
Typed Mobile Ambients in Maude⋆

Fernando Rosa-Velardo, Clara Segura, and Alberto Verdejo
{fernandorosa,csegura,alberto}@sip.ucm.es

Technical Report 1-05

Departamento de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid

January 31, 2005

Abstract. Maude has revealed as a powerful tool for implementing different kinds of se-
mantics so that quick prototypes are available for trying examples and proving properties. In
this paper we show how to define in Maude two semantics for Cardelli’s Ambient Calculus.
The first one is the operational (reduction) semantics which requires the definition of Maude
strategies in order to avoid infinite loops. The second one is a type system defined by Cardelli
to avoid communication errors. The correctness of that system was not formally proved. We
enrich the operational semantics with error rules and prove that well-typed processes do not
produce such errors. The type system is highly non-deterministic. We provide two different
(equivalent) ways of implementing such non-determinism in the rules.

Keywords: Ambient calculus, operational semantics, type systems, Maude.

1 Introduction

Maude, a high-level language and high-performance system supporting both equational
and rewriting logic computation [11, 10], has revealed as a powerful tool for representing
different kinds of semantics [13, 22, 23]. Since Maude specifications are executable, what
we get is an implementation of the language so that quick prototypes are available for
trying examples and proving properties.

Among the advantages of rewriting logic (and Maude), we may emphasize the following:

– It is a simple formalism, with only a few rules of deduction that are easy to understand
and justify.

– It is very flexible and expressive, capable of representing change in systems with very
different structure.

– It allows user-definable syntax, with complete freedom to choose the operators and
structural properties appropriate for each problem.

– It is intrinsically concurrent, representing concurrent change and supporting reasoning
about such change.

– It has initial models, that can be intuitively understood as providing “no junk” and
“no confusion.”

– It is realizable in the wide spectrum logical language Maude, supporting executable
specification and programming.

We use Maude as a metalanguage [9] in which the syntax and semantics of particular
languages can be formally defined. One of our aims is to maintain the representation
distance as short as possible. There are several different ways of mapping inference systems
into rewriting logic. In the structural operational semantics case, judgements typically

⋆ Work partially supported by the MCyT Spanish project MIDAS, TIC 2003-01000.

have the form of some kind of transition P → Q between states so that it makes sense
to consider the possibility of mapping directly this transition relation between states to
a rewriting relation between terms representing the states. When thinking this way, an
inference rule of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites. In this way the semantic rules become (conditional)
rewrite rules, where the transition in the conclusion becomes the main rewrite of the rule,
and the transitions in the premises become rewrite conditions.

In this paper we show how to define in Maude two semantics for Cardelli’s Ambient
Calculus (AC). First, we define the operational semantics given by Cardelli as structural
congruence and reduction rules. We show how to exploit the rewriting machinery in order
to reduce the number of rules, and also the decisions we have taken in order to avoid
infinite reductions. Rewrite rules need not be confluent or terminating. This theoretical
generality needs some control when the specifications become executable, because the
user needs to make sure that the rewriting process does not go in undesired directions.
We have recently defined a strategy language for Maude, to control the rewriting process
[14]. Strategy expressions can be defined to reduce the tree of rewritings of a given term.
For example, replication in AC requires the definition of strategies to avoid infinite loops.

Cardelli defined several type systems for AC [7, 5, 6] in order to avoid different kinds of
errors: basically communication errors, and violation of mobility and opening constraints.
We study here how to implement the first type system defined by Cardelli [7] to detect
communication errors, and also syntactically incorrect terms. There, Cardelli proved a
subject reduction theorem in order to justify the correctness of the type system, but only
an intuitive meaning of types was given. It is an interesting exercise to formalize it in
order to complete the correctness proof. We enrich the operational semantics with error
reductions reflecting the kind of errors we want to avoid. Then we prove (by hand) that a
well-typed process never causes such an error. We implement these error rules in Maude
and also the type system.

The type rules are highly nondeterministic. We provide two (equivalent) ways of man-
aging nondeterminism to implement the rules and discuss their advantages and disadvan-
tages. Both implementations infer the process type as the result of the rewriting.

Additionally, as a consequence of the study of the type rules we have encountered
that adding a new rule, more processes that do not produce communication errors can be
typed, and consequently we have slightly increased the power of the type system.

The representation in Maude of the AC operational semantics and type systems, in
a way quite close to the original mathematical formulation, has provided us interpreters
where these inference systems can be executed. Our final aim is to go one step further in
the exploitation of using Maude and take advantage of the formal tools designed for this
language. For example, automatic reasoning about specifications in Maude is supported
by the experimental ITP tool [8], a rewriting-based theorem prover (implemented also in
Maude) that can be used to prove inductive properties of equational specifications.

The rest of the paper is organized as follows. Section 2 presents a short description of
Maude and the strategy language we use. Section 3 reviews the ambient calculus briefly.
Section 4 describes the implementation of the operational semantics of AC and uses it
to execute a non-trivial example. Section 5 enriches the semantics with error rules and

implements the type system for avoiding communication errors. Finally Section 6 gives
conclusions and future work.

2 Maude in a Nutshell

In rewriting logic and Maude the data on the one hand and the state of a system on
the other are both formally specified as an algebraic data type by means of an equational
specification. Maude uses a very expressive version of equational logic, namely membership
equational logic [1]. In this kind of specifications we can define new types (by means of
keyword sort(s)); subtype relations (understood as inclusion relations) between types
(subsort); operators (op) for building values of these types, giving the types of their
arguments and result, and which may have attributes as being associative (assoc) or
commutative (comm), for example; equations (eq) that identify terms built with these
operators; and memberships (mb) t : s stating that the term t has sort s. Both equations
and memberships can be conditional, with respective keywords ceq and cmb. Conditions
are formed by a conjunction (written /\) of equations and memberships. The following
functional module (with syntax fmod...endfm) defines the syntax of a vending machine
where apples (a) and cakes (c) can be bought by using dollars ($) and quarters (q):

fmod VENDING-MACHINE-SIGNATURE is

sorts Coin Item Marking .

subsorts Coin Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: null] .

op null : -> Marking .

ops $ q : -> Coin .

ops a c : -> Item .

endfm

Equations are assumed to be confluent and terminating, that is, we can use the equa-
tions from left to right to reduce a term t to a unique, canonical form t′ (modulo the
operators attributes as associativity, commutativity, and identity) that is equivalent to t
(they represent the same value).

The dynamic behavior of a system is specified by rewrite rules of the form

t −→ t′ if (
∧

i

ui = vi) ∧ (
∧

j

wj : sj) ∧ (
∧

k

pk −→ qk)

that describe the local, concurrent transitions of the system. That is, when a part of a
system matches the pattern t and the conditions are fulfilled, it can be transformed into
the corresponding instance of the pattern t′. Rewrite rules are included in system modules
(with syntax mod...endm).

For example, the next module specifies a machine to buy cakes and apples with dollars
and quarters, which can be represented graphically as shown on the right. A cake costs
a dollar and an apple three quarters. We can insert dollars and quarters in the machine,
although due to an unfortunate design, the machine only accepts buying cakes and apples
with dollars. When the user buys an apple the machine takes a dollar and returns a quarter.
The machine can also change four quarters into a dollar.

mod VENDING-MACHINE is

inc VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $.

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $.

endm �
��

�
��

�
��

�
��

buy-c buy-a change

add-$

add-q

? ?

?

