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RICARDO PEÑA and CLARA SEGURA
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Abstract

The parallel-functional language Eden has a non-deterministic construct, the process ab-
straction merge, which interleaves a set of input lists to produce a single non-deterministic
list. Its non-deterministic behaviour is a consequence of its reactivity: it immediately copies
to the output list any value appearing at any of the input lists. This feature is essential
in reactive systems and very useful in some deterministic parallel algorithms.

The presence of non-determinism creates some problems such that some internal trans-
formations in the compiler must be disallowed. The paper describes several non-determi-
nism analyses developed for Eden aimed at detecting the parts of the program that, even
in the presence of a process merge, still exhibit a deterministic behaviour. A polynomial
cost algorithm which annotates Eden expressions is described in detail.

A denotational semantics is described for Eden and the correctness of all the analyses
is proved with respect to this semantics.

1 Introduction

The parallel-functional language Eden (Breitinger et al., 1998b; Breitinger et al.,

1997; Breitinger et al., 1998a) extends the lazy functional language Haskell by syn-

tactic constructs to explicitly define processes and the communications between

them. It is implemented by modifying the Glasgow Haskell Compiler (GHC) (Pey-

ton Jones et al., 1993). The three main new concepts are process abstractions,

process instantiations and a non-deterministic process abstraction called merge.

Process abstractions of type Process a b can be compared to functions of type

a -> b, and process instantiations can be compared to function applications. An

instantiation is achieved by using the predefined infix operator (#) :: Process a b

-> a -> b. Each time an instantiation e1 # e2 is evaluated, a new parallel process

is created.

Non-determinism is introduced in Eden by means of a predefined process ab-

straction merge :: Process [[a]] [a], which interleaves a set of input lists in a fair

way to produce a single non-deterministic list. Its non-deterministic behaviour is

a consequence of its reactivity: it immediately copies to the output list any value

appearing at any of the input lists. In this way, merge can profitably be used to

quickly react to requests coming in an unpredictable order from a set of processes.
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This feature is essential in reactive systems and very useful in some deterministic

parallel algorithms. Eden is aimed at both types of applications.

The presence of non-determinism creates some problems in Eden such that some

internal transformations in the compiler must be disallowed. In (Peña & Segura,

2001a) a solution was proposed to solve this problem: to develop a static analysis

to determine when an Eden expression is sure to be deterministic and when it may

be non-deterministic. Two different abstract interpretation based analyses were

presented and compared with respect to expressiveness and efficiency. The first

one [[·]]1 was efficient (linear) but not very powerful, and the second one [[·]]2 was

powerful but very inefficient (exponential).

In (Peña & Segura, 2002) an intermediate analysis [[·]]3 was presented that was a

compromise between power and efficiency and its implementation was described. Its

definition was based on the second analysis [[·]]2. The improvement in efficiency was

obtained by speeding up the fixpoint calculation by means of a widening operator

wop, and by using an easily comparable representation of functions. By choosing

different operators we obtained different variants of the analysis [[·]]3
wop

.

In (Peña & Segura, 2001b) we proved the relative correctness of these anal-

yses showing that the less accurate ones were safe approximations to the more

accurate ones. The absolute correctness of these analyses with respect to a deno-

tational semantics for Eden has been proved in (Segura & Peña, 2003a). There,

non-determinism is modelled by using Hoare powerdomains as semantic domains.

The current paper summarizes the more relevant results of the above cited pa-

pers and presents them in a uniform and organized way. It can be considered as a

comprehensive and self-contained work where the reader can find all the relevant

information about the analysis of non-determinism in Eden. As we will see, the

semantics given and the analyses themselves abstract away the parallel and con-

current nature of Eden since processes are treated as functions. So, the paper can

be also seen as a comprehensive study of non-determinism analyses in functional

languages.

The analyses use conventional techniques in abstract interpretation as described

in (Burn et al., 1986), but the problem addressed is new in the analysis literature.

The main contributions of the whole work can be summarized as follows:

• Definition of the abstract domains for the analyses, including higher-order

domains and polymorphism.

• Definition of the abstract interpretations [[·]]1, [[·]]2 and [[·]]3
W
.

• Implementation of [[·]]3
W
.

• Denotational semantics for Eden using Hoare powerdomains.

• Definition of the abstraction and concretisation functions and proof of cor-

rectness.

The plan of the paper is the following: in Section 2 the language full Eden and

its desugared version are summarized. A small example illustrates how to express

reactive systems in Eden. Section 3 is devoted to non-determinism. After a general

discussion of the problem, a denotational semantics for Eden is given. It does not

exactly coincide with the one implemented in the compiler. Instead, it is an upper
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approximation to it in the sense that the set of values denoted by an expression

contains the values that may be produced by the implementation. Nevertheless,

this semantics is enough for the purpose of proving the correctness of the analyses.

Section 4 presents analyses [[·]]2 and [[·]]3
W

and describes the Haskell implementation

of the latter. Section 5, as it is typical in the abstract interpretation area, first

provides the abstraction and concretisation functions for analysis [[·]]2 and then

presents its correctness proof. The proofs of the propositions can be found in a

document supplementary to this paper and available through the web page of this

journal. Finally, Section 6 surveys some related work and draws some conclusions.

2 The Parallel-functional Language Eden

2.1 Eden in a nutshell

The parallel-functional language Eden extends the lazy functional language Haskell

by constructs to explicitly define processes and the communications between them.

The three main new concepts are process abstractions, process instantiations and a

non-deterministic process abstraction merge.

A process abstraction expression process x -> e of type Process a b defines the

behaviour of a process having the formal parameter x::a as input and the expression

e::b as output. An instantiation is achieved by using the predefined infix operator

(#) :: Process a b -> a -> b. Process abstractions of type Process a b can be

compared to functions of type a -> b, the main difference being that the former,

when instantiated, are executed in parallel. Process instantiations can be compared

to function applications: each time an expression e1 # e2 is evaluated, a new parallel

process is created to evaluate (e1 e2).

The evaluation of an expression e1 # e2 leads to the dynamic creation of a pro-

cess together with its interconnecting communication channels. The instantiating

or parent process will be responsible for evaluating and sending the value of e2

via an implicitly generated channel, while the new child process will evaluate first

the expression e1 until a process abstraction process x -> e is obtained and then

the application (\ x -> e) e2, returning the result via another implicitly generated

channel. The instantiation protocol deserves some attention: (1) closure e1 together

with the closures of all the free variables referenced there (its whole environment)

are copied, in the current evaluation state (possibly unevaluated), to a new proces-

sor, and the child process is created there to evaluate the expression (\ x -> e) e2,

where the value of e2 must be remotely received. (2) Expression e2 is eagerly eval-

uated in the parent process. The resulting full normal form data is communicated

to the child process as its input argument. (3) The normal form of the value of

(\ x -> e) e2 is sent back to the parent. For input or output tuples, independent

concurrent threads are created to evaluate each component.

Processes communicate via unidirectional channels which connect one writer to

exactly one reader. Once a process is running, only fully evaluated data objects are

communicated. The only exceptions are lists, which are transmitted in a stream-like

fashion, i.e. element by element. Each list element is first evaluated to full normal
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form and then transmitted. Concurrent threads trying to access input which is

not available yet, are temporarily suspended. This is the only way in which Eden

processes synchronize.

Lazy evaluation is changed to eager evaluation in two cases: processes are ea-

gerly instantiated, and instantiated processes produce their output even if it is

not demanded. These modifications aim at increasing the parallelism degree and

at speeding up the distribution of the computation. In general, a process is im-

plemented by several threads concurrently running in the same processor, so that

different values can be produced independently. The concept of a virtually shared

global graph does not exist. Each process evaluates its outputs autonomously.

The following example defines a simple reactive system where a set of user pro-

cesses interact with a binary semaphore which provides mutual exclusion in the

access to a critical region. A user process is an endless cycle of the sequence of

states “Think, Wait, Eat ...”, where Eat means that the process is inside the crit-

ical region and Think that it is outside. When a user needs to enter the critical

region, sends a request to the semaphore and waits for an acknowledge. When it

leaves the critical region, it sends a release message to the semaphore:

user :: Int -> Process [AcK] [Req]

user i = process acks -> cycle Think acks

where cycle Think acks = Req i : cycle Wait acks

cycle Wait (Ack:acks) = cycle Eat acks

cycle Eat acks = Rel i : cycle Think acks

The semaphore life is also a cycle of the sequence of states “Free, Busy ...”. It

receives requests from the users and provides them with acknowledges, one user at

a time, using a FIFO policy:

sem :: Process [Req] [[Ack]]

sem = process reqs -> cycle Free [] reqs

where cycle Free (Req i:q) reqs = reply i (cycle Busy q reqs)

cycle Busy q (Rel i:reqs) = cycle Free q reqs

cycle st q (Req i:reqs) = cycle st (q ++ [Req i]) reqs

reply 0 ~(rs:rss) = (Ack:rs) : rss

reply i ~(rs:rss) = rs : reply (i-1) rss

The whole system is instantiated by a set of mutually recursive equations connecting

n users to a merge process, this one to the semaphore and the latter to the users.

The instance of merge is crucial to propagate users requests to the semaphore as

soon as they are produced:

reqss = [user i # acks | (i,acks) <- zip [0..n-1] ackss]

reqs = merge # reqss

ackss = sem # reqs

2.2 Core language

As Eden is implemented by modifying the Glasgow Haskell Compiler, the core

language of Eden is an extension of Core-Haskell (Peyton Jones et al., 1993). This
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prog → bind1 ; . . . ; bindm
bind → v = expr {non-recursive binding}

| rec v1 = expr1 ; . . . ; vm = exprm {recursive binding}
expr → expr x {application to an atom}

| λv.expr {lambda abstraction}
| case expr of alts {case expression}
| let bind in expr {let expression}
| C x1 . . . xm {saturated constructor application}
| op x1 . . . xm {saturated primitive operator application}
| x {atom: variable v or literal k}
| Λβ.expr {type abstraction}
| expr type {type application}
| expr # x {process instantiation}
| process v → expr {process abstraction}
| merge {non-deterministic process}

alts → Calt1; . . . ;Caltm; [Deft ] m ≥ 0
| Lalt1; . . . ;Laltm; [Deft ] m ≥ 0

Calt → C v1 . . . vm → expr m ≥ 0 {algebraic alternative}
Lalt → k → expr {primitive alternative}
Deft → v → expr {default alternative}
type → K {basic types: integers, characters}

| β {type variables}
| T type1 . . . typem {type constructor application}
| type1 → type2 {function type}
| Process type1 type2 {process type}
| ∀β.type {polymorphic type}

Fig. 1. Language definition and type expressions

is a simple functional language with second-order polymorphism, so it includes type

abstraction and type application.

