RULE 2005 Preliminary Version

Typed Mobile Ambients in Maude !

Fernando Rosa-Velardo, Clara Segura, and Alberto Verdejo

Departamento de Sistemas Informdticos y Programacion
Universidad Complutense de Madrid, Madrid, Spain

{fernandorosa,csegura,alberto}@sip.ucm.es

Abstract

Maude has revealed itself as a powerful tool for implementing different kinds of
semantics so that quick prototypes are available for trying examples and proving
properties. In this paper we show how to define in Maude two semantics for Cardelli
and Gordon’s Ambient Calculus. The first one is the operational (reduction) se-
mantics which requires the definition of Maude strategies in order to avoid infinite
loops. The second one is a type system defined by Cardelli and Gordon to avoid
communication errors. The correctness of that system was not formally proved. We
enrich the operational semantics with error rules and prove that well-typed pro-
cesses do not produce such errors. The type system is highly non-deterministic. We
show here one possible way of implementing such non-determinism in the rules.

Key words: Ambient calculus, operational semantics, type
systems, Maude.

1 Introduction

Maude, a high-level language and high-performance system supporting both
equational and rewriting logic computation [8,7], has revealed itself as a pow-
erful tool for representing different kinds of semantics [11,20,21]. Since Maude
specifications are executable, what we get is an implementation of the lan-
guage so that quick prototypes are available for trying examples and proving
properties.

We use Maude as a metalanguage in which the syntax and semantics of
particular languages can be formally defined. One of our aims is to maintain
the representation distance as short as possible. There are several different
ways of mapping inference systems into rewriting logic. In the structural
operational semantics case, judgements typically have the form of some kind
of transition P — () between states so that it makes sense to consider the

1 Work partially supported by the MCyT Spanish project MIDAS, TIC 2003-01000.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ROSA-VELARDO, SEGURA, AND VERDEJO

possibility of mapping directly this transition relation between states to a
rewriting relation between terms representing the states. When thinking this
way, an inference rule like

Pl_)Ql Pn_>Qn
Py — Qo

becomes a conditional rewrite rule of the form

P()%QO Zf P1—>Q1/\/\Pn%Qn,

where the condition includes rewrites. In this way the semantic rules become
(conditional) rewrite rules, where the transition in the conclusion becomes the
main rewrite of the rule, and the transitions in the premises become rewrite
conditions.

In this paper we show how to integrate in the same framework two different
semantics, namely operational and static, for the Ambient Calculus (AC).
This will allow us to study properties involving them. First, we define the
operational semantics given by Cardelli and Gordon as structural congruence
and reduction rules. We show how to exploit the rewriting machinery in order
to reduce the number of rules, and also the decisions we have taken in order to
avoid infinite reductions. Rewrite rules need not be confluent or terminating.
This theoretical generality needs some control when the specifications become
executable, because the user needs to make sure that the rewriting process does
not go in undesired directions. We have recently defined a strategy language
for Maude, to control the rewriting process [12]. Strategy expressions can
be defined to reduce the tree of rewritings of a given term. For example,
replication in AC requires the definition of strategies to avoid infinite loops.

Cardelli and others defined several type systems for AC [5,3,4] in order to
avoid different kinds of errors: basically communication errors, and violation
of mobility and opening constraints. We study here how to implement the
first type system defined by Cardelli and Gordon [5] to detect communication
errors, and syntactically incorrect terms. There, they proved a subject reduc-
tion theorem in order to justify the correctness of the type system, but no
formal definition of the meaning of types was given. Thus, there is no formal
correctness relation between the type system and the operational semantics.
It is an interesting exercise to formalize that relation in order to complete the
correctness proof. We enrich the operational semantics with error reductions
reflecting the kind of errors we want to avoid. Then we prove (by hand) that
a well-typed process never causes such an error. We implement these error
rules in Maude and also the type system.

The type rules are highly nondeterministic. We have developed two (equiv-
alent) ways of managing nondeterminism to implement the rules but we only
show here one of them (see [17] for the alternative implementation). Both
implementations infer the process type as the result of the rewriting.

2

ROSA-VELARDO, SEGURA, AND VERDEJO

Additionally, as a consequence of the study of the type rules we have en-
countered that by adding a new rule, more processes that do not produce
communication errors can be typed, and consequently we have slightly in-
creased the power of the type system.

The representation in Maude of the AC operational semantics and type
systems, in a way quite close to the original mathematical formulation, has
provided us interpreters where these inference systems can be executed. Our
final aim is to go one step further in the exploitation of using Maude and
take advantage of the formal tools designed for this language. For example,
automatic reasoning about specifications in Maude is supported by the exper-
imental ITP tool [6], a rewriting-based theorem prover (implemented also in
Maude) that can be used to prove inductive properties of equational specifi-
cations.

The rest of the paper is organized as follows. Section 2 presents a short
description of Maude and the strategy language we use (in [8,12] you may
find more details and illustrating examples). Section 3 reviews the ambient
calculus briefly. Section 4 describes the implementation of the operational
semantics of AC and uses it to execute a non-trivial example. Section 5
enriches the semantics with error rules and implements the type system for
avoiding communication errors. Finally Section 6 gives conclusions and future
work. Figures A.1 to A.4, showing the syntax and operational semantics
of the Ambient Calculus and Cardelli and Gordon’s type system, appear in
Appendix A.

2 Maude in a Nutshell

In rewriting logic and Maude the data on the one hand and the state of a
system on the other are both formally specified as an algebraic data type by
means of an equational specification. Maude uses a very expressive version
of equational logic, namely membership equational logic [1]. In this kind of
specifications we can define new types (by means of keyword sort(s)); sub-
type relations (understood as inclusion relations) between types (subsort);
operators (op) for building values of these types, giving the types of their
arguments and result, and which may have attributes as being associative
(assoc) or commutative (comm), for example; equations (eq) that identify
terms built with these operators; and memberships (mb) ¢ : s stating that the
term ¢ has sort s. Both equations and memberships can be conditional, with
respective keywords ceq and cmb. Conditions are formed by a conjunction
(written /\) of equations and memberships.

Equations are assumed to be confluent and terminating, that is, we can
use the equations from left to right to reduce a term ¢ to a unique, canonical
form ¢ (modulo the operators attributes as associativity, commutativity, and
identity) that is equivalent to ¢ (they represent the same value).

