
Chapter 1

Deriving Non-Hierarchical
Process Topologies
Ricardo Peña1, Fernando Rubio1 and Clara Segura1

Abstract: Eden is a parallel functional language which extends Haskell with
new expressions to de£ne and instantiate processes. These extensions allow the
easy de£nition of parallel process topologies as higher order functions. Unfortu-
nately, by only using process abstractions and instantiations it is not possible to
implement non-hierarchical topologies, as processes can only communicate with
its parent or its children. In this paper we show how to implement non-hierarchical
topologies in Eden by using its dynamic channels. The topologies will be spec-
i£ed by only using process abstractions and instantiations, so that they will re-
ally be hierarchical. Afterwards, they will be re£ned into really non-hierarchical
topologies using the dynamic reply channels. The usefulness of the translation
method will be shown by examples, highlighting the key points to be taken into
account to achieve the desired behaviour.

1.1 INTRODUCTION

Processes in Eden are dynamically instantiated while executing recursive func-
tions and/or process de£nitions. When a new process is created, their channels are
connected to its parent process. The parent is responsible for feeding child’s input
channels with values and for receiving values from child’s output channels. This
implies that, in principle, only hierarchical process topologies can be created. But
there are some useful topologies such as a pipeline or a ring that are inherently
non-hierarchical. When trying to de£ne these topologies in Eden, hierarchical
topologies are obtained, where some intermediate dummy threads just copy the
values received from one child to an input channel of another child. In [KPS00] a
bypassing analysis detecting only some of these situations was presented. But this

1Departamento Sistemas Informáticos y Programación, Universidad Complutense de
Madrid, Spain; e-mail: {ricardo,fernando,csegura}@sip.ucm.es

1

analysis cannot deal with complex problems like a ring topology. In this paper we
show a methodology that allows the development of non-hierarchical topologies
taking as a basis Eden hierarchical programs. This methodology will take advan-
tage of the so called dynamic channels of Eden, and it will be able to manage any
topology the programmer can have in mind.
The plan of the paper is as follows. In the next section, the Eden language

is presented. Afterwards, in Section 1.3 a general methodology to derive non-
hierarchical topologies is presented. Then, several increasingly complex non-
hierarchical topologies are introduced, showing how to implement them in Eden
by using the presented methodology. Finally, Section 1.5 presents some conclu-
sions and future work.

1.2 EDEN

Basic Constructions. Eden [BLOP98] extends the functional language Haskell
by syntactic constructs that explicitly de£ne processes. There exists a new expres-
sion process x -> e of a prede£ned type Process a b to de£ne a process
abstraction having variable x::a as input and expression e::b as output. Pro-
cess abstractions of type Process a b can be compared to functions of type a
-> b, the main difference being that the former, when instantiated, are executed
in parallel. Additionally, when the output (resp. input) expression is a tuple, i.e.
e::(t1,. . .,tn) a separate concurrent thread is created for the evaluation of each
tuple element (we will refer to each tuple element as a channel).
A process instantiation is achieved by using a prede£ned in£x operator whose

type is (#) :: (Transmissible a,Transmissible b) => Process a b
-> a -> b. Each time an expression e1 # e2 is evaluated, the instantiating pro-
cess will be responsible for evaluating and sending e2, while a new process is cre-
ated to evaluate the application (e1 e2). We will refer to the latter as the child
process, and to the owner of the instantiation expression as the parent process.
The instantiation protocol deserves some attention to explain Eden’s semantics:

• Closure e1 together with all its dependent closures are copied unevaluated to
a new processor and the child process is created there to evaluate it.

• Once created, the child process starts producing eagerly its output expression.

• Expression e2 is eagerly evaluated in the parent process, and the result value
is eagerly transmitted to the child process. If it is a tuple, an independent
concurrent thread is created to evaluate each component.

