
A Type System for Safe Memory Management and its Proof of
Correctness ∗

Manuel Montenegro Ricardo Peña Clara Segura
Dpto. de Sistemas Informáticos y Computación

Univ. Complutense de Madrid
C/ Prof. José Garcı́a Santesmases s/n

28040, Madrid, Spain
montenegro@fdi.ucm.es, {ricardo,csegura}@sip.ucm.es

Abstract
We present a destruction-aware type system for the functional lan-
guage Safe, which is a first-order eager language with facilities
for programmer controlled destruction and copying of data struc-
tures. It provides also regions, i.e. disjoint parts of the heap, where
the program allocates data structures. The runtime system does not
need a garbage collector and all allocation/deallocation actions are
done in constant time.

The language is equipped with several analyses and inference
algorithms so that regions, sharing information and types are au-
tomatically inferred by the compiler. Here, we concentrate on the
correctness of the type system with respect to the operational se-
mantics of the language. In particular, we prove that, in spite of
sharing and of the use of implicit and explicit memory dealloca-
tion operations, all well-typed programs will be free of dangling
pointers at runtime.

The paper ends up with some examples of well-typed programs.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language con-
structs and features]: Dynamic storage management; D.3.4 [Pro-
cessors]: Memory management (garbage collection), Compilers;
F.3.2 [Semantics of Programming Languages]: Program analysis,
Operational Semantics

General Terms Languages, Security.

Keywords Type systems, safe memory deallocation.

1. Introduction
Most functional languages abstract the programmer from the mem-
ory management done by programs at run time. The runtime sup-
port system usually allocates fresh heap memory while program
expressions are being evaluated as long as there is enough free
memory available. Should the memory be exhausted, the garbage

∗Work supported by the projects TIN2004-07943-C04, S-0505/TIC/0407
(PROMESAS) and the MEC FPU grant AP2006-02154.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’08, July 16–18, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

collector will copy/mark the live part of the heap and will consider
the rest as free. This normally implies the suspension of program
execution for some time. Occasionally, not enough free memory
has been recovered and the program simply aborts. This model is
acceptable in most situations, being its main advantage that pro-
grammers are not bothered, and programs are not obscured, with
low level details about memory management. But, in some other
contexts, this scheme may not be acceptable:

1. The time delay introduced by garbage collection prevents the
program from providing an answer in a required reaction time.

2. Memory exhaustion abortion may provoke unacceptable per-
sonal or economic damage to program users.

3. The programmer wishes to reason about memory consumption.

On the other hand, many imperative languages offer low level
mechanisms to allocate and free heap memory. These mechanisms
give programmers a complete control over memory usage but are
very error prone. Well known problems are dangling references,
undesired sharing with complex side effects, and polluting memory
with garbage.

In our functional language Safe, we have chosen a semi-explicit
approach to memory control in which programmers may cooper-
ate with the memory management system by providing some infor-
mation about the intended use of data structures (in what follows,
abbreviated as DS). For instance, they may indicate that some par-
ticular DS will not be needed in the future and that it should be
destroyed by the runtime system and its memory recovered. Pro-
grammers may also launch copies of a DS and control the degree
of sharing between DSs. In order to use these facilities in safe way,
we have developed a type system which guarantees that dangling
pointers will never arise at runtime in the living heap. The Safe lan-
guage and a sharing analysis for it were published in [18]. In [10]
a type inference algorithm is presented and proved correct with re-
spect to the type system explained in this paper. A region inference
algorithm for Safe is described in [12].

The proposed approach overcomes the above mentioned short-
comings: (1) A garbage collector is not needed because the heap
is structured into disjoint regions which are dynamically allocated
and deallocated; (2) as we will see below, we will be able to reason
about memory consumption. It will even be possible to show that
an algorithm runs in constant heap space, independently of input
size; and (3), as an ultimate goal regions will allow us to statically
infer sizes for them and eventually an upper bound to the memory
consumed by the program.

The language is targeted to mobile code applications with lim-
ited resources in a Proof Carrying Code framework [14, 15]. The



final aim is to endow programs with formal certificates proving the
above properties. This aspect, as well as region size inference, are
however beyond the scope of the current paper.

The plan of the paper is as follows; In Section 2 we informally
introduce and motivate the language features. Section 3 formally
defines its operational semantics. The kernel of the paper are sec-
tions 4 and 5 where respectively the destruction-aware type sys-
tem is presented and proved correct. By lack of space, the detailed
proofs are included in a separate technical report [13]. In Section 6
examples of successful type derivations are shown. In Section 7
we present related work with respect both to region-based memory
management and to heap cells reuse. Finally, Section 8 concludes.

2. Summary of Safe
Safe is a first-order polymorphic functional language similar to
(first-order) Haskell or ML with some facilities to manage memory.
The memory model is based on heap regions where data structures
are built. However, in Full-Safe in which programs are written,
regions are implicit. These are inferred when Full-Safe is desugared
into Core-Safe. As all the analyses mentioned in this paper [18]
happen at Core-Safe level, later in this section we will describe it
in detail.

The allocation and deallocation of regions is bound to function
calls: a working region (called self ) is allocated when entering the
call and deallocated when exiting it. Inside the function, data struc-
tures may be built but they can also be destroyed by using a de-
structive pattern matching denoted by ! or a case! expression, which
deallocates the cell corresponding to the outermost constructor. Us-
ing recursion the recursive spine of the whole data structure may be
deallocated. We say that it is condemned. As an example, we show
an append function destroying the first list’s spine, while keeping
its elements in order to build the result:

concatD []! ys = ys
concatD (x:xs)! ys = x : concatD xs ys

As a consequence, the concatenation needs constant heap space,
while the usual version needs linear heap space. The fact that the
first list is lost is reflected in the type of the function:
concatD :: [a]! -> [a] -> [a].

The data structures which are not part of the function’s result are
built in the local working region, which we call self, and they die
when the function terminates. As an example we show a destructive
version of the treesort algorithm:

treesortD :: [Int]! -> [Int]
treesortD xs = inorder (mkTreeD xs)

First, the original list xs is used to build a search tree by applying
function mkTreeD (defined below). This tree is then traversed in
inorder to produce the sorted list. The tree is not part of the result
of the function, so it will be built in the working region and will die
when the treesortD function returns (in Core-Safe where regions
are explicit this will be apparent). The original list is destroyed and
the destructive appending function is used in the traversal so that
constant heap space is consumed.