PPPPPPPq

�������) PPPPPPPi

6

�

�

4

c

$

a q

2.1 Strategies

Because system modules are rewrite theories that do not need to be neither confluent nor
terminating (as the previous example shows), we need to have good ways of controlling the
rewriting inference process—which in principle could not terminate or may go in many un-
desired directions—by means of adequate strategies. We have defined a strategy language
for Maude that can be used to control how rules are applied to rewrite a term [14]. The
simplest strategies are the constants idle, which always succeeds by doing nothing, and
fail, which always fails. The basic strategies consist of the application of a rule (identified
by the corresponding rule label) to a given term. In this case a rule is applied anywhere
in the term where it matches satisfying its condition. When the rule being applied is a
conditional rule with rewrites in the conditions, the strategy language allows to control by
means of search expressions how the rewrite conditions are solved. An operation top to
restrict the application of a rule just to the top of the term is also provided. Basic strate-
gies are then combined so that strategies are applied to execution paths. Some strategy
combinators are the typical regular expression constructions: concatenation (;), union (|),
and iteration (* for 0 or more iterations, + for 1 or more, and ! for a “repeat until the
end” iteration). Another strategy combinator is a typical if-then-else, but generalized so
that the first argument is also a strategy. The language also provide an orelse combi-
nator where the second strategy is applied only when the first one is unsuccessful, and
a (x)matchrew combinator that allows a term to be split in subterms, and specifies how
these subterms have to be rewritten.

In the vending machine example, if we start with two dollars and want to buy a cake
and an apple, we use the strategy buy-c ; buy-a. If we want to spend all our money
buying apples, we use the strategy (buy-a ! ; change !) ! where we also use the rule
change in order to obtain dollars from four quarters.

3 Cardelli’s Ambient Calculus

In this section we will present the basic notions about the Ambient Calculus [4], a process
algebra that focuses on the notions of locations, mobility (of agents and their environments)
and authorizations (to move or interact). Ambients will be the main entities of this model.
An ambient is a place limited by a boundary where computations take place. They are
hierarchically structured, so that we do not abstract from the path needed to arrive at
the destination. Agents are confined to ambients and ambients move under the control
of agents, allowing the movement of nested environments, that also include data and live
computation.

In Figure 1 the syntax for AC with communication primitives is presented. We will
consider two disjoint sets, N = {m,n, . . .} for names and Var = {x, y, . . .} for variables,
and a special symbol ǫ. We will denote Id = N ∪ Var and Cap = {in N, out N, open N |
N ∈ Id}. We will denote as A∗ the set of paths (sequences) formed over elements of A.

Processes

P, Q::= processes
(νn : W)P restriction
0 inactivity
P | Q composition
!P replication
M [P] ambient
M.P capability action
(x1 : W1, . . . , xn : Wn)P input action
〈M1, . . . , Mn〉 asynchronous output action

Expressions

M ::= capabilities
x variable
n name
in M can enter into M
out M can exit out of M
open M can open M
ǫ null
M.M ′ path

Fig. 1. Syntax of the Ambient Calculus

Ambients are denoted as n[P], where n is its name and P is its content, which is
essentially a parallel composition of sequential processes and subambients. These sequen-
tial processes can be prefixed processes, M.P , meaning that it must consume M before
proceeding with P , polyadic inputs (x1 : W1, . . . , xn : Wn)P and polyadic asynchronous
outputs 〈M1, . . . ,Mn〉. We will suppose that the variables appearing in the input construc-
tion are pairwise distinct. Also, new names can be created (restriction) (νn : W)P and
processes may be replicated !P . There is a special process 0 that is inactive.

Notice that for simplicity, in the syntax definition ambient names and capabilities
belong to the same syntactic category. As a consequence the syntax allows the construction
of meaningless processes such as n.P or in n[P]. Later these terms will be ruled out by
the type system that we will discuss in Section 5.

The operational semantics of the language is defined by means of a structural congru-
ence relation ≡ and a reduction relation →. The former basically identifies those processes
that are equivalent up to some trivial syntactic reorganization. It is the least equivalence
relation satisfying the rules in Figure 2. For example, the inactive process 0 can be elimi-
nated (or added) when in parallel with other processes.

In addition, processes are identified by α-conversion up to the renaming of bound
names and variables:

(νn : W)P = (νm : W)P{n := m} if m 6∈ fn(P)

(x1, . . . , xn)P = (y1, . . . , yn)P{xi := yi} if yi /∈ fv(P)

A restricted name cannot be used outside its scope. However, α-conversion can be
used to avoid name clashes, and in this way it is reflected the fact that the restricted name
cannot be known, in principle, out of the restricted term. By means of the extrusion rule we
can augment the scope of the restriction from a parallel component to the whole parallel

Structural congruence

P ≡ Q ⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q ⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q ⇒ !P ≡!Q (Struct Repl)
P ≡ Q ⇒ n[P] ≡ n[Q] (Struct Amb)
P ≡ Q ⇒ M.P ≡ M.Q (Struct Action)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P |!P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Struct Res Par)
(νn)(m[P]) ≡ m[(νn)P] if n 6= m (Struct Res Amb)
P | 0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!0 ≡ 0 (Struct Zero Repl)
P ≡ Q ⇒ (x1, . . . , xn)P ≡ (x1, . . . , xn)Q (Struct Input)
ǫ.P ≡ P (Struct ǫ)
(M.N).P ≡ M.(N.P) (Struct Path)

Reduction

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R] → n[P | Q] | m[R] (Red Out)
open n.P | n[Q] → P | Q (Red Open)
(x1, . . . , xn)P | 〈M1, . . . , Mn〉 → P{xi := Mi}

n

i=1 (Red Comm)
P → Q ⇒ (νn)P → (νn)Q (Red Res)
P → Q ⇒ n[P] → n[Q] (Red Amb)
P → Q ⇒ P | R → Q | R (Red Par)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Fig. 2. Operational Semantics of the Ambient Calculus

composition, provided the restricted name does not appear in the other components:

P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P)

As said before, if process P above does have n as a free name and we want P and Q to
interact we can always apply α-conversion. This can also be applied to ambients as rule
(Struct Res Amb) shows.

The reduction rules mainly present the axioms for mobility and communication. Am-
bients can move into their sibling ambients or out of their enclosing ambient, as said in
rules (Red In) and (Red Out) respectively. They may also dissolve the boundary of their
subambients, so that the processes contained in the opened ambient now belong to the
opener ambient, as defined in rule (Red Open). Finally, communication may happen in-
side them (Red Comm). The rest of the rules state that reductions may occur inside some
constructors, namely restriction, ambients, and parallel, but not inside inputs, prefixes,
or replications. Finally, rule (Red ≡) makes explicit the fact that we are working modulo
structural equivalence.

As an illustrative example of the semantics, let us consider the example

n[a[out n.in m.〈M〉]] | m[open a.(x)Q]

This process can evolve in the following way:

(n[a[out n.in m.〈M〉]] | m[open a.(x)Q]) ≡
(n[a[out n.in m.〈M〉] | 0] | m[open a.(x)Q]) →
a[in m.〈M〉] | n[0] | m[open a.(x)Q] ≡ (1)
n[0] | a[in m.〈M〉 | 0] | m[open a.(x)Q] → (2)
n[0] | m[a[〈M〉 | 0] | open a.(x)Q] ≡
n[0] | m[open a.(x)Q | a[〈M〉]] →
n[0] | m[(x)Q | 〈M〉] →
n[0] | m[Q{x := M}]

where, for instance, the equivalence (1) can be proved to hold using rules (Struct Par),
(Struct Par Comm), (Stru Zero Par) and (Struct Amb), and step (2) can take place using
the rules (Red Par) and (Red In).

4 An Implementation of Mobile Ambients in Maude

In this section we implement in Maude the operational semantics of AC. We have tried
to be as faithful as possible to the way in which Cardelli describes the calculus. First, we
define the syntax, and discuss about the mechanisms we need to manage bound names and
variables. Then we implement operational semantics through both equations and rewrite
rules. Finally we define strategies that control the application of rewrite rules. All the code
is available in Maude’s site [19].

4.1 Syntax definition

We define here AC syntax. For the sake of readability we omit variable declarations and
operators precedence in most of the source code.

Syntax definition has to consider how to deal with bound names and variables. In AC
there are two binding operators: the creation of new names (νn) that binds names and
the input action (x) that binds variables. We need de Bruijn’s indexes [2] in order to
distinguish occurrences of the same name or variable that are bound by different binding
operators. In order to illustrate this, see the following example:

(νn)(m[open k.(〈n〉 | n[0])] | k[in m.(x)(νn)n[in x.0]])

Ambient k moves into ambient m, there it is opened and name n is read, so that x is bound
to (outer) name n. However such name n is different from the newly (inner) created name
n so a renaming is mandatory. As potentially infinite names could be needed (due to
replication), indexed names ni can be used instead, where i represents the number of
intermediate n-bindings between the free occurrence and its binding occurrence. In this
way we can generate easily fresh names without losing the original ones. The same happens
with variables. Initially the indexes are 0 and they are increased when α-conversion or
communication (through substitution application) takes place.