In Figure 1 the syntax of the language and of the type expressions is shown.

There, v denotes a variable, k denotes a literal, x denotes an atom (a variable or

a literal), and T denotes a type constructor. A program is a list of possibly re-

cursive bindings from variables to expressions. Such expressions include variables,

lambda abstractions, applications of a functional expression to an atom, construc-

tor applications, primitive operators applications, and also case and let expressions.

Constructor and primitive operators applications are saturated. The variables con-

tain type information, so we will not write it explicitly in the expressions. When

necessary we will write e :: t to make explicit the type of an expression. A type

may be a basic type K, a tuple typle (t1, . . . , tm), an algebraic type T t1 . . . tm, a

functional type t1 → t2 or a polymorphic type ∀β.t. The second-order polymor-

phism is only used as a mechanism to preserve the Hindley-Milner polymorphic

types along the transformations done at Core-Haskell level (Peyton Jones & San-

tos, 1998). Consequently we can assume the polymorphic types are Hindley-Milner

despite the abstract syntax.

The new Eden expressions are a process abstraction process v→ e, and a process

instantiation e # x. There is also a new type Process t1 t2 representing the type of a

process abstraction process v → e where v has type t1 and e has type t2. Frequently

t1 and t2 are tuple types and each tuple element represents an input/output channel

of the process. Additionally, there is a predefined polymorphic constant merge of

type ∀β.Process [[β]] [β].
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3 Non-determinism

3.1 Non-determinism in functional languages

The introduction of non-determinism in functional languages has a long tradition

and has been a source of strong controversy. McCarthy (1963) introduced the op-

erator amb :: a -> a -> a which non-deterministically chooses between two val-

ues. Henderson (1982) introduced instead merge :: [a] -> [a] -> [a] which non-

deterministically interleaves two lists into a single list. Both operators violate ref-

erential transparency in the sense that it is no longer possible to replace equals by

equals. For instance,

let x = amb 0 1 in x + x 6= amb 0 1 + amb 0 1

as the first expression may only evaluate to 0 or to 2, while the second one may

also evaluate to 1. Hughes and O’Donnell (1990) proposed a functional language

in which non-determinism is compatible with referential transparency. However,

Sondergaard and Sestoft (1990; 1992) claim that what is really missing is an ap-

propriate definition of referential transparency. They show that several apparently

equivalent definitions (replacing equals by equals, unfoldability of definitions, ab-

sence of side effects, definiteness of variables, determinism, and others) have been

around in different contexts and that they are not in fact equivalent in the presence

of non-determinism. To situate Eden in perspective, we reproduce here their main

concepts:

Referential transparency Expression e is purely referential in position p iff

∀e1, e2.[[e1]] ρ = [[e2]] ρ ⇒[[e[e1/p]]] ρ = [[e[e2/p]]] ρ

Operator op :: t1→ · · · tn→ t is referentially transparent if for all expressions

e = op e1 · · · en, whenever expression ei, 1 ≤ i ≤ n is purely referential in position

p, expression e is purely referential in position i.p. A language is referentially

transparent if all of its operators are.

Definiteness Definiteness property holds if a variable denotes the same single

value in all its occurrences. For instance, if variables are definite, the expression

(λx.x− x)(amb 0 1) evaluates always to 0. If they are not, it may also evaluate

to 1 and −1.

Unfoldability Unfoldability property holds if [[(λx.e) e′]] ρ = [[e[e′/x]]] ρ for all

e, e′. In presence of non-determinism, unfoldability is not compatible with defi-

niteness. For instance, if variables are definite

[[(λx.x− x)(amb 0 1)]] ρ 6= [[(amb 0 1)− (amb 0 1)]] ρ

In the above definitions, the semantics of an expression is a set of values in the

appropriate powerdomain. However, the environment ρ maps a variable to a single

value in the case variables are definite (also called singular semantics), and to a set

of values in the case they are indefinite (also called plural semantics).
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3.2 Denotational semantics for non-determinism in Eden

In this section we define a denotational semantics that approximates the actual

semantics of Eden. Our aim is to prove the correctness of the non-determinism

analyses we define in Section 4. Very recently it has been published in our group

a complete denotational semantics (Hidalgo & Ortega, 2003) for Eden based on

continuations. There, non-determinism is expressed by the fact that, after evaluat-

ing an expression, a process may arrive to a set of different states, so that several

continuations are possible. Unfortunately this semantics is not appropriate for our

purposes. On the one hand it provides lots of details that would obscure the proof of

correctness. On the other, the set of states a process may arrive to do not constitute

a mathematical domain and this is essential when abstract interpretation is used.

The semantics we define here is enough to prove the correctness of the analyses.

Moreover, as concurrency and parallelism aspects are abstracted away, the non-

determinism analyses would also be correct for any non-deterministic functional

language whose semantics is (upper) approximated by this one.

3.2.1 Intuitions for a simplified semantics

Under the definitions given in the previous section, we can characterize Eden as

referentially transparent. The only difference with respect to Haskell is that now,

in a given environment ρ, an expression denotes a set of values instead of a single

one. Inside an expression, a non-deterministic subexpression can always be replaced

by its denotation without affecting the resulting set of values (see Section 3.2.3 to

confirm this issue).

When an unevaluated non-deterministic free variable is duplicated in two different

processes, it may happen that the actual value computed by each process is different.

However, within the same process, a variable is evaluated at most once and its

value is shared thereafter. Consequently, variables are definite within the same

process and are not definite within different processes. In general, in Eden the

unfoldability property does not hold, except in the case that the unfolded expression

is deterministic. This is a consequence of having definite variables within a process.

So, there are some occurrences that surely have the same value but others may

have different values. The following example illustrates this situation. Assume ne

is a non-deterministic expression in

let v = ne

in (p1 v)#v + (p2 v)#v

The second and fourth occurrences of v necessarily have the same value as they are

evaluated in the parent process. However the first and third occurrences may have

different values as v is copied twice and evaluated in two children processes.

So, an upper approximation to the semantics can be obtained by considering that

• All the occurrences of each variable may have a different value, i.e. all the

variables are non-definite.
• All functions behave as processes, and all function applications behave as

process instantiations.
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The denotational semantics defined below will make these assumptions. Such se-

mantics is defined for a simplified version of the core language defined in Section 2.2.

The simplifications are the following:

• We have removed polymorphism from the language, so that there are nei-

ther type abstractions nor type applications. Consequently we do not con-

sider polymorphic types and we assume that algebraic types are defined as

data T = C1 t11 . . . t1n1
| . . . |Cm tm1 . . . tmnm

.

• As polymorphism is omitted, the merge operator is monomorphic, so we

consider the existence of an instance merge t for every type t. Additionally we

simplify this operator so that it merges just two lists of values: merge t : [t]→

[t]→ [t]. Eden’s merge is more convenient since it may receive as arguments

any finite number of lists, but it can be simulated by the simplified one,

merget.

• Process abstractions process v → e, process instantiations e # x and the

type Process do not appear in the language either. Consequently, we will

only have syntactical lambda abstractions and function applications (with

the semantics of process abstractions and process instantiations).

• We omit here primitive operators, primitive cases and the default alternative

as they do not add anything significantly new.

3.2.2 The domain of values

To capture the idea of a non-deterministic value, the traditional approach is to

make an expression to denote a set of values. This is obvious for basic types such

as integers, but things get more complex when we move to structured types such

as functions or tuples. Should a functional expression denote a set of functions or

a function from sets to sets? Should a tuple expression denote a set of tuples or

a tuple of sets? Additionally, the denoted values should constitute a domain. In

the literature, three powerdomains with different properties have been proposed:

Hoare, Smyth and Plotkin powerdomains (Søndergaard & Sestoft, 1992). The first

one models angelic or bottom-avoiding nondeterminism (in which bottom is never

chosen unless it is the only option), the second one models demonic non-determinism

(it chooses bottom whenever it is a possible option) and the third one models erratic

non-determinism (in which bottom is an option similar to the other ones).

Regarding structured domains we have chosen a functional expression to denote

a single function from sets to sets. In this sense, the following two bindings

f1 = head(mergeInt→Int [λx.0][λx.1])

f2 = λx.head(mergeInt [0][1])

will both denote the function λx.{0, 1,⊥}. That is, the information whether the non-

deterministic decision is taken at binding evaluation time or at function application

time is lost. Non-deterministic decisions are deferred as much as possible; in this

example to function application time. This is consistent with the plural semantics

we have adopted for our language in this section: several occurrences of the same

variable (let us say f1) may represent different values.
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AK = P([[K]]) where [[Int]] = ZZ⊥

A(t1,...,tm) = At1 × . . .×Atm

AT = P(⊕m
i=1(Ci ××

ni
j=1Atij )⊥)

At1→t2 = [At1 → At2 ]

Fig. 2. Domain of values

Regarding the selection of powerdomain, we have decided to use Hoare’s one.

This is consistent with the implementation of merge in Eden: if one of the input

lists is blocked (i.e., it denotes ⊥), merge will still produce an output list by copying

values from the non-blocked list. Only if both lists are blocked will the output list

be blocked. Nevertheless, merge will terminate only when both input lists terminate.