3

ROSA-VELARDO, SEGURA, AND VERDEJO

The dynamic behavior of a system is specified by rewrite rules of the form
t—tif (Nw=vi) A(N\ws:s) AN\ pe— @)
i j k

that describe the local, concurrent transitions of the system. That is, when a
part of a system matches the pattern ¢t and the conditions are fulfilled, it can
be transformed into the corresponding instance of the pattern ¢’

2.1 Strategies

Because system modules are rewrite theories that do not need to be either con-
fluent or terminating, we need to have good ways of controlling the rewriting
inference process—which in principle could not terminate or may go in many
undesired directions—by means of adequate strategics. We have defined a
strategy language for Maude that can be used to control how rules are applied
to rewrite a term [12]. The simplest strategies are the constants idle, which
always succeeds by doing nothing, and fail, which always fails. The basic
strategies consist of the application of a rule (identified by the corresponding
rule label) to a given term. In this case a rule is applied anywhere in the
term where it matches satisfying its condition. When the rule being applied
is a conditional rule with rewrites in the conditions, the strategy language
allows to control by means of search expressions how the rewrite conditions
are solved. An operation top to restrict the application of a rule just to the
top of the term is also provided. Basic strategies are then combined so that
strategies are applied to execution paths. Some strategy combinators are the
typical regular expression constructions: concatenation (;), union (|), and
iteration (* for 0 or more iterations, + for 1 or more, and ! for a “repeat un-
til the end” iteration). Another strategy combinator is a typical if-then-else,
but generalized so that the first argument is also a strategy. The language
also provides an orelse combinator where the second strategy is applied only
when the first one is unsuccessful, and a (x)matchrew combinator that allows
a term to be split in subterms, and specifies how these subterms have to be
rewritten.

3 Ambient Calculus

In this section we will present the basic notions about the Ambient Calcu-
lus [2], a process algebra that focuses on the notions of locations, mobility
(of agents and their environments) and authorizations (to move or interact).
Ambients will be the main entities of this model. An ambient is a place lim-
ited by a boundary where computations take place. They are hierarchically
structured, so that we do not abstract from the path needed to arrive at each
destination. Agents are confined to ambients and ambients move under the
control of agents, allowing the movement of nested environments, that also

4

ROSA-VELARDO, SEGURA, AND VERDEJO

include data and live computation.

In Figure A.1 the syntax for AC with communication primitives is pre-
sented. We will consider two disjoint sets, N' = {m,n,...} for names and
Var = {z,y, ...} for variables, and a special symbol e. We will denote Id =
N U Var for identifiers and Cap = {in N,out N,open N | N € Id} for capa-
bilities. We will write as A* the set of paths (sequences) formed over elements
of A.

Ambients are denoted as n[P], where n is its name and P is its con-
tent, which is essentially a parallel composition of sequential processes and
subambients. These sequential processes can be prefixed processes, M.P,
meaning that it must consume M before behaving as P; polyadic inputs
(xy : Wi,...,z, : W,)P; and polyadic asynchronous outputs (M, ..., M,).
We will assume that the variables appearing in the input construction are pair-
wise distinct. Also, new names can be created (restriction) (vn : W)P and
processes may be replicated !P. There is a special process 0 that is inactive.

Notice that for simplicity, in the syntax definition ambient names and
capabilities belong to the same syntactic category. As a consequence the
syntax allows the construction of meaningless processes such as n.P or in n[P)].
Later these terms will be ruled out by the type system that we will discuss in
Section 5.

The operational semantics of the language is defined by means of a struc-
tural congruence relation = and a reduction relation —. The former basically
identifies those processes that are equivalent up to some trivial syntactic re-
organization. It is the least equivalence relation satisfying the rules in Figure
A.2. For example, the inactive process 0 can be eliminated (or added) when
in parallel with other processes.

In addition, processes are identified by a-conversion up to the renaming of
bound names and variables:

(vn: W)P = (vm: W)P{n:=m} if m & fn(P)

(w1, 20)P = (Y1, yn) Plas = wi} if v & fo(P)

A restricted name cannot be used outside its scope. However, a-conversion
can be used to avoid name clashes, and in this way it is reflected the fact that
the restricted name cannot be known, in principle, out of the restricted term.
By means of the extrusion rule we can augment the scope of the restriction
from a parallel component to the whole parallel composition, provided the
restricted name does not appear in the other components:

Pl (vn)Q = (wn)(P|Q) if n&fn(P)

As said before, if process P above does have n as a free name and we
want P and @) to interact we can always apply a-conversion. This can also be
applied to ambients, as rule (Struct Res Amb) shows.

>

ROSA-VELARDO, SEGURA, AND VERDEJO

The reduction rules mainly present the axioms for mobility and communi-
cation. Ambients can move into their sibling ambients or out of their enclosing
ambient, as said in rules (Red In) and (Red Out) respectively. They may also
dissolve the boundary of their subambients, so that the processes contained
in the opened ambient now belong to the opener ambient, as defined in rule
(Red Open). Finally, communication may happen inside them (Red Comm).
The rest of the rules state that reductions may occur inside some constructors,
namely restriction, ambients, and parallel, but not inside inputs, prefixes, or
replications. Finally, rule (Red =) makes explicit the fact that we are working
modulo structural equivalence.

As an illustrative example of the semantics, let us consider the example

nlalout n.in m.(M)]] | m[open a.(z)Q)]

This process can evolve in the following way:

(nlalout n.in m.(M)]] | m[open a.(z)Q)]) =
(nlalout n.in m.(M)] | 0] | mlopen a.(z)Q]) —
alin m.(M)] | n[0] | m[open a.(z)Q)] = (1)
n[0] | alin m.(M) | 0] | m[open a.(z)Q] — (2)
n[0] | mlal(M) | 0] | open a.(x)Q) =
n[0] | mlopen a.(z)Q | a[(M)]] —
n[0] | m[(2)Q | (M)] —
n[0] | mlQ{r := M}]

where, for instance, the equivalence (1) can be proved to hold using rules
(Struct Par), (Struct Par Comm), (Struct Zero Par) and (Struct Amb), and
step (2) can take place using the rules (Red Par) and (Red In).

4 An Implementation of Mobile Ambients in Maude

In this section we implement in Maude the operational semantics of AC. We
have tried to be as faithful as possible to the way in which the calculus was
originally described. First, we define the syntax, and then we implement the
operational semantics through both equations and rewrite rules. Finally we
define strategies that control the application of rewrite rules. All the code is
available in Maude’s site [16].

4.1 Syntax definition

We define here AC syntax. For the sake of readability we omit variable dec-
larations and operators precedence in most of the source code.

6

ROSA-VELARDO, SEGURA, AND VERDEJO

Syntax definition has to consider how to deal with bound names and vari-
ables. In AC there are two binding operators: the creation of new names
(vn) that binds names and the input action (x) that binds variables. We need
de Bruijn’s indexes in order to distinguish occurrences of the same name or
variable that are bound by different binding operators [18]. In an indexed
name n;, i represents the number of intermediate n-bindings between the free
occurrence and its binding occurrence.