The previous example would produce the following sequence of steps:

(νn)(m0[open k0.(〈n0〉 | n0[0])] | k0[in m0.(x)(νn)n0[in x0.0]]) →
(νn)(m0[open k0.(〈n0〉 | n0[0])|k0[(x)(νn)n0[in x0.0]]]) →
(νn)(m0[〈n0〉 | n0[0] | (x)(νn)n0[in x0.0]]) → (1)
(νn)(m0[n0[0] | (νn)n0[in n1.0]]) → (2)
(νn)(m0[(νn)n1[0] | n0[in n1.0]]) →
(νn)(m0[(νn)n1[n0[0]]])

In steps (1) and (2) increasing of some indexes takes place due to communication and
α-conversion respectively.

Consequently we have to use indexed names and variables in AC syntax. We can use
Maude’s Qid to define both. For the sake of clarity, names are Qids beginning with letters
’a’ to ’u’, and variables those beginning with letters ’v’ to ’z’, which can easily be defined
using membership axioms. Indexed names and variables, which we call Acid, are defined
as:

sorts Qidn Qidx .

subsorts Qidn Qidx < Qid .

var q : Qid .

cmb q : Qidn if first-char(q) < "u" .

cmb q : Qidx if first-char(q) >= "u" .

sorts Name Var Acid .

subsorts Name Var < Acid .

op _{_} : Qidx Nat -> Var .

op _{_} : Qidn Nat -> Name .

Notice that in a system defined by a user that wants to execute an example, every name
and variable has a 0 index, as indexes different from 0 only arise through communication
or α-conversion. So we have defined a decoration function dec that fills the system defined
by the user with the appropriate 0 indexes. We do not give here its definition (see [19] for
the complete code).

Once defined names and variables, we can define straightforwardly messages and pro-
cesses. Messages can be (indexed) names and variables, basic values (such as integers),
capabilities, and paths:

sorts Message Capability Path .

subsorts Int Acid Capability Path < Message .

op in[_] : Message -> Capability .

op out[_] : Message -> Capability .

op open[_] : Message -> Capability .

op eps : -> Path .

op _._ : Message Message -> Path [assoc] .

In order to define processes we need to define first input and output sequences so
that multiple communication can take place. Input sequences should rule out multiple
occurrences of the same variable (this is done by defining the concatenation operator _,_
for input sequences as partial ~>, and giving a conditional membership that states when
the concatenation is meaningful). Input sequences include type annotations (sort AType)
for each input variable; this is because later we will define a type system for AC (for the
moment they can be ignored).

sort InputSeq .

op _:_ : Qidx AType -> InputSeq .

op _,_ : InputSeq InputSeq ~> InputSeq [assoc] .

op bel : Qidx InputSeq -> Bool .

eq bel(x, y : T) = x == y .

eq bel(x, (I1, I2)) = bel(x, I1) or bel(x, I2) .

cmb ((x : T), IS) : InputSeq if not bel(x, IS) .

sort OutputSeq .

subsorts Message < OutputSeq .

op _,_ : OutputSeq OutputSeq -> OutputSeq [assoc] .

Processes are defined as follows

sort Process .

op stop : -> Process . *** 0 process

op _._ : Message Process -> Process .

op _|_ : Process Process -> Process [assoc comm id: stop] .

op !_ : Process -> Process .

op _[_] : Message Process -> Process .

op <_> : OutputSeq -> Process .

op (_)_ : InputSeq Process -> Process .

op new[_:_]_ : Qidn AType Process -> Process .

Using this syntax definition we can write the following (Cardelli’s) firewall example:

ops P Q : -> Process .

eq firewall = new [’k : Amb[Shh]] (’n [open[’k] . P]

| new[’m : Amb[Shh]] (’m [’k [out[’m] . in[’n] . in[’m] . stop] | Q])) .

where the type annotations can be ignored by now. Ambient ’m can be regarded as a
firewall that an agent ’n wants to cross. The above mechanism can be used to guarantee
authentication, to ensure freshness of messages by means of nonces or to model shared-key
cryptography. By using process constants P and Q we will be able to universally quantify
the execution of the process and give a general result for any two processes appearing
there.

4.2 Substitutions and lifting

Now we discuss the functions we need to manage indexed names and variables [20]. In the
previous example we have seen that indexes need to be increased some times, so several
auxiliary definitions are necessary in order to modify de Bruijn’s indexes. They can be
defined as substitution constructors, so that later they can easily be combined with other
substitutions. Substitutions are generated by communications.

First, we need a function that increases indexes when α-conversion takes place (step
(2) in the example of Section 4.1):

op [shiftup_] : Qid -> Subst .

eq [shiftup a] a{n} = a{s(n)} .

ceq [shiftup a] b{n} = b{n} if a =/= b .

Now we have to manage communications and the substitutions arising from them.
Simple substitutions replace variables by messages

sort Subst .

op [_:=_] : Qid Message -> Subst .

In particular when applied, they replace only 0-indexed variables:

eq [a := M] a{0} = M .

ceq [a := M] b{n} = b{n} if a =/= b .

We will never get to apply one simple substitution to a non zero variable as processes
are closed with respect to variables.

We omit here the details about (standard) composition of substitutions.

Substitution application over messages and processes can be easily defined by cases.
However we have to be careful when applied to processes with bound names or variables,
as substitutions should be applied to the most external bound variable. In the following
example

((x)(x)x0[P] | x1[Q]) | 〈n0〉 → (3)
(x)x0[P] | n0[Q]

we want x1, and not x0, to be replaced by n0.

This means that when we apply a substitution through a binding operator, we have
to replace higher indexes than 0 (step (3) in the previous example). We will say that we
lift the substitution:

op __ : Subst Process -> Process .

...

eq S (new[n : T]P) = new[n : T]([lift n S] P) .

eq S (I)P = (I)(mlift(I, S) P) .

But also we also have to remember that free variables in the resulting process should
be adequately shifted up to reflect the fact that there is one more level of intermediate
binding (step (1) in the example of Section 4.1):

op [lift__] : Qid Subst -> Subst .

eq [lift a S] a{0} = a{0} .

eq [lift a S] a{s(n)} = [shiftup a] S a{n} .

ceq [lift a S] b{n} = [shiftup a] S b{n} if a =/= b .

op mlift : InputSeq Subst -> Subst .

eq mlift((x : T), S) = [lift x S] .

eq mlift(((x : T), I), S) = mlift(I, [lift x S]) .

Notice that [lift a S] when S is simple is a substitution that only affects variables
indexed with 1, so first the indexes are decreased in order to apply S and then increased
again. Subsequent nestings of liftings affect higher indexed variables if necessary.

Last operator mlift applies the lift operator to several variables. Multiple lifting can
be sequencially applied due to the non-repeated variables constraint we have imposed over
input variables.

4.3 Operational semantics

As we have previously seen, the operational semantics for AC consists of a set of structural
congruence rules and a set of reduction rules.

Happily, Maude gives us some congruence rules for free. In particular:

– Rules (Struct Res) to (Struct Action) and (Struct Input), which define the congruence
with respect to each process constructor, do not need to be defined due to equational
congruence in Maude.

– Rules (Struct Par Assoc), (Struct Par Comm) and (Struct Zero Par) are obtained by
indicating in the declaration of the parallel operator the associativity, commutativity,
and identity attributes.

Rules (Struct ǫ), (Struct Path), (Struct Zero Res) and (Struct Zero Repl) are defined
through Maude equations and consequently will be applied only from left to right. We
write them looking for a normal form so that confluence holds:

eq eps . P = P .

eq (M . N) . P = (M . (N . P)) .

eq ! stop = stop .

eq new[n : T] stop = stop .

