variable 3 is Basic, and the abstract domain corresponding
a polymorphic type is the abstract domain corresponding to the type without qualifier. Abstract domains are
shown in Figure 10. The infimum in these domains are:

J_QB - d
J-2VB.t’ = J-2t’

So the abstract interpretation of a type abstraction AfB.e :: V3.t' is the abstract interpretation of its body
e, what represents the abstract interpretation of the smallest instance of its (polymorphic) type. When an
application to a type t is done, the abstract value of the appropriate instance must be calculated. Such abstract
value is in fact obtained as an approximation from the abstract value of the smallest instance. From now on, the
instance type t'[3 := t] will be denoted as tinst. The approximation to the instance’s abstract value is obtained
by using a new function 7y ¢ns:, which we will call the polymorphic concretisation funcion. It is defined and
studied in detail in Section 7.5. This function adapts an abstract value belonging to Dy; to an abstract value
belonging to Doy;y,s:- That is, it transforms the abstract value of the smallest instance in another abstract value,
taken as approximation to the abstract value of the instance corresponding to ¢. Another function, sty ,
which we will call the polymorphic abstraction function, will also be defined below. Together they will be shown
to be a Galois insertion.

But first we are going to define the (plain) abstraction and concretisation functions, and also to study some
useful properties they have.

7.4 Abstraction and concretisation functions

Given a type t, the abstraction function takes an abstract value in Dy; and flattens it to a value in Basic. We
have already seen that this is necessary in constructor applications, as a single basic abstract value represents
the whole structure.

Given a type t, the concretisation function ~; unflattens a basic abstract value and produces an abstract
value in Do,. This function is used in an algebraic case expression. The discriminant has a basic abstract value,
as we have flattened all the values of the components. We have to recover the values of the components in order
to analyse the right hand sides. But we have lost such information, so the only thing we can do is to give a safe
approximation of those values. This is what v; does: Given a basic abstract value, it gives a safe approximation
to any abstract value that the component could have had, considering how the flattening has been done.

The functions are mutually recursive. The idea of the abstraction function is to come back to the first
analysis, that is to flatten the tuples and apply the functions to the unflattening of d for the argument’s type.
The abstraction function loses information. As an example, if t = Int — Int, ay(A\z.2) = ax(Az.d) = d. In
Figure 14 we show the abstraction function for the type (Int — Int) — Int — Int.

The idea of the concretisation function is to obtain the best safe approximation to determinism and non-
determinism. It tries to recover the information that the abstraction function lost. The function type needs
explanation, the rest of them are inmediate. As we have said before, a function is deterministic if it produces
deterministic results from deterministic arguments. If the argument is non-deterministic, the safer we can
produce is a non-deterministic result: It is like an ‘identity’ function. So, the unflattening of d for a function
type is a function that takes an argument, flattens it to see whether it is deterministic or not and again applies
the concretisation function with the type of the result. As an example, if t = Int — Int, y:(d) = Az.z2. In
Figure 14 we show the concretisation function for the type (Int — Int) — Int — Int. The unflattening of n

18

Afdz.fdUz

~
~
~
~
~

~

MAz.fnMz ~d

Figure 14: Abstraction and concretisation functions for t = (Int — Int) — Int — Int

for a function type is the function that returns a non-deterministic result independently of the argument (it is
the top of the abstract domain). For example, if ¢t = Int — Int, v(n) = Az.n.
Let us see now the formal definitions of the abstraction and concretisation functions.

Definition 7.1 (Abstraction function) The abstraction function a; is defined as follows:

ay : Doy — Basic
K = QT t;...t,, — O3 = idBasic

Uty (€1, - €m) = L (€7)
Aty —to (f) = (Process t1 to (f) = 4, (f(’ytl (d)))
Qyp.t = Qi

Definition 7.2 (Concretisation function) The concretisation function v is defined as follows:

¢ + Basic — Doy

YK =T t1..t, = V3 = dBasic

Vit tm) (0) = (Ve (0)5 -+ 7, ()
Az, (n) if b=n

Vst (D) = YProcess t, t,(b) = { Az, (o, (2)) if b=d
Wit = VYt

Both functions are monotone and continuous for each type ¢, as the following proposition asserts.
Proposition 7.3 For each type t, the functions a; and v are monotone and continuous.

Proof (Proposition 7.3) If we prove that for each ¢, a; and 7; are monotone, then we will also have
proved they are continuous, as their domains are finite (they satisfy the Ascending Chain Condition) [NNH99].
Monotonicity can be proved by structural induction on t.

We first prove that «; is monotone:

19

et=Kort=Tty...t,, or t = 3. These cases are trivial as a; = idpgsic-

ot = (t1,...,tm). By ih, for each i = 1,...,m, o, is monotone. Let e;,e; € Dy, . Let us assume
that (e1,...,em) E (ef,...,el,), that is, for each i, e; C e;. We have to prove that ai(e1,...,en) C
ael, ... en):
agler, ... em) = | o (es) by definition of ay
i
C | a(e) by i.h. and e; C €]
i
= oy(e},...,el,) Dby definition of oy

o t =t =ty or t = Process t1 t. By i.h. each oy, is monotone, for i = 1,2. We have to prove that oy is
monotone. Let f, f' € [Dy;, = Doy,]. Let us assume that f C f’, that is, for each e € Dy, f(e) T f'(e).
We have to prove that a;(f) C oy (f'):

a:(f) at,(f(1,(d))) by definition of oy
a, (f' (7, (d))) by ih. and f E f/

2
a(f) by definition of ay

o

e t =VG.t". As a; = ay, it trivially holds by i.h.
Let us prove now that 7; is monotone:
et=Kort=Tty...t,, or t = 3. These case are trivial as v; = idpgsic-

e t = (t1,...,tm). By ih. for each i =1,...,m, 7, is monotone. Let b,b' € Basic. Let us assume b C b’
and let us see that v:(b) C v (b'):
~:(b) (v, (B), - -, 7, (D)) by definition of ~;

by i.h. and b C b’
Y () by definition of ~;

1
—
2
g
~~

=
=
3
3
—

=
=
=

e t =1t — ty or t = Process t1 ta. By i.h. each ;, is monotone, for i = 1,2. Let b,b' € Basic. Let us
assume that b C b’ and let us prove that v;(b) T ~;(b').

When b = b’ this is trivial to prove. The non-trivial case is b = d and ¥’ = n. In such a case vy (b) =
A2, (0, (2)) and 74(b') = Az.y,(n). As n is the top in Basic, we have that a4, (e) C n for each e € Dy, .
So, by i.h.: Ve € Doy, . Y1, (ay, (€)) C v, (n), from which we can obtain that v;(d) C . (n).

o t =VG.t". As vy =y, it trivially holds by i.h.
Functions a; and +y; are a Galois insertion [NNH99], see Proposition 7.5 (or equivalently a Galois surjection
[CC92], or an embedding-closure pair [Bar93]). This means that a; loses information but just all at once; and

that v; recovers as much as possible of it, so that another application of «; does not lose more information. A
useful lemma is first presented. It confirms that v¢(n) is the top in Da;.

Lemma 7.4 For each type t:
Ve € Doy.e C v¢(n)

Proof (Lemma 7.4) It can be proved by structural induction on :

et=Kort=Tt;...t, or t = 3. These cases are trivial as 74 = idpgsic, and n is the top in Basic.

ot =(t1,...,tm). If e € Dy, then e = (e1,...,€y,), where e; € Dy, for i = 1,...,m. By iLh., for each
i=1,...,m we have that e; C vy, (n), so e = (e1,...,em) CE (7, (n),..., M, (n)) = n(n).

ot =1t — ty ort = Process t; to. Let f € Dy;. And let e € Dy;,. Then f(e) € Dyy,, and by ih.
f(€) T 7, (n). On the other hand v:(n) = Az.y,(n). That is, for each e € Dy, f(e) T (1:(n))(e), so

[Ex(n).

20

o t =VY(.t". As v =, it holds by i.h..

Let us prove now that a; and ~; are a Galois insertion.

Proposition 7.5 For each type t, ay and v; are a Galois insertion, or equivalently a embedding-closure where
¢ is the embedding and oy is the closure; that is:

® a; - Y = idBasic
® v - oy Jidp,,

Proof (Proposition 7.5) This proposition can be proved by structural induction on t.
Let us prove first that a; - ¢ = idpasic-

et=Kort=Tt,...t,, or t = 3. These cases are trivial, as oy = v = idpBgsic.

e t =(t1,...,tm). Let b € Basic. Then:

ar((0) = (v, (b),..., Y., (b)) by definition of v,
= |_| ag; (74 (b)) by definition of ay
= |i| b by i.h.
= b

o t =11 =ty ot = Process t; t2. Let b € Basic. We distinguish two cases: b =d and b = n.

If b = d, then:
at(1(d) = ar(Azoy, (ay, (2))) by definition of ~;
= g, (Y, (o, (71, (d)))) by definition of ay
= d by i.h.
If b = n, then:
ar(1e(n)) = a(Az.y,(n)) by definition of 7,
= ap(ve,(n)) by definition of oy
= n by i.h.

t =Vg@.t'. It directly holds by i.h. as s = ap y v = Y.
It remains to prove that v - oy 3 idp,,.

et=Kort=Tt,...t, or t = 3. These cases are trivial, as oy = v = idpBgsic.

o t=(t1,...,tm). Let e; € Dy, for each i =1,...,m. Then:

’Yt(l_l ag, (€e;)) by definition of ay
Vi, (|_| e (e),.- . ’%m(l—.l ay; (e;))) by definition of v

(
(¢, (atl (e1))y-- -y, (ar,, (em))) by monotonicity of
(e1,---,em) by i.h.