Consequently we have to use indexed names and variables in AC syntax.
We can use Maude’s Qid to define both. For the sake of clarity, names are Qids
beginning with letters ‘a’ to ‘t’, and variables those beginning with letters “u’
to ‘z’, which can easily be defined using membership axioms. Indexed names
and variables, which we call Acid, are defined as:

sorts Qidn Qidx .
subsorts Qidn Qidx < Qid .

var q : Qid .
cmb q : Qidn if first-char(q) < "u" .
cmb q : Qidx if first-char(q) >= "u" .

sorts Name Var Acid .
subsorts Name Var < Acid .

op _{_} : Qidx Nat -> Var .
op _{_} : Qidn Nat -> Name .

Additionally, we need functions to manage indexed names and variables
[18]. Essentially, they increment indexes whenever necessary to avoid name
clashes.

Notice that in a system defined by a user that wants to execute an example,
every name and variable has a 0 index, as indexes different from 0 only arise
through communication or a-conversion. So we have defined a decoration
function dec that fills the system defined by the user with the appropriate 0
indexes. We do not give here its definition (see [16] for the complete code).

Having defined names and variables, we can define straightforwardly mes-
sages and processes. Messages can be (indexed) names and variables, basic
values (such as integers), capabilities, and paths:

sorts Message Capability Path .
subsorts Int Acid Capability Path < Message .

op in[_] : Message -> Capability .
op out[_] : Message -> Capability .
op open[_] : Message -> Capability .

op eps : —> Path .
op _._ : Message Message -> Path [assoc] .

In order to define processes we need to define first input and output se-
quences so that multiple communication can take place. Input sequences

7

ROSA-VELARDO, SEGURA, AND VERDEJO

should rule out multiple occurrences of the same variable (this is done by
defining the concatenation operator _, _ for input sequences as partial >, and
giving a conditional membership that states when the concatenation is mean-
ingful). Input sequences include type annotations (sort AType) for each input
variable; this is because later we will define a type system for AC (for the
moment they can be ignored).

sort InputSeq .

op _:_ : Qidx AType —> InputSeq .

op _,_ : InputSeq InputSeq ~> InputSeq [assoc]

op bel : Qidx InputSeq -> Bool .
eq bel(x, y : T) = x ==y .
eq bel(x, (I1, I2)) = bel(x, I1) or bel(x, I2)

cmb ((x : T), IS) : InputSeq if not bel(x, IS)

sort OutputSeq .
subsorts Message < OutputSeq .
op _,_ : OutputSeq OutputSeq -> OutputSeq [assoc]

Processes are defined as follows

sorts NSProcess Process .
subsort NSProcess < Process .

op stop : -> Process . **x O process

op _._ : Message Process —> NSProcess .

op _|_ : Process Process -> Process [assoc comm id: stop]

op _|_ : NSProcess NSProcess -> NSProcess [assoc comm id: stop]
op !_ : Process -> Process .

op !_ : NSProcess —-> NSProcess .

op _‘[_‘] : Message Process -> NSProcess .

op <_> : OutputSeq -> NSProcess .

op ‘(_“)_ : InputSeq Process -> NSProcess .

op new‘[_:_‘]_ : Qidn AType Process -> Process .

op new‘[_:_‘]_ : Qidn AType NSProcess -> NSProcess .

where we use two different sorts: NSProcess for processes that are different
from stop, and Process for every process. We will see the advantages of this
approach in the next section. From now on, we will use P, Q, R as variables of
sort Process, and NSP, NSQ, NSR as variables of sort NSProcess.

Using this syntax definition we can write the following firewall example
shown in [2]:
op firewall : Process Process —-> Process .

eq firewall(P,Q) = new [’k : Amb[Shh]l] (’n [open[’k] . P]
| new[’m : Amb[Shh]] (m [’k [out[’m] . in[’n] . in[’m] . stop]l | Q1))

where the type annotations can be ignored by now. Ambient ’m can be re-
garded as a firewall that an agent ’n wants to cross. The above mechanism
can be used to guarantee authentication, to ensure freshness of messages by
means of nonces or to model shared-key cryptography.

8

ROSA-VELARDO, SEGURA, AND VERDEJO

4.2 Operational semantics

The operational semantics for AC consists of a set of structural congruence
rules and a set of reduction rules. Happily, Maude gives us some congruence
rules for free. In particular:

* Rules (Struct Res) to (Struct Action) and (Struct Input), which define the
congruence with respect to each process constructor, do not need to be
defined due to equational congruence in Maude.

e Rules (Struct Par Assoc), (Struct Par Comm) and (Struct Zero Par) are
obtained by indicating in the declaration of the parallel operator the asso-
ciativity, commutativity, and identity attributes.

Rules (Struct €), (Struct Path), (Struct Zero Res) and (Struct Zero Repl)
are defined through Maude equations and consequently will be applied only

from left to right. We write them looking for a normal form so that confluence
holds:

eqeps . P=P .
eq M. N) .P=M. N .P) .

eq ! stop = stop .
eq new[n : T] stop = stop .

Extrusion rules (Struct Res Res), (Struct Res Par), and (Struct Res Amb)
are written as three equations for a-conversion and (alphabetic) reordering of
bound names:
ceq newlk : T1] new[l : T2] P = new([l : T2] newlk : T1] P

if string(l) < string(k) .

eq ((new[n : T] NSP) | NSQ) = new[n : T](NSP | ([shiftup n] NSQ)) .
eq M [new[n : T] P] = new[n : T](([shiftup n] M) [P]) .

where shiftup increments indexes adequately.

Notice that for the first rule to be really confluent we should define a
(merely syntatic) order between the types in the (unfrequent) case the same
name with different types is used. In that case, the reordering should rearrange
the indexes of the involved names.

Notice that we use in the second (a-conversion) rule variables NSP and NSQ
of sort NSProcess so that it is only applicable when processes are different
from stop. If we used variables of sort Process, the identity attribute of |
could produce an infinite loop by generating once and again | stop in order
to match with the equation. We will use the same idea in similar situations
below. This approach allows us to avoid conditional equations that would
increase the execution time.

We do not lose any power by writing the previous congruence rules as
equations as they only reorder terms so that the subsequent reduction rules can
be applied. For this to be true the parallel operator attributes and equational
congruence are fundamental. The application of the equations produces a
normal form where:

ROSA-VELARDO, SEGURA, AND VERDEJO

* stop only appears after a prefix (capability or input action) or inside an
ambient;

* eps does not appear anywhere;
* sequences of capabilities associate to the right; and

* new operators are extruded as far as possible (so that interactions can take
place) and are ordered alphabetically.

Rule (Struct Repl Par) will be discussed later. Finally we have the reduction
rules as rewrite rules in Maude, some of which are conditional rewrite rules:
rl [RedIn] : nlinm] . P | Q] | m[R] => m[n[P | Q] | R] .

rl [RedOut] : m[nlout[m] . P | Q] | Rl => nl[P | Q] | m[R] .

rl [RedOpen] : open[n] . P | n[Q] =>P | Q .

rl [RedComm] : ((I)P) | < 0 > => bound(I,0) P .

crl [RedRes] : newlk : T] P => newlk : T] Q if P => Q .

crl [RedAmb] : n[P] => n[Q] if P => Q .

crl [RedPar] : NSP | NSR => Q | NSR if NSP => Q .