Extrusion rules (Struct Res Res), (Struct Res Par), and (Struct Res Amb) are written
as three equations for α-conversion and (alphabetic) reordering of bound names looking
for a normal form where all the bound names are at the top and ordered alphabetically:

ceq new[k : T1] new[l : T2] P = new[l : T2] new[k : T1] P if string(l) < string(k) .

ceq ((new[n : T]P) | Q) = new[n : T](P | ([shiftup n] Q)) if P =/= stop /\ Q =/= stop .

eq M [new[n : T] P] = new[n : T](([shiftup n] M)[P]) .

Notice that in order the first rule to be completely confluent we should define a (merely
syntatic) order between the types in the (unfrequent) case the same name with different
types is used. And then the reordering should rearrange the indexes of the involved names.

Notice also that the second (α-conversion) rule is only applicable when processes are
different of stop. This condition will be necessary also several times below due to the
identity attribute of | that could produce an infinite loop by generating once and again
| stop in order to match with the equation. Another possibility would be to define a new
type for non-stop processes and then write the equations or the rules with variables of
such type.

We do not lose any power by writing the previous congruence rules as equations as
they only reorder terms so that the subsequent reduction rules can be applied. For this to
be true also parallel operator attributes and equational congruence are fundamental. The
application of the equations produces a normal form where:

– stop only appears after a prefix (capability or input action) or inside an ambient;

– eps does not appear anywhere;

– sequences of capabilities associate to the right; and

– new operators are extruded as far as possible (in order interactions can take place) and
are ordered alphabetically.

Rule (Struct Repl Par) will be discussed later. Finally we have the reduction rules as
rewrite rules in Maude, some of which are conditional rewrite rules:

rl [RedIn] : n[in[m] . P | Q] | m[R] => m[n[P | Q] | R] .

rl [RedOut] : m[n[out[m] . P | Q] | R] => n[P | Q] | m[R] .

rl [RedOpen] : open[n] . P | n[Q] => P | Q .

rl [RedComm] : ((I)P) | < O > => bound(I,O) P .

crl [RedRes] : new[k : T] P => new[k : T] Q if P => Q .

crl [RedAmb] : n[P] => n[Q] if P => Q .

crl [RedPar] : P | R => Q | R if P =/= stop /\ R =/= stop /\ P => Q .

Function bound(I,O) generates a substitution as a result of the communication that is
applied to the process, as we have previously explained.

Remember that the reduction relation of the calculus is not a congruence for all the
operators, but only for restriction operator (Red Res), ambient construction (Red Amb),
and parallel operator (Red Par). This means that we cannot freely use the rewrite rules
we have written, as Maude would apply them anywhere in a term; and we do not want
them to be applied after prefixes, inputs, and replication. This is one of the reasons why
the definition of a strategy that controls the application of these rules is necessary.

Notice that we have the interleaving of congruence and reduction rules (Red ≡) for
free as Maude itself interleaves the application of equations with rewrite rules.

We study now what happens with replication. Replication behavior is described in AC
through a congruence rule (Struct Repl Par). We cannot write it as an equation as the
other ones because none of the orientations is convenient. If we apply it from left to right
we get an infinite loop as we can infinitely unroll the replication. If we apply it from right
to left we cannot see how the system evolves when new copies of the replicated process
interact with other parts of the system or even with other copies of itself. As an example,
in order the process !n[in n.0] can evolve it is necessary to unroll replication twice:

!n[in n.0] ≡
n[in n.0] |!n[in n.0] ≡
n[in n.0] | n[in n.0] |!n[in n.0] →
n[in n.0|n[0]] |!n[in n.0] →
. . .

This has led us to write this congruence rule as two rewrite rules:

rl [Rep] : ! P => P | ! P .

rl [UnRep] : P | ! P => ! P .

Still we have the same problem, so we have to define strategies to control the application
of these rules. We want to apply rule Rep when it is necessary for subsequent interaction
and rule UnRep to delete isolated unnecessary copies of the replicated process.

4.4 Strategies for evaluation

We need strategies to control the application of the rewrite rules defined before. Rules for
movement and communication can be applied anywhere in the term but under prefixes
and replication. So we define first a strategy to control the application of these rules called
norep (no replication). As we have written rules for reducing inside ambients, in parallel
processes, and under name restriction, we just have to apply all the rewrite rules at the
top level. This means that the strategy will be applied recursively but that it will stop
when a prefix or a replication is encountered.

Rules RedRes, RedAmb and RedPar are conditional rewrite rules so the strategy needs
to know which strategy to apply in the rewrite condition and how to search in the resulting
rewrite tree. In this case we want the same strategy to be (recursively) applied and a depth
first search is enough for our purposes (strategies are defined in a seq declaration):

seq norep = top(RedIn) | top(RedOut) | top(RedOpen) | top(RedComm) |

top(RedAmb{dfs(norep)}) |

top(RedPar{dfs(norep)}) |

top(RedRes{dfs(norep)}) .

So if we use norep strategy in the following examples

eq L = ’n{0} [in[’n{0}] . stop] .

eq M = L | L .

eq N = ’m{0} [M] .

eq P = ! M .

we obtain that:

– process M rewrites to ’n{0} [in[’n{0}] . stop | ’n{0} [stop]],
– process N rewrites to ’m{0} [’n{0} [in[’n{0}] . stop | ’n{0} [stop]]],
– process P cannot be rewritten.

Now we combine this strategy with a new one to control replication. We would like
to unroll replication only when necessary: only when as a consequence of the unrolling a
movement or a communication takes place. However we have to be careful because two
unrollings could be necessary in order the movement or the communication takes place,
as happened in process !n[in n.0].

Additionally, even when one unrolling is enough to make a reduction step, we could lose
rewrites if we force such reduction immediately. For example, if our strategy applied norep

after each unrolling to process n[0] |!n[in n.0], we could obtain the following rewriting:

n[0] | !n[in n.0] ≡
n[0] | n[in n.0] | !n[in n.0] →
n[n[0]] | !n[in n.0] ≡
n[n[0]] | n[in n.0] | !n[in n.0] →
n[n[0] | n[0]] | !n[in n.0]
. . .

so that only processes like n[n[0] | . . . | n[0]] | !n[in n.0] could be obtained, losing (among
others) the following possible rewriting:

n[0] | !n[in n.0] ≡
n[0] | n[in n.0] | !n[in n.0] ≡ (1)
n[0] | n[in n.0] | n[in n.0] | !n[in n.0] →
n[0] | n[in n.0 | n[0]] | !n[in n.0] →
n[n[n[0]] | !n[in n.0] →
. . .

We claim that no more than two unrollings are necessary to obtain all the solutions,
meaning by solutions those processes to which reduction rules cannot be applied any
more. This can be easily proved by inspection of the rewriting trees for S | P | P | !P and
S | P | P | P | !P . The only difference is the level where we find the solutions.

Considering the two previous observations we define a new rule that allows us to unroll
twice any replication appearing in the process but after prefixes and under replication (for
the same reasons as norep)

rl [Rep2] : P => rep(P) .

being rep defined as

op rep : Process -> Process .

eq rep(! P) = P | P | ! P .

eq rep(M[P]) = M[rep(P)] .

ceq rep(P | Q) = rep(P) | rep(Q) if P =/= stop and Q =/= stop .

eq rep(new[n : T] P) = new[n : T] rep(P) .

eq rep(P) = P [owise] .

As we want the unrolling to affect the whole process, this rule should be applied also
at the top level

seq unroll-rep = top(Rep2) .

Of course, it can happen that unrolling does not help to the evolution of the process
and just generates idle copies. In this case we apply rule UnRep to absorb those garbage
copies. As an example, by unrolling twice and then communicating, process 〈n〉 | !(x)x[0]
would rewrite to n[0] | (x)x[0] | !(x)x[0] and then by applying rule UnRep we would obtain
n[0] | !(x)x[0].

