
Correctness of Non-determinism Analyses in a

Parallel-Functional Language?

Clara Segura and Ricardo Peña

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
e-mail: {csegura,ricardo}@sip.ucm.es

Abstract. The presence of non-determinism in the parallel-functional
language Eden creates some problems. Several non-determinism analyses
have been developed to determine when an Eden expression is sure to
be deterministic, and when it may be non-deterministic. The correctness
of these analyses had not been proved yet. In this paper we define a
“maximal” denotational semantics for Eden in the sense that the set of
possible values produced by an expression is bigger than the actual one.
This semantics is enough to prove the correctness of the analyses. We
provide the abstraction and concretisation functions relating the con-
crete and abstract values so that the determinism property is adequately
captured. Finally we prove the correctness of the analyses with respect
to the previously defined semantics.

1 Introduction

The presence of non-determinism in the parallel-functional language Eden cre-
ates some problems: It affects the referential transparency of programs [11] and
invalidates some optimizations done in the Glasgow Haskell Compiler (GHC)
[10]. Three non-determinism abstract interpretation based analyses have been
defined to determine when an Eden expression is sure to be deterministic, and
when it may be non-deterministic [7, 8]. They have been formally related and
compared with respect to expresiveness and efficiency [5].
However the correctness of these analyses had not been proved yet as there

was no appropriate denotational semantics for Eden including non-determinism.
Very recently it has been published in our group a complete denotational seman-
tics [3] for Eden based on continuations. There, non-determinism is expressed
by the fact that, after evaluating an expression, a process may arrive to a set
of different states, so that several continuations are possible. Unfortunately this
semantics is not still appropriate for our purposes: On the one hand it provides
lots of details that would obscure the proof of correctness. On the other, the set
of states a process may arrive to do not constitute a mathematical domain and
this is essential when abstract interpretation is used.
So, the first contribution of this paper is the definition of an appropriate deno-

tational semantics, in one sense simpler and in another sense more complex than
that of [3]. Moreover, as concurrency and parallelism aspects are abstracted away,
the non-determinism analyses would also be correct for any non-deterministic
functional language whose semantics is (upper) approximated by this one. It

? Work partially supported by the Spanish project TIC 2000-0738.

is a plural semantics in the style of [12] but with higher order and algebraic
types incorporated. The domains of values are defined by means of Hoare pow-
erdomains considering that the behaviour of the non-deterministic operator is
near to angelic non-determinism. To our knowledge, this is the first time that
a powerdomain-based non-deterministic semantics including higher-order values
is defined. It is not the actual semantics of Eden but an upper approximation
to it in the sense that, if an Eden expression e may evaluate to value v, then v
is included in the set s denoted by e in the semantics, but s may include values
that the implementation will never arrive to. However, this semantics is enough
to prove the correctness of the analyses.
The second contribution of the paper is the proof of correctness itself. We pro-

vide the abstraction and concretisation functions relating the concrete and ab-
stract values so that the determinism property is adequately captured. We prove
that they form a Galois connection and then we prove the correctness of the anal-
yses with respect to the semantics. The techniques we use are rather standard in
the abstract interpretation area but the problem addressed —non-determinism
analysis with functional domains, denotational semantics with Hoare higher-
order powerdomain— and the proof itself are new.
The plan of the paper is as follows. In Section 2 we describe Eden and the

non-determinism analyses that have been defined for it. In Section 3 we present
the denotational semantics including non-determinism. Finally, in Section 4 cor-
rectness of the analyses is formally proved.

2 Non-determinism Analyses for Eden

2.1 Eden in a nutshell

The parallel-functional language Eden extends the lazy functional language Has-
kell by constructs to explicitly define and communicate processes. The three
main new concepts are process abstractions, process instantiations and the non-
deterministic process abstraction merge.
A process abstraction expression process x -> e of type Process a b defines

the behaviour of a process having the formal parameter x::a as input and the ex-
pression e::b as output. An instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b. Process abstractions of type Process a

b can be compared to functions of type a -> b, the main difference being that
the former, when instantiated, are executed in parallel. Process instantiations
can be compared to function applications: Each time an expression e1 # e2 is
evaluated, a new parallel process is created to evaluate (e1 e2).
The evaluation of an expression e1 # e2 leads to the dynamic creation of a

process together with its interconnecting communication channels. The instan-
tiating or parent process will be responsible for evaluating and sending e2 via an
implicitly generated channel, while the new child process will evaluate first the
expression e1 until a process abstraction process x -> e is obtained and then
the application (\ x -> e) e2, returning the result via another implicitly gener-
ated channel. The instantiation protocol deserves some attention: (1) Closure e1

together with the closures of all the free variables referenced there (its whole en-
vironment) are copied, in the current evaluation state (possibly unevaluated), to
a new processor, and the child process is created there to evaluate the expression
(\ x -> e) e2, where e2 must be remotely received. (2) Expression e2 is eagerly
evaluated in the parent process to normal form. The result is communicated to
the child process as its input argument. (3) The normal form of the value (\ x