The function bound(I,0) generates a substitution as a result of the commu-
nication that is then applied to the process.

Notice that we have the interleaving of congruence and reduction rules
(Red =) for free as Maude itself interleaves the application of equations with
rewrite rules.

However, the reduction relation of the calculus is not a congruence for
all the operators, but only for the restriction operator (Red Res), ambient
construction (Red Amb), and parallel operator (Red Par). This means that
we cannot freely use the rewrite rules we have written, as Maude would apply
them anywhere in a term; and we do not want them to be applied after
prefixes, inputs, and replication. This is one of the reasons why the definition
of a strategy that controls the application of these rules is necessary.

We study now what happens with replication. Replication behavior is
described in AC through a congruence rule (Struct Repl Par). We cannot
write it as an equation as the other ones because none of the orientations is
convenient. If we apply it from left to right we get an infinite loop as we can
infinitely unroll the replication. If we apply it from right to left we cannot see
how the system evolves when new copies of the replicated process interact with
other parts of the system or even with other copies of itself. As an example,
for the process In[in n.0] to evolve it is necessary to unroll replication twice:

In[in n.0]
n[in n.0] |In[in n.0] =
n[in n.0] | n[in n.0] |In[in n.0] —

nf[in n.0|n[0]] |'n[in n.0] —

10

ROSA-VELARDO, SEGURA, AND VERDEJO

This has led us to write this congruence rule as two rewrite rules:
rl [Rep] : ' P=>P | ! P .
rl [UnRep] : P | ! P=>1 P .

Still we have the same problem, so we have to define strategies to control
the application of these rules. We want to apply rule Rep only when it is neces-
sary for subsequent interactions, and rule UnRep to delete isolated unnecessary
copies of the replicated process.

4.8 Strategies for evaluation

We need strategies to control the application of the rewrite rules defined be-
fore. Rules for movement and communication can be applied anywhere in the
term but under prefixes and replication. So we first define a strategy to con-
trol the application of these rules called norep (no replication). As we have
written rules for reducing inside ambients, in parallel processes, and under
name restriction, we just have to apply all the rewrite rules at the top level.
This means that the strategy will be applied recursively but that it will stop
when a prefix or a replication is encountered.

Rules RedRes, RedAmb and RedPar are conditional rewrite rules so the
strategy needs to know which strategy to apply in the rewrite condition and
how to search in the resulting rewrite tree. In this case we want the same
strategy to be (recursively) applied and a depth first search is enough for our
purposes (strategies are defined in a seq declaration):
seq norep = top(RedIn) | top(RedOut) | top(RedOpen) | top(RedComm) |

top (RedAmb{dfs (norep)}) |

top (RedPar{dfs(norep)}) |
top(RedRes{dfs(norep)}) .

Now we combine this strategy with a new one to control replication. We
would like to unroll replication only when necessary, that is, when as a conse-
quence of the unrolling, a movement or a communication takes place. However
we have to be careful because two unrollings could be necessary for the move-
ment or the communication to take place, as happened in process !n[in n.0].
Additionally, even when one unrolling is enough to make a reduction step, we
could lose rewrites if we force such reduction immediately. For example, if
our strategy applied norep after each unrolling to process n[0] |!n[in n.0], we
would obtain the following rewriting:

n[0] | In[in n.0] =
n[0] | n[in n.0] | In[in n.0] —
n[n[0]] | n[in n.0] =
n[n[0]] | n[in n.0] | In[in n.0] —
n[n[0] | n[0]] | In[in n.0]

11

ROSA-VELARDO, SEGURA, AND VERDEJO

so that only processes like n[n[0] | ... | n[0]] | In[in n.0] could be obtained,
losing (among others) the following possible rewriting:

n[0] | n[in n.0] =
n[0] | n[in n.0] | In[in n.0] =
n[0] | nlin n.0] | n[in n.0] | In[in n.0] —
n[0] | nlin n.0 | n[0]] | In[in n.0] —
n[n[n[0]] | In[in n.0] —

We claim that two unrollings are enough to obtain all the solutions, mean-
ing by solutions those processes to which no reduction rule can be applied.
This can be easily proved by inspection of the rewriting trees for S | P | P | |P
and S | P | P| P |!P. The only difference is the level where we find the
solutions.

Considering the two previous observations we define a new rule that allows
us to unroll twice any replication appearing in the process but after prefixes
and under replication (for the same reasons as norep)

rl [Rep2] : P => rep(P) .

being rep defined as

op rep : Process -> Process .

eq rep(! P) =P | P | I P .

eq rep(M[P]) = M[rep(P) 1 .

eq rep(NSP | NSQ) = rep(NSP) | rep(NSQ) .
eq rep(new[n : T] P) = new[n : T] rep(P) .
eq rep(P) = P [owise] .

As we want the unrolling to affect the whole process, this rule should be
applied also at the top level

seq unroll-rep = top(Rep2) .

Of course, it can happen that unrolling does not help to the evolution of
the process and just generates idle copies. In this case we apply rule UnRep
to absorb those garbage copies. As an example, by unrolling twice and then
communicating, process (n) | !(z)z[0] would rewrite to n[0] | (z)z[0] | !(z)z]0]
and then by applying rule UnRep we would obtain n[0] | !(z)z[0].

Additionally, in order to avoid infinite computations when processes are
nonterminating the user should tell the strategy how many semantic reduc-
tion steps he wants to execute. Consequently, the strategy applies replication
unrolling (if there is any) and immediately applies one more movement and/or
communication step (if it is possible and we are not finished). When we are
finished we eliminate every idle copy.

seq cardelli(0) = UnRep ! .
12

ROSA-VELARDO, SEGURA, AND VERDEJO

seq cardelli(s(n:Nat)) = (unroll-rep ; norep ; cardelli(n:Nat))
orelse (UnRep !) .

For example, when rewriting
! (’n{0} [in[’n{0}] . stop] | ’n{0} [in[’n{0}] . stopl)
by using strategy cardelli(1) we obtain the following solution:

'(’n{0}[in[’n{0}]. stopl| ’n{0}[in[’n{0}]. stopl) |

’n{0}[in[’n{0}]. stop | ’n{0}[stopl]
where one copy of the replicated process has evolved. By applying cardelli (2)
we obtain the following three solutions:
Solution 1 :
' (’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stopl) |

'n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop | ’n{0}[stop]l| ’n{0}[stopl]
Solution 2 :
'(°n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop]l) |

'n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop | ’n{0}[’n{0}[stopl]]
Solution 3 :
' (’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stopl) |

'n{0}[in[’n{0}]. stop | ’n{0}[stopl] | ’n{0}[in[’n{0}]. stop | ’n{0}[stopl]
obtained by only two movements and one final application of UnRep. The three
possibilities can be easily obtained by writing process n[in n.0] | n[in n.0] |
nlin n.0] | n[in n.0] and all the possible ways of making only two movements.