Additionally, in order to avoid infinite computations when processes are nonterminat-
ing the user should tell the strategy how many real (Cardelli) reduction steps he wants
to execute. Consequently, the strategy applies replication unrolling (if there is any) and
immediately applies one more movement and/or communication step (if it is possible and
we are not finished). When we are finished we eliminate every idle copy.

seq cardelli(0) = UnRep ! .

seq cardelli(s(n:Nat)) = (unroll-rep ; norep ; cardelli(n:Nat)) orelse (UnRep !) .

When rewriting process ! M by using strategy cardelli(1) we obtain the following
solution:

!(’n{0}[in[’n{0}]. stop]| ’n{0}[in[’n{0}]. stop]) |

’n{0}[in[’n{0}]. stop | ’n{0}[stop]]

where one copy of M has evolved. When applying cardelli(2) we obtain the following
three solutions:

Solution 1 :

!(’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop]) |

’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop | ’n{0}[stop]| ’n{0}[stop]]

Solution 2 :

!(’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop]) |

’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop | ’n{0}[’n{0}[stop]]]

Solution 3 :

!(’n{0}[in[’n{0}]. stop] | ’n{0}[in[’n{0}]. stop])|

’n{0}[in[’n{0}]. stop | ’n{0}[stop]] | ’n{0}[in[’n{0}]. stop | ’n{0}[stop]]

obtained by only two movements and one final application of UnRep. The three possibilities
can be easily obtained by writing process n[in n.0] | n[in n.0] | n[in n.0] | n[in n.0] and
all the possible ways of making only two movements.

As a final example, when rewriting firewall using strategy cardelli(4) we obtain:

new[’k : Amb[Shh]]new[’m : Amb[Shh]](’m{0}[Q | ’n{0}[[shiftup ’m]P]])

as expected. Notice that as P and Q are just pseudo-processes there are some operations
that cannot be applied like the shift-up and are left as such.

4.5 An Example: Electoral Systems

In [16] the problem of coding pure ambient calculus in π-calculus is studied. In particular, it
is shown that symmetric electoral systems of arbitrary size exist for pure ambient calculus
(AC with no communication), which implies that AC is not encodable in the π-calculus

with separate choice as shown in [15]. The authors of [16] claim that the following process
is a symmetric electoral system:

Netk = P0 | . . . | Pk−1

Pi = ni[
∏

j∈Sk

i

in nj.0 |
∏

s∈T k

i

mi[in(s).out(s−).out ni.0]]

where
∏

denotes parallel composition, Sk
i is the set of all natural numbers less than k

excluding i, T k
i is the set of all strings of length k − 1 using the members of Sk

i exactly
once each, s− is the string s in reverse order and in(s) is the sequence of in nj for each
successive j ∈ s (respectively, out(s)).

For a symmetric net as the one above to be an electoral system it must be the case
that all of its maximal computations produce exactly one observable, being all of them
different. In this case, the observables are the ambients with names in {m1, . . . ,mk−1} at
the top level.

We have implemented the example above in our representation of Ambient Calculus.
First, we define the functions S : Nat Nat -> NatSet and T : Nat Nat -> NatListSet

to obtain the sets Sk
i and T k

i , respectively. The sequence of capabilites in(s) can be defined
as follows:

op InList : NatList -> Path .

eq InList (i IL) = (in[’n{i}] . InList (IL)) .

eq InList (nil) = eps .

We will use two auxiliary process definitions, Pr1(S) for process
∏
j∈S

in nj.0 and Pr2(T,i)

for process
∏
s∈T

mi[in(s).out(s−).out ni.0], in such a way that each Pi will be implemented

by ’n{i}[Pr1(S(i,k) | ’m{i}[Pr2(T(i,k),i)]] .

op Pr1 : NatSet -> Process .

eq Pr1(i # NS) = (in [’n{i}] . stop) | Pr1(NS) .

eq Pr1(mtNS) = stop .

op Pr2 : NatListSet Nat -> Process .

eq Pr2(IL ; ILS, i) = (’m{i}[InList(IL) . (OutList(Rev(IL)) . out[’n{i}]) . stop])

| Pr2(ILS, i) .

eq Pr2(mt, i) = stop .

Then:

op Pr : Nat Nat -> Process .

eq Pr(i, k) = ’n{i}[Pr1(S(i, k)) | Pr2(T(i, k), i)] .

Finally, a net of size k is simply the parallel composition of the corresponding Pr(i,k):

op Net : Nat -> Process .

eq Net(k) = elect(0, k) .

op elect : Nat Nat -> Process .

ceq elect(i, k) = Pr(i, k) | elect(i + 1, k) if i < k .

eq elect(k, k) = stop .

We can now take profit from our implementation of ambients to check that if we rewrite
Net(2) using cardelli(400) we obtain:1

1 We use 400 as a limit for the number of reduction steps in the strategy to make sure we obtain the
maximal rewritings. This does not affect the efficiency.

Solution 1:

’m{0}[stop] | ’n{0}[in[’n{0}].stop | n{1}[’m{1}[in[’n{0}].out[’n{0}].out[’n{0}].stop]]

Solution 2:

’m{1}[stop] | ’n{1}[in[’n{1}].stop | n{0}[’m{0}[in[’n{1}].out[’n{1}].out[’n{1}].stop]]

No more solutions.

Indeed, there are only two possible (maximal) rewrites: solution 1 corresponds to ob-
servable ’m{0} (n0 wins) and solution 2 to observable ’m{1} (n1 wins). The same can be
done with nets of size bigger than 3, getting analogous results.

5 A Type System for Mobile Ambients

In this section we first present Cardelli’s type system for detecting communication errors.
Then we define error reductions that precisely describe such errors and prove (by hand)
that a well-typed process does not produce these communication errors along its execu-
tion (for more details see [18]). We implement the error reductions and define a strategy
that allows us to know if a communication error occurs along the execution of a process.
Then we implement the type system by using different techniques to manage the rules
nondeterminism. Both implementations allow to infer the type of an annotated process as
a result of the rewriting. Additionally, as a consequence of the study of the typing rules
we have encountered that by adding a new rule, more processes that do not produce com-
munication errors can be typed, and consequently we have slightly increased the power of
the type system.

5.1 Types for the Ambient Calculus

In [7] the first type system for the Ambient Calculus is presented. Its main purpose is to
avoid meaningless processes. Such processes may arise after some undesired communication
interactions. For instance, the process

(x)x[P] | 〈n〉 | (y)y.Q | 〈open n〉

may evolve to
n[P] | open n.Q

but also to

(open n)[P] | n.Q.

One way to avoid these meaningless terms2 is to restrict the type of communications
within each ambient, thus defining the exchange types. These types will not only specify
whether ambients or capabilities are exchanged, but also what kind of ambients (what
kind of information can be exchanged inside them) or what kind of capabilities (what
kind of messages they unleash).

There are two kinds of exchange types: one for no exchange, Shh, and the other for
tuple exchange, where each component will be an ambient type or a capability type, as
shown in Figure 3.

The judgments of the type system are derived with respect to a type environment, as
usually. Now we comment some of the typing rules shown in Figure 4:

2 In fact they are only meaningless at the intuitive level. Formally they just include useless blocked
subterms.

Exchange type

T ::=Shh no exchange
W1 × . . . × Wk tuple exchange

Message type

W ::=Amb[T] ambients that may contain exchanges of type T
Cap[T] capabilities that may unleash exchanges of type T

Fig. 3. Exchange Types

– (Zero) Process 0 does not produce any communication action. Thus, its natural type
should be Shh. However, it can be understood that it has any type, so that if it is in
parallel with any other process, it does not interfere with its communication behavior.
Alternatively, it would be possible to introduce a subtype relation among types, giving
0 the minimal type, together with a new subsumption rule, as done in [24].

– (Amb) In order to type an ambient M [P] one must check that its name is indeed an
ambient name, M : Amb[T]. As process 0, it can be typed with any type.

– (In/Out) Movement capabilities do not unleash any exchange and, therefore, they can
produce any capability type.

– (Open) If M : Amb[T] then M is an ambient that contains processes of type T and,
therefore, open M is a capability that may unleash exchanges of type T .