Ye(at(er,-.-,em))

iy

t =t1 =ty 0t = Process t to. Let f € [Doy, = Day,]. Then:
Ye(aw(f) = mlaw(f(ye(d))) by definition of oy
We distinguish two cases:

— If a4, (f(y4,(d)) = d then by definition of v; we have that v;(c:(f)) = Az. v, (o, (2)). Let e € Doy, .
We want to prove that f(e) C (Az.y, (o, (2)))(e). That is, f(e) C v, (ay, (€)). We distinguish again
two cases:

21

*x ¢ C 7 (d). By monotonicity of f, f(e) T f(v(d)). So, by monotonicity of ay, ag,(f(e)) C
at, (f (7, (d))) (which is equal to d), that is,

ai, (f(e)) EdE ay, (e)

The last inequality holds because d is the infimum in Basic. So, by monotonicity of v, vz, (g, (f(€))) E
Ve, (0, (€)), and by i.h. we have

f(e) E vty (s, (f(e))) E vi (@, (€))

*x ¢ £ v, (d). In this case ay,(e) = n. Let us prove this by contradiction. Let us assume that
ay, (€) # n,i.e. that ay, () = d. Then vy, (ay, (€)) = v, (d). By i.h. we know that e C 74, (o, (€)),
50 e C 74, (d), which contradicts the case in which we are.

So, we have to prove that f(e) C vz, (n), which holds by Lemma 7.4, as f(e) € Dyy,.

— If as, (f(12,(d))) = n, then vi(a:(f)) = Az.v,(n), so we have to prove that given e € Dy, f(e) C
V¢, (n), which in fact holds by Lemma 7.4, as f(e) € Day,.

In this proof some properties have been discovered that may be useful below. The two following lemmas
describe the relation between Basic and D-, for each t. The first one asserts that all the values below 7;(d) are
flattened to d. That is, as we have said before :(d) represents d. The second one says that any other value,
bigger that v;(d) o uncomparable with it, is flattened to n. This confirms that ;(d) is the biggest value that
represents d.

Lemma 7.6 For each type t:
Ve € Dy.e C v (d) = ar(e) =d

Proof (Lemma 7.6)
If e C v(d) then, as a; is monotone az(e) C ay(y:(d)). By Proposition 7.5, a:(v:(d)) = d, and as d is the
infimum in Basic, we have that a;(e) = d.

Lemma 7.7 For each type t:
Ve € Dy.e Z v(d) = ar(e) =n

Proof (Lemma 7.7)
Let e € Do, such that e IZ v¢(d). Then a;(e) = n necessarily. If a;(e) = d then by Proposition 7.5 we would
have that e C v (a:(e)) = v:(d), which would contradict the hypothesis.

From Lemma 7.6 and Lemma 7.7 we obtain that
Ve € Dy.e C v (d) & arle) =d

or equivalently
Ve € Dos.e Z (d) & a(e) =n

It has been previously said that v;(d) is the biggest representative of d, that is, every value less or equal than
it flattens to d, and the rest of values flatten to n. It has also been said that a function/process is considered as
deterministic when applied to a deterministic argument its result is also deterministic. This means that when
a function (resp. process) of type t; — t2 (resp. Process t1 t2) is applied to a value lesss or equal than v, (d),
the result is less or equal than -, (d):

Ve £ v, (d).-f(e) E 7, (d)
The following proposition says that a function of type t; — t5 is deterministic if and only if it is less or equal
than ¢, 4, (d), 1.6, Y, ¢, (d) is the biggest representative of the deterministic functions of that type. The same
happens for a process of type Process t1 ta: Yprocess t, t»(d) is the biggest representative of the deterministic
processes of that type.

Proposition 7.8 Given a function f € Dy, where t = t; — to or t = Process t1 to, the following holds:

fEi(d) & Ve E v, (d).f(e) E v, (d)

22

Proof (Proposition 7.8)

(=) Let f C %(d) and e C 7y (d). By Lemma 7.6 we have that a4, (e) = d. On the other hand ~(d) =
Az, (ar, (2)) by definition of ;.
As f C y4(d) then:
f(e) E Ve, (atl (6)) = Vio (d)

(<) Let us assume that for all e C v, (d) we have that f(e) C 4, (d). We have to prove that f C ~:(d). Let
e € Dy, . We distinguish two cases:

e ¢ C 74, (d). In this case, by Lemma 7.6 we have that oy, () = d and:
f(e) Ve, (d) by hypothesis

Vi, (a, (€)) by Lemma 7.6

(v:(d))(e) by definition of

1M

e Otherwise, by Lemma 7.7 we have that a4, (€) = n. So:

fe) Vo (1) by Lemma 7.4
Vi, (g, (€)) by Lemma 7.7

(v(d))(e) by definition of ¢

1M

7.5 Polymorphism (II)

In this section, functions Yy ¢inst and ayinsty are formally defined. These functions are similar to oy and 7. In
fact they are a generalisation of the latter. The functions a; and v; operated with values in Basic and Ds,.
Now we want to operate with values in the domains Doy and Dayg,,st, where tinst = t'[:= t], that is between
the domain corresponding to the polymorphic type and each of its concrete instances. So in the particular case
where t' = 8 they will be equal to a; and ;. This is the reason why we call them in a similar way. From now
on, we will call abstraction function indistinctly to a; and ayinst+, and concretisation function to v; and vy ¢ipnst -
When we need to specifically refer to aipsts and Yy tinst, we will use the ‘polymorphic’ qualification.
We now define the polymorphic concretisation function ~yg ginst -

Definition 7.9 (Polymorphic concretisation function) Given two types t', t and a lype variable 3, the
polymorphic concretisation function from t' to tinst = t'[8 = t] is defined by cases on t' as follows (tinst;
represents t;[0 :=t]).

Ve tinst + D2y — Do gingst

t'=K Yt tinst = Z.dBasic

=T tl cen tm Yt tinst — Z.dBasic

t'=(tr,..-stm) Vetinst(€1,. s €m) = (Vevtinst, (€1), - - s Ve, tinst,, (Em))

=t =t Yertinst (f) = N2 Vtotinsts (f(Qtinst, 1, (2))) where 2 € Doy,
t' = Process t1 ta Vertinst (f) = A2 Vtotinsts (F(Qtinst, ¢, (2))) where 2 € Daying,
t'=p Vertinst = Vi

t'= 6I (7£ 6) Yt tinst = Z.dBasic

t'=Vp't Virtinst = Viy tinst,

And also the polymorphic abstraction function.

Definition 7.10 (Polymorphic abstraction function) Given two types t', t and a type variable [, the
polymorphic abstraction function from tinst = t'[8 := t] to t' is defined by cases as follows (linst; represents

23

ti[B = 1]).

Qpinstt' * Dayinst — Day

t'=K Qpinstt’ = Z.dBasic

t'=Tt... tm Otinstt' = LA Bgsic

t' = (t17 Ce atm) Qtinst t’ (617 ce. 7em) = (atinstl t1 (61): coes Oginst, tm (em))
t'=t1 =t Qtinstt' (f) = A2.Qtinsts to (f (Vey tinst, (2))) where z € Dy,
t' = Process t1 ta Quinstt'(f) = A2.Qinstoto (f (Vv tinst, (2))) where z € Dy,
t'=p Qtinsttr = Qi

t= ﬂl (7£ ﬂ) Otinstt' = 1dBasic

t'=Vp't Qtinstt' = Qtinst, t

Both functions are monotone and continuous, as the following proposition says, and they are a Galois
insertion.

Proposition 7.11 Given two typest, t' and a type variable 8, Yy tinst and Qyinsty are monotone and continuous,
where tinst = t'[3 = {].

Proof (Proposition 7.11) Let us prove first that they are monotone. Then, as their domains of definition
are finite, they are also continuous. Monotonicity can be proved by structural induction on ¢'. Let us prove it
for V¢ tinst, being the proof analogous for ainstt:

et/ =Kort'=Ttl...t,, ort' =" (# 3). In such cases Yy tinst = idBasic, SO monotonicity holds trivially.

o t' = (t1,...,tm). Lete;, e} € Doy, where (e1,...,em) C (ef,...,€},), thatis, e; C e}, foreachi =1,...,m.
We have to prove that v tinst(€1, .., €m) T Yetinst (€], ..., €h,). In this case tinst = (tinsty, ..., tinsty,),
where tinst; = t;[0 := t] for each i = 1,...,m. By i.h. we have that for each i = 1,...,m, Y, tinst; () T
Ve, tinst; (€}). Then, we have

(’ytl tinst1 (61)7 sy Vemtinstm (em)) by definition of VYt tinst
(Ve tinst: (€1)s + « + s Ve tinst.n (€3,)) by i.h.
Yt tinst (6’1, . !) by deﬁnition Of Yt tinst

»€m

Yt tinst (617 <. 7€m)

o

o t' =1t — ty or t' = Process t1 ta. Let f,g € Doy, where f C g. We have to prove that v st (f) T

Yertinst (9). In this case tinst = tinst; — tinsts (or tinst = Process tinsty tinsts) where tinst; = ;{3 := t] for
each i = 1,2. Let us prove that v sinst (f) T Ve tinst (9), that is, that for each e € Doy, s (Ve tinst (f))(€) T

(Ver timst (9)) (€):

(Ve tinst () (e) Vestinsts (f (Qttinst, t, (€))) by definition of Yy sinst
Vestinsts (§(Qtinst1 1, (€))) by 1. Ye,tinst, is monotone, and by hyp. fC g

(Ve tinst (g)) (€) by definition of V4 ¢inst

I

e t' = 3. Now tinst = t, and Vg inst = V2, that is monotone by Proposition 7.3.

o t' =Vp'.t;. It trivially holds by i.h. as Ve tinst = V¢, tinst, -

In [Bar93] the category of domains and embedding-closure pairs is presented. Two functors, x and —, can
be defined in this category. They build a new embedding-closure pair from two (or more in the case of the
cartesian product) embedding-closure pairs:

X((feafc)v (ge,gc)) = (fe X ge,fc X gc)
= ((f%, %), (9%,9°)) = (Ah.g® - b~ f¢, AR/ .g° - B - f°)

