Chapter 1

Optimizing Eden by
Transformation

Cristébal Pareja, Ricardo Pefia, Fernando Rubio, Clara Segura®

Abstract: Eden is a parallel extension of Haskell allowing the programmer to ex-
plicitly specify which expressions must be evaluated as parallel processes. Eden is
implemented by modifying the Glasgow Haskell Compiler (GHC). This decision
has saved a lot of work but has also produced some drawbacks: Some optimiz-
ing transformations done by GHC are not convenient for Eden, either because
they spoil its semantics or because they negatively affect its efEciency. The pa-
per explains how to circumvent these drawbacks and also how to add our own
optimizing analysis and transformation steps in order to generate a (correct and)
better parallel code.

1.1 INTRODUCTION

The parallel-functional language Eden [BLOP96] extends the lazy functional lan-
guage Haskell by syntactic constructs to explicitly deEne and communicate pro-
cesses. The three main new concepts are process abstractions, process instantia-
tions and the non-deterministic prede£ned process abstraction mer ge. They are
explained in Section 1.2. Eden has been implemented by modifying the Glasgow
Haskell Compiler (GHC) [JHH ™93] front and back-ends [BKL98]. GHC’s modus
operandi is compiling by transformation. It translates Haskell into a minimal lan-
guage called Core where a lot of optimizations [San95, JS98] are performed.

In Eden’s compiler, process abstractions and instantiations are hidden in Core
inside predefned functions, and Core to Core optimizations are disallowed be-
cause some of them can spoil Eden’s semantics (see [PS00a, PS00b] for more
details). This situation is clearly undesirable. In this paper, we propose an ex-

1Dpto. Sistemas Informaticos y Programacién, Facultad CC. Mateméticas,
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
Email: { cparej a, ri cardo, f ernando, csegura} @i p. ucm es

l program — bindsy, ..., binds,
binds — ...Core bindings...
| recpar bindj;...;bindj,
[bypass channel 5|
bind —v=e
| channels=v## channels

tro

tr tr channels — {vi,...,vn}
3 4 e — ... Core expressions . ..
| process channel s—body
[bypass channel 5|

body — [let bindsin] channels

FIGURE 1.1. New transformation scheme FIGURE 12. CoreEden syntax

tension of the GHC transformation scheme in order to reach the following two
objectives:

1. To selectively disallow the potentially dangerous transformations in situations
in which they could alter Eden’s semantics, but to keep most of them most
of the time in order to get an optimized sequential code. They can affect the
non-determinism degree of some expressions and the number of instantiated
processes (see Section 1.6).

2. To allow useful analyses at Core level to optimize the parallel behaviour of our
programs. For this purpose, we extend GHC’s Core language into our own
CoreEden language to make explicitly appear process abstractions, process
instantiations, and even their individual channels.

The analyses currently being implemented are bypassing analysis and non deter-
minism analysis. The £rst one [KPS00] detects unnecessary threads which simply
copy information from an input channel to an output one. This analysis produces
annotations attached to process abstractions and process instantiations so that the
creation of these threads is avoided. Messages are propagated directly from the
producer thread to the consumer process saving much overhead and communica-
tion. The second analysis [PS00c] detects those expressions that are sure to be
deterministic and those ones which may be non-deterministic, and produces type
annotations with this information. Annotations are used to disallow some GHC
transformations that are semantically correct in a deterministic environment, but
not in presence of non-determinism.

In Figure 1.1, the general view of the new transformation process is shown.
There, we call try to a simple translation from Core to CoreEden that makes ex-
plicit process abstractions and process instantiations. Then, try is a set of more
complex transformations whose aim is to do a better bypassing analysis. Non-
determinism analysis and its annotations are also carried out at this point. Then,
trs translates back from CoreEden to Core, and tr4 consists of the (not disabled)
Core to Core transformations currently being done by GHC. After this point, the
normal GHC compilation can proceed without alteration. Translation trs is de-

£ned in such a way that the (not disabled) transformations and the code generation
done by GHC cannot alter Eden’s semantics.