As a final example, when rewriting firewall (P,Q) using cardelli(4) we

obtain:

new[’k : Amb[Shh]lnew[’m : Amb[Shh]] (°m{0}[Q | ’n{0}[[shiftup ’m]P]1])
as expected. By using process variables P and Q we are able to universally
quantify the execution of the firewall example and give a general result for any

two processes. However, there are some operations that cannot be applied,
like shiftup, and are left as such.

4.4 An Ezample: FElectoral Systems

In [13] the problem of coding pure ambient calculus in 7-calculus is studied.
In particular, it is shown that symmetric electoral systems of arbitrary size
exist for pure ambient calculus (AC with no communication), which implies
that AC is not encodable in the 7m-calculus with separate choice. The authors
of [13] claim that the following process is a symmetric electoral system:

N@tk:P0|...‘Pk_1

P = nz[Hm n;.0 | Hmi[m(s).out(s_).out n;.0]]

‘e gk k
JES; seT]

where] denotes parallel composition, S¥ is the set of all natural numbers
less than k excluding 4, 7% is the set of all strings of length k& — 1 using the

13

ROSA-VELARDO, SEGURA, AND VERDEJO

members of S¥ exactly once each, s~ is the string s in reverse order and in(s)
is the sequence of in n; for each successive j € s (analogously, out(s)).

For a symmetric net as the one above to be an electoral system it must be
the case that all of its maximal computations produce exactly one observable,
being all of them different. In this case, the observables are the ambients with
names in {my, ..., my_1} at the top level. We have implemented the example
above in our representation of AC:

op Net : Nat -> Process .
eq Net(k) = elect(0, k) .

op elect : Nat Nat -> Process .
ceq elect(i, k) = Pr(i, k) | elect(i + 1, k) if i < k .
eq elect(k, k) = stop .

where Pr(i, k) implements P; (see details in [17]).

We can now take profit from our implementation of ambients to check that
if we rewrite Net (2) by using strategy cardelli(400) we obtain: 2
Solution 1:

'm{0} [stop] | ’n{0}[in[’n{0}].stop |
n{1} [’m{1} [in[’n{0}] .out [’n{0}] .out [’n{0}] .stopl]
Solution 2:
'm{1} [stop] | ’n{1}[in[’n{1}].stop |
n{0} [’m{0} [in[’n{1}] .out [’n{1}] .out [’n{1}] .stop]]
No more solutiomns.

Indeed, there are only two possible (maximal) rewritings: solution 1 cor-
responds to observable *m{0} (ny wins) and solution 2 to observable *m{1}
(ny wins). The same can be done with nets of size bigger than 2, getting
analogous results.

5 A Type System for Mobile Ambients

In this section we first present Cardelli and Gordon’s type system for detecting
communication errors. Then we define error reductions that precisely describe
such errors and prove (by hand) that a well-typed process does not produce
these communication errors along its execution (for more details see [15]). We
implement the error reductions and define a strategy that allows us to know
if a communication error occurs along the execution of a process. Then we
implement the type system inferring the type of an annotated process as a
result of the rewriting. Additionally, as a consequence of the study of the
typing rules we have encountered that by adding a new rule, more processes
that do not produce communication errors can be typed, and consequently we
have slightly increased the power of the type system.

2 We use 400 as a limit for the number of reduction steps in the strategy to make sure we
obtain the maximal rewritings. This does not affect the efficiency.

14

ROSA-VELARDO, SEGURA, AND VERDEJO

5.1 Types for the Ambient Calculus

In [5] the first type system for the Ambient Calculus is presented. Its main
purpose is to avoid meaningless processes. Such processes may arise after some
undesired communication interactions. For instance, the process (x)z[P] |
(n) | (y)y.Q | (open n) may evolve to n[P] | open n.Q) but also to (open n)[P] |

One way to avoid these meaningless terms?® is to restrict the type of com-
munications within each ambient, thus defining the exchange types. These
types will not only specify whether ambients or capabilities are exchanged,
but also what kind of ambients (what kind of information can be exchanged
inside them) or what kind of capabilities (what kind of messages they unleash).

There are two kinds of exchange types: one for no exchange, Shh, and
another one for tuple exchange, where each component will be an ambient
type or a capability type, as shown in Figure A.3.

The judgments of the type system, I' = P:T"and I' - M : W, are derived
with respect to a type environment, as usually. Now we comment some of the
typing rules shown in Figure A.4:

* (Zero) Process 0 does not produce any communication action. Thus, its
natural type should be Shh. However, it can be understood that it has any
type, so that if it is in parallel with any other process, it does not inter-
fere with its communication behavior. Alternatively, it would be possible
to introduce a subtype relation among types, giving 0 the minimal type,
together with a new subsumption rule, as done in [22].

* (Amb) In order to type an ambient M|[P] one must check that its name is
indeed an ambient name, M : Amb[T]. As process 0, it can be typed with
any type.

¢ (In/Out) Movement capabilities do not unleash any exchange and, therefore,
they can produce any capability type.

* (Open) If M : Amb[T] then M is an ambient that contains processes of
type T and, therefore, open M is a capability that may unleash exchanges
of type T

 (Prefix) This rule forces P and M.P to have the same type, which is the
type determined by the prefix M when M is a capability open or a path
containing one.

* (Parallel) Every sequential process within the same ambient must have the
same type. This will only be a restriction for those processes that are
responsible for communications.

* (Input) The residual of the input must be typeable with the same type that
determines the input. Therefore, the communication type will be the same

3 In fact they are only meaningless at the intuitive level. Formally they just include useless
blocked subterms.

15

ROSA-VELARDO, SEGURA, AND VERDEJO

M ¢ (Var U Cap)* M ¢ Id M; ¢ Id U (Cap U Var)*
M.P — erry MIP] — err <M> — erry
P — errq P —err P — errq
N[P] — err N.P — erry (& :W)P — err
P ern Poerr, Qoerm P e
(vn:W)P —erry P|Q—erry P|Q—erry P —err

Fig. 1. Rules for syntactic errors

along the execution of the process.

e The rest of the rules are standard.

Rules (In/Out) and (Open), together with rule (Prefix) causes the opening
capabilities to be the only ones that contribute to the type of a path. For
example, if I'(n) = Amb[T] and I'(m) = Amb[S] then it holds that I'
in n.open m : Cap[S].

5.2 Communication errors

In this section we formalize the meaning of types in the previous type system.
These types are intended to capture syntactic errors arising from the use of
two different kind of entities (names and capabilities) in the same syntactic
category. In order to relate the type system with the operational semantics,
we define in Figure 1 an error relation err;. An error is found, for instance,
whenever a name is prefixing a process (instead of a capability). The definition
of err; attempts to detect the error as soon as possible, in the sense that it
looks in every subcomponent of the process, without considering variables,
since we do not know what they will be replaced by.