This protocol implies that using process abstractions and process instantiations
only allows the creation of hierarchical topologies, where the communications
are held between a parent and a child. However, there are many useful non-
hierarchical topologies where two processes not related as parent and child are di-
rectly connected. In those cases, Eden achieves a hierarchical topology in which
the producer and the consumer are connected through one or more intermediate

2

parent processes. There is a thread in the intermediate process that just copies
the values received from the producer to an output towards the consumer. It is
desirable to eliminate these intermediate processes, that is, to directly connect
producers to consumers. The examples in this paper show two kinds of situa-
tions where bypassing is desirable, but which cannot be automatically done by
the compiler:

Bypassing between generations An input (resp. an output) channel of a pro-
cess is connected through an intermediate process to an output (resp. an in-
put) channel of a descendant (resp. ancestor) process. This is the case in the
pipeline skeleton in Figure 1.1.

Bypassing between siblings An output channel of a process is connected through
the parent to an input channel of a sibling process. This is the case in the ring
skeleton of Figure 1.4.

Once a process is running, only fully evaluated data objects are communi-
cated. The only exceptions are lists, which are transmitted in a stream-like fash-
ion, i.e. element by element. Each list element is £rst evaluated to full normal
form and then transmitted. Concurrent threads trying to access not yet available
input are temporarily suspended. This is the only way in which Eden processes
synchronize. To be able to transmit a value, its type must belong to the class
Transmissible, which includes a function de£ning how to reduce to normal
form and how to send a value. See [KOP99] for more details about Eden’s imple-
mentation.

Dynamic Channels. A process may generate a new dynamic channel and send a
message containing its name to another process. The receiving process may then
either use the received channel name to return some information to the sender
process (receive and use), or pass the channel name further on to another process
(receive and pass). Both possibilities exclude each other, to guarantee that two
processes cannot send values through the same channel.
Eden introduces a new unary type constructor ChanName for the names of

the dynamically created channels. Moreover, it also adds a new expression new
(ch_name, chan) e which declares a new channel name ch_name as reference to
the new input channel chan. The scope of both is the body expression e. The
name should be sent to another process to establish the communication. A pro-
cess receiving a channel name ch_name, and wanting to reply through it, uses an
expression ch_name !* e1 par e2 . Before e2 is evaluated, a new concurrent
thread for the evaluation of e1 is generated, whose normal form result is transmit-
ted via the dynamic channel. The result of the overall expression is e2, while the
communication through the dynamic channel is a side effect.
In most situations—in particular in all the topologies presented in this paper—

by using only process instantiations it is possible to create the same topologies that
could be created by using dynamic channels, except for the fact that some chan-
nels will connect the intended processes through intermediate threads in other
processes. By using dynamic channels, those will be direct connections. In this

3

sense, this feature can be seen as an optimization using a low-level construct pro-
vided by the language rather than as a radically new concept.

Runtime System. Eden’s compiler has been developed by extending GHC [Pey96]
(GlasgowHaskell Compiler), in order to reuse its ef£ciency and portability. Eden’s
RTS (Runtime System) is an implementation of the DREAM abstract machine
[BKL+98] on top of a message passing library. In the current compiler, both
PVM [GBDJ94] and MPI [Mes94] can be used. Thus, the compiler can be ported
to any architecture where GHC and either PVM or MPI are available.
Eden provides no placement annotations. However, Eden’s RTS supports two

modes to map processes to processors, which can be chosen by the user for each
execution. Round-robin mode: If several processes are instantiated from a par-
ticular processor p, they are mapped to consecutive processors starting with the
one numbered one more than p. Random mode: Each processor maps instantiated
processes to randomly chosen processors. Notice that the £rst of them allows the
programmer to control somehow the mapping of processes. In this paper, we will
always assume that the round-robin mode is being used.
In the RTS, a dynamic channel is a tuple (p,i,a) where p denotes the processor

identity, i is a unique identi£er within such processor identifying the channel, and
a is the physical address of the closure where the values received through the
channel will be saved, and it is used to actually read the received values.