-> e) e2 is sent back to the parent. Normal forms are full, except for lambdas
where they are weak ones. For input or output tuples, independent concurrent
threads are created to evaluate each component.
Processes communicate via unidirectional channels which connect one writer

to exactly one reader. Once a process is running, only fully evaluated data objects
are communicated. The only exceptions are lists, which are transmitted in a
stream-like fashion, i.e. element by element. Each list element is first evaluated
to full normal form and then transmitted. Concurrent threads trying to access
input which is not available yet, are temporarily suspended. This is the only way
in which Eden processes synchronize.
Lazy evaluation is changed to eager evaluation in two cases: Processes are

eagerly instantiated, and instantiated processes produce their output even if it
is not demanded. These modifications aim at increasing the parallelism degree
and at speeding up the distribution of the computation. The rest of the language
is as lazy as Haskell is. In general, a process is implemented by several threads
concurrently running in the same processor, so that different values can be pro-
duced independently. The concept of a virtually shared global graph does not
exist. Each process evaluates its outputs autonomously.
Non-determinism is introduced in Eden by means of a predefined process

abstraction merge :: Process [[a]] [a] which fairly interleaves a set of input
lists, to produce a single non-deterministic list. Its implementation immediately
copies to the output list any value appearing at any of the input lists. So, merge
can profitably be used to quickly react to requests coming in an unpredictable
order from a set of processes. This feature is essential in reactive systems and
very useful in some deterministic parallel algorithms. Eden is aimed at both
types of applications.

2.2 A simplified language

In the next section a denotational semantics is defined for a simplified version of
Eden, see Figure 1, in order to prove the correctness of several non-determinism
analyses. The language is an extended simplification of Core-Haskell [9], a simple
functional language with second-order polymorphism. As Eden is an extension
of Haskell, it is obviously polymorphic. But in order to simplify the rest of the
paper, we have removed this aspect of the language. So there are neither type
abstractions nor type applications.
The variables contain type information, so we will not write it explicitly in

the expressions. When necessary, we will write e :: t to make explicit the type
of an expression. A type may be a basic type K, a tuple type (t1, . . . , tm), an
algebraic (sum) type T 1, or a functional type t1 → t2.

1 Defined by data T = C1 t11 . . . t1n1 | . . . | Cm tm1 . . . tmnm .

prog → bind1 ; . . . ; bindm

bind → v = expr {non-recursive binding}
| rec v1 = expr1 ; . . . ; vm = exprm {recursive binding}

expr → expr x {application to an atom}
| λv.expr {lambda abstraction}
| case expr of alts {case expression}
| let bind in expr {let expression}
| (x1, . . . , xm) {tuple}
| C x1 . . . xm {saturated constructor application}
| x {atom: variable v or literal k}
| merget {non-determinism operator}

alts → Calt1; . . . ;Caltm; m ≥ 0
| TAlt

TAlt → (v1, . . . , vm)→ expr m ≥ 0 {tuple alternative}
Calt → C v1 . . . vm → expr m ≥ 0 {algebraic alternative}

Fig. 1. A simplified version of a parallel functional language

Process abstractions process v → e and process instantiations e # x do not
appear in the language. This simplification is motivated by an approximation to
the semantics explained in Section 3.2. When an unevaluated non-deterministic
free variable is duplicated in two different processes, it may happen that the
actual value computed by each process is different. However, within the same
process, a variable is evaluated at most once and its value is shared thereafter.
Consequently this means that variables are definite (each occurrence denotes
the same single value) within the same process and are not definite (different
occurrences may denote different values) within different processes. In general,
in Eden the unfoldability property does not hold (a variable cannot be replaced
by its definition, i.e. [[(λx.e) e′]] ρ 6= [[e[e′/x]]] ρ), except in the case that the
unfolded expression is deterministic. This is a consequence of having definite
variables within a process.
So, there are some occurrences that surely have the same value but others may

have different values. The following example illustrates this situation. Assume
ne is a non-deterministic expression in

let v = ne in (p1 v)#v + (p2 v)#v

The second and fourth occurrences of v necessarily have the same value as they
are evaluated in the parent process. However the first and third occurrences may
have different values as v is copied twice and evaluated in two children processes.
So, an upper approximation is obtained by considering that

– All the occurrences of each variable may have a different value, i.e. all the
variables are non-definite.

– All functions behave as processes, and all function applications behave as
process instantiations. Consequently, we will only have syntactical lambda
abstractions and function applications with the semantics of process abstrac-
tions and process instantiations.

The semantics defined in Section 3.2 will make these assumptions.
As polymorphism is omitted, the merge operator is monomorphic, so we con-

sider the existence of an instance merge t for every type t. Additionally we sim-
plify this operator so that it merges just two lists of values: merge t : [t]→ [t]→
[t]. Eden’s merge is more convenient since it may receive as arguments any finite
number of lists, but it can be simulated by the simplified one, merge t.

2.3 Motivation for the analyses

The non-deterministic process merge may be used to create non-deterministic
expressions and to define non-deterministic functions. Subsection 2.4 introduces
several analyses to detect at compile time these non-deterministic expressions.
The analyses annotate the expressions with a mark which, in the simplest case is
just d or n. The first one means that the expression is sure to be deterministic,
while the second one means that it may be non-deterministic. So, a possible
better name for these analyses would be determinism analyses because the sure
value is the deterministic one. We found at least three motivations for developing
these analyses.
On the one hand, to annotate the places in the text where equational rea-

soning may be lost due to the presence of non-determinism. This is important
in an optimizing compiler such as that of Eden built on top of GHC [9]. A lot
of internal transformations such as inlining or full laziness are done on the as-
sumption that it is always possible to replace equals by equals. This is not true
when the expressions involved are non-deterministic. For instance, the full lazi-
ness transformation moves a binding out of a lambda when it does not depend
on the lambda argument. So, the expression