Function mkTreeD inserts each element of the list in the binary
search tree.

mkTreeD :: [Int]! -> BSTree Int
mkTreeD []! = Empty
mkTreeD (x:xs)! = insertD x (mkTreeD xs)

The function insertD is the destructive version of insertion in a
binary search tree. Then mkTreeD exactly consumes in the heap
the space occupied by the list. The nondestructive version of this
function would consume in the worst case quadratic heap space.

prog → dec1; . . . ; decn; e
dec → f xi

n @ rj
l = e {recursive, polymorphic function}

e → a {atom: literal c or variable x}
| x@r {copy}
| x! {reuse}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e
be → C ai

n @ r {constructor application}
| e

Figure 1. Core-Safe language definition

insertD :: Int -> BSTree Int! -> BSTree Int
insertD x Empty! = Node Empty x Empty
insertD x (Node lt y rt)!

| x == y = Node lt! y rt!
| x > y = Node lt! y (insertD x rt)
| x < y = Node (insertD x lt) y rt!

Notice in the first guard, that the cell just destroyed must be built
again. When a data structure is condemned its recursive children
may subsequently be destroyed or they may be reused as part
of the result of the function. We denote the latter with a !, as
shown in this function insertD. This is due to safety reasons: a
condemned data structure cannot be returned as the result of a
function, as it potentially may contain dangling pointers. Reusing
turns a condemned data structure into a safe one. The original
reference is not accessible any more. The type system shown in this
paper copes with all these features to avoid dangling pointers. So,
in the example lt and rt are condemned and they must be reused
in order to be part of the result.

Data structures may also be copied using @ notation. Only
the recursive spine of the structure is copied, while the elements
are shared with the old one. This is useful when we want non-
destructive versions of functions based on the destructive ones. For
example, we can define treesort xs = (treesortD xs@).

In Fig. 1 we show the syntax of Core-Safe. A program prog is
a sequence of possibly recursive polymorphic function definitions
followed by a main expression e , calling them, whose value is
the program result. The abbreviation xi

n stands for x1 · · ·xn.
Destructive pattern matching is desugared into case! expressions.
Constructions are only allowed in let bindings, and atoms are
used in function applications, case/case! discriminant, copy and
reuse. Regions are explicit in constructor application and the copy
expression. Function definitions have additional parameters rj

l

where data structures may be built. In the right hand side expression
only the rj and its working region self may be used. functional
types include region parameter types.

Polymorphic algebraic data types are defined through data
declarations. Algebraic types declarations have additional parame-
ters indicating the regions where the constructed values of that type
are allocated. Region inference adds region arguments to construc-
tors forcing the restriction that recursive substructures must live in
the same region as its parent. For example, trees are represented as
follows:

data BSTree a @ rho
= Empty@rho
| Node (BSTree a@rho) a (BSTree a@rho) @ rho

The recursive occurrences of the type being defined in a data
declaration must be identical to the left-hand side (polymorphic
recursion is not allowed for the moment).



There may be several region parameters when nested types are
used: different components of the data structure may live in differ-
ent regions. In that case the last region variable is the outermost
region where the constructed values of this type are allocated. In
the following example

data T a b @ rho1 rho2
= C1 ([a] @ rho1) @ rho2
| C2 b @ rho2

rho2 is where the constructed values of type T are allocated, while
rho1 is where the list of a C1 value is allocated.

Function splitD is an example with several output regions. In
order to save space we show here a semi-desugared version with
explicit regions. Notice that the resulting tuple and its components
may live in different regions:

splitD :: Int -> [a]!@rho2 -> rho1 -> rho2
-> rho3 -> ([a]@rho1, [a]@rho2)@rho3

splitD 0 zs! @ r1 r2 r3 = ([]@r1, zs!)@r3
splitD n []! @ r1 r2 r3 = ([]@r1, []@r2)@r3
splitD n (y:ys)! @ r1 r2 r3 = ((y:ys1)@r1, ys2)@r3

where (ys1, ys2) = splitD (n-1) ys @r1 r2 r3

3. Operational Semantics
In Fig. 2 we show the big-step operational semantics of the core
language expressions. We use v, vi, . . . to denote either heap point-
ers or basic constants, and p, pi, q, . . . to denote heap pointers, i.e.
the syntax of normal form values is:

v → c | p literal c, p ∈ dom h

We use a, ai, . . . to denote either program variables or basic con-
stants (atoms). The former are denoted by x, xi, . . . and the latter
by c, ci etc. Finally, we use r, ri, . . . to denote region variables.

A judgement of the form E ` h, k, e ⇓ h′, k′, v means that
expression e is successfully reduced to normal form v under run-
time environment E and heap h with k + 1 regions, ranging from
0 to k, and that a final heap h′ with k′ + 1 regions is produced as
a side effect. Runtime environments E map program variables to
values and region variables to actual region identifiers. We adopt
the convention that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p (we call them
heap pointers) to construction cellsw of the form (j, C vi

n), mean-
ing that the cell resides in region j. Actual region identifiers j are
just natural numbers. Formal regions appearing in a function body
are either region variables r corresponding to formal arguments or
the constant self . Deviating from other authors, by h[p 7→ w] we
denote a heap h where the binding [p 7→ w] is highlighted. On the
contrary, by h ] [p 7→ w] we denote the disjoint union of heap h
with the binding [p 7→ w]. By h |k we denote the heap obtained by
deleting from h those bindings living in regions greater than k.

The semantics of a program d1; . . . ; dn; e is the semantics of the
main expression e in an environment Σ containing all the functions
declarations d1, . . . , dn.

Rules Lit and Var1 just say that basic values and heap pointers
are normal forms. Rule Var2 executes a copy expression copying
the DS pointed to by p and living in a region j′ into a (possibly
different) region j. The runtime system function copy follows the
pointers in recursive positions of the structure starting at p and
creates in region j a copy of all recursive cells. Some restricted type
information is available in our runtime system so that this function
can be implemented in a generic way. The pointers in non recursive
positions of all the copied cells are kept identical in the new cells.
This implies that both DSs may share some sub-structures.

In the rule Var3 binding [p 7→ w] in the heap is deleted and a
fresh binding [q 7→ w] to cell w is added. This action may create

dangling pointers in the live heap, as some cells may contain free
occurrences of p.

Rule App shows when a new region is allocated. Notice that the
body of the function is executed in a heap with k + 2 regions. The
formal identifier self is bound to the newly created region k + 1
so that the function body may create DSs in this region or pass this
region as a parameter to other function calls. Before returning from
the function, all cells created in region k′ + 1 are deleted. This
action is another source of possible dangling pointers.

Rules Let1, Let2, and Case are the usual ones for an eager lan-
guage, while rule Case! expresses what happens in a destructive
pattern matching: the binding of the discriminant variable disap-
pears from the heap. This action is the last source of possible dan-
gling pointers.

In the following, we will feel free to write the derivable judge-
ments as E ` h, k, e ⇓ h′, k, v because of the following:

PROPOSITION 1. If E ` h, k, e ⇓ h′, k′, v is derivable, then
k = k′.
Proof: Straightforward, by induction on the depth of the derivation.

By fv(e) we denote the set of free variables of expression e,
excluding function names and region variables, and by dom(h) the
set {p | [p 7→ w] ∈ h}.