This behaviour is very near to angelic non-determinism. If D is a domain, P(D)

will denote the Hoare powerdomain of D. First, a preorder relation is defined in

P (D) (all subsets of D) as follows:

A vP (D) B iff ∀a ∈ A.∃b ∈ B.a vD b

This preorder relation induces an equivalence relation ≡
def
= v ∩ w identifying sets

such as {0, 1,⊥} and {0, 1}. Hoare powerdomain is the quotient P(D)
def
=(P (D) −

∅)/ ≡. A property enjoyed by all elements of a Hoare powerdomain is that they are

downwards closed, i.e. ∀x ∈ A.y vD x⇒ y ∈ A.

In Figure 2, the domains of semantic values for every type are defined. Notice

that, for basic and algebraic types, the domains consist of sets of values while

for tuples and functions, the domains consist of single values. Notice also that we

identify the tuple of bottoms with the bottom of tuples and the function returning

bottom with the bottom of functions. We could have distinguished them and still the

propositions shown in this paper would remain true. In the definition for constructed

types, ⊕ denotes the coalesced sum of (lifted) domains. Sets of values are needed for

the constructed types because non-deterministic values of such types may contain

several different constructors. However, those with only one constructor could be

treated as tuples.

If the constructed type is recursive, notice that the recursive occurrences denote

sets of values. For instance, a non-deterministic list would consist of a set of lists.

A non-empty list of this set would consist of a head value and a tail value formed

by a set of lists.

3.2.3 A maximal semantics: non-definite variables

In Figure 3 the approximated denotational semantics for Eden is given. There {v}∗

denotes the downwards closure of a value, i.e. a set of values containing all values

below v. The environment ρmaps variables of type t to values of their corresponding

non-deterministic domains At. The semantic function [[.]] maps an expression of type

t and an environment ρ to a value in At. The only expression introducing sets of

values is merget. Its behaviour is that of a lambda abstraction returning all the

possible interleavings of all pairs of input lists. The detail of the auxiliary function

mergeS is given in Figure 4.
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[[v]] ρ = ρ(v)
[[k]] ρ = {k}∗

[[(x1, . . . , xm)]] ρ = ([[x1]] ρ, . . . , [[xm]] ρ)
[[C x1 . . . xm]] ρ = {C [[x1]] ρ . . . [[xm]] ρ}∗

[[λv.e]]2 ρ = λs ∈ Atv .[[e]] ρ [v 7→ s] where v :: tv
[[e x]] ρ = ([[e]] ρ) ([[x]] ρ)
[[merget]] ρ = λs1 ∈ A[t].λs2 ∈ A[t].

⋃

{mergeS l1 l2 | l1 ∈ s1, l2 ∈ s2}
[[let v = e in e′]] ρ = [[e′]] ρ [v 7→ [[e]] ρ]

[[let rec {vi = ei} in e′]] ρ = [[e′]] (fix (λρ′.ρ [vi 7→ [[ei]] ρ′]))

[[case e of (v1, . . . , vm)→ e′]] ρ = [[e′]] ρ [vi 7→ πi([[e]] ρ)]

[[case e of Ci vij → ei]] ρ =

{

⊥At if [[e]] ρ = ⊥AT
⊔

At
{[[ek]] ρ[vkj 7→ skj ]

mk
| Ck skj

mk ∈ [[e]] ρ} otherwise

where ei :: t

Fig. 3. A denotational semantics for Eden

These decisions configure a plural semantics for Eden as every occurrence of the

same variable within an expression is mapped to all possible values for that variable

(see definitions for let and lambda in Figure 3). This is not the actual semantics

of Eden, but just a safe upper approximation to it in the sense that, if an Eden

expression e may evaluate to value v, then v is included in the set s denoted by e in

the semantics, but s may include values that the implementation will never arrive

to.

As an example, the expression

let f = head(mergeInt→Int [λx.0] [λx.1]) in (f 3) + (f 4)

in fact may only produce the values 0 or 2 while the approximated semantics will

say that it may also produce the value 1. It is maximal in the sense that all vari-

ables are considered non-definite, while in the actual semantics only those variables

duplicated in different processes may be non-definite if they are non-deterministic.

Notice that with this approximated semantics unfoldability holds although in the

actual semantics this is not true.

The reason for this maximal semantics is that, if we are able to show the cor-

rectness of the analysis with respect to it, then the analysis will be correct with

respect to the actual semantics. As we will see, the sure value of the analysis is

the deterministic one: if the analysis detects an expression as deterministic then it

should be semantically deterministic.

An exception is the algebraic case expression where the variables in the right

hand side of the alternatives are definite. The discriminant’s value is a set that may

contain different constructors, so we have to take the least upper bound of all the

alternatives’ values that match them. As the discriminant is immediately evaluated,

the non-deterministic decision is immediately taken so that all the occurrences of

the same variable in the right hand side have the chosen value.

For example, let a type data Fool = C Int | C ′ Int and the values s1 = {⊥,

C{0,⊥}, C ′{0,⊥} }, s2 = {⊥, C{1,⊥}, C{0,⊥} } and s′2 = {⊥, C{1,⊥}, C{0,⊥},
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mergeS ⊥ ⊥ = {⊥} mergeS ⊥ l2 = {l2++⊥}
∗ mergeS l1 ⊥ = {l1++⊥}

∗

mergeS [ ] [ ] = {[ ]}∗ mergeS [ ] l2 = {l2}
∗ mergeS l1 [ ] = {l1}

∗

mergeS (s1 : ls1) (s2 : ls2) =
{s1 : (

⋃

l′∈ls1
mergeS l′ (s2 : ls2)), s2 : (

⋃

l′∈ls2
mergeS (s1 : ls1) l

′)}∗

where ⊥++⊥ = ⊥
[ ]++⊥ = ⊥
(xs : xss)++⊥ = xs : {xss′++⊥ | xss′ ∈ xss}

Fig. 4. Non-determinism semantics

C{0, 1,⊥} }. Let the expression e′ = case e of C v → v + v; C ′ v′ → v′ + 4. If

[[e]] ρ = s1 , then [[e′]] ρ = {0, 4,⊥}. Notice that s2 and s′2 are different: if [[e]] ρ = s2
then [[e′]] ρ = {0, 2,⊥}, but if [[e]] ρ = s′2, then [[e′]] ρ = {0, 1, 2,⊥}. This is because

the variables in the right hand side of a case alternative are definite. We could have

chosen another option when building the environments for the right hand sides: if

there were several values with the same constructor then we could take the least

upper bound of the components so that the variables would be non-definite:

[[case e of Ci vij → ei]] ρ =

{

⊥At
if [[e]] ρ = ⊥AT

⊔

At
{[[ek]] ρ[vkj 7→

⊔

skj ]
mk

| Ck skj
mk ∈ [[e]] ρ} otherwise

With this alternative version then, both when [[e]] ρ = s2 and when [[e]] ρ = s′2, we

would have [[e′]] ρ = {0, 1, 2,⊥} because v is bound to {0,⊥} t {1,⊥} = {0, 1,⊥}.

We have chosen the first option because it is nearer to the actual semantics. The

rest of the rules are self-explanatory.

4 Analyses for Non-determinism

4.1 Motivation for the analyses

This section introduces several abstract interpretation-based non-determinism anal-

yses. They annotate the expressions with a mark which, in the simplest case is just

d or n. The first one means that the expression is sure to be deterministic, while

the second one means that it may be non-deterministic. So, a possible better name

for these analyses would be determinism analyses because the sure value is the

deterministic one.

We found at least three motivations for developing these analyses:

• On the one hand, to annotate the places in the text where equational reasoning

may be lost due to the presence of non-determinism. This is important in an

optimizing compiler such as that of Eden built on top of GHC. A lot of internal

transformations such as inlining or full laziness are done on the assumption

that it is always possible to replace equals by equals. This is not true when

the expressions involved are non-deterministic. For instance, the full laziness

transformation moves a binding out of a lambda when it does not depend on
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e = let rec

f = λp.λx.case p of

(p1, p2)→ case p2 of

0→ (p1, x)
z → f (p1 ∗ p1, p2 − 1) (x ∗ p2)

in let

q = head(mergeInt [0] [1])
f1 = f (q, 3) 4
f2 = f (1, 2) q
x1 = case f1 of (f11, f12)→ f12
x2 = case f2 of (f21, f22)→ f21
in (x1, x2)

Fig. 5. An example expression e

the lambda argument. So, the expression

let f = λx. let y = e1
in e2

in e3

is transformed to
let y = e1
in let f = λx.e2

in e3

if e1 does not depend on x. If e1 is non-deterministic, this transformation

restricts the set of values the whole expression may evaluate to, as now ex-

pression e1 is evaluated only once instead of many times. There are other

transformations that have the same effect. We have not found any that in-

creases non-determinism.
• A second motivation is to be able to implement in the future a semantics for

Eden, different from the currently implemented one, in which all variables will

be guaranteed to be definite, i.e. they will denote the same value in all the

processes. To this aim, when a non-deterministic binding is to be copied to

a newly instantiated process, the runtime system will take care of previously

evaluating the binding to normal form. Doing this evaluation for all bindings

would make Eden more eager than needed and would decrease the amount of

parallelism as more work would be done in parent processes. So, it is important

to do this evaluation only when it is known that the binding is possibly non-

deterministic.
• A third motivation could be to be able to inform the programmer of the de-

terministic expressions of the program. In this way, the part of the program

where equational reasoning is still possible would be clearly determined. To

this aim, a first step is doing the analysis at the core language level. A trans-

lation of the annotations to source level would also be required in order to

provide the programmer with meaningful information. For the moment we

have not implemented this translation.

In order to show what we expect from the analysis we show in Figure 5 an example
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Basic = {d, n} where d v n

D2K = D2T = Basic

D2(t1,...,tm) = D2t1 × . . .×D2tm

D2t1→t2 = [D2t1 → D2t2 ]

Fig. 6. Abstract domains for the analysis [[·]]2

expression e :: (Int, Int). Given a pair of integers (p1, p2) and another integer x,

the function f :: (Int, Int)→ Int→ (Int, Int), calculates the pair (p1
2∗p2 , x ∗ p2!).