We can rewrite the functions ainst+ and ¢ ¢inst by using these functors in the following way:

24

t = ('Yt’tinsta atinstt’) = (idBasim Z.dBasic)

t'=T 21 tm (7t’tinst; atinstt’) = Z.dBasic; Z.dBasic)

t=(tr, - stm) (Vertinsts Qtinsttr) = X ((Vev tinstrs Qtinst1 t1)s - - - s (Ve tinstm » QCtinston tm))
th =t =t (Ve timst s Qtinster) = = ((Veytinsty > Qtinsty 1) > (Veotinsts > Ctinstots))

t' = Process t1 ta (Vertinst> Qtinsttr) = > (Ve tinsty» Qtinsty t1)> (Veatinsts > Qtinsto t2))
t'=p (Ve tinst> Ceinster) = (Ver ut)

t' = ﬁl (;’é ﬁ) (7t’tinst; atinstt’) = (idBasic; Z.dBasic)

t'=Vp't (Ve tinst> Qtinstt) = (Vey tinstr» Qtinsty t1)

Now it is very easy to prove the following proposition:

Proposition 7.12 Given two types t, t' and a type variable B, Yy tinst and aginste are a embedding-closure pair,
that is:

® Qinstt’ * Vt'tinst — idDQt,
® Yi'tinst - Qtinstt 2 1dp,,, ,
where tinst = t'[3 := t].
Proof (Proposition 7.12) Both can be proved by structural induction on ¢' at the same time.

et'! =Kort =Tt ...ty or t' = B'(# B). These cases are trivial to prove as (Ve tinst, Qtinstt’) =
(idBasic; Z.dBasic) .

o t' = (t1,...,tm). Byih. foreachi=1,....,m, (V,tinst;, Qtinst; t;) is an embedding-closure pair, so, as x™
is a functor in the category of domains and embedding-closure pairs, (V¢ tinst, Qtinst+) 18 an embedding-
closure pair as well, as in this case (Vs sinst, Qtinst) = X™((Vex tinst1 > Qtinstr t1)s - - - » (Ve tinstom s Qtinsto tm))-

o t' =1t — ty or t' = Process t; t2. By i.h. we have that for each i = 1,2, (", tinst;, Qtinst; +;) 1S an
isertion-closure pair. As — is a functor in the category of domains and embedding-closure pairs, we
have that (v tinst, Ctinst+) 1s an embedding-closure pair as well, as in this cases (Y tinst, Qtinsttr) = —

(Ve tinst » Qltinsty ty)s (Veotinstos Altinsts ta))-
o t' = 3. Now (V¢ tinst, Qtinstt') = (¢, @), which is an embedding-closure pair by Proposition 7.5.

e t' =Vf'.t;. Tt trivially holds by i.h. as (Vertinst, Qtinsttr) = (Vey tinsty s Qtinst, t1)-

This pair also have some more properties that will be very useful below. They are mainly conmutativity
properties, shown in Figure 15. There are eight possible ways of combining the arrows in the figure. Six of
them are presented in propositions 7.13, 7.14 and Lemma 7.15. The other two are circular combinations (so
they represent inequalities or equalities with respect to the identity) easily obtained from the first ones.

The following proposition says first that it is the same to adapt from Basic to ¢’ and then to ¢inst than to
directly adapt from Basic to tinst. It also says that it is the same to abstract from tinst to t' and then abstract
to Basic than to directly abstract from tinst to Basic.

Proposition 7.13 Given two types t, t' and a type variable 3, the following equalities hold:
® Y'tinst " V' = Vtinst
® Q- Qtinstt’ = tinst
where tinst = t'[3 := t].
Proof (Proposition 7.13) They can be proved simultaneously by structural induction on ¢':
et! =Kort' =Tt ...ty ort' = ' (# B). In such cases Ve tinst = Ver = Veinst = 1dBasic = Qtinsttr = Qpr =

Atinst -

25

Yt tinst

Oltinst t'

Ytinst Qltinst

Qgr

Ve

Figure 15: Conmutativity properties of the polymorphic abstraction and concretisation functions

o t' = (t1,...,tm). In this case tinst = (tinsty, ..., tinst,,) where tinst; = t;[8 :=t], for each i = 1,...,m.
By i.h. we have for each i = 1,...,m that
Vtitinst; = Vt; = Vtinst;
and
Qt; Qpinst; t; = Atinst;

Let us prove first that v gnst * Yo = Veinst- Let b € Basic.

Yertinst (Ve (B) = Vertinst (V1 (D), -, Ve, (D)) by definition of v

= (Veatinsts (Ve (9))s « + + s Vepn tinst,n (V2 (D)) Dy definition of vy sinse

= (7tinst1 (b)a - oy Vtinst,, (b)) by i.h.

= Ytinst (D) by definition of 7,

Let us prove now that ay - Qginsttr = Qginst- Let e; € Daygipge,, for each s =1,... ,m.
ap (Qinstr (€1, --,em)) = o (Qpinstr¢,(€1), - - -, Qtinst,, £, (ém)) by definition of aging ¢
= | o (tinst; ¢ (ei)) by definition of ay
- |_| atinsti(ei) by lh
(3

= ainst(€1,--,€m) by definition of a;

o t' =1t1 — to ort’ = Process t; to. In this case tinst = tinst; — tinsts (respectively tinst = Process tinsty tinsts)
where tinst; = ;[:= t]. By i.h. we have that for each i = 1,2,

VYtitinst; * Vt; = Vtinst;
and
O, * Oltinst; t; — Atinst;

Let us prove first that vy gnst - Yo = Veinst- Let b € Basic. We distinguish two cases: b = d and b = n.
Ifb=d:

Yertinst (Ve (d)) = Yertinst (Az.Ye, (i, (2))) by definition of 7
= A2Vt tinsts (Ves (0, (Qtinst, £, (2)))) by definition of Y4 tinst
= >‘Z-7tinst2 (atinstl (Z)) by i.h.
= Vtinst(d) by definition of ~;

26

If b = n then:

Yertinst (Az.9e, (n)) by definition of 7

= AZ'%& tinsta (7t2 (n)) by definition of Ve tinst
AZ Ntinsts (1) by i.h.

= Ytinst(n) by definition of ~;

Ve’ tinst (%' (n))

Let us prove now that ap - Qtinsttr = Qtinst- Let f € Doyinst:

ap (aginst e () = o (N2 Quinsts to (f (Vertinse, (2)))) by definition of ayipst s
= oy (Qtinsty to (f (Vs tinst; (71, (d))))) by definition of ay
= Oinsty (f(’ytinstl (d))) by i.h.
= inst(f) by definition of a4

e t' = (3. In this case tinst = t and by definition we have that vy ginst = Ve, Qtinsttr = g, Ver = ap = idBasic,

SO
Yertinst - Yo = Vi idBasic by definition of vy yinst and
= Ytinst as tinst =t
and
Qr * Qginsttr = 1 Basic - 0 by definition of aynsre and ay
= Qinst as tinst =t

o t' =Vf'.t;. In this case tinst = tinst; = ;[:= t] and then

Vertinst Ve = Yeatinst: * Ve, Dy definition of vy 4ins: and v
= Ytinst, by i.h.
= Ytinst by definition of 7,
and
Qp - Qinsttr = Oigy " Qginsty ¢y Dy definition aigins e and
= Ctinsty by i.h.
= Oinst by definition of oy

The following proposition tells us that it is the same to adapt from ¢’ to tinst and then abstract to Basic
than to directly abstract from ' to Basic. It also says that it is the same to adapt from Basic to tinst and then
abstract to ¢’ than to directly adapt from Basic to t'.

Proposition 7.14 Given two types t, t' and a type variable 3, the following equalities hold:
® Otinst * Vt'tinst — Ot/
® Qinstt’ * Vtinst = Vt'

where tinst = t'[3 := t].

Proof (Proposition 7.14) Both items can be proved easily from the previous proposition:

Qtinst * Vertinst = (O * Qginsttr) * Vertinst Dy Proposition 7.13

= ap by associativity and Proposition 7.12
Qtinstt! ~ Veinst = CQtinste' * (Ye'tinst - V¢) by Proposition 7.13

= by associativity and Proposition 7.12

We have already seen that the semantics of a type application is obtained using the function =4 ¢inst. But
we could also have used the semantics of the instance in another way, first abstracting to Basic the abstract
value of the smallest instance and then adapting to tinst, that is:

[e t], P2 = Ytinst (a ([e], p2))

The first item of the following lemma tells us that this would have been a worse choice, that is, with it we would
lose more information. The second one completes the conmutativity properties of interest, shown in Figure 15.

27

Lemma 7.15 Given two types t, t' and a type variable 3, we have:
® Viinst * Q¢ Ve tinst
® Yp - Qtinst 2 Oltinstt/

where tinst = t'[3 := t].

Proof (Lemma 7.15) It can be proved directly from previous propositions:

Viinst - Q¢ = (YVertinst - Ve) - @ by Proposition 7.13

I Yetinst by associativity and Proposition 7.5
Ve - Qtinst = Yo - (- Quinstr) by Proposition 7.13

3 Qinsttr by associativity and Proposition 7.5

A generalization of the pair (7 tinst, Qtinst+) can be defined, where several type variables are instantiated
in sequence. This corresponds to a type Vf3;..... VBt and an instantiation tinst = t'[31 :=t1, ..., Bm = tm].
The analysis domains together with these pairs as morphisms form a category (by Proposition 7.13).

8 Relation between the analyses

In this section the relation between the first and the second analysis is studied. Grosso modo we are going to
see that the first analysis is worse than the second one, but in a safe way, that is, it is a safe approximation to
the second analysis. In particular we are going to prove that the first analysis is an upper aproximation to a
widening [CC92] of the second analysis (see Theorem 8.7). In Figure 16 an scheme of the functions defined in
this section and their definition domains are shown. Many propositions in this section can be easily visualized
using this figure.