The plan of the paper is as follows: In Section 1.2 we give a brief overview of
Eden and CoreEden languages. Section 1.3 explains translation tr; from Core to
CoreEden. Sections 1.4 and 1.5 are the kernel of the paper. They contain the trans-
formations, analyses and annotations produced at CoreEden level (transformation
tr) and how Eden’s semantics is embodied into Core (translation trs). Finally,
Section 1.6 identifes the dangerous GHC transformations and the situations in
which they must be disallowed. The paper ends up with a short conclusion.

1.2 EDEN AND COREEDEN OVERVIEW

Eden Asit has been said, Eden extends the lazy functional language Haskell by
new constructs. There exists a new expression pr ocess x -> e of a predeEned
type Process a b todefne a process abstraction having variable x: : a as input
and expression e: : b as output. Process abstractions of type Pr ocess a b can be
compared to functions of type a - > b, the main difference being that the former,
when instantiated, are executed in parallel. When the input (resp. output) of a
process is a tuple, we will refer to each tuple element as a channel. A process
instantiation is achieved by using the predeEned in£x operator (#): : Process
a b -> a -> b. Each time an expression el # e2 is evaluated, a new process
is created. We will refer to the latter as the child process, and to the process
enclosing the instantiation expression as the parent process. Process instantiations
are evaluated at runtime so that, in general, the number of processes cannot be
determined at compile time. The instantiation protocol deserves some attention in
order to understand Eden’s semantics:

e Closure el together with all its dependent closures are copied to a new pro-
cessor and the child process is created there to evaluate them. This strategy
can lead to some duplication of work.

e Once created, the child process starts producing eagerly its output expression.
When this expression is a tuple, a separate concurrent thread is created for the
evaluation of each channel. In general, a process is implemented by several
threads concurrently running in the same processor.

e Expression e2 is eagerly evaluated in the parent process. If it is a tuple, an
independent concurrent thread is created to evaluate each component.

Once a process is running, only fully evaluated data objects are communicated
through channels. The only exception are lists: They are transmitted in a stream-
like fashion, i.e. element by element. Each element is evaluated to normal form
and then transmitted. Concurrent threads trying to access not yet available input
are temporarily suspended. This is the only way of synchronizing Eden processes.

In Eden, lazy evaluation is changed to eager in two cases: (1) Processes are
eagerly instantiated when a binding o = el # e2 is found while evaluating a
binding group, and (2) instantiated processes produce their output even if it is not

try (let f = Ai.ein process f)
(a) = process{iy,...,in} —leti = (i1,...,in)inleto = try (e) in {o}
let let recpar
0: [let bindsy {01,..0m} = p## {i}

; - . . _ 0 = (01,...,0m)
(b) tra in letbinds in ...] # p - [tri(bindsy++bindsy++...)]

in...
tri(e)

(c) try (#pi) = letrecpar {01,...,0m} = p## {i} in (01,...,0m)

FIGURE 1.3. Transformation from Coreto CoreEden

demanded. These semantic modi£cations are aimed at increasing the degree of
parallelism and at speeding up the distribution of the computation.

Non-determinism is introduced in Eden by means of a prede£ned process ab-
straction merge :: Process [[a]] [a]. Each instantiation of merge is a
process which fairly merges a list of input channels, each one consisting of a list,
to produce a single non-deterministic list. The implementation of ner ge imme-
diately copies to its output list any value appearing at any of the input lists. So,
mer ge can pro£tably be used to quickly react to requests coming in an unpre-
dictable order from a set of processes. It is a genuine reactive process and its
non-determinism is a consequence of its reactivity.

CoreEden The CoreEden language is an extension of Core with constructions
for process abstractions and process instantiations. It is defned in Figure 1.2. We
follow the convention that v denotes a variable, x an atom (i.e. a variable or a
literal), and e an expression. Individual channels are made explicit in both con-
structions by introducing a variable for each one. Process abstractions are intro-
duced as a new expression while process instantiations are considered as special
bindings. Binding groups having process instantiations inside are called r ecpar
in order to distinguish them from the usual r ec binding groups having only se-
quential bindings. The body of a process abstraction consists of a single | et with
all the auxiliary bindings and process instantiations (if any), and a sequence of
output channels. The optional bypass construction in both process abstractions
and instantiations are the annotations produced by the bypassing analysis (see
Section 1.5).