– (Prefix) This rule obliges P and M.P to have the same type, which is the type deter-
mined by the prefix M when M is a capability open or a path containing one.

– (Parallel) Every sequential process within the same ambient must have the same type.
This will only be a restriction for those processes that are responsible for communica-
tions.

– (Input) The residual of the input must be typeable with the same type that determines
the input. Therefore, the communication type will be the same along the execution of
the process.

– The rest of the rules are standard.

Rules (In/Out) and (Open), together with rule (Prefix) causes the opening capabilities
to be the only ones that contribute to the type of a path. For example, if Γ (n) = Amb[T]
and Γ (m) = Amb[S] then it holds that Γ ⊢ in n.open m : Cap[S].

5.2 Communication errors

In [7] only the intuitive meaning of types is described, but it is an interesting exercise
to formalize it. In Figure 5 we define an error relation err1. It can be considered to
be a syntactic error, that arises from the use of two different kind of entities (names and
capabilities) in the same syntactic category. Thus, an error is found, for instance, whenever
a name is prefixing a process (instead of a capability). The definition of err1 attempts to
detect the error as soon as possible, in the sense that it looks in every subcomponent of the
process, without considering variables, since we do not know what they will be replaced
by.

If we suppose that P 6→ err1 and Q 6→ err1 then we can easily verify that:

(Exp n) (Path)

Γ (n) = W

Γ ⊢ n : W

Γ ⊢ Mi : Cap[T] i = 1, 2

Γ ⊢ M1.M2 : Cap[T]

(Empty) (In/Out) (Open)

Γ ⊢ ǫ : Cap[T]

Γ ⊢ M : Amb[T]

Γ ⊢ in/out M : Cap[S]

Γ ⊢ M : Amb[T]

Γ ⊢ open M : Cap[T]

(Prefix) (Amb) (Res)

Γ ⊢ M : Cap[T] Γ ⊢ P : T

Γ ⊢ M.P : T

Γ ⊢ M : Amb[T] Γ ⊢ P : T

Γ ⊢ M [P] : S

Γ, n : Amb[T] ⊢ P : S

Γ ⊢ (νn : Amb[T])P : S

(Zero) (Par) (Repl)

Γ ⊢ 0 : T

Γ ⊢ Pi : T i = 1, 2

Γ ⊢ P1 | P2 : T
Γ ⊢ P : T
Γ ⊢!P : T

(Input) (Output)

Γ, x1 : W1, . . . , xk : Wk ⊢ P : W1 × . . . × Wk

Γ ⊢ (x1 : W1, . . . , xk : Wk)P : W1 × . . . × Wk

Γ ⊢ Mi : Wi i = 1..k

Γ ⊢ 〈M1, . . . , Mk〉 : W1 × . . . × Wk

Fig. 4. Typing rules for Exchange Types

(x : W)x[P] | 〈n〉 | (y : W ′)y.Q | 〈open n〉err1

n[P] | open n.Q

(open n)[P] | n.Q

err1

err1

We have proved that typed processes do not cause such error. First we need an easy
to prove lemma:

Lemma 1.

1. If Γ ⊢ M : Amb[T] then M ∈ Id.
2. If Γ ⊢ M : Cap[T] then M ∈ (Cap ∪ Var)∗.
3. If Γ ⊢ M : W then M ∈ Id ∪ (Cap ∪ Var)∗.

and then we can prove the main theorem

Theorem 1. If Γ ⊢ P : T then P 6→ err1.

Proof (sketch). This result can be proved by induction on the rules used to derivate Γ ⊢
P : T and using the previous lemma. Basically, it holds because processes that cause
an error are those containing a subterm of the form (cp N)[P], 〈cp (cp′ N)〉, n.P , or
cp (cp′ N).P (with cp, cp′ ∈ {in, out, open}). These processes are not typeable, nor any
process that contains them (in the type system every subterm must be typed in order to
type the whole term).

M 6∈ (V ar ∪ Cap)∗

M.P → err1

M /∈ Id

M [P] → err1

Mi /∈ Id ∪ (Cap ∪ Var)∗

〈M̃〉 → err1

P → err1

N [P] → err1

P → err1

N.P → err1

P → err1

(x̃ : W̃)P → err1

P → err1

(νn : W)P → err1

P → err1

P | Q → err1

Q → err1

P | Q → err1

P → err1

!P → err1

Fig. 5. Rules for syntactic errors

A subject reduction theorem for exchange types is proved in [7]. Using it we get our
safety theorem:

Theorem 2. If Γ ⊢ P : T and P →∗ Q then Q 6→ err1.

It is straightforward to implement the error relation in Maude. For it we consider err1

as a constant process err1 and introduce rewritings from erroneous processes (according
to the conditions stated in Figure 5) to err1.

op err1 : -> Process .

crl [errPref] : M . P => err1 if not isCap(M) .

crl [errAmb] : M[P] => err1 if not isAmb(M) .

crl [errMsg] : < O > => err1 if not isMsg(O) .

The fact that errors are transmitted to the rest of the process is defined by the following
equations, stating that any process containing an erroneous subterm is erroneous:

eq M[err1] = err1 .

ceq err1 | P = err1 if P =/= stop .

eq M . err1 = err1 .

eq ! err1 = err1 .

eq (I) err1 = err1 .

eq new[n : T] err1 = err1 .

Therefore, an error occurs whenever one of the three error rules above can be applied.
The strategy error1 tries to apply one of those rules. Then, errcardelli is a slight
variation of the strategy cardelli in Section 4.4. It restricts normal steps to happen only
when no error can be produced:

seq error1 = errPref | errAmb | errMsg .

seq errcardelli(0) = error1 orelse cardelli(0) .

seq errcardelli(s(n:Nat)) = error1 orelse (cardelli(1) ; errcardelli(n:Nat)) .

This strategy allows us to know if a given process produces sometime along its execution
an err1. For example, the previous example written in Maude

eq fail = ((’x : Amb[Shh]) (’x [P])) | < ’n > |

((’y : Cap[Shh]) (’y . Q)) | < open[’n] > .

rewritten with errcardelli(3) produces P | Q but also err1.

5.3 Two implementations of the type system

In order to implement the type system we first define the syntax for types. We have EType
representing exchange types and MType representing message types. We also need TMType

to represent tuples of messages types. We also have included a basic type for the integers
bint.

sorts EType MType TMType .

subsorts MType < TMType < EType .

op bint : -> MType .

op Shh : -> EType .

op _x_ : TMType TMType -> TMType [assoc] .

op Amb[_] : EType -> MType .

op Cap[_] : EType -> MType .

Types decorate restricted names and input variables. When we defined ambients syn-
tax, identifiers were decorated with (still not defined there) annotation types AType. As
several type systems can be defined over the same syntax, we have decided to use AType

as a supertype of any type that could annotate identifiers in a given type system. So when
using a specific type system we have to say which types are used to annotate; here

subsort MType < AType .

Typing environments assign types to (indexed) names and variables. We have defined
them over AType so that they can be used in other type systems. Their treatment is
standard, so we only show here the operators syntax

sort Env .

op empty : -> Env . *** empty env.

op __ : Env Env -> Env [assoc comm id: empty] . *** envs. union

op (_,_) : Acid AType -> Env . *** type assignment

op _[_] : Env Acid -> AType . *** get the type of an id

op _[_->_] : Env Qid AType -> Env . *** env. modification

op _[_] : Env InputSeq -> Env . *** multiple env. extension

We have to be careful when modifying an environment by extending it with a new
type assignment: previously added assignments to the same identifier should be lifted up,
so that we can identify the types of the different occurrences of identifiers with the same
underlying string.

eq E[a -> T] = ([shiftup a] E) (a{0}, T) .

...

We now have to define the rules of the type system (Figure 4). We have written type
judgements like Γ ⊢ P : T as rewrite rules (Γ ⊢ P) −→ T where a typing environment
and a process are rewritten to the type of the process. In this way we infer the type as a
result of the rewriting.