In the first analysis there are neither nested tuples nor abstract functions. However, the abstract value a
of a function in such analysis uniquely represents an abstract function. We already know that a represents the
behaviour of the function given a deterministic argument. If the argument is non-deterministic, or it has any
‘dose’ of non-determinism, the result of the application is always non-deterministic. What we are really doing
is to simulate the behaviour of an abstract function. Let us assume that the abstract value of a function in the
fist analysis is a. Which is the abstract function a represents? It is a function that takes an abstract value; if
that value is non-deterministic the result is also non-deterministic, and if it is deterministic it gives as result the
abstract value a. This leads us to define a function 7, called the expansion function that ezxpands the abstract
values obtained in the first analysis into abstract values belonging to the second analysis abstract domains. As
in the first analysis there are no nested tuples, it will be necessary to adapt each of the basic values to the
types of the components. In the cases of basic type, algebraic type and type variables it is trivially the identity
function, as in both analyses the corresponding abstract domains are Basic. The polymorphic type case is also
easy as it is reduced to the type without qualifier.

Definition 8.1 (Expansion function) The expansion function n; is defined as follows:

ne = D1y = Doy

K = tdBasic

Nr ti..tm, = idBgsic

n(tl,...,tm)(bla SR bm) = (7t1 (b1)7 ces Vim (bm))

[(@) if 2 C (@)
M-t (@) = Az. { i, (n) otherwise

Mto (a') if 2 c V1 (d)

T|Process ty to (a) = Az. { Vo (n) otherwise

Np = Z.dBasic
vE.t = Mt

28

Figure 16: Representative scheme of the functions in this section

We can also look at the second analysis from the point of view of the first one. We just flatten the tuples up
to the first level and apply the functions to v;(d), to obtain the behaviour of the function when it is applied to
a deterministic argument. This is represented by the compression function §; defined below. It compresses the
abstract values obtained in the second analysis to abstract values of the first analysis domains. The cases of
basic type, algebraic type, type variable and polymorphic type are similar to those of the expansion function.

Definition 8.2 (Compression function) The compression function 0; is defined ad follows:

5t M D2t — Dlt

5K = Z.dBasic

5T t1eotm — idBasic

O(tr,tm) (€1 s €m) = (o, (€1),- .-, 0, (€m))
6t1%tz (f) = 6t2 (f(’ytl (d)))

OProcess t1 ta(f) = 0t (f (12.(d)))

5[3 = idBasic

dva.t = 04

Proposition 8.3 For each type t, the functions d; and n; are monotone and continuous.

Proof (Proposition 8.3) If we prove that they are monotone, as their domains of definition are finite, then
they will also be continuous. The monotonicity can be proved by structural induction on £.
Let us prove now that §; is monotone:

et=Kort=Tt...t, ort = (3. These cases are trivial as §; = idpgsic-

ot = (t1,...,tm). Let e;,e; € Dyy,. Let us assume that (er,...,e,) C (e},...,el,), that is, for each
i=1,...,m, e; C e,. We have to prove that d;(e1,...,em) C d(el,...,el,):

rm

or(ery...,em) = (o, (e1),...,as, (€m)) by definition of d;
C (ag(e)),...,az, (e),)) by monotonicity of o
= (el,...,el) by definition of J;

o t =t; =ty or t = Process t1 to. Let f, f' € [Day, = Day,]. Let us assume that f T f’, that is, for each
e € Dy, f(e) C f'(e). We have to prove that d;(f) C o:(f').

0t (f) 0t, (f(t,(d))) by definition of d;
Ots (f' (1, (d))) by ih. and f C f'

2 (
or(f) by definition of d;

o

o t =Vp.t'. As & = by, it trivially holds by i.h.
And now let us prove the monotonicity of n;.

et=Kort=Tty...t,, or t = 3. These cases are trivial as 0, = idpgsc-

29

., tm). Let b;,b; € Basic. Let us assume that (b1,...,b,) C (bf,...,0],), that is, for each
i=1,...,m, b; Cb,. We have to prove that n:(b1,...,bn) T n:(b],...,0},):

nt(bla---abm) (’)/tl(bl),...,’)/tm(bm))
(v, (0}, - - -, 7., (b1,)) by monotonicity of v
ne(by,...,00,)

r

ot =1t — tyort= Process t| tz. Let a,a’ € D1, = Dy4,. Let us assume that a C a'. We have to prove
that for each e € Doy, (mi(a))(e) C (ni(a’))(e). Let e € Doy, We distinguish two cases: e C 7, (d) or
€ Z Tt (d)
If e C 44, (d), then
(ne(a))(e) Nty (@) by definition of n;
N, (a') by i.h. and a C o
(ne(a'))(e) by definition of n;

Otherwise, e Z 7y, (d), and by definition of n:: (n:(a))(e) = v, (n) = (ne(a'))(e).

I

o t =VfB.t'. Asn = ny, it trivially holds by i.h.

The following proposition asserts that given an abstract value in Dy, if we apply §; to it to obtain a value
in D;, and then we apply U to the result (it could be a tuple of basic abstract values) we obtain the same as
applying a; to it directly to obtain a value in Basic. This shows a similarity between the abstraction process
used in the constructors applications and the compression function d;. In the end the ideas are the same.

Proposition 8.4 For each type t the following holds:
0.6 = oy
Proof (Proposition 8.4) It can be proved by structural induction on ¢:
et=Kort=Tt...t, or t = 8. These cases are trivial as §; = oz = idBasic-

o t=(t1,...,tm). Let e; € Dyy,, where i =1,...,m. Then:

(6 (e1,...,em)) = U(ag(e1),...,as, (em)) by definition of §
= || oy (e;) by definition of (I
= agler,...,em) by definition of ay

e t =t —ty or t = Process t1 to. Let f € Ds;. Then:

O6:(f)) = 00, (f(y.(d)))) by definition of &
= ay,(f(v(d)) by i.h.
= af) by definition of ay

e t =Vf.t'. In this case §; = J; and oz = ay, so it trivially holds by i.h..

Let us prove now that ¢; and 7; are an embedding-closure pair.
Proposition 8.5 For each type t, the following holds:

® ot -m =idp,,

o 1 -0 Jidp,,
that is, they are an embedding-closure pair, or a Galois insertion.

Proof (Proposition 8.5) Both things can be proved by structural induction on ¢. Let us prove first that
0t - = tdp,,:

30

et=Kort=Tt;...t,, or t = 3. These cases are trivial as Di; = Basic and n; = §; = idBasic-

o t =(t1,...,tm). Let b; € Basic, where i =1,...,m. Then:

O0t(me(b1, .- 3bm)) = 6e(,(b1), -, 7e,, (b)) by definition of 7,
= (ag (1, (01)), -5 an, (2, (b)) by definition of d;
= (b1, .., bm) by Proposition 7.5 in each component

o t =11 =ty or t = Process t1 t5. Let a € Dy;. Then

if z C d ..
0t(ne(a)) = & <)\z. { Ziz EZ)) lotlzle;wvitsle() > by definition of n,
= O, (e, (a)) by definition of d;
= a by i.h.

e ¢t =Vj.t'. In this case D1, = D1y, n¢ = 1y and §; = 8y, so it trivially holds by i.h..
Let us prove now that 1, - 0; J idp,,:

et=Kort=Tt...t,, or t = 3. These cases are trivial as Dy; = Basic and n; = §; = idpasic-

o t=(t1,...,tm). Let e; € Doy, where i =1,...,m. Entonces, tenemos:
ne(de(er, .. .,em)) = nlag(er),...,ar, (em)) by definition of &
= (v (ag, (€1)),- -, M, (aq,, (em))) by definition of n;
J (et,---,€m) by Proposition 7.5

e t =11 — ty or t = Process t1 ta. Let f € Dy;. Then
ne(6:(f)) = m(0e, (f (12, (d)))) by definition of d;

— U (6t2 (f(’ytl (d)))) if zC Tty (d) T4
= Az { e (n) otherwise by definition of n;

Let e € Dy, We have to prove that f(e) C (n:(d:(f)))(e). We distinguish two cases::

— e C v, (d). In this case (n:(6:(f)))(e) = ne, (0t (f (72, (d)))). As f is continuous and consequently
monotone, we have that f(e) C f(v, (d)). So

(m:(3:(f)))(e)
Mt (0t (f (72, () f(7,(d)) by ih.

fle) as f is monotone

[l

— e lZ v, (d). In this case (:(0:(f)))(e) = v, (n). By Lemma 7.4 v;,(n) 3 f(e), as f(e) € Day,.

e t =Vj.t'. In this case Doy = Doy, n: = 1y and §; = oy, so it trivially holds by i.h..

This last proposition tells us that 7, - §; is a widening operator in Ds,. This composition will be widely used
in the following, so we define V; = 1 - §;. We will call it the widening function. By unfolding its definition we
obtain the following:

Vt : D2t — D2t

vK = Z.dBasic

Vr t1.tm — idBasic

Vitr ot €15+ s €m) = (Y (@, (€1)), - - Y (1, (€m))

31

Vi s (f) = Az { Vi, (f (72, (d))) if 2 © v, (d)

i, (n) otherwise

Vi, (f (7, (d))) i 2 E 1, (d)

V Process t1 ts (f) = Az. { Vto (n) otherwise
Vﬁ - idBasic

Vgt = Vi

The last proposition tell us that for each type ¢, the range of V; is isomorphic to Dy;: V(Do) ~ Dy, (as
V. is idempotent). This means that the range of V; is a subdomain of D,, where we have lost the additional
information provided by the second analysis. For example, we still have nested tuples, but they are maintained
in a fictitious way, that is, they have been flattened up to the first level and then unflattened again. So all the
internal tuples will be formed by only n or only d. For example both ((n,d),d, (d,d)) and ((d,n),d, (d,d)) are
transformed by V; into ((n,n),d, (d,d)). We also have abstract functions, but only some of them; those that
can be represented with an abstract value in the domains of the first analysis: these are the functions such that
for all the values below ¢, (d), the result of the function is the same as the result obtained for 7, (d) and for
the rest of the values the result is the top of the corresponding domain, vz, (n).