Clearly, the result we expect from the analysis in this example is a tuple (d, d) telling

us that both components of the resulting tuple are deterministic, even though q is

non-deterministic. Less accurate analyses could produce an (safe) n in one of the

components of the tuple or even in both of them.

4.2 An abstract interpretation-based analysis

Now we define an abstract interpretation-based analysis in the style of Burn, Hankin

and Abramsky (1986), where the abstract domains corresponding to functional

types are domains of continuous functions.

4.2.1 Abstract interpretation

In Figure 6 the abstract domains for [[·]]2 are shown. There is a domain Basic

with two values: d represents determinism and n possible non-determinism, with

the ordering d v n. This is the abstract domain corresponding to basic types

and algebraic types. The abstract domains corresponding to a tuple type and a

function type are respectively the cartesian product of the components’ domains

and the domain of continuous functions between the domains of the argument and

the result. In (Peña & Segura, 2001a) polymorphism was also included, but in this

paper we do not treat it.

Tuples are treated differently from other algebraic types because Eden processes

use them to distinguish between different input and output channels. We want to

detect the determinism of each one separately.

In Figure 7 the abstract interpretation for this analysis is shown. The interpre-

tation of a tuple is the tuple of the abstract values of the components. Functions

are interpreted as abstract functions. So, an application is interpreted as an ab-

stract function application. In a recursive let expression the least fixpoint can be

calculated by iterating over the elements of an ascending Kleene chain.

4.2.2 Flattening and unflattening functions

The interpretation of a constructor belongs to Basic, obtained as the least upper

bound (lub) of the component’s abstract values. But each component xi :: ti has

an abstract value belonging to D2ti , that must be first flattened to a basic abstract

value. This is done by a function called flattening function φt : D2t → Basic, defined
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[[v]]2 ρ2 = ρ2(v)
[[k]]2 ρ2 = d

[[(x1, . . . , xm)]]2 ρ2 = ([[x1]]2 ρ2, . . . , [[xm]]2 ρ2)
[[C x1 . . . xm]]2 ρ2 =

⊔

i

φti([[xi]]2 ρ2) where xi :: ti

[[e x]]2 ρ2 = ([[e]]2 ρ2) ([[x]]2 ρ2)
[[λv.e]]2 ρ2 = λz ∈ D2tv

.[[e]]2 ρ2 [v 7→ z] where v :: tv
[[merget]]2 ρ2 = λz1 ∈ Basic.λz2 ∈ Basic.n
[[let v = e in e′]]2 ρ2 = [[e′]]2 ρ2 [v 7→ [[e]]2 ρ2]

[[let rec {vi = ei} in e′]]2 ρ2 = [[e′]]2 (fix (λρ′2.ρ2 [vi 7→ [[ei]]2 ρ
′
2]))

[[case e of (v1, . . . , vm)→ e′]]2 ρ2 = [[e′]]2 ρ2 [vi 7→ πi([[e]]2 ρ2)]

[[case e of Ci vij → ei]]2 ρ2 =

{

µt(n) if [[e]]2 ρ2 = n
⊔

i

[[ei]]2 ρ2i otherwise

where ρ2i = ρ2 [vij 7→ µtij (d)], vij :: tij , ei :: t

Fig. 7. Abstract interpretation [[·]]2

φt : D2t → Basic

φK = φT = idBasic

φ(t1,...,tm)(e1, . . . , em) =
⊔

i

φti(ei)

φt1→t2(f) = φt2(f(µt1(d)))

µt : Basic→ D2t

µK = µT = idBasic

µ(t1,...,tm)(b) = (µt1(b), . . . , µtm(b))

µt1→t2(b) =

{

λz ∈ D2t1 .µt2(n) if b = n

λz ∈ D2t1 .µt2(φt1(z)) if b = d

Fig. 8. Functions φt and µt

in Figure 8. The idea is to flatten the tuples (by applying the lub operator) and to

apply the functions to deterministic arguments. As an example, if t = Int → Int,

φt(λz.z) = φt(λz.d) = d. In Figure 9 we show the flattening function for the type

(Int→ Int)→ Int→ Int.

We have two different kinds of case expressions (for tuple and algebraic types).

The more complex one is the algebraic case. Its abstract value is non-determi-

nistic if either the discriminant or any of the expressions in the alternatives is

non-deterministic. Note that the abstract value of the discriminant e, let us call it

b, belongs to Basic. That is, when it was interpreted, the information about the

components was lost. We want now to interpret each alternative’s right hand side

in an extended environment with abstract values for the variables vij :: tij in the

left hand side of the alternative. We do not have such information, but we can

safely approximate it by using the unflattening function µt : Basic → D2t defined

in Figure 8. Given a type t, it unflattens a basic abstract value and produces an

abstract value in D2t. The idea is to obtain the best safe approximation both to d

and n in a given domain.

In particular n is mapped to the top of the domain D2t, and d to the biggest

value in D2t that reflects our idea of determinism, considering that a function is

deterministic if it produces deterministic results from deterministic arguments. So,

the unflattening of d for a function type is a function that takes an argument,

flattens it to see whether it is deterministic or not and applies the unflattening

function corresponding to the type of the result. The unflattening of n for a function
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λf.λz.n

λf.λz.f n t z n

λf.λz.f n λf.λz.f d t z

λf.λz.f z λf.λz.z

λf.λz.f d λf.λz.f n u z d

λf.λz.f d u z

λf.λz.d

φt

φt

µt

µt

D2t

Basic

Fig. 9. Flattening and unflattening functions for t = (Int→ Int)→ Int→ Int

type is the function that returns a non-deterministic result independently of the

argument. In Figure 9 we show the unflattening function for the type (Int→ Int)→

Int→ Int.

The flattening and unflattening functions are mutually recursive. They have some

interesting properties studied in (Peña & Segura, 2001b). In particular the fact

that they are a Galois insertion pair (Cousot & Cousot, 1979) is essential in the

correctness proof of the analysis.

4.3 An efficient approximation

4.3.1 Introduction

The exponential cost of [[·]]2 is due to the fixpoint calculation (Peña & Segura,

2001b). At each iteration a comparison between abstract values is done. Such com-

parison is exponential in case functional domains are involved. So, a good way of

speeding up the calculation of the fixpoint is finding a quickly comparable rep-

resentation of functions. Some different techniques have been developed in this

direction, such as frontiers algorithms (Peyton Jones & Clack, 1987) and widen-

ing/narrowing operators (Cousot & Cousot, 1977; Hankin & Hunt, 1992). Here,

we will represent functions by signatures. A signature for a function is obtained

by probing the function with some explicitly chosen combinations of arguments.

For example, in the strictness analysis of Peyton Jones and Partain (1993), a func-

tion f with m arguments was probed with m combinations of arguments, those

where ⊥ occupies each argument position and the rest of arguments are given a >
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SK = ST = {D,N}where D ¹ N

S(t1,...,tm) = St1 × . . .× Stm

St = {s1 s2 . . . sm sm+1 |
∀ i ∈ {1..(m+ 1)}.si ∈ Str ∧ sm+1 ¹ si}

where t = t1 → t2
m = nArgs(t), tr = rType(t)

HK = HT = 1
H(t1,...,tm) =

∑m

i=1
Hti

Ht = (m+ 1) Htr

where
t = t1 → t2
m = nArgs(t), tr = rType(t)

Fig. 10. The domain of signatures and its height Ht

value: ⊥,>, . . . ,>; >,⊥,>, . . . ,>; . . . ; >,>, . . . ,⊥. So, for example, the function

f = λx :: Int.λy :: Int.y has a signature > ⊥.

If we probe only with some arguments, different functions may have the same

signature and consequently some information is lost. Then the fixpoint calcula-

tion is not exact, but just approximate. A compromise must be found between

the amount of information the signature keeps and the cost of signatures compar-

ison. Several probings can be proposed. Here we concentrate on the one we have

implemented, and mention other possibilities in Section 5.1. We probe a function

of m arguments with m + 1 combinations of arguments. In the first m combina-

tions, a non-deterministic abstract value (of the corresponding type) µti(n) occu-

pies each argument position while a deterministic abstract value µti(d) is given

to the rest of the arguments: µt1(n), µt2(d), . . . , µtm(d); µt1(d), µt2(n), . . . , µtm(d);

. . . ; µt1(d), µt2(d), . . . , µtm(n). In the (m + 1)-th combination, all the arguments

are given a deterministic value: µt1(d), µt2(d), . . . , µtm(d). This is the most impor-

tant combination as it tells us whether the function is deterministic or it may be

non-deterministic.

4.3.2 The domain of signatures

In Figure 10 the domains St of signatures are formally defined. The domain corre-

sponding to a basic or an algebraic type is a two-point domain, very similar to the

Basic domain. However we will use uppercase letters D and N when talking about

signatures. The domain corresponding to a tuple type is a tuple of signatures of the

corresponding types, for example we could have (D,N) for the type (Int, Int). The

ordering between tuples is the usual componentwise one. With respect to the func-

tions some intuition must be given. If a function hasm arguments then its signature

is composed by m + 1 signatures, each one corresponding to the (non-functional)

type of the result. By m arguments, we mean that the type is t1 → . . .→ tm → tr,

where tr is not functional. We will call this type the unrolled version of the func-

tional type. As an example, the unrolled version of Int → (Int → (Int, Int)) is

Int→ Int→ (Int, Int).

Three useful functions, nArgs, rType and aTypes, can be easily defined. Given a

type t, the first one returns the number of arguments of t; the second one returns

the (non-functional) type of its result (it is the identity in the rest of cases); and

the third one returns the list (of length nArgs(t)) of the types of the arguments.