The next sections explain in detail the compilation process of Eden. The in-
troduction of a new intermediate language and the corresponding translation steps
intends to minimise the changes to GHC and to reuse most of it.

1.3 FROM CORE TO COREEDEN

The aim of this translation is to make explicit the process abstractions and instan-
tiations. In Core, process abstractions are hidden [BKL98] as an application of the
function pr ocess to a function representing the behaviour of the process. This
function has an input parameter representing the tuple of inports. The translation
is shown in Figure 1.3a. Each process instantiation is hidden as the application of
the function # to a couple of arguments, but in CoreEden process instantiations are
bindings. If the instantiation already appears inside a | et (see Figure 1.3b), new
fresh variables are created for the output channels, while the original output name
is kept in order to maintain the references to it, and to facilitate the subsequent
untupling transformations (see Section 1.4.1). When there is no binding associ-
ated to the instantiation, a new | et is created in order to introduce the appropriate
binding (see Figure 1.3c).

1.4 INSIDE COREEDEN

Here two things are needed: Collecting as many process instantiation bindings
as possible, and making explicit the input and output channels. The intuition
behind these transformations is £rst to instantiate groups of processes in parallel
as soon as possible, and second to detect those channels that connect directly
one process to another one in the same group. These two things are achieved
through two kinds of transformations called zattening and untupling. Note that
these transformations are new with respect to those existing in GHC.

141 Flattening transformations

There are three different transformations:

let [rec|recpar] binds; in let recpar bindsy in e
let recpar binds;;bindsy in e

case (let recpar bindsin e) of alts
let recpar bindsin (case e of alts)

(let recpar bindsin e) x
let recpar bindsin (ex)

The £rst is the main one, while the others are useful only because they enable
subsequent oattening transformations. In order to @atten as much information as
possible, the three transformations are iterated until a £xpoint is reached. Notice
that the transformations trivially preserve Haskell’s semantics, and that they also
preserve Eden’s semantics, since the moment in which processes are instantiated
is not changed. The reason is that, in Core, case is strict in its discriminant, and
function application is strict in the function to be applied. Notice also that, in the
Core to Core transformations, the GHC dependency analysis [JM99] that detects
strongly connected components will undo this mattening.

1.4.2 Untupling transformations

These transformations try to make explicit the individual channels, both in process
instantiations and in process abstractions. They are are only needed in case the
process uses tuples as inputs or outputs for bypassing the individual channels of
the tuple to different processes. That is, in case that all the channels of the tuple
are to be bypassed to the same process, no untupling is needed. In what follows,
we assume that all aliases have been removed.

Process instantiations

After the translation from Core to CoreEden of a process instantiation, an expres-
sion like this is obtained:

letrecpar ... {01,...,0m} = p##{i} ... ine

Untupling the inputs. Only in case there is no computation involving the whole
input, it is possible to individually bypass each input channel. Therefore, if the
individual input values are used, there must exist a closure like the following:

i = [letbinds; inlet bindsyin ...] (i1,...,in)

If such a closure is not found, it is only possible to bypass all the input channels
together, but not individually. Thus, untupling is neither possible nor needed.

In case the closure is found, the | et —bindings must be noated, so that i is just
defned as a tuple (i1, ...,in). After that, the following transformation is used to
make explicit the input channels:

{01,...,0m} = p##i

Then, all references to i must be removed. Hence, the following transformation is
applied wherever possible:

casei of (...,vj,...) — e
efij/vi)

At this moment, if i was not used as a whole, all references to it should have
disappeared. Therefore, the dead—code removal transformation of GHC is reused
to remove i’s closure.

The steps can be summarized as follows: (1) Search the abstract tree for a
closurei = (i, ...,in); (2) if such a closure is found, maybe_remove(i) is applied,
de£ned as:
def { a) Replace uses of i by the corresponding i

maybe_remove(i) = b) Remove the de£nition of i (if possible)
Untupling the outputs. In the Core to CoreEden translation new output channels
have already been introduced:

let recpar

{On,....om} = P {iz,....in}
(o] (017"'7Om)

ine

In order to be able to bypass individual output channels, there should be no applied
occurrences of 0. Thus, the same two last steps as in the inputs case must be
performed, i.e. maybe_remove(o) is applied.