1.3 METHODOLOGYTODERIVENON-HIERARCHICALTOPOLOGIES

In [KPS00], an analysis detecting some bypassing situations was presented. Un-
fortunately, the analysis is not yet implemented. Moreover, it can only deal with
programs where the names of all the particular channels are explicit. In partic-
ular, this means that it cannot deal with programs where a list of processes is
instantiated by a unique parent process.
In this section we present a methodology to obtain non-hierarchical topologies

using as speci£cation Eden programs whose real implementation is hierarchical.
By using this methodology, it will be possible to implement any topology, without
needing any kind of bypassing analysis. In the next section, several real topologies
will be shown, clarifying how the methodology really works.
Following the classi£cation introduced in [KPS00], we will show how to deal

with each of the different kinds of bypassing that may be needed in a program.

1.3.1 Bypassing between Siblings

Unfortunately, there are many situations where different siblings need to commu-
nicate amongst them, but they can only perform communications with its parent.
A ring, a torus or a grid are examples where direct connections between siblings
are needed. As it is not possible to directly connect two siblings by only using
process abstractions and instantiations, dynamic channels will be needed. For
each communication between siblings, the receiver of the data should create a

4

new dynamic channel, and it should send its name to the sender of the data. Af-
terwards, the sender of the data should use the received name of the channel in
order to actually send the messages. Thus, the solution requires implementing the
reverse topology, so that the receivers of the messages can send the names of the
dynamic channels to the producers of the messages. For each process abstraction,
a new one using dynamic channels is created following these steps:

• For each output out of type t, if it is to be bypassed:

– Remove that output
– Introduce a new input cn of type ChanName t

– Send through cn the value that used to be sent through out

• For each input inc of type t, if it is to be bypassed:

– Remove that input
– Introduce a new output ocn of type ChanName t

– Create a new dynamic channel (cn,c)
– Send cn through ocn
– Read from c the value that was expected to be received from inc

In the parent process it is necessary to create the reverse topology of the original
one. In the case of regular topologies it is enough to shift in the opposite way
the outputs of the processes, while in the general case more modi£cations are
needed. In addition to obtaining the reverse topology, when the parent needs to
communicate with the children through a channel that has been converted into a
dynamic one, the parent has to be adapted by following these steps: (1) Create
as many dynamic channels as there are values to be received from the children;
(2) where a value from a child was used, the corresponding value of the dynamic
channel is used; (3) instead of sending values to the children, the names of the
new dynamic channels are sent; and (4) values are sent to the children through the
names of the dynamic channels received from them.

1.3.2 Bypassing between Generations

There are two types of this kind of bypassing, depending on the direction of the
communications: It can be necessary to send values directly from a descendant to
an ancestor or vice versa.

From a descendant to an ancestor An example is the pipeline that will be pre-
sented in the next section. In the general case, for each channel to be bypassed
a new dynamic channel is needed. In addition, the process abstractions need to
be modi£ed to transmit appropriately the name of that channel. For each process
abstraction, a new one is created, where for each output out of type t, if it is to
be bypassed these steps are performed:

5

• Remove that output.

• Introduce a new input cn of type ChanName t.

• In case this process abstraction is the real sender, send the value through cn,
otherwise send cn to the appropriate child through the child’s cn channel.

In the parent process, for each input channel inc to be bypassed from a descen-
dant, the following steps are done:

• Create a new dynamic channel c.

• Send c to the child through the extra input channel created before.

• Read from c the value that was expected to be received from inc.

From an ancestor to a descendant This kind of bypassing rarely appears in
Eden applications, but we include it for completeness. As an ancestor needs to
send values directly to a descendant, the descendant has to create a dynamic chan-
nel and send the name to the ancestor, by using the intermediate processes to for-
ward such name. In the original hierarchical program, the intermediate processes
should have an extra input parameter to forward values from the ancestor to the
descendant. This parameter will disappear, and it will be replaced by an output
parameter in order to send the name of the dynamic channel created by the actual
receiver of the messages. Summarizing, for each process abstraction, a new one is
created, where for each input inc of type t, if it is to be bypassed the following
steps are performed:

• Remove that input.