let f = λx. let y = e1 in e2
in e3

when e1 does not depend on x is transformed to

let y = e1
in let f = λx.e2 in e3

If e1 is non-deterministic, this transformation restricts the set of values the
expression may evaluate to, as now expression e1 is evaluated only once instead
of many times.
A second motivation is to be able to implement in the future a semantics

for Eden, different from the currently implemented one, in which all variables
will be guaranteed to be definite, i.e. they will denote the same value in all
the processes. To this aim, when a non-deterministic binding is to be copied to
a newly instantiated process, the runtime system will take care of previously
evaluating the binding to normal form. Doing this evaluation for all bindings
would make Eden more eager than needed and would decrease the amount of
parallelism as more work would be done in parent processes. So, it is important
to do this evaluation only when it is known that the binding is possibly non-
deterministic.

[[·]]2

[[·]]3
Wb

[[·]]3
Wc [[·]]3

W

[[·]]3
Wd [[·]]1

Fig. 2. A hierarchy of analyses

Basic = {d, n} where d v n

D2K = D2T = Basic

D2(t1,...,tm) = D2t1 × . . .×D2tm

D2t1→t2 = [D2t1 → D2t2]

Fig. 3. Abstract domains for the second analysis

A third motivation could be to be able to inform the programmer of the
deterministic expressions of the program. In this way, the part of the program
where equational reasoning is still possible would be clearly determined. A first
step towards this aim is doing the analysis at the core language level. A transla-
tion of the annotations to source level would also be required in order to provide
the programmer with meaningful information. For the moment we have not im-
plemented this translation.

2.4 A hierarchy of analyses

Three non-determinism analyses have been developed to determine when an
Eden expression is sure to be deterministic and when it may be non-deterministic.
In [7], two different abstract interpretation based analyses were presented and
compared with respect to expressiveness and efficiency. The first one [[·]]1 was
efficient (linear) but not very powerful, and the second one [[·]]2 was powerful
but less efficient (exponential). In [8] an intermediate analysis [[·]]3 and its im-
plementation (written in Haskell) were described. Such analysis is a compromise
between power and efficiency (cubic). Its definition is based on the second anal-
ysis [[·]]2. The improvement in efficiency is obtained by speeding up the fixpoint
calculation by means of a widening operator wop, and by using an easily com-
parable representation of functions. By choosing different operators we obtain
different variants of the analysis [[·]]3

wop
. That paper described one particular

variant [[·]]3
W

in detail.
In [5], the three analyses were formally related so that they become totally

ordered by increasing cost and precision. It was shown that all variants of the
third analysis are safe approximations to the second analysis and that the first
analysis is only a safe aproximation to those variants of the third analysis sat-
isfying a particular property. An example was given to show the differences in
precision between [[·]]1, [[·]]2 and [[·]]3

W

. In Figure 2 we show the relation between
the first and second analyses, and some variants of the third one.
In this paper we only summarize the second analysis as we are going to prove

its correctness with respect to the Eden semantics. The previous results lead us
to correctness of the whole hierarchy of analyses with respect to it.
In Figure 3 the abstract domains for [[·]]2 are shown. There is a domain Basic

with two values: d represents determinism and n possible non-determinism, with

[[v]]2 ρ2 = ρ2(v)
[[k]]2 ρ2 = d

[[(x1, . . . , xm)]]2 ρ2 = ([[x1]]2 ρ2, . . . , [[xm]]2 ρ2)
[[C x1 . . . xm]]2 ρ2 =

⊔

i

φti([[xi]]2 ρ2) where xi :: ti

[[e x]]2 ρ2 = ([[e]]2 ρ2) ([[x]]2 ρ2)
[[λv.e]]2 ρ2 = λz ∈ D2tv .[[e]]2 ρ2 [v 7→ z] where v :: tv
[[merget]]2 ρ2 = λz1 ∈ Basic.λz2 ∈ Basic.n

[[let v = e in e′]]2 ρ2 = [[e′]]2 ρ2 [v 7→ [[e]]2 ρ2]

[[let rec {vi = ei} in e′]]2 ρ2 = [[e′]]2 (fix (λρ′2.ρ2 [vi 7→ [[ei]]2 ρ
′
2]))

[[case e of (v1, . . . , vm)→ e′]]2 ρ2 = [[e′]]2 ρ2 [vi 7→ πi([[e]]2 ρ2)]

[[case e of Ci vij → ei;]]2 ρ2 =

{

µt(n) if [[e]]2 ρ2 = n
⊔

i

[[ei]]2 ρ2i otherwise

where ρ2i = ρ2 [vij 7→ µtij (d)], vij :: tij , ei :: t

Fig. 4. Abstract interpretation [[·]]2

φt : D2t → Basic

φK = φT = idBasic
φ(t1,...,tm)(e1, . . . , em) =

⊔

i

φti(ei)

φt1→t2(f) = φt2(f(µt1(d)))

µt : Basic→ D2t

µK = µT = idBasic
µ(t1,...,tm)(b) = (µt1(b), . . . , µtm(b))

µt1→t2(b) =

{

λz ∈ D2t1 .µt2(n) if b = n

λz ∈ D2t1 .µt2(φt1(z)) if b = d

Fig. 5. Functions φt and µt

the ordering d v n. This is the abstract domain corresponding to basic types
and algebraic types. The abstract domains corresponding to a tuple type and a
function/process type are respectively the cartesian product of the components’
domains and the domain of continuous functions between the domains of the
argument and the result. In [7] polymorphism was also included, but in this
paper we do not treat it.