If we suppose that P /4 err; and @Q /4 err; then we can easily verify that:

n[P] | open n.Q%erTl
errie/=(z s W)zlP] | (n) | (y: W")y.Q | {open n)
(open n)[P] | n.Q—serr1

Notice that this error relation describes a dynamic behavior, while the
type system tries to statically capture it. Frequently, the type system is not
complete and non-typeable terms would have to be executed in order to know
whether they produce an error. Consequently, the implementation of the
error relation is useful to effectively know if a term produces such kind of
error. Moreover, it would also be needed in order to mechanically prove the
correctness property using Maude (see Section 6).

16

ROSA-VELARDO, SEGURA, AND VERDEJO

Here, we have proved by hand that typed processes do not cause such
error. First we need an easy to prove lemma:

Lemma 5.1

(i) IfT'= M : Amb[T) then M € Id.

(ii) If T'E M : Cap|T) then M € (Cap U Var)*.
(iii) IfT'F M : W then M € Id U (Cap U Var)*.

and then we can prove the main theorem
Theorem 5.2 IfI'+ P : T then P - erry.

Proof. [sketch] This result can be proved by induction on the rules used to
derive I' = P : T and using the previous lemma. Basically, it holds because
processes that cause an error are those containing a subterm of the form
(cp N)[P], {ep (cp’ N)), n.P, or ep (cp’ N).P (with cp,cp’ € {in,out,open}).
These processes are not typeable, nor any process that contains them (in the
type system every subterm must be typed in order to type the whole term).O

A subject reduction theorem for exchange types is proved in [5]. Using it
we get our safety theorem:

Theorem 5.3 If ' P: T and P —* Q then Q / erry.

It is straightforward to implement the error relation in Maude. We con-
sider err; as a constant process errl and introduce rewritings from erroneous
processes (according to the conditions stated in Figure 1) to erri.
op errl : -> Process .
crl [errPref] : M . P => errl if not isCap(M) .

crl [errAmb] : M[P] => errl if not isAmb(M) .
crl [errMsg] : < 0 > => errl if not isMsg(0) .

The fact that errors are transmitted to the rest of the process is defined
by the following equations, stating that any process containing an erroneous
subterm is erroneous:
eq M[errl] = erril .
eq errl | NSP = errl .
eq M . errl = errl .
eq ! errl = errl .
eq (I) errl = errl .
eqnew[n : T] errl = errl .

Therefore, an error occurs whenever one of the three error rules above can
be applied. The strategy errori tries to apply one of those rules. Then,
errcardelli is a slight variation of the strategy cardelli in Section 4.3. It
restricts normal steps to happen only when no error can be produced:

seq errorl = errPref | errAmb | errMsg .
seq errcardelli(0) = errorl orelse cardelli(0) .

seq errcardelli(s(n:Nat)) = errorl orelse (cardelli(l) ; errcardelli(n:Nat)) .

17

ROSA-VELARDO, SEGURA, AND VERDEJO

This strategy allows us to know if a given process produces sometime along
its execution an errl. For example, the previous example written in Maude

eq fail = ((’x : Amb[Shh]) (’x [P]1)) | < ’n > |
(C’y : Cap[Shh]) Cy . Q) | < open[’n] > .

rewritten with errcardelli(3) produces P | Q but also errl.

5.8 Implementation of the type system

In order to implement the type system we first define the syntax for types. We
have sorts EType representing exchange types and MType representing message
types. We also need TMType to represent tuples of message types. We have
included a basic type for the integers bint.

sorts EType MType TMType . subsorts MType < TMType < EType .

op bint : -> MType .

op Shh : -> EType .

op _x_ : TMType TMType -> TMType [assoc] .
op Amb[_] : EType -> MType .

op Cap[_] : EType -> MType .

Types decorate restricted names and input variables. When we defined
ambients syntax, identifiers were decorated with (still not defined there) an-
notation types AType. As several type systems can be defined over the same
syntax, we have decided to use AType as a supertype of any type that could
annotate identifiers in a given type system. So when using a specific type
system we have to say which types are used to annotate:

subsort MType < AType .

Typing environments assign types to (indexed) names and variables. We
have defined them over AType so that they can be used in other type systems.
Their treatment is standard (see [17] for more details).

We now have to define the rules of the type system (Figure A.4). We have
written type judgements like I' = P : T' as rewrite rules (I' = P) — T where
a typing environment and a process are rewritten to the type of the process.
In this way we infer the type as a result of the rewriting.

So we first define the lefthand sides (for processes and messages) of the
typing rewrite rules:
sorts JudgeP JudgeM .

op _l-_ : Env Process -> JudgeP .
op _|l-_ : Env OutputSeq -> JudgeM .

But in order to be able to rewrite terms of sort JudgeP to terms of sort
EType these sorts have to belong to the same connected component (in the
Maude subsort relation):

subsort EType < JudgeP . subsort TMType < JudgeM .
As we have previously seen, typing rules are highly nondeterministic. We
18

ROSA-VELARDO, SEGURA, AND VERDEJO

would like to get inference by writing the rules as literally as possible. For
example, some rules for typing messages and processes can be written as:
rl [Exp] : E |- a=>E[a] .

crl [Tup] :E|-M,0=>WxTWif E |[-M=>W /\E |- 0 =>TW .
crl [Open] : E |- open[M] => Cap[T] if E |- M => Amb[T] .

crl [Repl] :E|-!'P=>Tif E|-P=>T.
crl [Output] : E |- <0 >=>TW if E |- 0 => TW .
crl [Res] : E |- newln : Amb[T]] P => S if E[n -> Amb[T]] |- P => S .

Nondeterministic rules like (Zero) cannot be literally written as a rewrite
rule, as we cannot rewrite to a partially undefined term. The same happens
with rules (Empty), (In), and (Out) for typing messages. In fact, when we
conclude that 0 has type 7', we are saying that such 7' could be any type.
Following this idea we define a new type constant X which means any process
type:
op X : —> EType .

so that now we can write the following rules for messages

rl [Empty]l : E |- eps => Cap[X] .
crl [In] : E |- in[M] => Cap[X] if E |- M => Amb[T] .
crl [Out] : E |- out[M] => Cap[X] if E |- M => Amb[T] .

and for 0 process
rl [Zero] : E |- stop => X .

We still have to write rules for (Path), (Prefix), (Amb), (Par), and (Input).
Let us study rule (Par), the rest of them are similar (see [17]). Rule (Par)
requires that the processes in parallel have the same type, so we could write:
crl [Par] : E |- NSP | NSQ => T

if E |- NSP=>T /\E |- NsSQ =>T .

but now we have a new type X that is any type and consequently that is
compatible with any other one, so we need to add a new rule saying this:

crl [Par2] : E |- NSP | NSQ => T

if E |- NSP => T /\ E |- NSQ => X .