So we first define the lefthand sides (for processes and messages) of the typing rewrite
rules:

sorts JudgeP JudgeM .

op _|-_ : Env Process -> JudgeP .

op _|-_ : Env OutputSeq -> JudgeM .

But in order to be able to rewrite terms of sort JudgeP to terms of sort EType these
sorts have to belong to the same connected component (in the Maude subsort relation):

subsort EType < JudgeP .

subsort TMType < JudgeM .

As we have previously seen, type rules are highly nondeterministic. We would like
to get inference by writing the rules as literally as possible. We study here two ways of
treating nondeterminism in the rules.

The first implementation Some rules can be easily written as rewrite rules for typing
messages:

rl [Exp] : E |- a => E[a] .

crl [Tup] : E |- M, O => W x TW if E |- M => W /\ E |- O => TW .

crl [Open] : E |- open[M] => Cap[T] if E |- M => Amb[T] .

and processes:

crl [Repl] : E |- ! P => T if E |- P => T .

crl [Output] : E |- < O > => TW if E |- O => TW .

crl [Res] : E |- new[n : Amb[T]] P => S if E[n -> Amb[T]] |- P => S .

Nondeterministic rules like (Zero) cannot be literally written as a rewrite rule, as we
cannot rewrite to a partially undefined term. The same happens with rules (Empty), (In),
and (Out) for typing messages. In fact, when we conclude that 0 has type T , we are saying
that such T could be any type. Following this idea we define a new type constant X which
means any process type:

op X : -> EType .

so that now we can write the following rules for messages

rl [Empty] : E |- eps => Cap[X] .

crl [In] : E |- in[M] => Cap[X] if E |- M => Amb[T] .

crl [Out] : E |- out[M] => Cap[X] if E |- M => Amb[T] .

and for 0 process

rl [Zero] : E |- stop => X .

We still have to write rules for (Path), (Prefix), (Amb), (Par), and (Input). Let us
study rule (Par), the rest of them are similar. Rule (Par) requires that the processes in
parallel have the same type, so we could write:

crl [Par] : E |- P | Q => T

if P =/= stop /\ Q =/= stop /\ E |- P => T /\ E |- Q => T .

but now we have a new type X that is any type and consequently that is compatible with
any other one, so we need to add a new rule saying this:

crl [Par2] : E |- P | Q => T

if P =/= stop /\ Q =/= stop /\ E |- P => T /\ E |- Q => X .

If any of the processes (or both) has type X, then they are compatible and the process
can be typed. Due to commutativity we do not need to write a third rule.

The same happens with the rest of the rules; they are duplicated in order to consider
the possible ways of compatibility: equality or typable with X. So, we have the rules for
(Path):

crl [Path] : E |- M1 . M2 => Cap[T]

if E |- M1 => Cap[T] /\ E |- M2 => Cap[T] .

crl [Path2] : E |- M1 . M2 => Cap[T]

if E |- M1 => Cap[X] /\ E |- M2 => Cap[T] /\ T =/= X .

crl [Path3] : E |- M1 . M2 => Cap[T]

if E |- M1 => Cap[T] /\ E |- M2 => Cap[X] /\ T =/= X .

Notice that in this case the operator is not commutative so we need three different
versions of the rule.

For the rest of processes constructions we have the following rules:

crl [Prefix] : E |- M . P => T if E |- M => Cap[T] /\ E |- P => T .

crl [Prefix2] : E |- M . P => T if E |- M => Cap[T] /\ E |- P => X .

crl [Prefix3] : E |- M . P => T if E |- M => Cap[X] /\ E |- P => T .

crl [Amb] : E |- M[P] => X if E |- M => Amb[T] /\ E |- P => T .

crl [Amb2] : E |- M[P] => X if E |- M => Amb[T] /\ E |- P => X .

crl [Input] : E |- (I) P => T

if E[I] |- P => T /\ typeI(I) = T /\ T =/= X .

crl [Input2] : E |- (I) P => typeI(I) if E[I] |- P => X .

While writing these rules we have noticed that rule (Open) is more restrictive than
needed. If we try to type process (νn : Amb[Shh])(open n.〈n〉) | n[0]), rule (Open) would
give type Cap[Shh] to open n and consequently, rule (Prefix) could not be applied as 〈n〉
has type Amb[Shh]. However, when n is opened no communication error happens and the
process just evolves to (νn : Amb[Shh])〈n〉 with type Amb[Shh].

The problem is that rule (Open) has not distinguished the case when the opened
ambient has a silent type, like in the example. So we replace the previous rule Open by
the following ones:

crl [OpenShh] : E |- open[M] => Cap[X] if E |- M => Amb[Shh] .

crl [Open] : E |- open[M] => Cap[TW] if E |- M => Amb[TW] .

where the first one can only be applied to silent ambients and the other one to non-silent
ambients.

The advantage of this form of implementation is that the rules are almost copies of the
original rules being its disadvantage that in some cases they have to be duplicated. How-
ever, such duplication can be easily avoided by defining a partial function that computes
the resulting type covering the different possibilities arising in the premises. For example,
the rules Par and Par2 would merge into the following rule

crl [Par] : E |- P | Q => T’’

if P =/= stop /\ Q =/= stop /\ E |- P => T /\ E |- Q => T’ /\ T’’ := compare(T,T’) .

where the operation compare is defined as

op compare : EType EType ~> EType [comm] .

eq compare(T, T) = T .

eq compare(T, X) = T .

and the matching equation (:=) binds T’’ only when compare(T,T’) is defined.

As an example, let us see the firewall example we saw in Section 4. In order to type it
we need to give particular processes P and Q. If they were stop then given the following
environment

op E : -> Env .

eq E = (’n{0}, Amb[Shh]) (’m{0}, Amb[Shh]) (’k{0}, Amb[Shh]) .

the rewriting of E |- firewall returns X, so it is well-typed and has any type.

The example shown in Section 4.5 does not engage in any communication and therefore,
if no erroneous term appears at the beginning, nor will it appear after any number of steps.
Indeed, if we define the environment giving every ambient silent type:

op EnvElec : Nat -> Env .

eq EnvElec(0) = empty .

eq EnvElec(s k) = (’n{k}, Amb[Shh]) (’m{k}, Amb[Shh]) EnvElec(k) .

then we can try to type Net(k) under environment EnvElec(k). If we rewrite, for instance,
EnvElec(3) |- Net(3) we get X as the only result.

The second implementation Rule (Zero) tells us than we can give process 0 any
type: as it does not communicate anything it imposes no constraints on its context. Type
Shh represents silence so we can think that this is the smallest type we could give to 0,
although if necessary we could give it more complex types, e.g. if it is in parallel with a
process communicating ambients. However, once we have given a non-silent type we have
to maintain it. This implies that there is an implicit flat subtype relation in this type
system, where Shh (resp. Cap[Shh]) can be seen as subtype of any other process type
(resp. capability type), and the rest of them are only related with themselves.

In this approach nondeterministic rules will give the smallest types Shh and Cap[Shh],
and when equal types are required (like in rule (Par)) a least upper bound is calculated.
Such least upper bound only exists when applied to equal types or when one of them
is Shh. For this reason we use a new type, called errType, arising when the least upper
bound, calculated by [] is not defined:

op errType : -> EType .

op _[]_ : EType EType -> EType [comm].

eq Shh [] T = T .

eq T [] T = T .

ceq T [] S = errType if T =/= S .

eq errType [] T = errType .

Rules Exp, Tup, Open, Repl, Output and Res are exactly the same as before. The rest
of the rules for messages are now

rl [Empty] : E |- eps => Cap[Shh] .

crl [Path] : E |- M1 . M2 => Cap[T [] S]

if E |- M1 => Cap[T] /\ E |- M2 => Cap[S] .

crl [In] : E |- in[M] => Cap[Shh] if E |- M => Amb[T] .

crl [Out] : E |- out[M] => Cap[Shh] if E |- M => Amb[T] .

crl [OpenShh] : E |- open[M] => Cap[Shh] if E |- M => Amb[Shh] .

Rules In and Out give silent capabilities, but when concatenated to build a path they
must be compatible, so a least upper bound is calculated in rule Path.