In Figure 4 the analysis is shown. It is an abstract interpretation based
analysis in the style of [1]. We outline here only some cases. The interpretation
of a tuple is the tuple of the abstract values of the components. Functions are
interpreted as abstract functions. So, applications are interpreted as abstract
functions applications. The interpretation of a constructor application belongs
to Basic, obtained as the least upper bound (lub) of the components’ abstract
values. But each component xi :: ti has an abstract value belonging to D2ti ,
that must be first flattened to a basic abstract value. This is done by a function
called the flattening function φt : D2t → Basic, defined in Figure 5. The idea is
to flatten the tuples (by applying the lub operator) and to apply the functions
to deterministic arguments.

In a recursive let expression the fixpoint can be calculated by using Kleene’s
ascending chain. We have two different kinds of case expressions (for tuple and
algebraic types). The more complex one is the algebraic case. Its abstract value
is non-deterministic if either the discriminant or any of the expressions in the
alternatives is non-deterministic. Note that the abstract value of the discrimi-
nant e, let us call it b, belongs to Basic. That is, when it was interpreted, the

AK = P([[K]]) where [[Int]] = ZZ⊥

A(t1,...,tm) = At1 × . . .×Atm
AT = P([[T]])
where [[T]] = ⊕mi=1(Ci ××

ni
j=1Atij)⊥, data T = C1 t11 . . . t1n1 | . . . |Cm tm1 . . . tmnm

At1→t2 = [At1 → At2]

Fig. 6. Domain of values

information about the components was lost. We want now to interpret each al-
ternative’s right hand side in an extended environment with abstract values for
the variables vij :: tij in the left hand side of the alternative. We do not have
such information, but we can safely approximate it by using the unflattening
function µt : Basic → D2t defined in Figure 5. Given a type t, it unflattens a
basic abstract value and produces an abstract value in D2t. The idea is to obtain
the best safe approximation both to d and n in a given domain. The flattening
and unflattening functions are mutually recursive. In [7] they were explained in
detail and an example was given to illustrate their definitions. They have some
interesting properties (e.g. they are a Galois insertion pair [2]), studied in [5].
Tuples are treated separately from algebraic types because we want the analysis
to be more precise here due to the use of tuples in Eden as input or output
channels of processes.

3 A Denotational Semantics for Non-determinism

3.1 The domain of values

To capture the idea of a non-deterministic value, the traditional approach is to
make an expression to denote a set of values. This is obvious for basic types such
as integers, but things get more complex when we move to structured types such
as functions or tuples. Should a functional expression denote a set of functions or
a function from sets to sets? Should a tuple expression denote a set of tuples or
a tuple of sets? Additionally, the denoted values should constitute a domain. In
the literature, three powerdomains with different properties have been proposed:
Hoare, Smyth and Plotkin powerdomains [12]. The first one models angelic or
bottom-avoiding nondeterminism (in which bottom is never chosen unless it is
the only option), the second one models demonic non-determinism (it chooses
bottom whenever it is a possible option) and the third one models erratic non-
determinism (in which bottom is an option as the other ones).
Regarding structured domains we have chosen a functional expression to

denote a single function from sets to sets. In this sense, the following two bindings

f1 = head(mergeInt→Int [λx.0][λx.1])
f2 = λx.head(mergeInt [0][1])

will both denote the function λx.{0, 1,⊥}. That is, the information whether the
non-deterministic decision is taken at binding evaluation time or at function
application time is lost. Non-deterministic decisions are deferred as much as

possible; in this example to function application time. This is consistent with
the plural semantics we have adopted for our language in Section 3.2: Several
occurrences of the same variable (let us say f1) may represent different values.
Regarding the selection of powerdomain, we have decided to use Hoare’s one.

This is consistent with the implementation of merge in Eden: If one of the input
lists is blocked (i.e., it denotes ⊥), merge will still produce an output list by
copying values from the non-blocked list. Only if both lists are blocked will the
output list be blocked. Nevertheless, merge will terminate only when both input
lists terminate. This behaviour is very near to angelic non-determinism. If D
is a domain, P(D) will denote the Hoare powerdomain of D. First, a preorder
relation is defined in P (D) (all subsets of D) as follows:

A vP (D) B iff ∀a ∈ A.∃b ∈ B.a vD b

This preorder relation induces an equivalence relation ≡
def
= v ∩ w identify-

ing sets such as {0, 1,⊥} and {0, 1}. The Hoare powerdomain is the quotient

P(D)
def
=(P (D)−∅)/ ≡. A property enjoyed by all elements of a Hoare powerdo-

main is that they are downwards closed, i.e. ∀x ∈ A.y vD x⇒ y ∈ A.
In Figure 6, the domains of semantic values for every type are defined. Notice

that, for basic and constructed types, the domains consist of sets of values while
for tuples and functions, the domains consist of single values. In the definition
for constructed types, ⊕ denotes the coalesced sum of (lifted) domains. Sets of
values are needed for the constructed types because non-deterministic values of
such types may contain several different constructors. However, those with only
one constructor could be treated as tuples.
If the constructed type is recursive, notice that the recursive occurrences

denote sets of values. For instance, a non-deterministic list would consist of a
set of lists. A non-empty list of this set would consist of a head value and a tail
value formed by a set of lists. Note also that the domain allows the existence of
infinite values as limits of their finite approximations.