If any of the processes (or both) has type X, then they are compatible and
the process can be typed. Due to commutativity we do not need to write a
third rule.

While writing these rules we have noticed that rule (Open) is more restric-
tive than needed. If we try to type process (vn : Amb[Shh])(open n.(n)) |
n[0]), rule (Open) would give type Cap[Shh] to open n and consequently, rule
(Prefix) could not be applied as (n) has type Amb[Shh]. However, when n
is opened no communication error happens and the process just evolves to
(vn : Amb[Shh])(n) with type Amb[Shh].

The problem is that rule (Open) has not distinguished the case when the
opened ambient has a silent type, like in the example. So we replace the
previous rule Open by the following ones:

19

ROSA-VELARDO, SEGURA, AND VERDEJO

crl [OpenShh] : E |- open[M] => Cap[X] if E |- M => Amb[Shh] .
crl [Open] : E |- open[M] => Cap[TW] if E |- M => Amb[TW] .

where the first one can only be applied to silent ambients and the other one
to non-silent ambients.

The advantage of this form of implementation is that the rules are simple
translations of the original rules being its disadvantage that in some cases
they have to be duplicated. However, such duplication can be easily avoided
by defining a partial function that computes the resulting type covering the
different possibilities arising in the premises. For example, the rules Par and
Par2 would merge into the following rule

crl [Par] : E |- NSP | NSQ => T’
if E |- NSP=>T /\ E |- NSQ => T’ /\ T’’ := compare(T,T’) .

where the operation compare is defined as

op compare : EType EType ~> EType [comm] .
eq compare(T, T) =T .
eq compare(T, X) =T .

and the matching equation (:=) binds T’ only when compare(T,T’) is de-
fined.

As an example, let us see the firewall we saw in Section 4. In order to type
it we need to give particular processes P and Q. If they were stop then given
the following environment

op E : -> Env .
eq E = (°’n{0}, Amb[Shh]) (’m{0}, Amb[Shh]l) (°k{0}, Amb[Shh]) .

the rewriting of E |- firewall(stop,stop) returns X, so it is well-typed and
has any type.

The example shown in Section 4.4 does not engage in any communication
and therefore, if no erroneous term appears at the beginning, neither will it
appear after any number of steps. Indeed, if we define the environment giving
every ambient silent type:
op EnvElec : Nat -> Env .

eq EnvElec(0) = empty .
eq EnvElec(s k) = (’n{k}, Amb[Shh]) (°m{k}, Amb[Shh]) EnvElec(k) .

then we can try to type Net (k) under environment EnvElec (k). For instance,
EnvElec(3) |- Net(3) rewrites only to X.

6 Conclusions and future work

We have exploited many features of the high-level language Maude in order
to implement different semantics, both operational and static ones, for the
Ambient Calculus. First, we have implemented the operational semantics
given by Cardelli and Gordon. Although we follow the approach used in [21]
of mapping reduction rules to rewrite rules, due to the particularities of the
Ambient Calculus we have used the recently designed strategy language for

20

ROSA-VELARDO, SEGURA, AND VERDEJO

Maude [12] in order to control the application of the rewrite rules. As far
as we know this is the first time that this language is used to implement a
calculus with mobility.

The treatment we have done of the replication operator by means of rules
controlled by strategies is different from the approach used in [19] for the
m-calculus. In the m-calculus the reduction rules are somewhat more compo-
sitional, allowing the recursive definition of the replication operator. On the
contrary, in the standard Ambient Calculus semantics there cannot be a com-
positional reduction rule for replication as there is a control flow from inner
processes to the outside. For example, the evolution of n[lin m.0] | m[0] is
not defined in terms of the evolution of !in m.0, but instead making !in m.0
congruent to in m.0 | lin m.0, so that the movement can take place.

We have also implemented a type system for the Ambient Calculus de-
fined in [5] to detect communication errors. There, only an intuitive meaning
of the types was given. So first we have formally defined the errors intended
to be captured by the type system and proved that well-typed processes do
not produce such errors. From this result, together with the subject reduction
result, we can conclude that the type system is sound (more details in [15]).
Then we have implemented the typing rules. These are highly nondeterminis-
tic. Usually nondeterminism in typing rules [14] arises due to the existence of
several applicable rules to the same term or because different premises can be
chosen in order to type the term. Such nondeterminism is treated to get type
inference algorithms by modifying the rules or by applying the nondetermin-
istic ones following a strategy (only at certain points of the type derivation).
The nondeterminism arising in this system is quite different as, even though
the rules are completely syntax-directed and in this sense deterministic, the
conclusions of the rules are not uniquely determined. We have shown one
way of treating this nondeterminism. In [17] we present an alternative way
by exploiting a flat subtype relation that is implicit in the type system. Such
implementation returns the (in some sense) minimum type. Additionally, we
have added a new typing rule that slightly strengthens the power of the type
system.

We are extending the work presented here to more sophisticated type sys-
tems like those defined in [3,4]. We want to study if the same techniques can
be applied to other calculi with mobility (AC variants) like for example Safe
Ambients [10]. We also want to compare our results with existing inference
algorithms like the one presented in [22], and with other formalisms like logic
programming where unification in the inference process comes for free [9]. In
this sense it is our aim to go further and get type reconstruction, i.e. to infer
also the type annotations needed (if any) to type an initially non-annotated
process. For this purpose we will have to introduce type variables in the type
system and unifying mechanisms. We should also formalize some claims along
the paper that have only been proved informally; for example the fact that two
unrollings of a replicated process are enough to get all the possible rewritings.

21

ROSA-VELARDO, SEGURA, AND VERDEJO

Having implemented both the operational semantics and the type system
in the same framework, this allows us to study properties that involve both of
them. In particular, we are studying how to extend the ITP tool, the inductive
theorem prover for Maude, to allow proofs by induction on the rewrite rules. In
its current state, the I'TP allows to work with Maude equational specifications,
proving properties by induction on terms. Induction on rules would allow us to
prove, in a (semi)automatic way, properties like that the two implementations
of the type system are equivalent, or that typed processes do not produce
errors.

References

[1] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35-132, 2000.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures: First International Conference,
FOSSACS ’98, LNCS 1387, pages 140-155. Springer, 1998.

[3] L. Cardelli, G. Ghelli and A. D. Gordon. Mobility types for mobile ambients.
In Automata, Languages and Programming, 26th International Colloguium,
ICALP’99, LNCS 1644, pages 230-239. Springer, 1999.

[4] L. Cardelli, G. Ghelli and A. D. Gordon. Ambient groups and mobility
types. In Theoretical Computer Science, Exploring New Frontiers of Theoretical
Informatics, International Conference IFIP TCS’00, LNCS 1872, pages 333—
347. Springer, 2000.