For processes we have:

rl [Zero] : E |- stop => Shh .

crl [Par] : E |- P | Q => T [] S

if P =/= stop /\ Q =/= stop /\ E |- P => T /\ E |- Q => S .

crl [Prefix] : E |- M . P => T [] S

if E |- M => Cap[T] /\ E |- P => S .

crl [Amb] : E |- M [P] => Shh

if E |- M => Amb[T] /\ E |- P => S /\ T [] S = T .

crl [Input] : E |- (I) P => T

if E[I] |- P => S /\ T := typeI(I) /\ S [] T = T .

With these rules the firewall example has type Shh, that is, we obtain the minimum
type, from which the rest of them could be obtained: it can be proved that if a process
has type Shh then it has also any other type T . The advantage of this implementation is
that there is no duplication of rules and that if the process is not typable then it tells you
so. For instance, process fail rewrites to errType in any type environment.

However if we want to obtain all the possible types like in the previous system we have
to discover the implicit subtype relation (if there exists) which could not be obvious.

6 Conclusions and future work

We have exploited many features of the high-level language Maude in order to implement
different semantics, both operational and static ones, for Cardelli’s Ambient Calculus.
First, we have implemented the operational semantics given by Cardelli in [4]. Although
we follow the approach used in [23] of mapping reduction rules to rewrite rules, due to
the particularities of the Ambient Calculus we have used the recently designed strategy
language for Maude [14] in order to control the application of the rewrite rules. As far
as we know this is the first time that this language is used to implement a calculus with
mobility.

The treatment we have done of the replication operator by means of rules controlled by
strategies is different from the approach used in [21] for the π-calculus. In the π-calculus
the reduction rules are somewhat more compositional allowing the recursive definition of
the replication operator. On the contrary, in the standard Ambient Calculus semantics
there cannot be a compositional reduction rule for replication as there is a control flow
from inner processes to the outside. For example, the evolution of n[!in m.0] | m[0] is not
defined in terms of the evolution of !in m.0, but instead making !in m.0 congruent to
in m.0 | !in m.0, so that the movement can take place.

We have also implemented a type system for the Ambient Calculus defined in [7] to
detect communication errors. There, only an intuitive meaning of the types was given. So
first we have formally defined the errors intended to be captured by the type system and
proved that well-typed processes do not produce such errors. From this result, together
with Cardelli’s subject reduction result, we can conclude that the type system is sound
(more details in [18]). Then we have implemented the typing rules. These are highly
nondeterministic. Usually nondeterminism in typing rules [17] arises due to the existence
of several applicable rules to the same term or because different premises can be chosen in
order to type the term. Such nondeterminism is treated to get type inference algorithms
by modifying the rules or by applying the nondeterministic ones following a strategy (only
at certain points of the type derivation). The nondeterminism arising in this system is
quite different as, even thought the rules are completely syntax-directed and in this sense
deterministic, the conclusions of the rules are not uniquely determined. We have shown
two different ways of treating this nondeterminism and we have discussed the advantages
and drawbacks of each one. Additionally, we have added a new typing rule that slightly
strengths the power of the type system.

We are extending the work presented here to more sophisticated type systems like
those defined in [5, 6]. We want to study if the same techniques can be applied to other
calculus with mobility (AC variants) like for example Safe Ambients [12]. We also want to
compare our results with existing inference algorithms like the one presented in [24]. In
this sense it is our aim to go further and get type reconstruction, i.e. to infer also the type
annotations needed (if any) to type an initially non-annotated process. For this purpose,
we will have to introduce type variables in the type system and unifying mechanisms. We
should also formalize some claims along the paper that have only been proved informally;
for example the fact that two unrollings of a replicated process are enough to get all the
possible rewritings.

We are studying how to extend the ITP tool, the inductive theorem prover for Maude,
to allow proofs by induction on the rewrite rules. In its current state, the ITP allows
to work with Maude equational specifications, proving properties by induction on terms.
Induction on rules would allow us to prove, in a (semi)automatic way, properties like that
the two given implementations of the type system are equivalent, or that typed processes
do not produce errors.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational
logic. Theoretical Computer Science, 236:35–132, 2000.

2. N. G. de Bruijn. Lambda calculus with nameless dummies, a tool for automatic formula manipula-
tion, with application to the Church-Rosser theorem. In Proceedings Kninkl. Nederl. Akademie van
Wetenschappen, 75(5), pages 381–392, 1972.

3. L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science and Computation
Structures: First International Conference, FOSSACS ’98, LNCS 1387, pages 140–155. Springer, 1998.

4. L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming, Security Issues
for Mobile and Distributed Objects, LNCS 1603, pages 51–94. Springer, 1999.

5. L. Cardelli, G. Ghelli and A. D. Gordon. Mobility types for mobile ambients. In Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, LNCS 1644, pages 230–239. Springer,
1999.

6. L. Cardelli, G. Ghelli and A. D. Gordon. Ambient groups and mobility types. In Theoretical Computer
Science, Exploring New Frontiers of Theoretical Informatics, International Conference IFIP TCS’00,
LNCS 1872, pages 333–347. Springer, 2000.

7. L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings of the 26th ACM SIGPLAN-
SIGACT on Principles of Programming Languages, POPL’99, pages 79–92. ACM Press, 1999.

8. M. Clavel. The ITP tool. http://maude.sip.ucm.es/itp, 2004.

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Quesada. Maude as a
metalanguage. In C. Kirchner and H. Kirchner, editors, Proceedings Second International Workshop
on Rewriting Logic and its Applications, WRLA’98, ENTCS 15. Elsevier, 1998.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Quesada. Maude:
specification and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

11. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude Manual
(Version 2.1), March 2004. http://maude.cs.uiuc.edu/manual.

12. F. Levi and D. Sangiorgi. Mobile Safe Ambients. ACM Transactions on Programming Languages and
Systems, 25(1):1–69, 2003.

13. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In D. M. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, Second Edition, Volume 9, pages 1–87.
Kluwer Academic Publishers, 2002.

14. N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In N. Mart́ı-Oliet,
editor, Proceedings Fifth International Workshop on Rewriting Logic and its Applications, WRLA 2004,
ENTCS 117, pages 417–441. Elsevier, 2004.

15. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous pi-calculus.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’97, pages 256–265. ACM Press, 1997.

16. I. Phillips and M. G. Vigliotti. Electoral systems in ambient calculi. In Foundations of Software
Science and Computation Structures, 7th International Conference, FOSSACS’04, LNCS 2987, pages
408–422. Springer, 2004.

17. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
18. F. Rosa-Velardo. Typing techniques for security in mobile agent systems. Master’s Thesis, Departa-

mento de Sistemas Informáticos y Programación, Universidad Complutense de Madrid, 2004.
19. F. Rosa-Velardo, C. Segura, and A. Verdejo. Ambients in Maude Web Page.

http://maude.sip.ucm.es/ambients, 2005.
20. M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its application to λ-, ς- and

π-calculi. In K. Futatsugi, editor, Proceedings Third International Workshop on Rewriting Logic and
its Applications, WRLA 2000, ENTCS 36, pages 71–92. Elsevier, 2000.

21. P. Thati, K. Sen and N. Mart́ı-Oliet. An executable specification of asynchronous pi-calculus seman-
tics and may testing in Maude 2.0. In F. Gadducci and U. Montanari, editors, Proceedings Fourth
International Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September
19–21, 2002, ENTCS 71, pages 217–237. Elsevier, 2002.

22. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In F. Gadducci and U. Montanari,
editors, Proceedings Fourth International Workshop on Rewriting Logic and its Applications, WRLA
2002, ENTCS 71, pages 239–257. Elsevier, 2002.

23. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in Maude. Journal of
Logic and Algebraic Programming, 2005. To appear.

24. P. Zimmer. Subtyping and typing algorithms for mobile ambients. In Foundations of Software Science
and Computation Structures, 3rd International Conference, FOSSACS’00, LNCS 1784, pages 375–389.
Springer, 2000.