3.2 A maximal semantics: Non-definite variables

In Figure 7 a denotational semantics for Eden is given. There {v}∗ denotes the
downwards closure of a value, i.e. a set of values containing all values below v.
The environment ρ maps variables of type t to values of their corresponding
non-deterministic domains At. The semantic function [[.]] maps an expression of
type t and an environment ρ to a value in At. The only expression introducing
sets of values is merget. Its behaviour is that of a lambda abstraction returning
all the possible interleavings of all pairs of input lists. The detail of the auxiliary
function mergeS is given in Figure 8.
These decisions configure a plural semantics for Eden as every occurrence of

the same variable within an expression is mapped to all possible values for that
variable (see definitions for let and lambda in Figure 7). This is not the actual
semantics of Eden, but just a safe upper approximation to it in the sense that the
set of possible values denoted by an expression is bigger than the actual one. As

[[v]] ρ = ρ(v)
[[k]] ρ = {k}∗

[[(x1, . . . , xm)]] ρ = ([[x1]] ρ, . . . , [[xm]] ρ)
[[C x1 . . . xm]] ρ = {C [[x1]] ρ . . . [[xm]] ρ}∗

[[λv.e]]2 ρ = λs ∈ Atv .[[e]] ρ [v 7→ s] where v :: tv
[[e x]] ρ = ([[e]] ρ) ([[x]] ρ)
[[merget]] ρ = λs1 ∈ A[t].λs2 ∈ A[t].

⋃

{mergeS l1 l2 | l1 ∈ s1, l2 ∈ s2}
[[let v = e in e′]] ρ = [[e′]] ρ [v 7→ [[e]] ρ]

[[let rec {vi = ei} in e′]] ρ = [[e′]] (fix (λρ′.ρ [vi 7→ [[ei]] ρ′]))

[[case e of (v1, . . . , vm)→ e′]] ρ = [[e′]] ρ [vi 7→ πi([[e]] ρ)]

[[case e of Ci vij → ei;]] ρ =

{

⊥At if [[e]] ρ = ⊥AT
⊔

At
{[[ek]] ρ[vkj 7→ skj]

mk
| Ck skj

mk ∈ [[e]] ρ} otherwise

Fig. 7. A denotational semantics for Eden

mergeS ⊥ ⊥ = {⊥} mergeS ⊥ l2 = {l2++⊥}
∗ mergeS l1 ⊥ = {l1++⊥}

∗

mergeS [] [] = {[]}∗ mergeS [] l2 = {l2}
∗ mergeS l1 [] = {l1}

∗

mergeS (s1 : ls1) (s2 : ls2) = {s1 : (
⋃

l′∈ls1
mergeS l′ (s2 : ls2)), s2 : (

⋃

l′∈ls2
mergeS (s1 : ls1) l

′)}∗

where ⊥++⊥ = ⊥
[]++⊥ = ⊥
(xs : xss)++⊥ = xs : {xss′++⊥ | xss′ ∈ xss}

Fig. 8. Non-determinism semantics

an example, the expression let f = head(merge Int→Int [λx.0] [λx.1]) in (f 3) +
(f 4) in fact may only produce the values 0 or 2 while the approximated semantics
will say that it may also produce the value 1. It is maximal in the sense that all
variables are considered non definite, while in the actual semantics only those
variables duplicated in different processes may be non definite if they are non-
deterministic. Notice that with this approximated semantics unfoldability holds
although in the actual semantics this is not true. The denotation given to merge t
is also an upper approximation as the actual one only produces fair interleavings.

The reason for this maximal semantics is that, if we are able to show the
correctness of the analysis with respect to it, then the analysis will be correct
with respect to the actual semantics. We remind the reader that the sure value
is the deterministic one. If the analysis detects an expression as deterministic
then it should be semantically deterministic.

An exception is the algebraic case expression where the variables in the
right hand side of the alternatives are definite. The discriminant’s value is a
set that may contain different constructors, so we have to take the lub of all
the alternatives’ values that match them. As the discriminant is immediately
evaluated, the non-deterministic decision is immediately taken so that all the
occurrences of the same variable in the right hand side have the chosen value.

For example, let a type data Fool = C Int | C ′ Int and the values s1 = {⊥,
C{0,⊥}, C ′{0,⊥}}, s2 = {⊥, C{1,⊥}, C{0,⊥}} and s

′

2 = {⊥, C{1,⊥}, C{0,⊥},
C{0, 1,⊥}}. Let an expression e′ = case e of C v → v + v;C ′ v′ → v′ + 4. If [[e]]
ρ = s1 , then [[e′]] ρ = {0, 4,⊥}. Notice that s2 and s

′

2 are different: If [[e]] ρ = s2

detK(s) = unit(s)
where unit({⊥}) = true unit({z,⊥}) = true unit = false

det (t1,...,tm)((s1, . . . , sm)) =
∧m

i=1
det ti(si)

detT (s) =

{

∧m

i=1
det ti(t{si | C s1 . . . sm ∈ s, si :: ti}) if one(s)

false otherwise

where one(s) = (s = {⊥}) ∨ (∃C.∀s′ ∈ s.s′ 6= ⊥ ⇒ s′ = C s1 . . . sm)
det t1→t2(f) = ∀s ∈ At1 .det t1(s)⇒ det t2(f(s))

Fig. 9. Semantic definition of determinism

then [[e′]] ρ = {0, 2,⊥}, but if [[e]] ρ = s′2, then [[e′]] ρ = {0, 1, 2,⊥}. This is because
the variables in the right hand side of a case alternative are definite. We could
have chosen another option when building the environments for the right hand
sides (see [6]) but this is nearer to the actual semantics. The rest of the rules are
self-explanatory.