In [11] we present a virtual machine and a translation of Safe
expressions implementing this semantics, and show that all mem-
ory management actions (allocation and deallocation of both cells
and regions) are done in constant time. A region is created empty
in rule App and it may grow and shrink during its lifetime due to
the evaluation of constructions and of case! expressions. The sup-
port function copy runs in time linear with the size of the DS being
copied. We remind that a DS in Safe is defined to consist only of the
cells reached by following the recursive arguments of the construc-
tors. A remarkable feature of our compilation and virtual machine
is that tail recursion is executed in constant stack space. See [11]
for more details.

4. Safe Type System
In this section we describe a polymorphic type system with alge-
braic data types for programming in a safe way when using the
destruction facilities offered by the language. The syntax of type
expressions is shown in Fig. 3. As the language is first-order, we
distinguish between functional, tf , and non-functional types, t, r.
Non-functional algebraic types may be safe types s, condemned
types d or in-danger types r. In-danger and condemned types are
respectively distinguished by a # or ! annotation. In-danger types
arise as an intermediate step during typing and are useful to con-
trol the side-effects of the destructions. But notice that the types
of functions only include either safe or condemned types. The in-
tended semantics of these types is the following:

• Safe types (s): A DS of this type can be read, copied or used to
build other DSs. They cannot be destroyed or reused by using
the symbol !. The predicate safe? tells us whether a type is safe.

• Condemned types (d): It is a DS directly involved in a case!
action. Its recursive descendants will inherit the same con-
demned type. They cannot be used to build other DSs, but they
can be read or copied before being destroyed. They can also be
reused once. The predicate cmd? is true for these types.

• In-danger types (r): This is a DS sharing a recursive desden-
dant of a condemned DS, so potentially it can contain dangling
pointers. The predicate danger? is true for these types. The
predicate unsafe? is true for condemned and in-danger types.
Function danger(s) denotes the in-danger version of s.



E ` h, k, c ⇓ h, k, c [Lit ]

E[x 7→ v] ` h, k, x ⇓ h, k, v [Var1]

j ≤ k (h′, p′) = copy(h, p, j)

E[x 7→ p, r 7→ j] ` h, k, x@r ⇓ h′, k, p′
[Var2]

fresh(q)

E[x 7→ p] ` h ] [p 7→ w], k, x! ⇓ h ] [q 7→ w], k, q
[Var3]

Σ ` f xi
n@ rj

m = e [xi 7→ E(ai)
n
, rj 7→ E(r′j)

m
, self 7→ k + 1] ` h, k + 1, e ⇓ h′, k′ + 1, v

E ` h, k, f ai
n@ r′j

m ⇓ h′ |k′ , k′, v
[App]

E ` h, k, e1 ⇓ h′, k′, v1 E ∪ [x1 7→ v1] ` h′, k′, e2 ⇓ h′′, k′′, v
E ` h, k, let x1 = e1 in e2 ⇓ h′′, k′′, v

[Let1]

j ≤ k fresh(p) E ∪ [x1 7→ p] ` h ] [p 7→ (j, C vi
n)], k, e2 ⇓ h′, k′, v

E[r 7→ j, ai 7→ vi
n] ` h, k, let x1 = C ai

n@r in e2 ⇓ h′, k′, v
[Let2]

C = Cr E ∪ [xri 7→ vi
nr ] ` h, k, er ⇓ h′, k′, v

E[x 7→ p] ` h[p 7→ (j, C vi
nr )], k, case x of Ci xij

ni → ei
m ⇓ h′, k′, v

[Case]

C = Cr E ∪ [xri 7→ vi
nr ] ` h, k, er ⇓ h′, k′, v

E[x 7→ p] ` h ] [p 7→ (j, C vi
nr )], k, case! x of Ci xij

ni → ei
m ⇓ h′, k′, v

[Case!]

Figure 2. Operational semantics of Safe expressions

τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region}

t → s {safe}
| d {condemned}

s → T s@ρm

| b
d → T t!@ρm

r → T s#@ρm

b → a {variable}
| B {basic}

tf → ti
n → ρl → T s@ρm {function}

| tin → b
| si

n → ρ→ T s@ρm {constructor}
σ → ∀a.σ

| ∀ρ.σ
| tf

Figure 3. Type expressions

In order to illustrate the meanings of these types, let us consider
the following Core-Safe definition:

f xs @ r = let ys = (case xs of (x : xx )→ xx ) in
let zs = (1 : ys)@r in case! xs of . . .

The variable ys refers to the tail of the list pointed to by xs ,
which is used in the definition of zs to build another list. After that,
the first cons cell of the list pointed to by xs is disposed by means
of a case!. In order to type the case! xs . . . expression under an
environment Γ, the variable xs must appear in this environment
with a condemned type [Int ]!@ρ. Moreover, since both ys and
zs are sharing a recursive descendant of xs , they must occur in Γ
with an in-danger type [Int ]#@ρ. Note that, regarding the typing
environment of the non-destructive case in the definition of ys ,
the variable xs may appear in this environment with a safe type
[Int ]@ρ, since it is not being destroyed there.

The motivation for not allowing in-danger types in function sig-
natures is the following: when a parameter is condemned we know
clearly that the recursive substructure of the DS is condemned.
When the function is applied to an argument we know that the re-
cursive substructure of such argument may be partially or totally

destroyed. However when a parameter is in-danger the only thing
we know is that some part (recursive or not) of the whole DS may
be dangling but we do not know which. This is a very imprecise
information to put in the type of a function.
We will write T@ρm instead of T s@ρm to abbreviate whenever
the s are not relevant. We shall even use T@ρ to highlight only
the outermost region. A partial order between types is defined:
τ ≥ τ , T !@ρm ≥ T@ρm, and T#@ρm ≥ T@ρm. This partial
order is extended below to type environments in the context of the
expression being typed.

Predicates region?(τ) and function?(τ) respectively indicate
that τ is a region type or a functional type.

Constructor types have one region argument ρ which coincides
with the outermost region variable of the resulting algebraic type
T s@ρm. As recursive sharing of DSs may happen only inside the
same region, the constructors are given types indicating that the
recursive substructure and the structure itself must live in the same
region. For example, in the case of lists and trees:
[ ] : ∀a, ρ.ρ→ [a]@ρ
(:) : ∀a, ρ.a→ [a]@ρ→ ρ→ [a]@ρ
Empty : ∀a, ρ.ρ→ BSTree a@ρ
Node : ∀a, ρ.BSTree a@ρ→ a→ BSTree a@ρ→ ρ→ BSTree a@ρ



We assume that the types of the constructors are collected in an
environment Σ, easily built from the data type declarations.

In functional types returning a DS, where there may be several
region arguments ρl, these are a subset of the result’s regions ρm.
The reason is that our region inference algorithm generates as
region arguments only those that are actually needed to build the
result. A function like f x @ r = x of type f :: a -> rho -> a,
cannot be obtained from the desugaring of a Full-Safe program, but
we can have

data T a @ rho1 rho2 = (C [a]@rho1)@rho2

g :: [a]@rho1 -> rho2 -> T a @ rho1 rho2
g xs @ r = C xs @ r

where rho1 is not an argument as the function does not build
anything there.