Process abstractions

After Core to CoreEden translation, the abstraction is an expression like
process {i1,...,in} — leti = (i1,...,in) inleto = ein {o}

Untupling the inputs. It is possible to bypass individual input channels only in
case there are no applied occurrences of i. Therefore, the solution is to apply
maybe_remove(i).

Untupling the outputs. If the expression e produces a tuple (01,...,0m) as £nal
result, and the individual outputs can be independently bypassed, it must be pos-
sible to directly access the individual output channels. Thus, the de£nition of the
output must be of the form

leto=let ... in] (O1,...,0m)
In that case, if o is not used, the process abstraction will be translated to

process{xl...xn} —let ... in {01,...,0m}

1.4.3 Bypassing and non-deter minism analysis

Automatic bypassing is an optimization of Eden’s implementation to reduce the
number of messages and/or threads at runtime. The strategy is a combination of
compile time analysis and runtime support. Both are explained in [KPS00]. The
analysis decorates process abstractions and r ecpar bindings with bypass cs
clauses, where cs are variables representing channels or tuples of channels. In the
last case bypassing of all the channels in the tuple will be done. The annotations
in a process abstraction correspond to two different types of bypassing:

Bypassing between gener ations An input —resp. output— channel of a process
connected through a variable to an input —resp. output— channel of a de-
scendant process.

Bypassing between ancestor s An input channel of a process connected to an out-
put channel of the same process.

@) (b)

q::[Process a (a,a)] — g= A ps. case ps of
Process (a,a) (a,a) [1 — pid
ql] = pid p: pp— process {vi,v2} —
q (p:pp) = | et recpar
process (vl,v2)—(v2, 02) {01} = p ## {v1}
wher e recq = q pp
(02,03) = (q pp) # (p # vi) {02,03} = recq ## {01}
bypass ol
in {v2, 02}
bypass v1,v2, 02
d (p:pp)

FIGURE 1.4. A bypassingexample

Those in the r ecpar bindings correspond to a third kind of bypassing:

Bypassing between siblings An output channel of a process connected through a
variable in the parent to an input channel of a sibling process.

Figure 1.4 shows an example: (a) is an Eden program and (b) is the correspond-
ing annotated CoreEden program.This is an ad-hoc example which illustrates the
three types of bypassing. It also contains the case where all the channels in a tuple
are to be bypassed. In that case only a variable of tuple type, o1 in the example,
appears in the annotation.

A non-deter minism analysis, fully explained in [PS00c], is also performed at
this point. It detects whether an expression is sure to be deterministic or whether
it may be non-deterministic, and annotates the variables with this information.

1.5 FROM COREEDEN TO CORE

It is time to go back to Core, to go on with the normal GHC compilation. The
main goals of this translation phase are:

e To eagerly instantiate the processes.
e To embody the bypassing information.

e To make possible the reuse of later GHC’s optimizations as far as possible.

bypass bcs

trs (pl’OCESS{Il, vooyin} — body) _

case createBypass () of hy —
case createBypass () of...hpm —
let f =Aiy. ...\ in. body’
in processBy f (byp,,byp,)
where
(body’, byp,) = trbd body cs
cs = zip’ bes [hy, ..., hm)
byp; = {i1,...,in}rcs

trz (let recpar bs bypassbesine) =
case createBypass () of hy —
case createBypass () of...hm —
let rec bs’
incasevi of _— ...
case vy of _ —trz(e)

where
(bs’,vs) =trbs bs cs
v; = vs!li
cs=zip' bes [hy, ..., hy)

let recpar bs
trbd bypassbcs | cs=
in os
(case createBypass () of hy —
case createBypass () of...hpm —
let rec bs’
incasevy of _— ...
casevp of _ — 0s,0s11CS)
where
(bs’,vs) =trbs bs (cs++ds)
vi = vs!li

trb ({01,...,0m} = p## {v1,...,vn}) CS =
(bs.[0])
where
bs = [0 = case 0’ of Lift 0” — 0",
o' = instantiateBy p (vi,...,Vn) bo,
01 =caseo of (07,...,0p,) — 0}