Then the unrolled version of a type t has nArgs(t) arguments of types aTypes(t),



Non-determinism Analyses 17

(N,N) (N,N) + (N,N)

(N,N) (N,N) + (N,D) (N,N) (N,N) + (D,N)

(N,N) (N,D) + (N,D) (N,D) (N,N) + (N,D) (N,N) (N,N) + (D,D) (N,N) (D,N) + (D,N) (D,N) (N,N) + (D,N)

(N,N) (N,D) + (D,D) (N,D) (N,D) + (N,D) (N,N) (D,N) + (D,D) (N,D) (N,N) + (D,D) (D,N) (D,N) + (D,N) (D,N) (N,N) + (D,D)

(N,N) (D,D) + (D,D) (D,N) (N,D) + (D,D) (N,D) (N,D) + (D,D) (D,N) (D,N) + (D,D) (N,D) (D,N) + (D,D) (D,D) (N,N) + (D,D)

(D,N) (D,D) + (D,D) (N,D) (D,D) + (D,D) (D,D) (N,D) + (D,D) (D,D) (D,N) + (D,D)

(D,D) (D,D) + (D,D)

Fig. 11. Signatures for Int→ Int→ (Int, Int)

and rType(t) as result type. In order to make the signatures for a function type

readable, in the examples the last component is separated with a + symbol. So, an

example of signature for the type Int→ (Int, Int) could be (N,D) + (D,D). But

not every sequence of signatures is a valid signature. As we have previously said,

the last component is obtained by probing the function with all the arguments

set to a deterministic value, while the rest of them are obtained by probing the

function with one non-deterministic value. As the functions are monotone, this

means that the last component must always be less than or equal to all the other

components. The ordering between the signatures ( ¹ ) is componentwise, so least

upper bound and greatest lower bound can also be obtained in the same way. It is

easy to see that with this ordering, the domain of signatures St for a given type t is

a complete lattice of height Ht, see Figure 10. In Figure 11 the domain St, where

t = Int→ Int→ (Int, Int) is shown.

4.3.3 The probing

Now we define the probing function ℘t :: D2t → St, that given an abstract value in

D2t, obtains the corresponding signature in St. In Figure 12 the formal definition

is shown.
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℘t :: D2t → St

℘K(b) = ℘T (b) = B

℘(t1,...,tm)(e1, . . . , em) = (℘t1
(e1), . . . , ℘tm

(em))

℘t(f) = ℘tr
(f µt1(n) µt2(d) . . . µtm(d)) ℘tr

(f µt1(d) µt2(n) . . . µtm(d)) . . .
℘tr

(f µt1(d) µt2(d) . . . µtm(n)) ℘tr
(f µt1(d) µt2(d) . . . µtm(d))

where t = t′1 → t′2, tr = rType(t), [t1, . . . , tm] = aTypes(t)

Fig. 12. The probing function

<t :: St → D2t

<K(B) = <T (B) = b

<(t1,...,tm)(s1, . . . , sm) = (<t1(s1), . . . ,<tm(sm))

<t(sj) = λzj ∈ D2tj
.



























<tr (sm+1) if

m
∧

j=1

zj v µtj (d)

<tr (si) if

m
∧

j=1,j 6=i

zj v µtj (d) ∧ zi 6v µti(d) ∀i ∈ {1..m}

µtr (n) otherwise (m > 1)
where sj = s1 . . . sm sm+1, t = t′1 → t′2

m = nArgs(t), tr = rType(t), [t1, . . . , tm] = aTypes(t)

Fig. 13. The unflattening function corresponding to the probing

The signature of a basic value b is the corresponding basic signature B, that is,

if b = d then B = D and if b = n then B = N . The signature of a tuple is the tuple

of signatures of the components. And finally, the signature for a function f :: t is a

sequence of m+1 signatures, where m = nArgs(t), that are obtained by probing f

with the combinations of arguments we have previously mentioned.

We have already said that in the probing process some information is lost. This

means that a signature represents several abstract values. When we want to recover

the original value, we can only return an approximation. This is what the signatures

unflattening function <t :: St → D2t does. This function is defined in Figure 13. All

the cases but the functional one are simple. Given a signature s = s1 . . . sm sm+1,

where s ∈ St, <t(s) is a function of m arguments zi ∈ D2ti . We know that the last

element sm+1 was obtained by probing the original function with µti(d), i ∈ {1..m}.

So, if all the arguments are less than or equal to the corresponding µti(d), then the

unflattening of sm+1 can be safely returned. The original function might have more

precise information for some of the arguments combinations below µti(d), but now

it is lost. We already know that si was obtained by probing the original function

with µti(n) value for the ith argument and µtj (d) for the rest of them (j ∈ {1..m},

j 6= i). So, if all the arguments but the ith one are less than or equal to the

corresponding µtj (d), then we can safely return the unflattening of si. Again we are

losing information. If there is more than one value that is not less than or equal to

the corresponding µtj (d), we can only return the pessimistic value µtr (n), as we do

not have information for these combinations of arguments in the signature.
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We have said that we will use a widening operator to speed up the fixpoint

calculation. This is defined as W t = <t · ℘t. In fact we will prove that W t is an

upper closure operator (W t w idD2t
). The definition of a widening operator is

more general (Cousot & Cousot, 1977), but given an upper closure operator W t,

we can define a corresponding widening operator ∇t = λ(x, y).x tWt(y), as done

by Hankin and Hunt (1992). So we will use the term ‘widening operator’ instead,

as done by Peyton Jones and Partain (1993).

4.3.4 The analysis

The analysis is very similar to [[·]]2, presented in Section 4.2. We will use the un-

derscript 3 to identify it. The only expression where there are differences is the

recursive let expression where a fixpoint must be calculated:

[[let rec {vi = ei} in e′]]3 ρ3 = [[e′]]3 (fix (λρ′3.ρ3 [vi 7→ Wti([[ei]]3 ρ
′
3)]))

where ei :: ti. Notice that by modifying the widening operator we can have sev-

eral different variants of the analysis. We can express them parameterised by the

(collection of) widening operator wopt, [[·]]3
wop

.

4.3.5 Some theoretical results

We prove now some properties that will help in the implementation of the analysis.

Proposition 1 tells us that ℘t and <t are a Galois insertion pair, which means

that <t recovers as much information as possible, considering how the signature

was built. As a consequence, W t is a widening operator. Proposition 2 tells us that

µt(d) and µt(n) can be represented by their corresponding signatures without losing

any information, which will be very useful in the implementation of the analysis.

Finally, Proposition 3 tells us that the comparison between an abstract value and

µt(d) can be done by comparing their corresponding signatures, which is much less

expensive. This will be very useful in the implementation, as such comparison is

done very often. In the worst case it is made in Ht steps.

Proposition 1

For each type t,

(a) The functions ℘t, <t, and Wt are monotone and continuous.

(b) Wt w idD2t
.

(c) ℘t · <t = idSt
.

Proposition 2

For each type t, Wt · µt = µt.

Proposition 3

For each type t, ∀z ∈ D2t.z v µt(d)⇔ ℘t(z) ¹ ℘t(µt(d)).

Propositions 1 and 2 can be proved by structural induction on t and both are used

to prove Proposition 3. The proofs can be found in (Peña & Segura, 2001b).
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av → b

| (av1, . . . , avm)
| λv.(e, ρ)
|
⊔

F [av1, . . . , avm]
| aw

b → | d
| n

aw → | b
| (aw1, . . . , awm)
| <t, aw1 . . . awm + aw>

| <t, + aw>

Fig. 14. Abstract values definition

4.4 Analysis implementation

4.4.1 Introduction

In this section we describe the main aspects of the analysis implementation. The

algorithm we describe here not only obtains the abstract values of the expressions,

but it also annotates each expression (and its subexpressions) with its corresponding

signature. A full version of this algorithm has been implemented in Haskell. The

implementation of the analysis includes also a little parser and a pretty printer

(Hughes, 1995). It is important to annotate the subexpressions, even inside the

body of a lambda-abstraction (see full laziness transformation in Section 4.1).

In the algorithm we make use of the fact that it is implemented in a lazy functional

language. The interpretation of a lambda λv.e in an environment ρ is an abstract

function. We will use a suspension λv.(e, ρ) to represent the abstract value of λv.e,

see Figure 14. Only when the function is applied to an argument, the body e of

the function will be interpreted in the proper environment, emulating in this way

the behaviour of the abstract function. So, we use the lazy evaluation of Haskell as

our interpretation machinery. Otherwise, we should build a whole interpreter which

would be less efficient. But this decision introduces some problems. Sometimes we

need to build an abstract function that does not come from the interpretation of

a lambda in the program. There are several situations where this happens. One of

these is the application of µt(b) when t is a function type. By Proposition 2 we

can use the corresponding signature to represent µt(b) without losing information.

So, in this case we do not need to build a function. Given a basic value b, function

µ′t = ℘t · µt, defined in Figure 15, returns the signature of µt(b).

We also need to build a function when computing a lub of functions. In this

case, we use a new suspension
⊔

F [av1, . . . , avm], see Figure 14. When the function

is applied, the lub will be computed, see Figure 17.

4.4.2 Abstract values definition

In the implementation of the analysis, signatures are considered also as abstract

values, where a signature s ∈ St is just a representation of the abstract value

<t(s). In Figure 14 the abstract values are defined. They can be basic abstract

values d or n, that represent both a true basic abstract value or a basic signature.