In the type environments, Γ, we can find region type assign-
ments r : ρ, variable type assignments x : t, and polymorphic
scheme assignments to functions f : σ. In the rules we will also
use gen(tf ,Γ) and tf � σ to respectively denote (standard) gen-
eralization of a monomorphic type and restricted instantiation of a
polymorphic type with safe types.

The operators on type environments used in the typing rules are
shown in Fig. 4. The usual operator + demands disjoint domains.
Operators ⊗ and ⊕ are defined only if common variables have
the same type, which must be safe in the case of ⊕. If one of
these operators is not defined in a rule, we assume that the rule
cannot be applied. Operator �L is explained below. The predicate
utype?(t, t′) is true when the underlying Hindley-Milner types of
t and t′ are the same.

We now explain in detail the typing rules. In Fig. 5 we present
the rule [FUNB] for function definitions. Notice that the only re-
gions in scope are the region parameters rj

l and self , which gets
a fresh region type ρself . The latter cannot appear in the type of
the result as self dies when the function returns its value (ρself 6∈
regions(s)). To type a complete program the types of the functions
are accumulated in a growing environment and then the main ex-
pression is typed.

In Figure 6, the rules for typing expressions are shown. Function
sharerec(x, e) gives an upper approximation to the set of variables
in scope in e which share a recursive descendant of the DS starting
at x. This set is computed by the abstract interpretation based
sharing analysis defined in [18].

One of the key points to prove the correctness of the type system
with respect to the semantics is an invariant of the type system
(see Lemma 2) telling that if a variable appears as condemned in
the typing environment, then those variables sharing a recursive
substructure appear also in the environment with unsafe types. This
is necessary in order to propagate information about the possibly
damaged pointers.

There are rules for typing literals ([LIT]), and variables of sev-
eral kinds ([VAR], [REGION] and [FUNCTION]). Notice that these
are given a type under the smallest typing environment.

Rules [EXTS] and [EXTD] allow to extend the typing environ-
ments in a controlled way. The addition of variables with safe types,
in-danger types, region types or functional types is allowed. If a
variable with a condemned type is added, all those variables shar-
ing its recursive substructure but itself must be also added to the
environment with its corresponding in-danger type in order to pre-
serve the invariant mentioned above. Notation type(y) represents
the Hindley-Milner type inferred for variable y1.

1 The implementation of the inference algorithm proceeds by first inferring
Hindley-Milner types and then the destruction annotations.

inh(s, s, τ)↔ safe?(τ) ∨ dgr?(τ) ∨ (¬utype?(s, τ) ∧ cmd?(τ))
inh(danger(s), s, τ)↔ dgr?(τ) ∨ (utype?(s, τ) ∧ cmd?(τ))

inh!(s, s, d)↔ ¬utype?(s, d)
inh!(d, s, d)↔ utype?(s, d)

Figure 7. Definitions of inheritance compatibility

Rule [COPY] allows any variable to be copied. This is expressed
by extending the previously defined partial order between types to
environments:

Γ1 ≥e Γ2 ≡ dom(Γ2) ⊆ dom(Γ1)
∧ ∀x ∈ dom(Γ2).Γ1(x) ≥ Γ2(x)
∧ ∀x ∈ dom(Γ1). cmd?(Γ1(x))→
∀z ∈ sharerec(x, e).z ∈ dom(Γ1)

∧ unsafe?(Γ1(z))

The third conjunction of this definition enforces variables pointing
to a recursive substructure of a condemned variable in Γ1 to appear
in this environment with an unsafe type, so that the invariant of the
type system still holds.

Rule [LET] controls the intermediate results by means of op-
erator �L. The bound variable x1 is allowed to have a safe, con-
demned or in-danger type in the main expression e2. The operator
�L, defined in Figure 4, guarantees that:

1. Each variable y condemned or in-danger in e1 may not be
referenced in e2 (i.e. y /∈ fv(e2)), as it could be a dangling
reference.

2. Those variables marked as unsafe either in Γ1 or in Γ2 will keep
those types in the combined environment.

Rule [REUSE] establishes that in order to reuse a variable, it
must have a condemned type in the environment. Those variables
sharing its recursive descendants are given in-danger types in the
environment.

Rule [APP] deals with function application. The use of the oper-
ator ⊕ avoids a variable to be used in two or more different po-
sitions unless they are all safe parameters. Otherwise undesired
side-effects could happen. The set R collects all the variables shar-
ing a recursive substructure of a condemned parameter, which are
marked as in-danger in environment ΓR.

Rule [CONS] is more restrictive as only safe variables can be
used to construct a DS.

Rule [CASE] allows its discriminant variable to be safe, in-
danger, or condemned as it only reads the variable. Relation inh ,
defined in Figure 7, determines which types are acceptable for
pattern variables according to the previously explained semantics.
Apart from the fact that the underlying types are correct from the
Hindley-Milner point of view: if the discriminant is safe, so must be
all the pattern variables; if it is in-danger, the pattern variables may
be safe or in-danger; if it is condemned, recursive pattern variables
are in-danger while non-recursive ones are safe.

In rule [CASE!] the discriminant is destroyed and consequently
the text should not try to reference it in the alternatives. The same
happens to those variables sharing a recursive substructure of x,
as they may be corrupted. All those variables are added to the set
R. Relation inh!, defined in Fig. 7, determines the types inherited
by pattern variables: recursive ones are condemned while non-
recursive ones must be safe.

As recursive pattern variables inherit condemned types, the type
environments for the alternatives contain all the variables sharing
their recursive substructures as in-danger. In particular x may ap-
pear with an in-danger type. In order to type the whole expression
we must change it to condemned.



Operator (•) Γ1 • Γ2 defined if Result of (Γ1 • Γ2)(x)

+ dom(Γ1) ∩ dom(Γ2) = ∅ Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊗ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊕ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
∧ safe?(Γ1(x))

Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

�L (∀x ∈ dom(Γ1) ∩ dom(Γ2). utype?(Γ1(x),Γ2(x)))
∧ (∀x ∈ dom(Γ1). unsafe?(Γ1(x))→ x /∈ L)

Γ2(x) if x /∈ dom(Γ1)∨
(x ∈ dom(Γ1) ∩ dom(Γ2)
∧ safe?(Γ1(x)))

Γ1(x) otherwise

Figure 4. Operators on type environments

fresh(ρself ), ρself 6∈ regions(s)

Γ + [xi : ti]
n

+ [rj : ρj ]
l
+ [self : ρself ] + [f : ti

n → ρj
l → s] ` e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(ti
n → ρj

l → s,Γ)]}
[FUNB]

Figure 5. Rule for function definitions

LEMMA 2. If Γ ` e : s and Γ(x) = d then:

∀y ∈ sharerec(x, e)− {x} : y ∈ dom(Γ) ∧ unsafe?(Γ(y))

Proof: By induction on the size of the type derivation. �
An inference algorithm for this type system has been developed.