• Introduce a new output ocn of type ChanName t.

• In case the process was the real receiver of the input values, it must: (1) Create
a new dynamic channel (cn,c); (2) read from c the values that used to be
read from inc; (3) send cn through the output ocn. Otherwise it only sends
through ocn the name cn received from the corresponding ocn of its son.

The ancestor needs also to be modi£ed. For each output out to be bypassed:

• The channel name cn will be received from the corresponding child.

• The value that was to be sent through out has to be sent now through cn.

1.4 EXAMPLES OF NON-HIERARCHICAL TOPOLOGIES

In this section we present four increasingly complex examples of non-hierarchical
topologies, showing how to implement them in Eden.

6

main

.

.

.

main

.

.

.

FIGURE 1.1. Topologies obtained with pipe (left), and with pipeD (right)

pipe :: Transmissible a => [[a]->[a]] -> [a] -> [a]
pipe [f] xs = process xs -> f xs
pipe fs xs = (ppipe fs) # xs

ppipe :: Transmissible a => [[a]->[a]] -> Process [a] [a]
ppipe [f] = process xs -> f xs
ppipe (f:fs) = process xs -> (ppipe fs) # (f xs)

FIGURE 1.2. Pipeline skeleton without dynamic channels

1.4.1 Pipeline Skeleton

Consider for instance a pipeline. This can be speci£ed in Eden as shown in Figure
1.2, where each process creates its successor process in the pipe. The topology
obtained with this de£nition is not the desired one, but the one shown in Fig-
ure 1.1(left). Notice that the output of the last process is not sent to the main one.
Instead, it is sent to the previous process, then the message is forwarded to the
previous one, and so on (this is represented by dots in the £gure). As it was in-
troduced in the methodology, to solve this problem, the main process of the pipe
creates a dynamic channel, and the name of such channel is forwarded to the last
process of the pipeline. By doing so, this last process will send messages directly
to the main process, obtaining a real pipeline topology (see Figure 1.1(right)).
Figure 1.3 shows the Eden program.
The similarities between both programs are remarkable. In fact, the second

has been derived from the £rst one systematically. We were interested in perform-
ing a bypassing between generations from a descendant to an ancestor. Notice
that to implement it manually by using dynamic channels we have followed the
steps given by the methodology: (1) The process abstraction has been modi£ed
by removing the bypassed output channel and by introducing a new input cn con-
taining a dynamic channel. The £nal value is sent through cn when appropriate;
and (2) the parent is modi£ed by creating a new dynamic channel, by sending it
to the child through its new extra input parameter, and by reading the £nal value
through the new dynamic channel.

1.4.2 Ring Skeleton

A ring is a well-known topology where each process receives values from its left
neighbour and sends values to its right one, forming a ring. In addition to that,
all the processes can communicate with the main one — See Figure 1.4. This
topology is appropriate for uniform granularity algorithms in which the workers

7

pipeD :: Transmissible a => [[a]->[a]] -> [a] -> [a]
pipeD [f] xs = process xs -> f xs
pipeD fs xs = new (cn,c) let dummy = (ppipeD fs) # (xs,cn) in c

ppipeD :: Transmissible a => [[a] -> [a]] -> Process ([a], ChanName [a]) ()
ppipeD [f] = process (xs,cn) -> cn !* (f xs) par ()
ppipeD (f:fs) = process (xs,cn) -> (ppipeD fs) # (f xs,cn)