Om = case o of (0%,...,0p,) — Op]
extout = {01,...,0m}cs
extin = {vq,...,vp}1cs
bo = (extout, extin)

ds=zip’ bes [hy,. .., hm

FIGURE 15. Trandation from CoreEden to Core

Figure 1.5 shows function trz performing the translation. Only the more relevant
cases (process abstraction and r ecpar bindings) are shown. Two new primitive
functions, processBy and i nst ant i at eBy, are introduced in order to respec-
tively hide process abstractions and process instantiations. The £rst one has two
arguments, the process abstraction represented as a function and the bypassing
information. The second one has three arguments: The variable bound to the
process abstraction, the input and the bypassing information.

The bypassing information It is now represented in a way closer to the imple-
mentation. In the bypassing protocol local forwards are represented by unique
names called handles, whose creation is specifed in this phase using a primitive
function cr eat eBypass. If the CoreEden annotation is bypass cs, one handle
must be created for each channel variable in cs. If there is a variable representing
an n-tuple of channels, n handles must be created. They are created eagerly using
case expressions. Should | et bindings be used, some Core to Core transforma-
tions could collapse all the bindings together to increase sharing.

Bypassing information is represented as a pair of lists, corresponding to output
and input channels in process instantiations. In process abstractions the conven-
tion is the opposite. Each list specifes the index of the channel and the handle it

g = A ps. case ps of
[1 — pid
p: pp — case createBypass () of hvl — ... hv2 — ... ho2 —
| et
f = AN vl. A v2.case createBypass () of holl — ... hol2 —
let rec
ol = case 01’ of Lift o01'" — ol
0l' = instantiateBy p vl
([(1, holl)(2,h012)],[(1,hv1)])
recq = q pp
o] = case o of Lift o0’ — o
o’ = instantiateBy recq ol
([(1,ho02)]1,[(1, holl), (2, hol12)])
02 = case o of (vl,v2) — vl
03 = case o of (vi1,v2) — v2

in case ol of — case o' of — (v2,02)

in processBy f ([(1,hvl),(2,hv2)],[(1,hv2),(2,ho2)])

FIGURE 1.6. Trandationto Coreof theexamplein Figure1.4

will be connected to. As a handle represents a forward from an input channel to
an output channel, each handle will appear in an output list and in an input list.
Figure 1.6 shows a translation.

In Figure 1.5, zip’ pairs each variable with its corresponding list of handles. If
the variable represents just a channel, it will be a singleton list, but if it represents
an n-tuple of channels it will be a list with n handles. In the example of Figure
1.6 the pair for v1 is (v1, [hv1]) and that one for ol is (o1, [holl, hol2]).
Operator M obtains the list of pairs index-handle from the list of variables bcs and
from the corresponding list of pairs channel-list of handles cs. For example, in
Figure 1.6, the pairs obtained for o1 are (1, ho11) and (2, hol12).

Process abstractions Each process abstraction is hidden as a function (f in Fig-
ure 1.5) and used as argument for the primitive function processBy together with
the bypassing information inferred by the analysis ((byp,,byp,) in Figure 1.5).
Non-determinism information is attached to the types of the binders so it is not
necessary to care about them. As we have some knowledge about the names of
each channel ({i1,...,in} in Figure 1.5), they can be provided to processBy. As
part of the information corresponds to bypassing between generations, the process
abstraction’s body must be translated, so that such information (cs in Figure 1.5)
is included in the corresponding places. In Figure 1.5, trbd translates a process
abstraction’s body. It is very similar to the translation of a | et recpar expres-
sion.