A detailed description can be found in [10].

5. Correctness of the Type System
The proof proceeds in two steps: first we prove absence of dangling
pointers due to destructive pattern matching and then the safety of
the region deallocation mechanism.

5.1 Absence of Dangling Pointers due to Cell Destruction
The intuitive idea of a variable x being typed with a safe type s is
that all the cells in h reachable from E(x) are also safe and they
should be disjoint of unsafe cells. The idea behind a condemned
variable x is that all variables (including itself) and all live cells
sharing any of its recursive descendants are unsafe. Firstly, formal
definitions of reachability and sharing are given:

DEFINITION 3. Given a heap h, we define the child (→h) and
recursive child (�h) relations on heap pointers as follows:

p→h q
def
= h(p) = (j, C vi

n) ∧ q ∈ vi
n

p�h q
def
= h(p) = (j, C vi

n) ∧ q = vi

for some i ∈ recPos(C)

where recPos(C) is the set of recursive argument positions of
constructor C.

The reflexive and transitive closure of these relations are respec-
tively denoted by→∗h and�∗h. In addition, we will use the follow-
ing terminology:

closure(E,X, h)
def
= {q | E(x)→∗h q ∧ x ∈ X}

Set of locations reachable in h by {E(x) | x ∈ X}.

closure(p, h)
def
= {q | p→∗h q}

Set of locations reachable in h by location p.

live(E,L, h)
def
= closure(E,L, h)

Live part of h, i.e. closure(E,L, h).

recReach(E, x, h)
def
= {q | E(x)�∗h q}

Set of recursive descendants of E(x) including itself.

closed(E,L, h)
def
= live(E,L, h) ⊆ dom(h)

If there are no dangling pointers in live(E,L, h).

p→∗h V
def
= ∃q ∈ V. p→∗h q

There is a pointer path from p to a q ∈ V .

By abuse of notation, we will write closure(E, x, h) instead of
closure(E, {x}, h), and also closed(v, h) to indicate that there are
no dangling pointers in closure(v, h).

The correctness of the sharing analysis mentioned in Section 4
has been proved elsewhere and it is not the subject of this paper,
but we need it in order to prove the correctness of the whole type
system. We will assume then the following property:

∀x, y ∈ scope(e).
closure(E, x, h) ∩ recReach(E, y, h) 6= ∅ → x ∈ sharerec(y, e)

If expression e reduces to v, i.e. E ` h, k, e ⇓ h′, k, v, and Γ `
e : s, and L = fv(e), we will call initial configuration to the tuple
(Γ, E, h, L, s) combining static information about variables and
types of expression e and dynamic information such as the runtime
environment E and the initial heap h. Likewise, we will call final
configuration to the tuple (s, v, h′) including the final value and
heap together with the static type s of the original expression
(hence, s is also the type of the value).

In the following, we will use the notations Γ[x] = t and
Γ ` e : t, with t ∈ {s, d, r}, to indicate that the type of x and
e are respectively a safe, condemned or in-danger type. Now, we
define the following two sets of heap locations as functions of an
initial configuration (Γ, E, h, L, s):

S
def
=
S

x∈L,Γ[x]=s{closure(E, x, h)}
R

def
=
S

x∈L,Γ[x]=d{p ∈ live(E,L, h) | p→∗h recReach(E, x, h)}

DEFINITION 4. An initial configuration (Γ, E, h, L, s) is said to
be good whenever:

1. E ` h, k, e ⇓ h′, k, v, L = fv(e), Γ ` e : s, and
2. S ∩R = ∅, and
3. closed(E,L, h).



Γ ` e : s x /∈ dom(Γ)
safe?(τ) ∨ danger?(τ) ∨ region?(τ) ∨ function?(τ)

Γ + [x : τ ] ` e : s
[EXTS]

Γ ` e : s x /∈ dom(Γ)
R = sharerec(x, e)− {x}

ΓR = {y : danger(type(y))| y ∈ R}
Γ⊗ ΓR + [x : d] ` e : s

[EXTD]

∅ ` c : B
[LIT]

[x : s] ` x : s
[VAR]

[r : ρ] ` r : ρ
[REGION]

tf � σ

[f : σ] ` f : tf
[FUNCTION]

R = sharerec(x, x!)− {x}
ΓR = {y : danger(type(y))| y ∈ R}

ΓR + [x : T !@ρ] ` x! : T@ρ
[REUSE]

Γ1 ≥x@r [x : T@ρ′, r : ρ]

Γ1 ` x@r : T @ρ
[COPY]

Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s utype?(τ1, s1)

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET]

ti
n → ρj

l → T @ρm E σ Γ = [f : σ] +
Ll

j=1[rj : ρj ] +
Ln

i=1[ai : ti]

R =
Sn

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cmd?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` f ai
n@ rj

l : T @ρm
[APP]

Σ(C) = σ si
n → ρ→ T @ρm � σ Γ =

Ln
i=1[ai : si] + [r : ρ]

Γ ` C ai
n@r : T @ρm [CONS]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ→ T @ρ� σi

Γ ≥case x of Ci xij
ni→ei

n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij ,Γ(x))

∀i ∈ {1..n}.Γ + [xij : τij ]
ni ` ei : s

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ→ T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
)− {x} ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R ∪ {x}, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij ]
ni ` ei : s

ΓR = {y : danger(type(y)) | y ∈ R}

ΓR ⊗ Γ + [x : T !@ρ] ` case! x of Ci xij
ni → ei

n
: s

[CASE!]

Figure 6. Type rules for expressions

By analogy, a final configuration (s, v, h′) is good whenever
closed(v, h′) holds.

We claim that the property closed(E,L, h) is invariant along
the execution of any well-typed Safe program. This will prove
that dangling pointers never arise at runtime. Previously, we need
the following lemma expressing that safe pointers in the heap are
preserved by evaluation.

LEMMA 5. Let (Γ, E, h, L, s) be an initial good configuration.
Then, for all x ∈ L such that Γ[x] = swe have closure(E, x, h) =
closure(E, x, h′).

Proof: By induction on the size of the ⇓ derivation. �

THEOREM 6. Let e be a Core-Safe expression. Let us assume that
(Γ, E, h, L, s) is good. Then, (s, v, h′) is good, and all the inter-
mediate configurations in the derivation tree of ⇓ are good.

Proof: By induction on the size of the ⇓ derivation. �
Hence, if the initial configuration for a expression e is good,

during the evaluation of e it never arises a dangling pointer in
the heap. As, when executing a Safe program, the heap is initially
empty (so, closed), and there are no free variables, (so, S = R =
∅), the initial configuration is good. We conclude then that all well-
typed Safe program never produce dangling pointers at runtime.