4 Capturing the Determinism Meaning

4.1 Deterministic values

In this section we are proving that [[·]]2 is correct with respect to the denota-
tional semantics presented in the previous section (see Theorem 1). In order to
establish the correctness predicate we need first to define the semantic property
we want to capture, that is the determinism of an expression. In Figure 9 the
boolean functions det t are defined. Given s ∈ At, det t(s) tells us whether s is a
deterministic value or not. A value of type K is deterministic if it is a set with
at most one element different from ⊥ (as ⊥ belongs to each s ∈ AK), which is
established by the function unit . A tuple is deterministic if each component is
deterministic. A constructed value s ∈ AT is deterministic if its elements differ-
ent from ⊥ (again ⊥ belongs to each s ∈ AT) have the same constructor, which
is established by the function one, and additionally the least upper bound of
the values in each component is deterministic. For example, values s1, s2 and
s′2 defined in Section 3.2 are non-deterministic: The first one because it has two
different constructors, and the other two because the least upper bound of the
first component, {0, 1,⊥}, is non-deterministic. The definition of det t in Figure 9
and the propositions below assume that there are not algebraic infinite values.
This is not a severe restriction as processes communicating infinite values will
not terminate and Hoare powerdomains ignores non-termination (⊥ is included
in all values).
Finally, a function is deterministic if given a deterministic argument it pro-

duces a deterministic result.
Let us note that this semantical definition of determinism characterizes a

possibly non-terminating single value expression as being deterministic. This is
in accordance with the Hoare powerdomain semantics we have adopted produc-
ing Scott-closed sets: Where the actual semantics produces a single value, our
approximate semantics produces a non-singleton set because it always includes

αt : At → D2t

αK(s) =

{

d if detK(s)
n otherwise

α(t1,...,tm)((s1, . . . , sm)) = (αt1(s1), . . . , αtm(sm))

αT (s) =

{

d if detT (s)
n otherwise

αt1→t2(f) = λz ∈ D2t1 .
⊔

s1∈Γt1
(z)

αt2(f(s1))

Λt : P(At)→ D2t

Λt(S) =
⊔

s∈S
αt(s)

Fig. 10. Abstraction function

⊥. That is, predicate det t characterizes determinism up to non-termination. No-
tice also that, if we eliminate ⊥ in the definitions of unit and one, then predicate
det t characterizes real singleton sets in the basic type, tuples and algebraic type
cases, and functions mapping single values into single values in the functional
type case. Predicates det t have some properties (see [6]) we do not show here.

4.2 Abstraction and concretisation functions

In this section we define the abstraction Λt and concretisation Γt functions that
relate the abstract and concrete domains, following the ideas in [1]. We will prove
that they are a Galois connection, a crucial property in the correctness proof.
The function Λt is just an extension of a function αt to Hoare sets by ap-

plying it to each element of the set and taking the lub. So αt will also be called
abstraction function. With this function, defined in Figure 10, we want to ab-
stract the determinism behaviour of the concrete values. It loses information, i.e.
several concrete values may have the same abstract value. In Figure 11 function
Γt is defined. For each abstract value, it returns all the concrete values that can
be approximated by that abstract value. They are mutually recursive.
A value of type K or T is abstracted to d only if it is deterministic. The

abstraction of a tuple is the tuple of the abstractions. The abstraction of a
function f of type t1 → t2 is a little more involved. It is an abstract function
taking an argument z ∈ D2t1 . Such z represents several concrete values s1 ∈
Γt(z) whose abstract images are αt2(f(s1)). So the abstraction of the result is
the lub of these abstract images.
The concretisation function is defined so that it builds a Galois connection

with Λt, which implies that for each concrete value there may be several abstract
approximations but there exists only one best (least) approximation.
It can easily be proved that Γt is well defined, i.e. it produces downwards

closed sets of concrete values. It can also be proved that for each type t, functions
αt, Λt and Γt are continuous. Both things are shown in [6].
The most important result in this section is that Λt and Γt are a Galois

connection (i.e. Λt ·Γt v idD2t
and Γt ·Λt w idP(At)

), which is equivalent to the

following proposition, that will be intensively used in the correctness proof.

Γt : D2t → P(At)

ΓK(b) =

{

{s ∈ AK | unit(s)} if b = d

P(AK) if b = n

Γ(t1,...,tm)((z1, . . . , zm)) = {(s1, . . . , sm) | αti(si) v zi∀i ∈ {1..m}}

ΓT (b) =

{

{s ∈ AT | detT (s)} if b = d

P(AT) if b = n

Γt1→t2(f
#) = {f ∈ At1→t2 | ∀s ∈ At1 .αt2(f(v)) v f#(αt1(s))}

Fig. 11. Concretisation function

Proposition 1 For each type t, z ∈ D2t, and s ∈ At: s ∈ Γt(z)⇔ αt(s) v z.

This proposition can be proved by structural induction on t (see [6]).
Finally we present an interesting property that only holds when the concrete

domains of basic and algebraic types have at least two elements different from
⊥. In the following proposition we show that αt is surjective, i.e. each abstract
value is the abstraction of a concrete value, which in particular belongs to the
concretisation of that abstract value. This means that Λt and Γt are a Galois
insertion (Λt · Γt = idD2t

).