Tuples of abstract values are also abstract values. A functional abstract value may

have several different representations: it may be represented by a signature or as
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µ′t :: Basic → St

µ′t(b) =











B if t = K, t = T

(µ′t1(b), . . . , µ
′
tm

(b)) if t = (t1, . . . , tm)

<t, µ′tr
(n) (m). . . µ′tr

(n) + µ′tr
(b)> if t = t1 → t2

where m = nArgs(t), tr = rType(t)

Fig. 15. The signatures corresponding to µt(n) and µt(d).

n t b = n

d t b = b

(av1, . . . , avm) t (av′1, . . . , av
′
m) = (av1 t av

′
1, . . . , avm t av

′
m)

<t, aw1 . . . awm + aw> t<t, aw′
1, . . . , aw

′
m + aw′> =

<t, (aw1 t aw
′
1) . . . (awm t aw

′
m) + (aw t aw′)>

<t, + aw> t<t, + aw′> = <t, + (aw t aw′)>
<t, aw1 . . . awm + aw> t<t, + aw′> = <t, + aw′> t<t, aw1 . . . awm + aw>

= <t, + (aw t aw′)>
(
⊔

F avs) t av = av t (
⊔

F avs) =
⊔

F av : avs
av t λv.(e, ρ) = λv.(e, ρ) t av =

⊔

F [av, λv.(e, ρ)]
t [av1, . . . , avm] = av1 t . . . t avm

Fig. 16. Lub operator definition

a suspension. In Figure 14 a functional signature is either <t, aw1 . . . awm + aw>

or < t,+ aw >. The first one is a normal signature. The signature < t,+ aw >

represents a function returning aw when all the arguments are deterministic (that

is, less than or equal to µti(d)) and µtr (n) otherwise. So, it is just a particular case

of <t, aw1 . . . awm + aw> where awi = µtr (n) (i ∈ {1..m}). A function may also

be represented as a suspension. As we have previously said, it can be a suspended

lambda abstraction λv.(e, ρ) or a suspended lub
⊔

F [av1, . . . , avm].

In Figure 16 the lub operator between abstract values is defined. For basic val-

ues/signatures and tuples it is simple. In the functional case, if both functions are

represented by a signature then we just apply the lub operator componentwise. If

one of the functions is a suspension, then the result is a lub suspension.

4.4.3 Abstract application of a function

In Figure 17 the definition of the application of an abstract function to an ab-

stract argument is shown. In case the abstract function is a signature of the form

<t1 → . . .→ tm → tr, aw1 . . . awm + aw> we check if the argument av′ is less than

or equal to µt1(d). This is done by comparing their signatures, ℘t1(av
′) and µ′t1(d)

(this can be done by Proposition 3). If this happens, we will discard the first ele-

ment aw1 of the signature and return <t2 → . . .→ tm → tr, aw2 . . . awm + aw>,

as these elements have been obtained by giving the first argument a value µt1(d).

Otherwise, we can return aw1 as result of the function, only if the rest of the argu-

ments are deterministic, so a signature <t2 → . . .→ tm → tr,+aw1> is returned.

If the abstract function is a signature <t1 → . . .→ tm → tr, + aw>, only if all the
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(λv.(e, ρ)) av = [[e]]′ ρ[v 7→ (av, aw, b)] where v :: tv, aw = ℘tv
(av), b = φtv (av)

(
⊔

F [av1, . . . , avm]) av′ =
⊔

[av1 av
′, . . . , avm av′]

<t1 → . . .→ tm → tr, aw1 . . . awm + aw> av′ (m > 1)
| ℘t1

(av′) ¹ µ′t1(d) = <t2 → . . .→ tm → tr, aw2 . . . awm + aw>

| otherwise = <t2 → . . .→ tm → tr, + aw1>

<t1 → tr, aw1 + aw> av′

| ℘t1
(av′) ¹ µ′t1(d) = aw

| otherwise = aw1
<t1 → . . .→ tm → tr, + aw> av′ (m > 1)
| ℘t1

(av′) ¹ µ′t1(d) = <t2 → . . .→ tm → tr, + aw>

| otherwise = µ′t2→...→tm→tr
(n)

<t1 → tr, + aw> av′

| ℘t1
(av′) ¹ µ′t1(d) = aw

| otherwise = µ′tr
(n)

Fig. 17. Application of abstract functions

arguments are deterministic (that is, less than or equal to µti(d)) the value aw is

returned. If any of them is not, a non-deterministic result is returned.

The suspensions are just a way of delaying the evaluation until the arguments

are known. The application of a suspended function to an argument evaluates the

function as far as it is possible, until the result of the function or a new suspension

is obtained. If it is a suspension λv.(e, ρ), we continue by evaluating the body e with

the interpretation function [[·]]′, studied in the following section. The environment

ρ keeps the abstract values of all the free variables but v in e. So we just have to

add a mapping from v to the abstract value of the argument.

If it is a suspended lub, we apply each function to the argument and then try

to calculate the lub of the results. The algorithm proceeds by suspending and

evaluating once and again.

4.4.4 The algorithm

In the algorithm there are two different interpretation functions [[·]]′ and [[·]]. Given a

non-annotated expression e and an environment ρ, [[e]] ρ returns a pair (av, e′@aw)

where av is the abstract value of e, e′ is e where all its subexpressions have been

annotated, and aw is the external annotation of e. While annotations in the ex-

pressions are always signatures, the first component of the pair is intended to keep

as much information as possible, except in the fixpoint calculation where it will be

replaced by its corresponding signature. In Figure 18 the algorithm for [[·]] is shown

in pseudo-code. The one for [[·]]′ is very similar: [[e]]
′
ρ returns just the abstract value

of the expression. The rest of computations of [[e]] ρ are not done. In an environ-

ment ρ, there is a triple (av, aw, b) of abstract values associated to each program

variable v. The first component av is the abstract value of the expression, aw is

the corresponding signature ℘t(av), and b is the basic abstract value corresponding

to φt(av). As these three values may be used several times along the interpreta-

tion, they are calculated just once, when the variable is bound, and used wherever

needed.
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[[·]]′ :: Expr → Env → AbsVal
[[e]]′ ρ = π1([[e]] ρ)
[[·]] :: Expr( )→ Env → (AbsVal , Expr AbsVal)
[[v]] ρ = (av, v@aw)

where (av, aw, ) = ρ(v);
[[k]] ρ = (d, k@d)
[[(x1, . . . , xm)]] ρ = ((av1, . . . , avm), (x′1, . . . , x

′
m)@(aw1, . . . , awm))

where (avi, x
′
i) = [[xi]] ρ; xi@awi = x′i

[[C x1 . . . xm]] ρ = (aw,C x′1 . . . x
′
m@aw) {xi :: ti}

where (avi, x
′
i) = [[xi]] ρ; aw = tm

i=1 bi

bi = if isvar(xi) then (π3(ρ(xi))) else d
[[λv.e]] ρ = (a, (λv@awv.e′)@aw) {v :: tv, (λv.e) :: t}

where a = λv.(e, ρ); aw = ℘t(a)
awv = µ′tv

(n); ( , e′) = [[e]] ρ[v 7→ (awv, awv, n)]
[[e x]] ρ = (a, (e′ x′)@aw) {(e x) :: t}

where (ae, e′) = [[e]] ρ; (ax, x′) = [[x]] ρ
a = ae ax; aw = ℘t(a)

[[merget]] ρ = (aw,merget@aw) {merget :: tmerge}
where aw = µ′tmerge

(n)

[[let bind in e]] ρ = (a, (let bind′ in e′)@aw) {e :: t}
where (ρ′, bind′) = [[bind]]B ρ; (a, e′) = [[e]] ρ′ e′′@aw = e′

[[case e of (v1, . . . , vm)→ e′]] ρ =
(a, (case (e1@awe) of (v′1, . . . , v

′
m)→ (e′1@aw))@aw) {vi :: ti}

where (ae, e1@awe) = [[e]] ρ; awi = πi(awe)
v′i = vi@awi; avi = πi(ae)

bi = φti(avi); (a, e′1@aw) = [[e′]] ρ[vi 7→ (avi, awi, bi)]

[[case e of alti]] ρ = (av, (case e′ of alt′i)@aw) {case e of alti :: t}
where (ae, e′) = [[e]] ρ; (avi, alt

′
i) = [[alti]]A ae ρ

Ci vi1 . . . vimi → (ei@wai) = alt′i
aw = if ae = n then µ′t(n) else t

m
i=1 awi

av = if ae = n then µ′t(n) else t
m
i=1avi

[[v = e]]B ρ = (ρ[v 7→ (av, aw, b)], v@aw = e′@aw)
where (av, e′@aw) = [[e]] ρ; b = φtv (av)

[[rec vi = ei]]B ρ = (ρf ix, rec v′i = e′′i ) {vi :: ti}

where ρf ix = fix f init; init = ρ[vi 7→ (awi, awi, d)]; awi = µ′ti
(d)

fρ′ = ρ′[vi 7→ (aw′
i, aw

′
i, bi)]

where av′i = [[ei]]
′
ρ′; aw′

i = ℘ti
(av′i); bi = φti(av

′
i)

( , e′′i ) = [[ei]] ρfix; ( , awi, ) = ρfix (vi); v′i = vi@awi

[[C v1 . . . vm → e]]A avd ρ = (av, C v′1 . . . v
′
m → e′) {vi :: ti}

where awi = µ′ti
(avd); (av, e′) = [[e]] ρ[vi 7→ (awi, awi, avd)]

v′i = vi@awi

Fig. 18. The expressions annotation algorithm

The computation of the first component of the result av follows the definition of

[[·]]3
W
, so we just explain the annotation part. In general, to annotate the expression

we first recursively annotate its subexpressions and then calculate the annotation for

the whole expression by probing the resulting abstract value (the first component)

of the expression. But, in many cases the annotations of the subexpressions are

used to build the annotation of the whole expression, which is more efficient.
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4.4.5 Complexity of the analysis

Analysing the cost of the interpretation algorithm has proved to be a hard task.

This is due to the fact that many of the functions involved —in particular [[·]], [[·]]′,

abstract application, ℘t, and φt— are heavily mutually recursive. Fortunately, there

are small functions whose cost can be directly computed. For instance, a comparison

between two signatures in St, or computing their lub, can be done in O(Ht). So,

the lub of m abstract values of type t is in O((m − 1) Ht). The cost of µ′t(b) is in

O(m + Htr ), being m = nArgs(t) and tr = rType(t). To analyse the cost of the

main interpretation functions we define in (Peña & Segura, 2001b) two functions

s, s′ : Expr → Int respectively giving the ‘size’ of an expression e when interpreted

by [[·]] and by [[·]]′. Then [[e]]
′
ρ ∈ O(s′(e)) and [[e]] ρ ∈ O(s(e)). Most of the time, s(e)

and s′(e) are linear with e using any intuitive notion of size of an expression and

including in this notion the size of the types involved. There are three exceptions

to this linearity:

Applications Interpreting a lambda binding with [[·]]′ costs O(1) because a sus-

pension is immediately created. But the body of this lambda is interpreted as

many times as the lambda appears applied in the text, each time with possibly

different arguments. Being eλ the body of a lambda, the algorithm costs O(s′(eλ))

each time the lambda is applied.