We have already seen that 7; - oy 3 idp,, and also that V; 3 idp,,. But, how are they related? The
following propositions tells us that V; is smaller (i.e. better) than ~; - ay.

Proposition 8.6 For each type t the following holds:
ViEv-oy
Proof (Proposition 8.6) It can be proved by structural induction on ¢:
et=Kort=Tt...t, or t = 3. These cases are trivial as V; = az = ¢ = idBgsic-

o t=(t1,...,tm). Let e; € Dy, for i =1,...,m. Then:
Vilel, ... em) (e, (ar, (€1))y ooy v (i, (Em))) by definition of V;
(yex (L) et (€3)), -yt (L @t (€)@ ag; (e) E L g, () for each j =1,...,m

(3 (3

I

(3
and +;, is monotone by Proposition 7.3
Ye(ag(er, ... em)) by definition of a; and

o t =1t =ty or t = Process t1 ta. Let f € [Dyy, — Doy,] By definition of V,

Vi(f) = Az { Vi, (f (e, (d))) if 2z € v, (d)

Vt, (n) otherwise

By definition of v, and ay

Yelae(f)) =)\2_{ Ve (i, (2)) if g, (f (72, (d))) =d

Y, (n) otherwise

We distinguish two cases:
— . (f (7%, (d))) = n. In this case v (o (f)) = Az.94,(n). Let e € Dyy, . We have that (v:(a¢(f)))(e) =
Yt5(n). So, by Lemma 7.4 we have that v, (n) 3 (Ve(f))(e) as (V¢(f))(e) € Day,.

— ap, (f(14,(d)) = d. Now ve(as(f)) = Az.y1, (e, (2)). Let e € Dyy,. We distinguish again two cases:
e C v, (d) or not.
If e C v, (d) then (Vi(f))(e) = Vi, (f(74,(d))). By Lemma 7.6 oy, (e) = d. So, what we really want
to prove is that Vi, (f(v, (d))) C 44, (d). By i.h. we know that Vi, C 74, - az,, so:

Vi, (f (72, (d)) E 722 (1, (f (76, (d)))) = 1 (d)

In case e ,'Z Vt1 (d)7 then (Vt (f))(e) = Vto (TL) By Lemma 7.7 Aty (6) =1, S0 Vi, (atl (6)) = Vt2 (n)7 and
we have the equality.

32

o t =Vph.t'. As ay = ay, ¢ = ¢ and Vy = Vu by definition, it trivially holds by i.h.

The following theorem stablishes that the first analysis is a safe (upper) approximation to the widening of
the second analysis. As a corollary of this theorem we obtain the correctness of the first analysis with respect
to the second one: If the first analysis tells us that an expression is deterministic then the second analysis also
tells us that it is deterministic, probably with some additional detail as the independence of the output with
respect to the input in a function/process.

Theorem 8.7 If for each variable v :: t,, we have that pi(v) 3 6, (p2(v)) then:
Ve :: te.[e]; pr 3 6:.([e], p2)
Or equivalently, by Proposition 8.5:
Ve i tene, ([e], p1) 3 Vi, ([el, p2)
Corollary 8.8 If for each variable v :: t,, we have that p;(v) 3 &, (p2(v)) then:
Ve::te. [el; pr = di. = [e], p2 E . (d)

To prove this theorem and its corollary we need to prove before some properties of the functions that are
involved.

The following proposition relates the adaptation function in the first analysis and the concretisation function
in the second one. The are made equal through the application of &;.

Proposition 8.9 For each type t the following holds:
Vb € Basic. by = (0; - v¢) (D)
Proof (Proposition 8.9) It can be proved by structural induction on ¢:

et=Kort=Tty...t,, or t = 3. These cases are trivial as by = b and 6; = v = idpasic-

o t =(t1,...,tm). In this case we have:
Ot(y(0)) = Oe(ve, (D), ..oy, (D)) by definition of 7
= (ay (v, (0),. .., a, (7, (b)) by definition of d;
= (b,...,b) by Proposition 7.5
= b by definition of b;

e t =11 — ty or t = Process t1 to. We distinguish two cases:: b =d and b = n.

— b =d. In this case:

0t(ve(d) = de(Az, (o, (2))) by definition of ~;
= 6152 (%2 (at1 (7t1 (d)))) by definition of 6t
= 61, (71, (d)) by Proposition 7.5
= d; by definition of b;
— b=mn. Now we have
Ot(ve(n)) = 0t(Az.y,(n)) by definition of -y
= Oty (e, (n)) by definition of d;
= Ny, by i.h.
= mn by definition of b;

e t =Vf.t'. In this case by = by, 0; = d; and v = ¢, so it trivially holds by i.h..

33

The following proposition just tells us that d; is strict.
Proposition 8.10 For each type t the following holds:
6t(Lag) = dy

Proof (Proposition 8.10) This is obtained as a consequence of Proposition 8.5. In an embedding-closure
pair, the closure is strict, that is, the image of the infimum is the infimum. And clearly d; is the infimum in
Dy, and Lo, is the infimum in Do,.

The two following propositions relate the widening function V; with the abstraction and concretisation
functions a; and ~;. The basic idea is that once we have gone up the domain with V, the functions a; and
v have the same effect in the (subdomain of D, that is the) range of V; than in the whole domain. This
means that in fact oy and v are moving inside this subdomain. In Figure 16 this fact is represented by two
D,; domains encircled by a dashed line, where a; and +; appear between the range of V; and Basic.

Proposition 8.11 For each type t the following holds:
Qg - Vt = Ot
Proof (Proposition 8.11) This can be proved by structural induction on ¢:

et=Kort=Tt...t, ort=0. These cases are trivial as V; = a; = idgasjc-

o t=(t1,...,tm). Let e; € Dy, wherei =1,...,m. Then:

ar(Vi(er,.-.,em)) = ou(y, (o, (1)), -7, (e, (em))) by definition of V;
= | at (9, (o, (e4))) by definition of ay
= | ay(e:) by Proposition 7.5
i
= aler,...,em) by definition of a;

o t =1t =ty ort = Process t1 ta. Let f € [Day, — Day,]. Then:

ar(Vi(f) = a, (Vi (f(,(d)))) by def. of a; and V;
= atz(,Ytl())) by i.h.
= a(f) by definition of ay

e t =Vj.t'. It trivially holds by i.h. as V; = Vy and ay = ay.

Proposition 8.12 For each type t the following holds:
Vi v =mn
Proof (Proposition 8.12) This can be proved by structural induction on ¢:
et=Kort=Tt ...ty or t = 3. These cases are trivial as V; = 1+ = idpasic-
e t =(t1,...,tm). Let b € Basic. In this case:

Vi(ye(d) = Vi, (), .-, (b)) by definition of

= (7, (ag (%1(1))y -y, (ar,, (2, (D)) by definition of V;
= (vt (0)s- -V, (D)) by Proposition 7.5
= 7(b) by definition of ;

34

vtinst vt’

SRR

Yt tinst
-—

Figure 17: Proposition 8.13: Vst - Vertinst = Vertinst - Vi, where tinst = t'[3 := t]

o t =11 =ty or t = Process t1 to. Let b € Basic. We distinguish two cases: b =d or b = n.

Let us see first the case when b = d. On one side we have that:

Vi(1:(d))

Vi Az, (ag, (2))) by definition of

- Az vt2 (7t2 (atl (7{1 (d)))) if z c V1 (d) by definition of vt
Vi, (n) otherwise

= Az, Vto (d) if 2 C Yt (d)

i, (n) otherwise by i.h. and by Proposition 7.5
to

On the other side we have that v:(d) = Az.y,(ou, (2)). We have to prove that for each e € Dy, ,
(Vi(1:(d))(e) = (7:(d))(e). We distinguish two cases:

— e C 7, (d). In this case
(Ve(ve(d)))(€) = 7 (d)
By Lemma 7.6, if e C 7, (d) then ay, (e) = d, so

(e(d))(€) =1, (d)
— Otherwise, by Lemma 7.7, oy, (€) = n and we have:

(Ve(ye(d))(e) = 1,(n)

Il
—~
2T
—~
&R
==
=

o)
N

Ifb=n:
Vi(r(n)) = Vi(Az.7,(n)) by definition of
_ Vi, (712 (n)) if 2 E 7, (d) iy
= Az { i, () otherwise by definition of V;
= Az ’Ytz() by i.h. vtz “Vtz = Mtz
= n(n) by definition of

e t =Vf.¢'. Tt trivially holds by i.h. as V; = Vy and v = .

The two following propositions add some results about the polymorphic functions. The first one tells us that
we obtain the same result if we adapt an abstract value belonging to Dy to the type tinst and then widen the
result that if we first widen it and then adapt the result. In Figure 17 a diagram is shown.

Proposition 8.13 Given two types t, t' and a type variable 3, the following holds:
Vtinst = Ve tinst = V' tinst © V!
where tinst = t'[3 = {].
Proof (Proposition 8.13) This can be proved by structural induction on ¢':

et/ =Kort' =Tt ...ty ort' =3 (# B). In these cases Dyypnst = D2y = Basic and Viinst = Vo' tinst =
V¢ = idBasic, SO it terlally holds.