FIGURE 1.3. Pipeline skeleton with dynamic channels

15

15 15 15

15

FIGURE 1.4. Ring topology

15

15 15 15

15

FIGURE 1.5. Ring topology reversed

at the nodes perform successive rounds. Before the £rst round, the main process
sends the initial data to the workers. After that, at each round, every worker
computes, receives messages from its left neighbour, and then send messages to
its right neighbour. Eden’s implementation uses lists instead of synchronization
barriers to simulate rounds.
The ring function creates the desired topology by properly connecting the

inputs and outputs of the different pring processes. As we want processes to
receive values from its previous process, it is only necessary to shift the outputs
of the list of processes before using them as inputs of the same list. Each pring
receives an input from the parent, and one from its left sibling, and produces an
output to the parent and another one to its right sibling. The £rst parameter is
the worker function, which receives an initial datum of type b from the parent
and a list [a] from the left neighbour, and it produces a result of type [a] for
its neighbour and a £nal result of type c for its parent. Figure 1.6 shows the
source code, where mzip2 is a lazier version of zip2, needed to break the circular
dependencies.
The problem with this approach is that, as said before, what is really created

is a set of processes that are only connected to the main process. Therefore, the
communications between neighbours are not direct, as they go through the main
process, that becomes a bottleneck. This is a typical case of bypassing between
siblings. Following our methodology, the solution is that, for each channel to be
bypassed, a dynamic channel is created to establish the direct connection. The
readers of the original channels should create the new dynamic channels and send
the names to the writers. For doing that, it is necessary to send them through the
parent process. As now the actual receivers of data need to send a value (the name
of the channel) to the actual producers, the parent just need to establish the reverse
connection topology of the original one.
In the ring case, the steps to be followed are these:

8

ring :: (Transmissible a,Transmissible b,Transmissible c) =>
 ((b,[a]) -> (c,[a])) -> [b] -> [c]
ring f input = outsToParent where
 outs = [(pring f) # outA’ | outA’ <- outs’]
 (outsToParent,outsA) = unzip outs
 outsA’ = last outsA : init outsA
 outs’ = mzip2 input outsA’
pring ::(Transmissible a,Transmissible b,Transmissible c) =>
 ((b,[a]) -> (c,[a])) -> Process (b,[a]) (c,[a])
pring f = process (fromParent, inA) -> out
 where out = f (fromParent, inA)
mzip2 (x:xs) ˜(y:ys) = (x,y) : mzip2 xs ys
mzip2 _ _ = []

FIGURE 1.6. Ring skeleton without dynamic channels

pring ::(Transmissible a,Transmissible b,Transmissible c) =>
 ((b,[a]) -> (c,[a])) -> Process (b,ChanName [a]) (c,ChanName [a])
pring f = process (fromParent,outChanA) -> out
 where out = new (inChanA, inA) let (toParent,outA) = f (fromParent,inA)
 in outChanA !* outA par (toParent,inChanA)

FIGURE 1.7. Ring skeleton with dynamic channels

• The output channel used to send values to the neighbour is replaced by an extra
input parameter representing the dynamic channel to be used to communicate
with its neighbour.

• Instead of using the former output channel, the same values are sent through
the new dynamic channel received as input parameter.

• The input channel used to receive values from the neighbour is removed. In-
stead of it, a new dynamic channel is created locally, and its name is sent
through a new output channel.

• Instead of using the former input channel, values are read from the newly
created dynamic channel.

Thus, now each pring receives an input from the parent, and a channel name
to be used to send values to its sibling, and produces an output to the parent
and a channel name to be used to receive inputs from its sibling, as shown in
Figure 1.7. Notice that the source code of the parent has not been modi£ed yet.
As we need to obtain the reverse topology of the original one, if we do not modify
it we will obtain the topology shown in Figure 1.5, where communications are in
the opposite direction. To obtain the correct topology we only need to shift the
outputs of the processes in the reverse way, by modifying outsA’ de£nition:

outsA’ = tail outsA ++ [head outsA]

1.4.3 Grid Skeleton

A grid is a two-dimensional topology where each process is connected to its four
neighbours. The difference with a two-dimensional ring is that the £rst and last
processes of each row and column are not neighbours. Moreover, nodes have