5.2 Correctness of Region Deallocation
At the end of each function call the topmost region is deallocated,
which could be a source of dangling pointers. This section proves
that the structure returned by the function call does not reside in
self . First we shall show that the topmost region is only referenced
by the current self :

LEMMA 7. Let e0 be the main expression of a Core-Safe program
and let us assume that [self 7→ 0] ` ∅, 0, e0 ⇓ hf , 0, vf can be
derived. Then in every judgment E ` h, k, e ⇓ h′, k, v belonging
to this derivation it holds that:

1. self ∈ dom(E) ∧ E(self ) = k.
2. For every region variable r ∈ dom(E), if r 6= self then
E(r) < k.

Proof: By induction on the depth of ⇓ derivation. �
This lemma allows us to leave out the condition j ≤ k in rules

[Let2] and [Var2] of Fig. 2. The rest of the correctness proof is
to establish a correspondence between type region variables ρ and
region numbers j. If a variable admits the algebraic type T@ρi

n

and it is related by E to a pointer p, we have to find out which
concrete region of the structure pointed to by p corresponds to every



build(h, c, B) = ∅
build(h, p, T ti

n
@ρi

m) = ∅ if p /∈ dom(h)
build(h, p, T ti

n
@ρi

m) = [ρm → j] ∪
Snk

i=1 build(h, vi, tki) if p ∈ dom(h)

where h(p) = (j, Ck vi
nk )

tki
nk → ρm → T ti

n
@ρi

m E Σ(Ck)

Figure 8. Definition of build function.

copy(h0[p 7→ (k, C vi
n)], p, j) = (hn ∪ [p′ 7→ (j, C v′i

n
)], p′)

where fresh(p′)

∀i ∈ {1..n}.(hi, v
′
i) =


(hi−1, vi) if vi = c ∨ i /∈ RecPos(C)
copy(hi−1, vi, j) otherwise

Figure 9. Definition of copy .

ρi. This correspondence is called region instantiation and is defined
as follows:

DEFINITION 8. A region instantiation θ is a function from type
region variables to natural numbers (interpreted as regions). It can
also be defined as a set of bindings [ρ → n], where no variable ρ
occurs twice in the left-hand side of a binding unless it is bound to
the same region number.

Two region instantiations θ and θ′ are said to be consistent if
they bind common type region variables to the same number, that
is: ∀ρ ∈ dom(θ) ∩ dom(θ′). θ(ρ) = θ′(ρ).

The union of two region instantiations θ and θ′ (denoted by
θ∪θ′) is defined only if θ and θ′ are consistent and returns another
region instantiation over dom(θ) ∪ dom(θ′) defined as follows:

(θ ∪ θ′)(ρ) =


θ(ρ) if ρ ∈ dom(θ)
θ′(ρ) otherwise

Given a pointer and a type, the function build , defined in Fig. 8,
returns the corresponding region instantiation.

If p is a dangling pointer, its corresponding build is well-
defined. However, dangling pointers are never accessed by a pro-
gram (Sec 5.1). Now we define a notion of consistency between
the variables belonging to a variable environment E. Intuitively, it
means that the correspondences between region type variables and
concrete regions of each element of dom(E) do not contradict each
other.

DEFINITION 9. Let E be a variable environment, h a heap and Γ
a type environment. We say that E is consistent with h under type
environment Γ iff:

1. For all non-region variables x ∈ dom(E) the result of
build(h,E(x),Γ(x)) is well-defined.

2. For each pair of non-region variables x, y ∈ dom(E):
build(h,E(x),Γ(x)) and build(h,E(y),Γ(y)) are consis-
tent. In other words, if we define:

θX =
[

z∈dom(E)

build(h,E(z),Γ(z))

then θX is well-defined.
3. If θR is defined as follows:

θR = {[Γ(r)→ E(r)] |
r is a region variable and r ∈ dom(E)}

Then θX and θR are consistent.

The result of θX ∪ θR is called the witness of this consistency
relation.

The notation x@, which allows to copy the recursive spine of
a DS, is introduced in Section 2. As much as we copy a DS, the
result of the build function applied to the fresh pointer created is
well-defined if the result of the build corresponding to the original
DS is also well-defined:

DEFINITION 10. The function copy is defined as shown in Fig. 9.

LEMMA 11. If θ = build(h, p, T@ρ) is well-defined and (h′, p′) =
copy(h, j, p), then for all ρ′ such that [ρ′ → j] is consistent with
θ, build(h′, p′, T@ρ′) is well-defined and consistent with θ.

Proof: By induction on the size of the structure pointed to by p. �
The following theorem proves that consistency is preserved by

evaluation.

THEOREM 12. Let us assume that E ` h, k, e ⇓ h′, k, v and that
Γ ` e : t. If E and h are consistent under Γ with witness θ, then
build(h′, v, t) is well-defined and consistent with θ.

Proof: By induction on the depth of the ⇓ derivation. �
So far we have set up a correspondence between the actual

regions where a data structure resides and the corresponding region
types assigned by the type system: if two variables have the same
outer region ρ in their type, the cells bound to them at runtime
will live in the same actual region. Since the type system (see rule
[FUNB] in Fig. 5) enforces that the variable ρself does not occur in
the type of the function result, then every data structure returned
by the function call does not have cells in self . This implies that
the deallocation of the (k + 1)-th region (which always is bound
to self , as Lemma 7 states) at the end of a function call does not
generate dangling pointers.

6. Examples
Now we shall consider the concatD , treesort and treesortD func-
tions defined in Sec. 2. The desugared versions of their definitions
are shown in Fig. 10. The first column is the result of the region
inference phase, which inserts the @r annotations into the code.
Temporary structures are assigned the working region self . The
second column shows the translation to Core-Safe.

Function concatD has type [a]!@ρ1 → [a]@ρ → ρ → [a]@ρ.
Rule [FUNB] establishes that its body must be typed with zs being
condemned and ys being safe. The typing derivation is shown in
Fig. 11. The typing rule [CASE!] is applied in (1). The branch
guarded by [ ] can be typed by means of the [VAR] and [EXTS]
rules (2). With respect to the second branch, the definition of inh!
specifies that xs must have a condemned type in Γ, since it is a
recursive child of zs (i.e. has the same underlying type). In (3) the



Full-Safe with regions Core-Safe

concatD [ ]! ys @ r = ys
concatD (x : xs)! ys @ r = (x : concatD xs ys @ r)@ r

concatD zs ys @ r =
case! zs of

[ ]→ ys
(x : xs)→ let x1 = concatD xs ys @ r

in (x : x1)@ r

treesortD xs @ r = inorder (mkTreeD xs @ self ) @ r
treesortD xs @ r =

let x1 = mkTreeD xs @ self
in inorder x1 @ r

treesort xs @ r = treesortD (xs@self ) @ r
treesort xs @ r = let xs ′ = xs@self

in treesortD xs ′ @ r

Figure 10. Desugared versions of concatD , treesortD and treesort

· · ·
Γ1 ` ys : [a]@ρ

(2)