35

o t' = (t1,...,tm). In this case tinst = (tinsty, ..., tinst,,) where tinst; = t;[3 :=t], fori =1,...,m. By
i.h. we have that foreachi =1,...,m, Vtmsti “ VYt tinst; = Vt;tinst; Vti . Let e; € DQti wheret=1,...,m.
Then:

Vtinst ('Yt’ tinst (617 s em))

= Viinst (Vs tinst:1 (€1), - - s Ve, tinst,, (€m)) by definition of vy 4inst
= (Vtinst, (tinst, (Vey tinst1 (€1)))s - - - s Veinsto (Ctinst,, (Vem tinst,, (€m)))) by definition of V

= (Vtinst, (@, (€1)), - -+ s Veinst., (0, (€m))) by Proposition 7.14

= (7t1 tinst (’ytl (atl (61)))a ceo Vi tinst, (’th (atm (em)))) by Proposition 7.13

= Yetinst(Ve, (g, (€1))y -y (e, (1)) by definition of V4 ¢inst
= Yertinst (Ve (€1,-. -, €m)) by definition of V;

o t' =t — tyort’ = Process t; tz. In this case tinst = tinst; — tinsts, respectively tinst = Process tinst, tinsts,
where tinst; = t;[f :=1t], for i = 1,2. Let f € [Da;, — Day,]. On one side we have:

V tinst ('Yt’ tinst (f))
= Viinst (A2 Vtotinsts (f (Qtinst, 12 (2)))) by definition of 7y sinst

— o 4 Viinsts (Vestinsts (F(@tinsty 12 (Veinst, (d))))) 3 2 E Ytinst (d) by definition of ¥,
Ytinst, () otherwise

On the other side:

Vi, (d)) if 2 Ty, (d .
Yertinst (Ve (f)) = Ve tinst (AZ{ %Z (%(Ztth(er)vi)ise 71 (d)) by definition of V;

Vestinsts (Vs (f (761 (d)))) if insty ¢, (2) E Y24 (d)

= Az { Yoy tinsts (Ve (1)) Otherwise by definition of g tinst

We want to prove the equality of these two functions. Let e € Doy, . We distinguish two cases::

— € C Y4inst, (d). Then by monotonicity of aiinstrr (Proposition 7.11), @ttinst, t,(€) T Qtinst, t, (Vtinst, (d))
and by Proposition 7.14 ainst, t, (Vtinst, (d)) = Y4, (d), so

Qtinstq t1 (6) E Vt1 (d)
So, in this case:

(Vitinst (Vertinst (£)))(€) = Viinsts (Veotinsts (f (Qtinst, ¢, (Veinst, (d)))))

and
('Yt’tinst (vt’ (f)))(e) = Ytotinsto (vtz (f(’)/h (d))))
So:
(vtinst ('Yt’ tinst (f))) (6) = vtinst2 ('Ytz tinsto (f(atmstl t1 (’Ytinstl (d))))
= VYestinsts (Vo (f (Qtinsty t, (Veinst, (d))))) by i.h.
= Yegtinsts (Vi (f (72, (d))))) by Proposition 7.14

= Yeinst (Ve (f)))(€)

— e I Yiinst; (d). In this case by Lemma 7.7 ayinst, (€) = n. Additionally, (Viinst (Ve st (f)))(e) =
Yiinsto (n). And also we have that ainst, t, (€) Z ¢, (d). This is true because otherwise by Proposition
713 atinst, (€) = auy (Qtinst, 1, (€)) , we would have that st (€) E ay, (7, (d)) by monotonicity of
a; (Proposition 7.3), what would mean that ainst, () = d (by Proposition 7.5), which is false as we
have just seen that it is equal to n. So (Ve tinst (Ve (f)))(€) = Yestinsts (Ve (n)). And:

(Vtz'nst(%'tinst(f)))(e) = Vtinstsy (n)
Viotinsts (Vs (1)) by Proposition 7.13

= (Yetinst (Ve (f)))(€)

36

= (. In this case:

Viinst - Yertinst = Vi M by definition of V; and 7,
Ve by Proposition 8.12
Yertinst - V¢ by definition of vy ¢inst and Vi

t = Vﬂ’.tl. It holds directly by lh, as Vtinst = Vtinstly Yt' tinst = Vtqtinsty and Vt/ = th.

The following proposition tells us basically that the adaptation of an abstract value in Dy to obtain an
aproximation to the abstract value of an instance tinst, is basically equal to the adaptation made with ¢ ¢inst
in the domains of the second analysis.

Proposition 8.14 Given two types t, t' and a type variable 3, the following holds:
Va € Diy. Ginst = Otinst (Ve tinst (N (@)))
where tinst = t'[3 = {].
Proof (Proposition 8.14) It can be proved by structural induction on ¢':

et'!=Kort' =T t...t,, or t' = 3" (# B). In this case Dipst = D1p = Basic. Let b € Basic. Then
biinst = b. On the other side Oginst = Yertinst = N = 1dBasic, SO it holds trivially.

o t' = (t1,...,ty). In this case tinst = (tinsty,..., tinst,,) where tinst; = t;[:=t], for i = 1,...,m. Let
b; € Basic. Then

6tinst (’Yt’tinst (nt’ (bly sy bm)))

= Otinst (Ve tinst (Ve (b1)5 - -5 Ve, (b)) by definition of 7,

= 6tinst (’Ytl tinsty (7151 (bl))y -« Vi tinsty (%m (bm))) by definition of Ve tinst

= Otinst ('Ytinstl (b1)7 ey Vtinst, (bm)) by Proposition 7.13

= (@tinst, (Veinst, (01)), - - - > Qtinst,, (Veinst,, (bm))) by definition of d;

= (b1,.-.,bm) by Proposition 7.5

= (b1, - bm) st by def. of the adaptation

o t' =t — ty ort’ = Process t; t». In this case tinst = tinst; — tinsts, respectively tinst = Process tinst; tinsts,
where tinst; = t;[6 :=1t], for i =1,2. Let a € D1y = Dq4,. Now we have:

5tmst VYt tinst (77t'

= Ouinst (fy b tinst < { s () if 2 C Tt (d) >) by definition of 7

Vt, (n) otherwise

= Btinst | A2 { Veo tinsts (M2 (@) if Qltinst, t1 (2) E 7, (d)

Veatinsts (1o (1)) Otherwise) by definition of ;s ¢inst

= Otinsts (Vegtinsts (Mt (@))) by def. of §; and Proposition 7.14
= Qtinsto by i.h.
= Qinst by definition of adaptation

= (3. Now D4 = Basic and D14, = D14. Let b € Basic. Then:

Otinst (%'tinst(nt' (b))) = 0 (’Yt (b)) by def. of &, Ve tinst and 0y
= b by Proposition 8.9
= btinst

t' = V' .t1. It directly holds by i.h., as Oinst = Otinsty, Vertinst = Vextinsty > Meinst = Neinst, AN Diinst = Dtinst, -

37

A very important and useful property to prove the correctness is the semihomomorphic property of §; with
respect to the application of a function. But as there are no functional domains in the first analysis, the property
holds with respect to the pseudoapplication we use in such domains, that is, the way in which application of a
function is interpreted: f(z) = (Jz) U f.

Proposition 8.15 Let f € [Dy;, — Day,], e € Day,. The following holds:

6t2 (f(e)) C (/Ll\(stl (6)) U 6t1—>t2 (f)

Proof (Proposition 8.15) Let f € [Dy;, = Day,], e € Doy, . By definition 6, ¢, (f) = 6, (f (72, (d))), so we
have to prove that 8, (f(e)) T (08¢, (€)) U 6, (f (71, (d))). We distinguish two cases::

e ¢ C 7y, (d). As f is monotone, f(e) T f(v,(d). By Proposition 8.3, d;, is monotone, so d,(f(e)) C
8¢, (f(7¢,(d))), which trivially is less than or equal to (Ld, (€)) U 8, (f (v, (d))).

e ¢ Z v, (d). In this case, by Lemma 7.7 oy, (€) = n, so by Proposition 8.4, (&, (e)) = n.
It is obvious that b € Basic, nUb 3 b’ for any b' € Basic. And if a € Basic™, then nUa 3 d, for any
a' € Basic™. That is, the lub of any value and n takes us to the top of the corresponding domain.
So R
(Udr, (€)) U bty 2, (f) = n U bty 2, (f) 3 61, (f(€))

Let us prove now the Theorem 8.7 of correctness of the first analysis with respect to the second one. Let p;
and py such that for each variable v :: t,, p1(v) 3 &, (p2(v)).
Proof (Theorem 8.7) It can be proved by structural induction on e.

e v :: t. In this case:

[vl; 1 = p1(v) by definition of [|,
J d(p2(v)) by hypothesis over the environments
= 6([v], p2) by definition of [],
o kK.
[kl m = d by definition of [],

k], p2 by definition of [],
= O0x([k]5 p2) by definition of d;

o Cxy...¢m =Tt ...t,, where 2; :: t;. By i.h. we know that for each i = 1,...,m, the following holds:
[z:], p1 3 0, ([:], p2)
As the operator is monotone, this means that for each i = 1,..., m the following holds
O([zily pr) 2 0 ([2:], p2))
By Proposition 8.4 we have that U(&;; ([z:], p2)) = ar, ([zi], p2), so
O([zily p1) 2 e ([l p2) (%)

Then:

L(@O([z:1, p1)) by definition of [],

] (e, (2, p2)) by ()
[C zy...xn], p2 by definition of [],

[Cai...xn], ;1

I

38

o (1,...,@m) : (t1,-..,tm). Let us call ¢ to (¢1,...,tn). In this case we have on one side that:

(@)l ot = @[y 1)y, Dllwnly 1)) by definition of [], i
J (U0 ([x1]y p2)), .-, U, ([xm]s p2))) by ih. and monotonicity of U
= (o, ([z1]s p2),-- s au,, ([xm]y p2)) by Proposition 8.4

and on the other side:

e([(z1,. -y zm)]y p2) Ot([z1]y p2,-- - [2m]s p2) by definition of [],

(at, ([z1]y p2),-- -, ae, ([zm], p2)) by definition of 4,

So
(z1,..zm)]y o 2 6e([(z1,- .- zm)]s p2)

e \v.e ity — to. The proof is exactly the same if the expression is process v — e :: Process ti ts.