Probing a function It is heavily used by [[·]] to annotate expressions with signa-

tures and also by both [[·]] and [[·]]′ in fixpoints. The cost of ℘t(e) involves m+ 1

abstract applications, each one to m parameters, being m = nArgs(t). Calling eλ
to e’s body, the cost will be in O((m+ 1) s′(eλ)).

Fixpoints Assuming a recursive binding v = e of functional type t, being m =

nArgs(t), tr = rType(t), and eλ the body of e, algorithm [[·]]′ will compute a

fixpoint in a maximum of Ht = (m + 1) Htr iterations. At each iteration, the

signature of e is obtained, so the cost of fixpoints is in O(m2 Htr s′(eλ)). The

annotation algorithm [[·]] will add to this cost that of completely annotating e,

which involves m probings more, each one with one parameter less, i.e. in total

O(m2 s′(eλ)).

Summarizing, the complete interpretation/annotation algorithm is linear with e

except in applications —where the interpretation of the body must be multiplied by

the number of applications—, in the annotation of functions —where it is quadratic

because of probing—, and in fixpoints where it can reach a cubic cost. We have

tried the algorithm with actual definitions of typical Eden skeletons (Peña & Segura,

2001b). For files of 3.000 net lines and 80 seconds of compilation time in a SUN

4 250 MHz Ultra Sparc-II, the analysis adds an overhead in the range of 0.5 to 1

second, i.e. less than 1 % overhead.

5 A Proof of Correctness

In this section we show the relation between the analyses and prove that they are

correct with respect to the approximated semantics defined in Section 3.2. The
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[[·]]2

[[·]]3
Wb

[[·]]3
Wc [[·]]3

W

[[·]]3
Wd [[·]]1

Fig. 19. A hierarchy of analyses

proofs of the propositions shown in this section can be found as supplementary

material in the web page of this journal.

5.1 A hierarchy of analyses

Two non-determinism analyses have been presented to determine when an Eden

expression is sure to be deterministic and when it may be non-deterministic. We

have also developed another analysis [[·]]1, presented in (Peña & Segura, 2001a). It

was efficient (linear) but not very powerful. We first developed [[·]]1 and then [[·]]2.

Analysis [[·]]3 was intended to be an intermediate analysis, a compromise between

power and efficiency. In (Peña & Segura, 2001b) we mentioned other possible widen-

ing operators (Wb, Wc and Wd) and their relation with W. The main difference

between them lies in their treatment of the tuples, in the arguments and/or in the

result of the functions, either as indivisible entities or componentwise.

In (Peña & Segura, 2001b), the three analyses were formally related so that they

become totally ordered by increasing cost and precision. In Figure 19 we illustrate

the relation between [[·]]1, [[·]]2 and some variants of [[·]]3.

The example shown in Figure 5 can be used to clarify the difference in power

between [[·]]1, [[·]]3
W

and [[·]]2. By applying the analyses definitions we obtain that

[[e]]1 ρ = (n, n) = [[e]]3
W
ρ = (n, d) = [[e]]2 ρ = (d, d), where ρ is the empty environ-

ment.

Here we show the relation between [[·]]2 and [[·]]3, and also between the variants of

[[·]]3. On the one hand, Proposition 4 tells us that the third analysis is less precise

than the second one. This is true for any variant of the third analysis, and in

particular for the one we have described. On the other hand, Proposition 5 tells us

that given two comparable widening operators, the corresponding variants of the

third analysis are also comparable. In (Peña & Segura, 2001b) it was also shown

that the first analysis is only a safe approximation to those variants of the third

analysis satisfying a property (in particular [[·]]3
W

satisfies it).

Proposition 4

Let W ′
t : D2t → D2t be a widening operator for each type t. Given ρ2 and ρ3

such that for each variable v :: tv ρ2(v) v ρ3(v), then for each expression e :: te,

[[e]]2 ρ2 v [[e]]3
W

′

ρ3.
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detK(s) = unit(s)
where
unit({⊥}) = true

unit({z,⊥}) = true

unit = false

det (t1,...,tm)((s1, . . . , sm)) =
∧m

i=1
det ti(si)

detT (s) =

{

∧m

i=1
det ti(t{si | C s1 . . . sm ∈ s, si :: ti}) if one(s)

false otherwise

where one(s) = (s = {⊥}) ∨ (∃C.∀s′ ∈ s.s′ 6= ⊥ ⇒ s′ = C s1 . . . sm)
det t1→t2(f) = ∀s ∈ At1 .det t1(s)⇒ det t2(f(s))

Fig. 20. Semantic definition of determinism

Proposition 5

Let W ′
t, W

′′
t be two widening operators for each type t. Let ρ3, ρ

′
3 such that for

each variable v :: tv, ρ3(v) v ρ′3(v). If for each type t, W ′
t v W ′′

t , then for each

expression e :: te, [[e]]3
W

′

ρ3 v [[e]]3
W

′′

ρ′3.

Both propositions can be proved by structural induction on e.

Now we prove the correctness of [[·]]2 with respect to Eden denotational semantics.

The previous results lead us to the correctness of the whole hierarchy of analyses

with respect to Eden semantics.

5.2 Capturing the determinism meaning

5.2.1 Deterministic values

In order to establish the correctness predicate we need first to define the semantic

property we want to capture, that is the determinism of an expression. In Figure 20

the boolean functions det t are defined. Given s ∈ At, det t(s) tells us whether s

is a deterministic value or not. A value of type K is deterministic if it is a set

with at most one element different from ⊥ (as ⊥ belongs to each s ∈ AK), which

is established by the function unit . A tuple is deterministic if each component is

deterministic. A constructed value s ∈ AT is deterministic if its elements different

from ⊥ (again ⊥ belongs to each s ∈ AT ) have the same constructor, which is es-

tablished by the function one, and additionally the least upper bound of the values

in each component is deterministic. For example, values s1, s2 and s′2 defined in

Section 3.2.3 are non-deterministic: the first one because it has two different con-

structors, and the other two because the least upper bound of the first component,

{0, 1,⊥}, is non-deterministic. The definition of det t in Figure 20 and the proposi-

tions below assume that there are not algebraic infinite values. This is not a severe

restriction as processes communicating infinite values will not terminate and Hoare

powerdomains ignores non-termination (⊥ is included in all values).

Finally, a function is deterministic if given a deterministic argument it produces

a deterministic result.

Let us note that this semantical definition of determinism characterizes a possibly

non-terminating single value expression as being deterministic. This is in accordance
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αt : At → D2t

αK(s) =

{

d if detK(s)
n otherwise

α(t1,...,tm)((s1, . . . , sm)) = (αt1(s1), . . . , αtm(sm))

αT (s) =

{

d if detT (s)
n otherwise

αt1→t2(f) = λz ∈ D2t1 .
⊔

s1∈Γt1
(z)

αt2(f(s1))

Λt : P(At)→ D2t

Λt(S) =
⊔

s∈S
αt(s)

Fig. 21. Abstraction function

Γt : D2t → P(At)

ΓK(b) =

{

{s ∈ AK | unit(s)} if b = d

P(AK) if b = n

Γ(t1,...,tm)((z1, . . . , zm)) = {(s1, . . . , sm) | αti(si) v zi∀i ∈ {1..m}}

ΓT (b) =

{

{s ∈ AT | detT (s)} if b = d

P(AT ) if b = n

Γt1→t2(f
#) = {f ∈ At1→t2 | ∀s ∈ At1 .αt2(f(s)) v f#(αt1(s))}

Fig. 22. Concretisation function

with the Hoare powerdomain semantics we have adopted producing Scott-closed

sets: where the actual semantics produces a single value, our approximate semantics

produces a non-singleton set because it always includes ⊥. That is, predicate det t
characterizes determinism up to non-termination. Notice also that, if we eliminate

⊥ in the definitions of unit and one, then predicate det t characterizes real singleton

sets in the basic type, tuples and algebraic type cases; and functions mapping single

values into single values in the functional type case. Predicates det t have some

properties (Segura & Peña, 2003b) we do not show here.

5.2.2 Abstraction and concretisation functions

Now we define the abstraction Λt and concretisation Γt functions that relate the

abstract and concrete domains, following the ideas in (Burn et al., 1986).

The function Λt is just an extension of a function αt to Hoare sets by applying it

to each element of the set and taking the least upper bound. So αt will also be called

abstraction function. With this function, defined in Figure 21, we want to abstract

the determinism behaviour of the concrete values. It loses information, i.e. several

concrete values may have the same abstract value. In Figure 22 the concretisation

function is defined. For each abstract value, it returns all the concrete values that

can be approximated by that abstract value. They are mutually recursive. We will

prove that Λt and Γt are a Galois connection, which implies that for each concrete

value there may be several abstract approximations but there exists only one best

(least) approximation. This is a crucial property in the correctness proof.
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A value of type K or T is abstracted to d only if it is deterministic. The ab-

straction of a tuple is the tuple of the abstractions. The abstraction of a function

f of type t1 → t2 is a little more involved. It is an abstract function taking an

argument z ∈ D2t1 . Such z represents several concrete values s1 ∈ Γt(z) whose

abstract images are αt2(f(s1)). So the abstraction of the result is the least upper

bound of these abstract images.

The concretisation function is defined in such a way that it builds a Galois con-

nection with Λt. The concretisation Γt of the basic abstract value d is the set of

deterministic concrete values (when t = K or t = T ), and the concretisation of

n is the whole corresponding Hoare powerdomain (P(AK) or P(AT )). The con-

cretisation of a tuple is the set of tuples whose components are abstracted to the

abstract components. The concretisation of an abstract function f# is again more

involved. It is a set of concrete functions such that the abstraction of its behaviour

on a concrete argument s is safely approximated (it is less or equal than) by the

behaviour of the abstract function on the abstraction of the argument.