[5] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings of
the 26th ACM SIGPLAN-SIGACT on Principles of Programming Languages,
POPL’99, pages 79-92. ACM Press, 1999.

[6] M. Clavel. The ITP tool. http://maude.sip.ucm.es/itp, 2004.

[7] M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187-243, 2002.

[8] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
C. Talcott. Maude Manual (Version 2.1), March 2004.
http://maude.cs.uiuc.edu/manual.

[9] E. Giovannetti. Type Inference for Mobile Ambients in Prolog. In M. Atkinson,
editor, Proceedings of Computing: The Australasian Theory Symposium (CATS)
2004, ENTCS 91, pages 96-115. Elsevier, 2004.

[10] F. Levi and D. Sangiorgi. Mobile Safe Ambients. ACM Transactions on
Programming Languages and Systems, 25(1):1-69, 2003.

22

http://maude.sip.ucm.es/itp
http://maude.cs.uiuc.edu/manual

ROSA-VELARDO, SEGURA, AND VERDEJO

[11] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. In D. M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, Second Edition, Volume 9, pages 1-87. Kluwer Academic
Publishers, 2002.

[12] N. Marti-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for
Maude. In N. Marti-Oliet, editor, Proceedings Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, ENTCS 117, pages 417-441.
Elsevier, 2004.

[13] I. Phillips and M. G. Vigliotti. Electoral systems in ambient calculi. In
Foundations of Software Science and Computation Structures, Tth International
Conference, FOSSACS’04, LNCS 2987, pages 408-422. Springer, 2004.

[14] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[15] F. Rosa-Velardo. Typing techniques for security in mobile agent systems.
Master’s Thesis, Departamento de Sistemas Informéticos y Programacién,
Universidad Complutense de Madrid, 2004.

[16] F. Rosa-Velardo, C. Segura, and A. Verdejo. Ambients in Maude Web Page.
http://maude.sip.ucm.es/ambients, 2005.

[17] F. Rosa-Velardo, C. Segura, and A. Verdejo. Typed Mobile Ambients in Maude.
Technical report 1-05, Departamento de Sistemas Informaticos y Programacién,
Universidad Complutense de Madrid, 2005.

http://maude.sip.ucm.es/ambients.

[18] M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its
application to A-, ¢- and m-calculi. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
ENTCS 36, pages 71-92. Elsevier, 2000.

[19] P. Thati, K. Sen and N. Marti-Oliet. =~ An executable specification of
asynchronous pi-calculus semantics and may testing in Maude 2.0. In
F. Gadducci and U. Montanari, editors, Proceedings Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, ENTCS 71,
pages 217-237. Elsevier, 2002.

[20] A. Verdejo and N. Marti-Oliet. Implementing CCS in Maude 2. In F. Gadducci
and U. Montanari, editors, Proceedings Fourth International Workshop on
Rewriting Logic and its Applications, WRLA 2002, ENTCS 71, pages 239-257.
Elsevier, 2002.

[21] A. Verdejo and N. Marti-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 2005. To appear.

[22] P. Zimmer. Subtyping and typing algorithms for mobile ambients. In
Foundations of Software Science and Computation Structures, 3rd International
Conference, FOSSACS’00, LNCS 1784, pages 375-389. Springer, 2000.

23

http://maude.sip.ucm.es/ambients
http://maude.sip.ucm.es/ambients

ROSA-VELARDO, SEGURA, AND VERDEJO

A Cardelli’s Ambient Calculus and Type System

P Q:=
(vn: W)P
0
Pl@Q
P

in M
out M
open M
€

M.M’

processes

restriction

inactivity

composition

replication

ambient

capability action

input action

asynchronous output action

messages

variable

name

can enter into M
can exit out of M
can open M

null

path

Fig. A.1. Syntax of the Ambient Calculus

Structural congruence
P=Q = (vn)P = (vn)Q
P=Q=P|R=Q|R
P=Q=!'P=lQ
P =Q = n[P] =n[Q]

P=Q= MP=MQ

PlQ=Q|P

PIQ)IR=P|(Q|R)

\P=P|P

(vn)(vm)P = (vm)(vn)P

n)(P| Q) =P | bn)Q if n ¢ fu(P)

(vn)(m[P]) = m[(vn)P] if n £#m

Plo=P

(vn)0 =0

10=0

P=Q= (z1,...,2,)P = (x1,. ..

eP=P

(M.N).P = M.(N.P)
Reduction

nlin m.P [Q] | m[R] — m[n[P | Q] | R]
m[nfout m.P | Q| R] — n[P | Q] | m[R]

open n.P | n[Q] — P | Q

(,Tl,...,l'n)P| <M1,...,Mn> —>P{$Cl =

P— Q= (vn)P — (vn)Q
P — Q= n[P] —n[Q)]
P-Q=P|R-Q|R

P=PP—-QQ=Q'=P —Q

M}

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)
(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)
(Struct Input)
(Struct €)

(Struct Path)

(

(Red Out)
(Red Open)
(Red Comm)
(Red Res)

(

(Red Par)
(Red =)

Fig. A.2. Operational Semantics of the Ambient Calculus

ROSA-VELARDO, SEGURA, AND VERDEJO

Exchange type
T :=Shh no exchange
Wi x ... x Wy tuple exchange
Message type
W :=Amb[T)| ambients that may contain exchanges of type T'
Cap[T] capabilities that may unleash exchanges of type T'

Fig. A.3. Exchange Types

(Exp n) (Path)
I'(n)=W ' M, : Cap[T] i=1,2
F'kn:W I'F My.Ms : Cap[T)
(Empty) (In/Out) (Open)
't M : Amb[T) ' M : Amb[T)
I'ke: Cap[T) I'Fin/out M : Cap[S] I'Fopen M : Cap[T)]
(Prefix) (Amb) (Res)
'eM:CaplT] THP:T THFM:Amb[T] T+HP:T on:Amb[TIFP: S
r-MpP:T ' M[P]:S 'k (vn: Amb[T)P: S
(Zero) (Par) (Repl)
'-p:T i=1,2 THP:T
Fko:T P | P:T LHP:T
(Input) (Output)
Doy Wi, oo xp Wi B P oWy x oo x Wy 't-M;,:W;, i=1.k
F"(.”L‘l ZWl,...,{EkZWk)lel ><...><VV1C F|—<M1,...,Mk>:W1 X...XWk

Fig. A.4. Typing rules for Exchange Types

25

	Introduction
	Maude in a Nutshell
	Strategies

	Ambient Calculus
	An Implementation of Mobile Ambients in Maude
	Syntax definition
	Operational semantics
	Strategies for evaluation
	An Example: Electoral Systems

	A Type System for Mobile Ambients
	Types for the Ambient Calculus
	Communication errors
	Implementation of the type system

	Conclusions and future work
	References
	Cardelli's Ambient Calculus and Type System