Process instantiations The | et recpar expression may contain several in-
stantiations. In this moment the processes have to be eagerly instantiated, so
that they are inmediately created. The idea is to use the de£nition of # instead
of using directly #: # p v = case (instantiateBy p v) of Lift a —

10

| transformation before after
@) let g=Ayletx=e letx=e
Full ine inletg=Ay.¢€
laziness in... in...
foldr f zI =
foldr f zI = let foldr'| =
casel of casel of
© [-z] —z
Static
arguments (a:as)— (a:as)—
let v=foldr f zas let v=foldr f zas
infav infav
in foldr’1
_ . g = Aty.Adict.Ay.
© g=AtyAdict.Ay. let f — Aty.Adict.e

Specialization

let f =Aty.Adict.e
in f tydict (f tydicty)

inlet ' = f ty dict

in f’' (f'y)
(d) let x = let bind let bind
let moating ine inletx=e
from let rhs inb inb
let v= case e, of case g, of
(e)
case roating Ci Xi1... Xk — € CiX1..Xk— letv=¢g
from let rhs ine
ine
() let to case letv=e,ine casee, of v—e
Unboxin . casee, 0f Cvy...vy —
(gl)ettocaseg letv=evine letv=Cvy...vpine
FIGURE 1.7. Dangerousrulesin GHC

a. In Figure 1.5, the function trb carries out the translation of each process ins-
tantiation. It generates new bindings: One to maintain all the references to the
original outport variable o, another one for a fresh variable o’ corresponding to
the i nst ant i at eBy application and the m (number of outports) projections nec-
essary to use the outports independently. The eager instantiation of the process
takes place by using a case expression scrutinising the variable o’. The function
trbs applies trb to each of the bindings in bs, collects the new bindings, bs’, and
all the variables vs and returns them to the function (trbd or tr3) responsible for
building the case expressions. When forcing the evaluation of i nst ant i at eBy,
our primitive functions take control of the situation, and demand the output of the
processes without needing to force them with another case.

In [PS00a] it is shown that the eager instantiation of processes is not affected
by the subsequent transformations done by the GHC.

11

1.6 INSIDE CORE

At the last stage of the compilation process, we have non optimized Core code. In
[IM99, JS98] it is shown that non-optimized code is in average 2.7 times slower
than the (by GHC) optimized one, so it is desirable to preserve as many sequential
transformations as possible. The aim of this section is to brieay address the risks
of some GHC Core to Core optimizations. First, a transformation rule cannot be
accepted if it can change the semantics of programs. Speci£cally, three possible
changes are unacceptable:

e Triggering a process too early or too late.

e Changing the number of instantiated processes.

e Reducing or increasing the non-determinism of an Eden program.
Additionally, program effciency can be affected in several ways:

e Changing work from a child process to its parent, or vice-versa.

e Increasing the communication overhead due to the copy of free variable clo-
sures.

e Increasing memory allocation.

In general, those transformations increasing sharing have to be considered. These
include moving bindings out of lambdas or @oating them out of I et rhs (right
hand side). In the £rst case the number of instantiated processes may change
if the noated binding embodies any process instantiation: Once the binding has
been woated, the instantiation takes place only the £rst time the function is ap-
plied. In the second case, recall that a process instantiation is represented in Core
asinstantiateBy p v by, where the binding for p must be evaluated in the
child process. So, moving bindings out of p’s rhs changes the allocation of such
bindings, and consequently increases closure trafEc. Also, transformations aimed
at performing an earlier evaluation of needed expressions have to be studied, as
they can lead to changing work between processes.

One would expect many GHC transformations to be dangerous. However,
only a few rules have negative effects on CoreEden programs because the previous
transformation stages accomplished the precise goal of minimizing this danger. A
fully detailed study is done in [PS00a].

1.6.1 Transformations affecting non-deter minism

A few rules may change the non-deterministic behaviour expressed by the pro-
grammer. In this case, they will be deactivated. The general reason for all of them
is the increasing of closure sharing: Before the transformation, several evaluation
of a non-deterministic expression can produce several different values; after the
transformation, a shared non-deterministic expression is once evaluated, yielding
a unique value. These rules are the following:

12

Full Laziness In Figure 1.7a, let us assume e to be non-deterministic. Before
applying this rule, x may get a different value in each application of g, and
after the rule is applied, x will get a unique value.

Static Argument Transfor mation The danger is present (see Figure 1.7b) when
the partial application of the function to its static arguments is not a whnf and
it is non-deterministic.