In this case we have on one side that:

[Av.e], p1 =[e], p1 [v— dy,]

Let us call p| to p1 [v = dy,].
On the other side we have that:

[Av.e]y p2 = Az.[e], p2 [v — 2]
so that:

SDoely) = GOlel, 2 [0 - 2]
0t5([ely p2 [v = v, (d)]) by definition of §;

Let us call ply, to p3 [v = v, (d)].
If we proved that for each variable y :: t,, pi(y) 2 &, (p5(y)), then by i.h. we would have that
[el, 1 2 0r([e], p2)

that is what we wanted to prove.

So let us prove this. Let a variable y :: ¢,.

— If y # v, it trivially holds by hypothesis over the environments p; and po.
— If y = v, then we have to prove that dy, 3 &, (74, (d)), which holds trivially by Proposition 8.9.

e ¢x ::ty, where e ::t; — ty and x :: t1. Let us call ¢t to t; — t5. The proof is similar in case the expression
is v#x where v :: Process t1 t2. By i.h. we know that

[z, p1 3 0, ([z], p2)

and
lel, p1 2 6:([ely p2)

So we have that:

lex], ;m = (g([[cn]]1 p1)) U ([el; p1) by definition of [], R
3 (U(6¢, ([=]4 p2))) U de([e], p2) by ih. and monotonicity of U and U
3 6, (([e]ly p2)([=]y p2)) by Proposition 8.15
= (e 2], p2) by definition of [],

e let v =c in €' :: t, where v and e have type t., and €' :: t. In this case, we have on one side that:

llet v = cin e, py = [, p [0 = [e], pi]

Let us call p} to p1 [v — [e]; p1]-

39

On the other side we have that
llet v ="c in e'], p = ['], p2 [v = [], p2]

Let us call p5 to p2 [v — [e]; p2]-
If we proved that for each variable y :: t,, pi(y) 2 &, (p5(y)), then by i.h. we would have that

le'], P 3 6t([e'], P5)

which is what we want to prove.

Let us then prove this. Let y :: ¢,.

— If y # v, it trivially holds by hypothesis over the environments p; and po.

— If y = v, then we have to prove that

lel, p1 3 6:.([el, p2)
which holds by i.h..

case e of (vy,...,v,,) — €' = t, where e :: te = (t1,...,tm), v; :: t; and €' :: t. In this case, we have on
one side:

[case e of (vi,...,vm) = €], p1 =[€]; p1 [vi = (mi([e]; p1))s:]
And on the other side that

[case e of (vi,...,vm) = €]y p2 = [€], p2 [vi = mi([e], p2)]
If we proved that for each i = 1,...,m the following holds
(mi(lely p1))e; 2 0r; (mi(le], p2))

then by i.h. we would have that

[Ty o1 [vi = (mi(lely p1))e] 2 (€], p2 [vi = mi([el, p2)))

which is what we want to prove.

So let us prove this. By i.h. we know that the following holds:

lel, p1 2 6t ([e]y p2)

This can be rewritten in the following way:

(ri([ely p1),-- . mm([el; p1)) = lel; m as it is of tuple type
3 i ([ely p2) by ih.
= O (mi([e]ly p2),-- - mm([e]ly p2)) as it is of tuple type

= (ay (mi([e]ly p2)), .-, e, (mm([e], p2))) by definition of &,

That is, for each ¢ = 1,...,m the following holds:

mi(lely p1) 3 as; (mi([el, p2)) (+)

So:
(mi(lely 1)) = 0 (v (mi([e], p1))) by Proposition 8.9
3 6, (v (o, (mi([e]l, p2)))) by (*) and monotonicity of d; and
3 6, (mi[e]y p2)) by Proposition 7.5 and monotonicity of d;

so we have what we wanted to prove.

40

o caseeof C; U;; — e; :: t, wheree :: t, =T t) .. .1}, v = t;j and e; :: t. Let us call €’ to case e of C; T;; — e;.
In this case we have on one side that:
. ng if [e]; p1 =n
[e'], p = L| [es]; p1i otherwise
i _—
where p1; = p1 [vij = di;;], v = tij,e ot
and on the other side:

, ve(n) if [e], p2 =n
[e']y p2 = LI [eill; p2i otherwise

where pa; = pa [Vij = Vi, (d)], vij = tij, et

By i.h. we know that
lel, p1 3 d:.([ely p2)

that is, knowing that dp #th, = idBasic:
lel, p1 2 [el, p2
We distinguish three cases:
— [el; p1 = [e], p2 = n. In this case:
e, ;1 = ne by definition of [|,

Ot (ve(n)) by Proposition 8.9
= 06 ([e'], p2) Dy definition of [],

— [el; p1 = [e], p2 = d. In this case:

[[6']]1 p1L = |7| [[ei]]l Pii

where py; = py [vij — dy,;] and
[e'], p2 = |_| leil, pai
1

where pa; = p2 [vij = Y1, (d)].
If we proved for each i = 1,...,m, that for each variable y :: t,, p1;(y) 3 d,(p2i(y)), then by i.h. we
would have that for each i the following holds

leily pri 2 0c([eily p2i)

so, by continuity of d;:
LI [eily pre 2 L Oe([ealy p2i) = o:(Ld [esly p2i)

which is what we wanted to prove.

So, let us prove now that for each variable y :: t,, p1:(y) 3 0¢, (p2:(y)). If y is not any of the v;;, this
is trivially true by hypothesis on p; and ps. If y is one of the v;;, then it is also true by Proposition
8.9.

— [el; pr = n 3 [e], p2 = d. In this case [e'], p1 = nt, and [e'], p2 = | [eil, p2i- Clearly,
i
ng || [ei]y p2i, as ng is the top of Dy,
i

41

e letrec {v; = e;} ine’ :: ¢, where e’ :: ¢, and each v; and e; have type ¢;. Let us call e to let rec {v; = e;} ine’.

In this case:
[el, o1 = €] (|] Ooi-pr [vi = [eily P11 (po1))
nEIN

where po; is the initial environment where each variable y :: ¢, has d;, as abstract value (that is, the infi-
mum of the corresponding domain). Let us call F' to the function between environments Apj.p1 [v; = [e:]; pi]-

Let us call p/™* to Ll,en £ (po1)-
On the other side:
[ely p2 =€l (| | (\ohop2 Ti = [eily 5™ (po2))
ne]N

where pgs is the initial environment where each variable y :: ¢, has Lo; as abstract value (that is, the infi-
mum of the corresponding domain). Let us call G to the function between environments Ap}.ps [v; = [e;], pb)-

Let us call pf” to Ll,eN G" (po2)-
If we proved that for each variable y :: t,, p/*(y) 3 o, (V5% (y)), then by i.h. we would have that

[T, p1* 2 6e([e'], PA°)

which is what we wanted to prove.

Let us see that for each n > 0, the following holds

Vy i ty.(F™ (po1)) (y) 2 ¢, ((G™(po2)) (1))

If this were true then

Vy sty (L] F (o)) 36, (L] G"(p02)))
nelN nelN

by continuity of d;, and this is what we want to prove. It can be proved by induction on n:

— n = 0. This is a trivial case as F°(po1) = po1, G°(po2) = poz and d; = §;(L2,), by Proposition 8.10.
— n=m+ 1. Then

F™(po1) = F(F™(po1))
p1 [vi = [es]; (F™(po1))] by definition of F
and
G (po2) = G(G™(po2))

p2 [vi = [ei]y (G™(po2))] by definition of G

Let y :: t,. We want to prove that (F™!(po1))(y) 3 &, (G™*(po2))(y)). We distinguish two cases.
If y is not any of the v;, then it holds by the hypothesis over the environments p; and ps. If it is one
of the v;, then we have to prove that

[e:], (F™(po1)) 2 6 ([ei]y (G™(po2))) (%)
By i.h. (internal on n)
Vy 2 ty. (F™(po1))(y) 2 0r, ((G™(po2))(y))

we obtain (*) by i.h. (external on e).

e AB.e:: VB.t, where e :: t. In this case:

[AB.e];, ;1 lel; ,1 by definition of [|,
([el,) by i.h

dvp.t([AB.€], p2) by definition of [], and &,

i

42

e et :: tinst where e :: V.t' and tinst = t'[8 := ¢]. In this case

(lely P1) 4ingt by definition of [],
Stinst (Ve tinst (M ([e]y p1))) by Proposition 8.14
Otinst (Ve tinst (e (O ([€]ly p2)))) by i.h. and monotonicity of 0, Ve tinst and n
Stinst (Ve tinst (Ve ([€]5 p2))) by definition of V;
= 6tinst (vtmst (’)/trtmst([[e]]2 pg))) by Proposition 8.13
(
(

[[e t]]1 P1

iy

Otinst (Ve tinst ([€]5 P2)) by definition of V; and Proposition 8.5
Stinst ([€]y p2) by definition of [],

To prove the corollary of this theorem we need the following lemma.
Lemma 8.16 For each type t and b € Basic the following holds:

ne(be) = 71(b)

Proof (Lemma 8.16) By Proposition 8.9 we know that by = d:(7:(b)). So:

ne(be) = m(Se(12(b)))
= Vi(%(b)) by definition of V,
= (b) by Proposition 8.12

Proof (Corollary 8.8) Let us assume that for each variable v :: t,, p1(v) 3 0, (p2(v)). Let e :: t. such that
lel, p1 = d¢,. Then:

lel, p2 & Vi ([e]l, p2) by Proposition 8.5
C m.([e], pr) Dby Theorem 8.7
= e (d,) by hypothesis
= .(d) by Lemma 8.16

A more usual way of presenting the correctness of an analysis with respect to another is the following
proposition, but this is more apropriate when in both analysis (or in one analysis and in the standard semantics)
the functions are interpreted as functions. In our first analysis there are not functions, but we can consider as
a pseudoapplication the way in which application of a function is interpreted: f(x) = (0z) L f. However, this
proposition does not add anything new to the Theorem 8.7, as in the first analysis the abstract value of the
function already tells us all the information we need. It is not necessary to ‘pseudoapply’ it to d and look at
the result.