Proposition 2 If all [[K]] and [[T]] have at least two elements different from ⊥,
then for each type t and z ∈ D2t, there exists s ∈ Γt(z) such that αt(s) = z.

This can be proved by structural induction on t (see [6]). If the proposition
hypothesis about [[K]] and [[T]] does not hold then it is easy to see that all the
concrete values are abstracted to d and none to n. In fact we are avoiding the
Unit type. However this property is not necessary in the correctness proof.

4.3 A proof of partial correctness

In this subsection we prove that [[·]]2 is correct with respect to the denotational
semantics: When the analysis tells that an expression is deterministic, then the
concrete value produced by the denotational semantics is semantically determin-
istic. Otherwise we do not know anything about it. We have to formally describe
this intuition. On the one hand, we said in Section 2.4 that µt(d) is the best safe
approximation to d in a given domain, so the analysis tells us that an expression
is deterministic when its abstract value is less than or equal to µt(d). On the
other hand the semantical determinism of a concrete value is established by the
predicate det t. So, the main correctness result is expressed as follows.

Theorem 1. Let ρ and ρ2 be two environments, such that for each variable
x :: tx, αtx(ρ(x)) v ρ2(x). Then for each e :: t: [[e]]2 ρ2 v µt(d)⇒ det t([[e]] ρ).

Notice that this only proves the partial correctness of the analysis with respect
to the actual semantics of Eden. This (not formally defined) semantics only pro-
duces non-singleton sets when the expression e contains at least one occurrence
of merge. If expression e completely terminates, then we can ignore the undefined

values in [[e]] ρ and then det t([[e]] ρ) amounts to saying that [[e]] ρ consists of a
single value, i.e. e is deterministic in the actual semantics sense.
The theorem is proved in two parts written as Propositions 3 and 4, shown

below. The first one tells us that all the values whose abstraction is below µt(d)
are semantically deterministic. The second one asserts that the analysis is an
upper approximation to the abstraction of the concrete semantics. The proofs
use intensively some properties of φt and µt already shown in [5].

Proposition 3 For each type t, and s ∈ At: αt(s) v µt(d)⇔ det t(s).

Proof 1 We use structural induction on t. The interesting case is the function
type, t = t1 → t2. The rest are straightforward.

– (⇒).We have to prove that ∀s ∈ At1 .det t1(s)⇒ det t2(f(s)). So, let s ∈ At1

such that det t1(s). We have that

αt2(f(s)) v
⊔

s1∈Γt1
(αt1

(s)) αt2(f(s1)) {s ∈ Γt1(αt1(s))}

v µt2(φt1(αt1(s))) {αt(f) v µt(d)}
v µt2(φt1(µt1(d))) {by i.h. on t1 and monotonicity}
= µt2(d) {φt · µt = idBasic , by Prop. 2(b) in [5]}

Consequently, by i.h. on t2 we have dett2(f(s)).
– (⇐). We have to prove that ∀z ∈ D2t1 .

⊔

s1∈Γt1
(z) αt2(f(s1)) v µt2(φt1(z)).

Let z ∈ D2t1 . We distinguish two cases.
• z v µt1(d). Then

s1 ∈ Γt1(z)
⇒ αt1(s1) v z {by Proposition 1}
⇒ αt1(s1) v µt1(d) {z v µt1(d)}
⇒ det t2(f(s1)) {by i.h. on t1 and dett(f)}
⇒ αt2(f(s1)) v µt2(d) {by i.h. on t2}
⇒ αt2(f(s1)) v µt2(φt1(z)) {z v µt1(d) and φt · µt = idBasic}

• z 6v µt1(d). In this case φt1(z) = n (by Proposition 3 in [5]). The propo-
sition holds trivially as µt2(n) is the top element in D2t2 (by Proposition
2(d) in [5]).

2

Proposition 4 Let ρ and ρ2 be two environments, such that for each variable
x :: tx, αtx(ρ(x)) v ρ2(x). Then for each expression e :: t: αt([[e]]) ρ v [[e]]2 ρ2.

Proof 2 We use structural induction on e. We show here only two interesting
cases. In the letrec case a double induction is necessary (see [6]).

– e = C x1 . . . xm :: T . We distinguish two cases. If αT ([[C x1 . . . xm]] ρ) = d
then it is trivial, as d is the bottom element in Basic.
If αT ([[C x1 . . . xm]] ρ) = n, then ¬detT ({C ([[x1]] ρ) . . . ([[xm]] ρ)}

∗) by defi-
nition of αt and [[·]]. In {C ([[x1]] ρ) . . . ([[xm]] ρ)}

∗ there is just one construc-
tor, so the only possibility for it to be non-deterministic, is that there exists

i ∈ {1..m} such that ¬det ti(t{sj | C s1 . . . sm ∈ {C ([[x1]] ρ) . . . ([[xm]] ρ)}
∗}),

i.e. such that ¬det ti([[xi]] ρ). By Proposition 1, this implies that αti([[xi]] ρ) 6v
µti(d) and consequently φti(αti([[xi]] ρ)) = n (by Proposition 3 in [5]), so

[[C x1 . . . xm]]2 ρ2 =
⊔m

j=1 φtj ([[xj]]2 ρ2) {by definition of [[·]]2}
w
⊔m

j=1 φtj (αtj ([[xj]] ρ)) {by i.h. on tj and monotonicity}
= n {φti(αti([[xi]] ρ)) = n}

– e = λv.e′ :: t1 → t2. By definition of [[·]] and αt we have to prove that
⊔

s1∈Γt1
(z) αt2([[e

′]] ρ[v 7→ s1]) v [[e
′]]2 ρ2[v 7→ z].