Specialization In Figure 1.7c, let us assume that e is a non-deterministic func-
tion. Then, the two partial applicationsf ty di ct appearing in g denote two
possibly different functions. But after applying this rule, the two occurrences
of f* denote the same function.

1.6.2 Transformations affecting processinstantiations

The three previous rules reduce the number of times a process is instantiated. For
example, let us consider full laziness rule in Figure 1.7a assuming that e contains a
process instantiation. Before applying this rule, the process would be instantiated
several times, once in each application of function g; after applying the rule, the
process would be instantiated only the £rst time the function is applied.

1.6.3 Ruleswith other dangerous effects

There are some other rules correct w.r.t. the (denotational) program semantics,
but that can affect in some way its operational semantics, and hence some aspect
of its cost behaviour. The possible modifcations are changing work between a
parent and a child process (e, fand g in Figure 1.7), changing the communication
overhead (d, e, fand g in Figure 1.7), or changing the space cost (d, e, fand g in
Figure 1.7). These changes can be sometimes positive, and sometimes negative.
Also, a positive effect is increasing opportunities for the application of other rules.
Therefore, we have decided to keep these rules active.

1.7 CONCLUSIONS

Process creation in Eden can be seen as a ’side effect’ of evaluating functional
expressions. However, Eden semantics insists in that the number of instantiated
processes has to be decided by the programmer and must be preserved by the
compiler. On the other hand, nondeterminism in a functional language spoils in
some cases equational reasoning. So, it can be expected that some of the trans-
formations done by an optimizing compiler, which are semantically correct in a
sequential, deterministic environment, are not correct anymore in a parallel non-
deterministic one. The paper has explored this problem and provided solutions
to it: the selective disallowing of some transformations when non-determinism
is present or when the number of instantiated processes may change. A second
problem addressed in the paper has been the addition of an intermediate language
CoreEden and of a bypassing analysis, together with the propagation of its anno-
tations, in order to generate a better parallel code. A £nal contribution has been

13

the embodiment of Eden eager semantics (in process instantiations) into the Core
language in such a way that subsequent transformations done by the compiler can-
not destroy it. The current state of the implementation includes the eager process
instantiation, a prototype of the non-determinism analyis and the runtime system
support for bypassing.

REFERENCES

[BKL98]

[BLOP96]

[JHH*93]

[IM99]

[JS98]

[KPS00]

[PS00a]

[PS00b]

[PS00C]

[San95]

S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Par-
allel) Eden: An Implementation Point of View. In PLILP’98. Springer Verlag
LNCS 1490, pages 318-334, 1998.

S. Breitinger, R. Loogen, Y. Ortega, and R. Pefia. Eden: Language De£nition
and Operational Semantics. Technical Report, Bericht 96-10. Revised version
1998, Philipps-Universitat Marburg, Germany, 1996.

S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler.
The Glasgow Haskell Compiler: A Technical Overview. In Joint Framework
for Information Technology, Keele, DTI/SERC, pages 249-257, 1993.

S. L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler
inliner. In Proceedings of the International Workshop on Implementation of
Declarative Languages (IDL’99), September 1999.

S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser
for Haskell. Science of Computer Programming 32(1-3):3-47, Sept. 1998.

U. Klusik, R. Pefia, and C. Segura. Bypassing of Channels in Eden. In Trends
in Functional Programming. Proceedings of the 1st Scottish Functional Pro-
gramming Workshop, SFP’99, pages 2—10. Intellect, 2000.

C. Pareja and C. Segura. Efecto de las Transformaciones de GHC sobre Edén.
Tech. Report 101-00. Dpto. Sistemas Informaticos y Programacion (Universi-
dad Complutense de Madrid), 2000.

R. Pefia and C. Segura. Two Non-determinism Analyses in Eden. Technical
Report 108-00, 46 pages. Dep. Sistemas Informaticos y Programacion, Uni-
versidad Complutense de Madrid, 2000.

R. Pefia and C. Segura. Non-Determinism Analysis in a Parallel Functional
Language. 2000. Implementation of Functional Languages, IFL’00.

A. L. M. Santos. Compilation by Transformation in Non-Strict Functional
Languages. PhD thesis, Department of Computing Science. University of
Glasgow, 1995.

14