It can easily be proved that Γt is well defined, i.e. it produces downwards closed

sets of concrete values. It can also be proved that for each type t, functions αt, Λt

and γt are continuous. Both things are shown in (Segura & Peña, 2003b).

The most important result in this section is that Λt and Γt are a Galois connection

(i.e. Λt · Γt v idD2t
and Γt · Λt w idP(At)

), which is equivalent to the following

proposition, that will be intensively used in the correctness proof.

Proposition 6

For each type t, z ∈ D2t, and s ∈ At: s ∈ Γt(z)⇔ αt(s) v z.

This proposition can be proved by structural induction on t.

Finally we present an interesting property that only holds when the concrete

domains of basic and algebraic types have at least two elements different from

⊥. In the following proposition we show that αt is surjective, i.e. each abstract

value is the abstraction of a concrete value, which in particular belongs to the

concretisation of that abstract value. This means that Λt and Γt are a Galois

insertion (Λt · Γt = idD2t
).

Proposition 7

If all [[K]] and [[T ]] have at least two elements different from ⊥, then for each type

t and z ∈ D2t, there exists s ∈ Γt(z) such that αt(s) = z.

This can also be proved by structural induction on t. If the theorem hypothesis

about [[K]] and [[T ]] does not hold then it is easy to see that all the concrete values

are abstracted to d and none to n. In fact we are avoiding the Unit type. However

this property is not necessary in the correctness proof.

5.2.3 A proof of partial correctness

Now we prove that [[·]]2 is correct with respect to the denotational semantics: when

the analysis tells that an expression is deterministic, then the concrete value pro-

duced by the denotational semantics is semantically deterministic. Otherwise we do
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not know anything about it. We have to formally describe this intuition. On the one

hand, we said in Section 4 that µt(d) is the best safe approximation to d in a given

domain, so the analysis tells us that an expression is deterministic when its abstract

value is less or equal than µt(d). On the other hand the semantical determinism of

a concrete value has been established by predicate det t. So, the main correctness

result is expressed as follows.

Theorem 8

Let ρ and ρ2 be two environments, such that for each variable x :: tx, αtx(ρ(x)) v

ρ2(x). Then for each expression e :: t:

[[e]]2 ρ2 v µt(d)⇒ det t([[e]] ρ)

Notice that this only proves the partial correctness of the analysis with respect to

the actual semantics of Eden. This (not formally defined) semantics only produces

non-singleton sets when expression e contains at least one occurrence of merge. If

expression e completely terminates, then we can ignore the undefined values in [[e]] ρ

and then det t([[e]] ρ) amounts to saying that [[e]] ρ consists of a single value, i.e. e is

deterministic in the actual semantics sense.

The theorem is proved in two parts written as Propositions 9 and 10, shown

below. The first one tells us that all the values whose abstraction is below µt(d)

are semantically deterministic. The second one asserts that the analysis is an upper

approximation to the abstraction of the concrete semantics. The theorem is then

immediately obtained.

Proposition 9

For each type t, and s ∈ At: αt(s) v µt(d)⇔ det t(s).

This proposition can be proved by structural induction on t. We need Proposition 6

and also some properties satisfied by φt and µt, proved in (Peña & Segura, 2001b).

In particular we need the fact that they are a Galois insertion.

Proposition 10

Let ρ and ρ2 be two environments, such that for each variable x :: tx, αtx(ρ(x)) v

ρ2(x). Then for each expression e :: t: αt([[e]]) ρ v [[e]]2 ρ2.

This proposition can be proved by structural induction on e. We need Propo-

sitions 6 and 9, and some properties satisfied by φt and µt, proved in (Peña &

Segura, 2001b). Additionally we need to prove that αt reflects the bottom element,

and that the denotational semantics we have defined is monotone with respect to

the environments. Both things are proved by structural induction in (Segura &

Peña, 2003b).

6 Conclusions and Related Work

We have not found any previous analyses for the non-determinism problem in the

literature. Our analysis [[·]]2 is based on abstract interpretation in the style of Burn,

Hankin and Abramsky (1986), where functions are interpreted as abstract functions.
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There, a strictness analysis was presented. Both analyses can be seen as particular

cases of what is commonly known as dependency analysis (Jones & Nielson, 1995).

In this broad group many different analyses fall. The general idea is to study

different forms of dependencies between the program variables. In the logic pro-

gramming field, groundness analysis, finiteness analysis and suspension analysis

(Armstrong et al., 1998) are some examples. For instance, the groundness analysis

tries to capture the groundness dependencies between the logic variables. In the

functional languages field, the binding time analysis (BTA) also falls into this cate-

gory. Here, the analysis distinguishes those variables being static (S), or known at

compile time, from those being dynamic (D).

Several techniques have been used in these analyses: abstract interpretation

(Armstrong et al., 1998), projections based analysis (Launchbury, 1991; Mogensen,

1989), and type based analysis (Mossin, 1994).

In our non-determinism analysis we study how the result of an expression depends

on the non-determinism information collected about its free variables. However, the

three analyses (strictness, non-determinism and binding time) are different. The ba-

sic abstract domains are in the three cases two-point domains: ⊥ v > in the strict-

ness analysis, S v D in the binding time analysis and d v n in the non-determinism

analysis. BTA is essentially a dual problem to strictness analysis: where strictness

analysis finds how much of the parameters of a function is needed to produce the

result, BTA finds how much of the result will be known at compile time, given which

parts of the parameters are known. Comparing the three analyses the interpretation

of the constants are different: the abstract values of head(merge#[[0], [1]])) and 1

are respectively >, S, n and >, S, d. Also the interpretation of the analysis results

may be different even when the abstract value is the same. As an example, let

f :: (Int→ Int)→ Int be f = λg.g (head(merge#[[0], [1]])). In the strictness anal-

ysis, the abstract function for f is λg ∈ [2→ 2].g > while in the non-determinism

analysis it is λg ∈ [Basic → Basic].g n. Although the abstract functions are ba-

sically the same, the strictness analysis tells us that f is strict in its argument,

i.e. f# (λz.⊥) = ⊥, while the non-determinism analysis tells us that it may be

non-deterministic, i.e. f# (λz.z) = n.

Following some ideas in (Peyton Jones & Partain, 1993) about how to define

a widening operator by using a signature to represent functions, an intermediate

analysis has been developed that is a little less powerful but much less expensive

than the second one. It needs polynomial time, and compared to the second analysis,

it only loses information in the fixpoints. It has been implemented in Haskell and

tested with many examples.

Regarding algebraic types, our analyses only distinguish between two posible

values: deterministic and non-deterministic. It is interesting to wonder whether it

would have given more precise results to use richer abstract domains in the style

of the 4-points domains for lists of Wadler (1987). For instance, we could distin-

guish four cases for lists: non-deterministically generated lists with non-determi-

nistic or deterministic elements inside, and deterministally generated lists with

non-deterministic or deterministic elements inside. Let us respectively call them

N n,N d,D n and D d. Our current analysis collapses the first three values into



Non-determinism Analyses 31

one. For many functions, such as the sum or the head of a list, this is adequate

as they will not distinguish between the first three possibilities. The result will be

non-deterministic in the three cases. Only functions such as length, taking into

account only the list structure, will distinguish between the first two cases and the

third one. We have considered that the gain in precision in some cases would not

compensate the extra complexity.

We have proved the correctness of a whole hierarchy of non-determinism analyses.

In order to do this, we have defined first a denotational semantics for Eden where

non-determinism is represented. We have chosen to use a plural semantics in which

non-deterministic choices for variables are deferred as much as possible. A semantics

nearer to the actual one (within a single process) would have been a singular one in

which environments map variables to single values. This would reflect the fact that

non-deterministic choices are done at binding evaluation time instead of at each

variable occurrence. For instance, a let-bound variable will get its value the first

time it is evaluated and this value will be shared thereafter by all its occurrences.

In order to consider all the possible values the variable can have, we build one

environment for each of them:

[[let v = e in e′]] ρ =
⊔

z∈[[e]] ρ

[[e′]] ρ[v 7→ z]

We would use the same approach for case-bound and lambda-bound variables. We

have tried to define this singular semantics and things go wrong when trying to give

semantics to mutually recursive definitions. The traditional fixpoint computation

by using Kleene’s ascending chain gives a semantics more plural than expected. For

instance, in the definition

letrec f = head(mergeInt→Int [g] [λx.0])

g = head(mergeInt→Int [f ] [λx.1])

in (f, g)

Kleene’s ascending chain will compute the following set of possible environments:

ρ = { {f 7→ λx.{⊥}, g 7→ λx.{⊥}},

{f 7→ λx.{0}∗, g 7→ λx.{1}∗},

{f 7→ λx.{0}∗, g 7→ λx.{0}∗},

{f 7→ λx.{1}∗, g 7→ λx.{1}∗},

{f 7→ λx.{1}∗, g 7→ λx.{0}∗} }

However, the lazy evaluation of the expression will never produce the fifth pos-

sibility. In (Søndergaard & Sestoft, 1992) a singular semantics for a small non-

deterministic recursive functional language was defined. The problem with fixpoints

did not arise there because the language was extremely simple: only one recursive

binding was allowed in the program and this had to bind a lambda abstraction.

Additionally, the language was only first-order. The problem arises when there are

at least two mutually recursive bindings to non normal-form expressions. In order

to define a real singular semantics, we think that an operational approach should

be taken, similar to that of Hughes and Moran (1995). In this way, the actual
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lazy evaluation with its updating of closures and sharing of expressions could be

appropriately modeled.

For our purposes this development closes our original problem. Although the main

motivation for developing the analyses has been the correct compilation of our Eden

programs, we think that the analyses could also be useful for other higher-order

functional languages with non-deterministic constructs. A possible utility could be

the annotation of the parts of the text where equational reasoning is still possible.
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