If s1 ∈ Γt1(z) then αt1(s1) v z by Proposition 1, so ρ[x 7→ s1] and ρ2[v 7→ z]
satisfy the theorem hypothesis about the environments. We can then apply
induction hypothesis on e′ and obtain αt2([[e

′]] ρ[v 7→ s1]) v [[e
′]]2 ρ2[v 7→ z].

2

5 Conclusions and Future Work

We have proved the correctness of a whole hierarchy of non-determinism analy-
ses for the parallel-functional language Eden. In order to do this, we have defined
first a denotational semantics for Eden where non-determinism is represented.
We have chosen to use a plural semantics in which non-deterministic choices for
variables are deferred as much as possible. A semantics nearer to the actual one
(within a single process) would have been a singular one in which environments
map variables to single values. This would reflect the fact that non-deterministic
choices are done at binding evaluation time instead of at each variable occur-
rence. For instance, a let-bound variable will get its value the first time it is
evaluated and this value will be shared thereafter by all its occurrences. In order
to consider all the possible values the variable can have, we build one environ-
ment for each of them:

[[let v = e in e′]] ρ =
⊔

z∈[[e]] ρ

[[e′]] ρ[v 7→ z]

The same would be true for case-bound and lambda-bound variables. We have
tried to define this singular semantics and things go wrong when trying to give
semantics to mutually recursive definitions. The traditional fixpoint computation
by using Kleene’s ascending chain gives a semantics more plural than expected.
For instance, in the definition

letrec f = head(mergeInt→Int [g] [λx.0])
g = head(mergeInt→Int [f] [λx.1])

in (f, g)

Kleene’s ascending chain will compute the following set of possible environments:

ρ = { {f 7→ λx.{⊥}, g 7→ λx.{⊥}}, {f 7→ λx.{0}∗, g 7→ λx.{1}∗},
{f 7→ λx.{0}∗, g 7→ λx.{0}∗}, {f 7→ λx.{1}∗, g 7→ λx.{1}∗},
{f 7→ λx.{1}∗, g 7→ λx.{0}∗} }

However, the lazy evaluation of the expression will never produce the fifth pos-
sibility. In [12] a singular semantics for a small non-deterministic recursive func-
tional language was defined. The problem with fixpoints did not arise there
because the language was extremely simple: Only one recursive binding was al-
lowed in the program and this had to be a lambda abstraction. Additionally, the
language was only first-order. The problem arises when there are at least two
mutually recursive bindings to non normal-form expressions. In order to define a
real singular semantics, we think that an operational approach should be taken,
similar to that of [4]. In this way, the actual lazy evaluation with its updating of
closures and sharing of expressions could be appropriately modeled. We forsee
to do it as future work.
Another extension of the present work is to include polymorphism in the

language, in the semantics and in the proof of correctness. The analyses originally
presented in [7, 8] already included this aspect.

References

1. G. L. Burn, C. L. Hankin, and S. Abramsky. The Theory of Strictness Analysis
for Higher Order Functions. In Programs as Data Objects, volume 217 of LNCS,
pages 42–62. Springer-Verlag, 1986.

2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL’79, pages 269–282. ACM, 1979.

3. M. Hidalgo and Y. Ortega. Continuation Semantics for Parallel Haskell Dialects.
In APLAS’03, volume 2895 of LNCS, pages 303–321. Springer-Verlag, 2003.

4. J. Hughes and A. Moran. Making Choices Lazily. In FPCA’95, pages 108–119.
ACM Press, 1995.

5. R. Peña and C. Segura. Three Non-determinism Analyses in a Parallel-Functional
Language. Technical Report 117-01, Univ. Complutense de Madrid, Spain, 2001.
(http://dalila.sip.ucm.es/miembros/clara/publications.html).

6. R. Peña and C. Segura. Correctness of Non-determinism Analyses in a Parallel-
Functional Language. Technical Report 131-03, Univ. Complutense de Madrid,
Spain, 2003. (http://dalila.sip.ucm.es/miembros/clara/publications.html).

7. R. Peña and C. Segura. Non-Determinism Analysis in a Parallel-Functional Lan-
guage. In IFL’00, volume 2011 of LNCS, pages 1–18. Springer-Verlag, 2001.

8. R. Peña and C. Segura. A Polynomial Cost Non-Determinism Analysis. In IFL’01,
volume 2312 of LNCS, pages 121–137. Springer-Verlag, 2002.

9. S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler.
The Glasgow Haskell Compiler: A Technical Overview. In Joint Framework for
Inf. Technology, Keele, DTI/SERC, pages 249–257, 1993.

10. S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser for
Haskell. Science of Computer Programming 32(1-3):3-47, September 1998.

11. H. Søndergaard and P. Sestoft. Referential Transparency, Definiteness and Unfold-
ability. Acta Informatica, 27(6):505–517, May 1990.

12. H. Søndergaard and P. Sestoft. Non-Determinism in Functional Languages. Com-
puter Journal, 35(5):514–523, October 1992.