· · ·
Γ3 ` concatD xs ys @r : [a]@ρ

(4)
· · ·

Γ4 + [x1 : [a]@ρ] ` (x : x1)@r : [a]@ρ
(5)

Γ2 ` let x1 = . . . in . . . : [a]@ρ
(3)

Γ ` case! zs of . . . : [a]@ρ
(1)

Γ = Γ′ + [zs : [a]!@ρ1]
Γ′ = [ys : [a]@ρ, r : ρ, self : ρself , concatD : σ]
Γ1 = Γ′ + [zs : [a]#@ρ1]
Γ2 = Γ′ + [zs : [a]#@ρ1, x : a, xs : [a]!@ρ]

Γ3 = [xs : [a]!@ρ1, zs : [a]#@ρ1, ys : [a]@ρ, r : ρ, concatD : σ]
Γ4 = [x : a, r : ρ, self : ρself ]
σ = [a]!@ρ1 → [a]@ρ→ ρ→ [a]@ρ

Figure 11. Simplified typing derivation for concatD

· · ·
Γ1 ` mkTreeD xs @ self : BSTree Int@ρself

(2)
· · ·

Γ2 + [x1 : BSTree Int@ρself ] ` inorder x1 @ r : [Int]@ρ
(3)

Γ ` let x1 = mkTreeD xs @ self in inorder x1 @ r : [Int]@ρ
(1)

Γ = [xs : [Int ]!@ρ1, r : ρ, self : ρself ,mkTreeD : σ1, inorder : σ2, treesortD : σ]
Γ1 = [xs : [Int ]!@ρ1, self : ρself ,mkTreeD : σ1] σ1 = ∀ρ1, ρ2.[Int ]!@ρ1 → ρ2 → BSTree Int@ρ2

Γ2 = [r : ρ, inorder : σ2, treesortD : σ] σ2 = ∀a, ρ1, ρ2.BSTree a@ρ1 → ρ2 → [a]@ρ2

σ = ∀ρ1, ρ.[Int ]!@ρ1 → ρ→ [Int ]@ρ

Figure 12. Simplified typing derivation for treesortD

rule [LET] is applied, where x1 is not used destructively in the main
expression of the let binding. We have Γ2 = Γ3�{x,x1}Γ4, which
is well-defined since the unsafe variables in dom(Γ2) (i.e. xs and
zs) do not occur free in the expression (x : x1)@r. The bound
expression of let x1 = . . . is typed via the [APP] rule (4) and in its
main expression the rule [CONS] is applied (5).

The typing derivation for treesortD is shown in Fig. 12. We as-
sume that mkTreeD and inorder have been already typed, obtain-
ing σ1 and σ2, respectively. The rule [LET] is applied in (1), where
x1 is not destroyed in the call to inorder . In addition, variable xs
does not occur free there, so the environment Γ = Γ1 �{x1} Γ2 is
well-defined. In (2) the rule [APP] is applied, while in (3) first we
apply [EXTS] in order to exclude the binding [treesortD : σ] of Γ2

and then [APP]. With respect to treesort , we get the following type
scheme: ∀ρ1, ρ.[Int]@ρ1 → ρ → [Int]@ρ. To type its body, rule
[LET] is now applied, where xs ′ is destroyed in the treesortD call.

The types of the remaining Safe functions presented in Section 2
could be derived in the same way. Including regions, the derived
types are the following:

mkTreeD :: ∀ρ1, ρ2 . [Int ]!@ρ1 → ρ2 → BSTree Int@ρ2

insertD :: ∀ρ . Int → BSTree Int !@ρ→ ρ→ BSTree Int@ρ
splitD :: ∀a, ρ1, ρ2, ρ3 . Int → [a]!@ρ2 → ρ1 → ρ2 → ρ3

→ ([a]@ρ1, [a]@ρ2)@ρ3

7. Related work
The use of regions in functional languages to avoid garbage col-
lection is not new. Tofte and Talpin [20] introduced in ML-Kit —a
variant of ML— the use of nested regions by means of a letregion
construct. A lot of work has been done on this system [1, 4, 19].
Their main contribution is a region inference algorithm adding re-
gion annotations at the intermediate language level.

Hughes and Pareto [7] incorporate regions in Embedded-ML.
This language uses a sized-types system in which the programmer
annotates heap and stack sizes and these annotations can be type-
checked. So, regions can be proved to be bounded.

A small difference with these approaches is that, in Safe, region
allocation and deallocation are synchronized with function calls in-
stead of being introduced by a special language construct. A more
relevant difference is that Safe has an additional mechanism allow-
ing the programmer to selectively destroy data structures inside a
region.

A difficulty with the original Tofte and Talpin’s system is the
fact that regions have nested lifetimes. There exist a few programs
that result in memory leaks due to this restriction. In [5] this prob-
lem is alleviated by defining a variant of λ-calculus with type-safe
primitives for creating, accessing and destroying regions, which are
not restricted to have nested lifetimes. Programs are written in a C-
like language called Cyclone having explicit memory management



primitives, then it is translated into this variant of λ-calculus, and
then type checked. So, the price of this flexibility is explicit region
control.

In our language Safe, regions also suffer from the nested life-
times constraint, since both region allocation and deallocation are
bound to function calls, which are necessarily nested. However, the
destructive pattern matching facility compensates for this, since it
is possible to dispose of a data structure without deallocating the
whole region in which it resides. Allocation and destruction of dis-
tinct data structures are not necessarily nested, and the type system
presented here protects the programmer against missuses of this
feature. Again, the price of this flexibility is explicit deallocation of
cells. Allocation is implicit in constructions and the target region of
the allocation is inferred by the compiler. It is arguable whether it
is better to explicitly manage regions or cells.

More recently, Hofmann and Jost [6] have developed a type
system to infer heap consumption. Theirs is also a first-order ea-
ger functional language with a construct match ′ that destroys con-
structor cells. Its operational behaviour is similar to that of Safe’s
case!. The main difference is that they lack a compile time analy-
sis guaranteeing the safe use of this dangerous feature. Also, their
language does not use regions. In [18] a more detailed comparison
with all these works can be found.

Our safety type system has some characteristics of linear types
(see [21] as a basic reference). A number of variants of linear types
have been developed for years for coping with the related problems
of achieving safe updates in place in functional languages [17] or
detecting program sites where values could be safely deallocated
[8]. The work closest to our system is [2], which proposes a type
system for a language explicitly reusing heap cells. They prove
that well-typed programs can be safely translated into an impera-
tive language with an explicit deallocation/reusing mechanism. We
summarise here the differences and similarities with our work.