Proposition 8.17 Let f ::t; — t2, e € D1y, and ez € Doy,. The following holds:

(Cex) U ([f], 1) Eex = Ve T, (e1). ([f]y p2)(e) E ey (e2)

Proof (Proposition 8.17) Let f ::t; — 2, e1 € D1y, and es € Dyy,. Let us assume that (Qep) U ([f1; p1) C
es. Let e C gy, (e1). Then 4y, (e) E e; by Proposition 8.5. So:
e er) U([f]y p1)
e1) U (04,4, ([f]5 p2)) by Theorem 8.7
61, (€)) U (8¢, -, ([f]5 p2))
3¢, (([f15 p2)(e)) by Proposition 8.15

@
@
@

Iy

which implies by Proposition 8.5 that
(115 p2)(€) E ne, (e2)

The corollary of this proposition tells us that, given a function of type t; — to, if its abstract value in the
first analysis returns d;, when ‘pseudoapplied’ to di, , then the abstract value in the second analysis produces a
result below 7, (d) when applied to an argument below ¢, (d).

43

Corollary 8.18 Let f :: t; — t2. The following holds:

(Gdr,) U ([f]y p1) = de, = Ve T, (d). (I£]5 p2)(e) T 2,(d))

Proof (Corollary 8.18) If (Ud;,) U ([f], p1) = di,, by Proposition 8.17, for each e C n;, (d,) we have that
([f15 p2)(e) T me,(de,). By Lemma 8.16 0, (d,) = v (d) and ne,(di,) = Ye,(d), so we have that for each

e £, (d), (If]5 p2)(€) E i, (d).-

9 Related and future work

The first analysis presented in this paper has been expressed using first a type annotation system and afterwards
an abstract intepretation easily extensible to a more powerful analysis. In recent years typed based analyses
have been widely used for several reasons such as their better efficiency and their adequacy when the information
being looked for is preserved across transformations. Non-determinism property should not change across the
transformations, so it seems natural to attach non-determinism information to the types of the expressions.
In [TWM95] a type based analysis is developed to detect values that are accessed at most once. In [WJ99)
type polymorphism and user-defined data types are added. The language being analysed is a second order
polymorphic A-calculus extended with some Core constructions, very similar to the one we have used in our
analysis. The analysis annotates the types with usage information.

However the abstract interpretation has shown to be a more direct tool to implement a prototype of the
analysis. In [BFGJ] C. Baker-Finch, K. Glynn and S. Peyton Jones present their constructed product result
(CPR) analysis. The analysis pretends to determine which functions can return multiple results in registers,
that is, which functions return an explicitly-constructed tuple. It is an abstract interpretation based analysis
where the abstract domain corresponding to a function type t; — t- is not the corresponding functional domain,
but it is instead isomorphic to the abstract domain of the result’s type t2. Product types are interpreted as a
cartesian product of a basic abstract domain, so nested tuples are not allowed. Our first analysis, expressed as
an abstract interpretation, follows the same ideas but for different reasons that have been already explained.

The second analysis is a typical abstract interpretation in the style of [BHAS86], where functions are
interpreted as abstract functions. There, a strictness analysis is presented where the basic abstract do-
main is also a two-point domain (L C T). However, the analyses are rather different. As an example, let
f :: (Int —» Int) — Int be a function whose abstract interpretations in the strictness analysis and in the
non-determinism analysis are respectively f¢ and f™. To find out if such function is strict in its argument
we apply f° to Lrnt—rnt, that is, to Az.L: If the result is L, then it is strict in its argument; otherwise it
may be non-strict. On the other hand, if we want to know whether it is is deterministic or not, we apply f"
t0 Yrnt—int(d), that is, to Az.z: If the result is less than or equal to vyr,:(d) (that is, it is equal to d) then
it is deterministic; otherwise it may be non-deterministic. For example, Ag.g (head(merge#[[0],[1]])) is strict
in its argument but it may be non-deterministic, i.e. f* (Az.L) = L but f" (Az.z) = n. Also, the abstract
interpretation of primitive operators, constructors and case expressions is different in each analysis.

Correctness of the analyses has not been proved, as still there is not a formal semantics for Eden. However
a simplified version where some details are abstracted could be used to prove the correctness.

We have already said that the first analysis has linear complexity, while the second one has a exponential
one, as functions are involved. However the second analysis is more powerful than the first one. Following
the ideas in [PP93] an intermediate analysis could be developed so that it is more powerful than the first one
but less expensive than the second one. The idea is to use a probing to obtain a signature for the function.
Such signature is easily comparable and represents a widening of the function. This speeds up the fixpoint
calculation, as the chain of widened approximations is shorter. The first analysis is in fact a particular case of
probing, where all the arguments are set to ‘d’. The idea is to probe also the combinations of arguments where
‘n’ occupies each position. For example, in a function with three integer arguments, the additional probings
would be (n,d,d), (d,n,d) and (d,d,n).

Another alternative to improve efficiency in the second analysis could be to extend the type based analysis
in the style of [GS00] so that it mimicked the powerful abstract interpretation with less cost.

44

References

[Bar93|

[BFGJ]

[BHAS6)

[CC92]

[GS00]

[Hen82]

[HO90]

[Hun91]

[JHH*93]

[JPS96]

[KPROO]

[McC63)

[MHS87]

[INNH99]

[PP93]

[PPRS00]

[PS98]

[PS00]

G. Baraki. Abstract Interpretation of Polymorphic Higher-Order Functions. PhD thesis, University
of Glasgow, February 1993.

C. Baker-Finch, K. Glynn, and S. L. Peyton Jones. Constructed Product Result Analysis for Haskell.
Submitted to International Conference on Functional Programming, ICFP’00.

G. L. Burn, C. L. Hankin, and S. Abramsky. The Theory of Strictness Analysis for Higher Order
Functions. In H. Ganzinger and N. D. Jones, editors, Programs as Data Objects, volume 217 of
LNCS, pages 42-62. Springer-Verlag, October 1986.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation,
2(4):511-547, August 1992.

J. Gustavsson and J. Svenningsson. A usage analysis with bounded usage polymorphism and subtyp-
ing. In Proceedings of the 12th International Workshop on Implementation of Functional Languages,
pages 279-294, 2000.

P. Henderson. Purely Functional Operating Systems. In Functional Programming and its Applica-
tions: An Advanced Course, pages 177-191. Cambridge University Press, 1982.

R. J. M. Hughes and J. O’Donnell. Expressing and Reasoning About Non-Deterministic Functional
Programs. In Functional Programming: Proceedings of the 1989 Glasgow Workshop, 21-23 August
1989, pages 308-328, London, UK, 1990. Springer-Verlag.

S. Hunt. Abstract Interpretation of Functional Languages: From Theory to Practice. PhD thesis,
Department of Computing, Imperial College of Science, Technology and Medicine, October 91.

S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler. The Glasgow
Haskell Compiler: A Technical Overview. In Joint Framework for Information Technology, Keele,
DTI/SERC, pages 249-257, 1993.

S. L. Peyton Jones, W. Partain, and A. L. M. Santos. Let-floating: moving bindings to give faster
programs. International Conference on Functional Programming ICFP’96, May 1996.

U. Klusik, R. Pefia, and F. Rubio. Replicated Workers in Eden. 2nd International Workshop on
Constructive Methods for Parallel Programming (CMPP 2000). To be published by Nova Science,
2000.

J. McCarthy. Towards a Mathematical Theory of Computation. In Proc. IFIP Congress 62, pages
21-28, Amsterdam, 1963. North-Holland.

J. C. Martin and C. Hankin. Finding fixed points in finite lattices. In G. Kahn, editor, Functional
Programming Languages and Computer Architecture, pages 426-445. Springer-Verlag, Berlin, DE,
1987. Lecture Notes in Computer Science 274; Proceedings of Conference held at Portland, OR.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag, 1999.

S. L. Peyton Jones and W. Partain. Measuring the effectiveness of a simple strictness analyser.
In Glasgow Workshop on Functional Programming 1993, Workshops in Computing, pages 201-220.
Springer-Verlag, 1993.

C. Pareja, R. Penia, F. Rubio, and C. Segura. Optimizing Eden by Transformation. In Draft Pro-
ceedings of the 2nd Scottish Functional Programming Workshop, pages 197-212, 2000.

S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser for Haskell. Science of
Computer Programming 32(1-3):3-47, September 1998.

C. Pareja and C. Segura. Efecto de las Transformaciones de GHC sobre Edén. Technical Report
101-00. Dep. Sistemas Informéticos y Programacién (Univ. Complutense de Madrid), 2000.

45

[Rub99]

[San95)

[SS90]

[$592]

[TWMO95]

[WJ99]

F. Rubio. Programacién funcional paralela eficiente. Trabajo de Tercer Ciclo, Departamento de
Sistemas Informdticos y Programacién (Universidad Complutense de Madrid), 1999.

A. L. M. Santos. Compilation by Transformation in Non-Strict Functional Languages. PhD thesis,
Department of Computing Science. University of Glasgow, 1995.

H. Sgndergaard and P. Sestoft. Referential Transparency, Definiteness and Unfoldability. Acta
Informatica, 27(6):505-517, May 1990.

H. Sgndergaard and P. Sestoft. Non-Determinism in Functional Languages. Computer Journal,
35(5):514-523, October 1992.

D. N. Turner, P. Wadler, and C. Mossin. Once Upon a Type. In 1995 Conf. on Functional Program-
ming and Computer Architecture, pages 1-11, 1995.

K. Wansbrough and S. L. Peyton Jones. Once upon a polymorphic type. In The Twenty-sizth
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, Texas,
January 1999.

46