There are non-essential differences such as: (1) they only admit
algorithms running in constant heap space, i.e. for each allocation
there must exist a previous deallocation; (2) they use at the source
level an explicit parameter d representing a pointer to the cell being
reused; and (3) they distinguish two different cartesian products de-
pending on whether there is sharing or not between the tuple com-
ponents. But, in our view, the following more essential differences
makes our type-system more powerful than theirs:

1. Their uses 2 and 3 (read-only and shared, or just read-only)
could be roughly assimilated to our use s (read-only), and their
use 1 (destructive), to our use d (condemned), both defined
in Section 4. We add a third use r (in-danger) arising from a
sharing analysis based on abstract interpretation [18]. This use
allows us to know more precisely which variables are in danger
when some other one is destroyed.

2. Their uses form a total order 1 < 2 < 3. A type assumption can
always be worsened without destroying the well-typedness. Our
marks s, r, d do not form a total order. Only in some expressions
(case and x@r) we allow the partial order s ≤ r and s ≤ d. It
is not clear whether that order gives or not more power to the
system. In principle it will allow diferent uses of a variable in
different branches of a conditional being the use of the whole
conditional the worst one. For the moment our system does not
allow this.

3. Their system forbids non-linear applications such as f(x, x).
We allow them for s-type arguments.

4. Our typing rule for let x1 = e1 in e2 allow more use com-
binations than theirs. Let i ∈ {1, 2, 3} the use assigned to x1,
j the use of a variable z in e1, and k the use of the variable z
in e2. We allow the following combinations (i, j, k) that they

forbid: (1, 2, 2), (1, 2, 3), (2, 2, 2), (2, 2, 3). The deep reason
is our more precise sharing information and the new in-danger
type. In a more recent version of this sytem [3] combination
(2, 2, 3) is allowed.

5. They need explicit declaration of uses while we infer them [10].

An example of Safe program using the combination (1, 2, 3) is the
following:

let x = z : [ ] in case! x of . . . case z of . . .

Variable x is destroyed, but a sharing variable z can be read both
in the auxiliary and in the main expression. An example of Safe
program using the combination (1, 2, 2) is the following:

let x = z : [ ] in case! x of . . . z

Here, the result z shares the destroyed variable x. Both programs
take profit from the fact that the sharing variable z is not a recur-
sive descendant of x. Our type system assigns an s-type to these
variables.

8. Conclusions and Future Work
We have presented a destruction-aware type system for a functional
language with regions and explicit destruction and proved it cor-
rect, in the sense that the live heap will never contain dangling
pointers. The compiler’s front-end, including all the analyses men-
tioned in this paper —region inference, sharing analysis, and safe
types inference— is fully implemented2 and, by using it, we have
successfully typed a significant number of small examples. We are
currently working on the space consumption analysis. Preliminary
work on a previously needed termination analysis has been reported
in [9].

We are also working in the code generation and certification
phases, trying to express the correctness proofs of our analyses
as certificates which could be mechanically proof-checked by the
proof assistant Isabelle [16].

Longer term work include the extension of the language and of
the analyses to higher-order. We have also found examples where
the inclusion of polymorphic recursion in regions is useful, even
under the constructors constraint on recursive children. Finally, we
plan to study how the type system scales to larger programs.

References
[1] A. Aiken, M. Fähndrich, and R. Levien. Better static memory

management: improving region-based analysis of higher-order
languages. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, PLDI’95, pages
174–185. ACM Press, 1995.

[2] D. Aspinall and M. Hofmann. Another Type System for in-place
Updating. In ESOP’02, LNCS 2305, pages 36–52. Springer-Verlag,
2002.

[3] D. Aspinall, M. Hofmann, and M. Konečný. A type system with
usage aspects. Journal of Functional Programming, 18(2):141–178,
2008.

[4] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference
to von neumann machines via region representation inference. In
Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT,
pages 171–183, 1996.

[5] M. Fluet, G. Morrisett, and A. J. Ahmed. Linear regions are all you
need. In Europeam Symposium On Programming, ESOP’06, pages
7–21, 2006.

[6] M. Hofmann and S. Jost. Static prediction of heap space usage
for first-order functional programs. In Proc. 30th ACM Symp. on

2 The front-end is now about 5 000 Haskell lines long.



Principles of Programming Languages, POPL’03, pages 185–197.
ACM Press, 2003.

[7] R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-
Structures in Bounded Space; Towards Embedded ML Programming.
In Proc. 4th ACM Int. Conf. on Functional Programming, ICFP’99,
ACM Sigplan Notices, pages 70–81, Paris, France, September 1999.
ACM Press.

[8] N. Kobayashi. Quasi-linear Types. In POPL’99, pages 29–42. ACM,
1999.

[9] S. Lucas and R. Peña. Termination and Complexity Bounds for
SAFE Programs. In Proc. 19th Int. Symp. on Implementation and
Application of Functional Languages, IFL’07, Freiburg, Sept. 2007,
pages 8–23, 2007.

[10] M. Montenegro, R. Peña, and C. Segura. An Inference Algorithm
for Guaranteeing Safe Destruction. In Proc. 8th Symp. on Trends
in Functional Programming, TFP’07. New York, April 2007, pages
XIV–1–16, 2007.

[11] M. Montenegro, R. Peña, and C. Segura. A Resource-Aware
Semantics and Abstract Machine for a Functional Language with
Explicit Deallocation, 2008. Submitted to 17th Int’l Workshop on
Functional and (Constraint) Logic Programming, Siena, Italy July,
2008.

[12] M. Montenegro, R. Peña, and C. Segura. A Simple Region
Inference Algorithm for a First-Order Functional Language. In
Ninth Symposium on Trends in Functional Programming, TFP’08,
Nijmegen, The Netherlands, May. 2008, pages XV–1–15, 2008.

[13] M. Montenegro, R. Peña, and C. Segura. A type system for
safe memory management and its proof of correctness. Technical
report, Dpto. de Sistemas Informticos y Computación. Universidad

Complutense de Madrid, 2008. Technical Report SIC-5-08.

[14] G. C. Necula. Proof-Carrying Code. In Conference Record of
POPL’97: The 24TH ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 106–119. ACM
SIGACT and SIGPLAN, ACM Press, 1997.

[15] G. C. Necula and P. Lee. The Design and Implementation of a
Certifying Compiler. In Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’98), pages 333–344, 1998.

[16] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer,
2002.

[17] M. Odersky. Observers for Linear Types. In ESOP’92, LNCS 582,
pages 390–407. Springer-Verlag, 1992.

[18] R. Peña, C. Segura, and M. Montenegro. A Sharing Analysis for
SAFE. In Selected Papers of the 7th Symp. on Trends in Functional
Programming, TFP’06., pages 109–128. Intellect, 2007.

[19] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen,
and P. Sestoft. Programming with regions in the MLKit (revised
for version 4.3.0). Technical report, IT University of Copenhagen,
Denmark, 2006.

[20] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, 132(2):109–176, 1997.

[21] P. Wadler. Linear types can change the world! In IFIP TC 2 Working
Conference on Programming Concepts and Methods, pages 561–581.
North Holland, 1990.