9

15 15 15 15

15 15 15 15

15 15 15 15

FIGURE 1.8. Grid topology

pgrid :: (Transmissible a,Transmissible b) =>
 (([a],[b])->([a],[b])) -> Process ([a],[b]) ([a],[b])
pgrid f = process (inA,inB) -> (outA,outB)
 where (outA,outB) = f (inA,inB)
grid :: (Transmissible a,Transmissible b) =>
 (([a],[b])->([a],[b])) -> ([[a]],[[b]]) -> ([[a]],[[b]])
grid f (insA,insB) = (outsA,outsB) where
 nr = length insA -- number of rows of the grid
 nc = length insB -- number of columns of the grid
 outss = [[(pgrid f) # outAB | outAB <- outs’] | outs’ <- outss’]
 ‘using‘ (spine.concat)
 (outssA,outssB) = unzip (map unzip outss)
 outssA’ = mzipWith (:) insA (map init outssA)
 outssB’ = insB : init outssB
 outss’ = zipWith zip outssA’ outssB’
 outsA = map last outssA
 outsB = last outssB

FIGURE 1.9. Grid skeleton without dynamic channels

not the two extra connections to send/receive values to/from the parent: Only the
nodes on the £rst row or column have an input from the parent, and only the
nodes on the last row or column have an output to the parent —See Figure 1.8.
So, the main process is considered a neighbour of those nodes. At each round,
every worker receives messages from its left and upper neighbours, computes,
and then send messages to its right and lower neighbours. Eden’s implementation
(Figure 1.9) uses lists instead of synchronization barriers to simulate rounds. The
grid function creates the desired topology by properly connecting the inputs and
outputs of the different pgrid processes. Each pgrid receives two inputs from
its siblings, and produces two outputs to its siblings.
In the Eden program, the number of rows n and columns m of the grid are

inferred from the lengths of the input lists. The £rst parameter is the worker
function, which receives a list [a] from the left neighbour and a list [b] from its
upper neighbour. It produces results [a] and [b] for its neighbours.
Now, the process abstractions are modi£ed following exactly the same four

steps as in the previous case. Thus, each pgrid receives two channel names
to be used to send values to its siblings, and produces two channel names to be
used to receive inputs from its siblings (see Figure 1.10). The grid function
needs also to be modi£ed. As in the previous case, the reverse topology has to
be created, shifting in the opposite way the outputs of the processes. But now,

10

pgrid :: (Transmissible a, Transmissible b) => (([a],[b])->([a],[b])) ->
 Process (ChanName [a], ChanName [b]) (ChanName [a], ChanName [b])
pgrid f = process (outChanA,outChanB) -> something
 where something = new (inChanA,inA) new (inChanB,inB)
 let (outA,outB) = f (inA,inB) in
 outChanA !* outA par
 outChanB !* outB par
 (inChanA,inChanB)

FIGURE 1.10. Each process of the grid skeleton using dynamic channels

grid :: (Transmissible a,Transmissible b) =>
 (([a],[b])->([a],[b])) -> ([[a]],[[b]]) -> ([[a]],[[b]])
grid f (insA,insB) = everything where
 nr = length insA -- number of rows of the grid
 nc = length insB -- number of columns of the grid
 outss = [[(pgrid f) # outAB | outAB <- outs’] | outs’ <- outss’]
 ‘using‘ (spine.concat)
 (outssA,outssB) = unzip (map unzip outss)
 outssA’ = mzipWith (++) (map tail outssA) (map (:[]) outsAToParent)
 outssB’ = tail outssB ++ [outsBToParent]
 outss’ = zipWith zip outssA’ outssB’

 -- The parent creates new channels to receive values from
 -- the last column and the last row children of the grid
 channelsA = generateChannels nr
 channelsB = generateChannels nc
 (outsAToParent,outsA) = unzip channelsA
 (outsBToParent,outsB) = unzip channelsB

 -- The parent sends values to the first column and first row of the grid,
 -- and waits until receiving values from the last column and last row
 everything = sendInitAs
 sendInitAs = sendValues (zip insB (head outssB)) sendInitBs
 sendInitBs = sendValues (zip insA (map head outssA)) (outsA,outsB)

-- Generates and returns a list of dynamic channels
generateChannels 0 = []
generateChannels n = new (cn,c) ((cn,c):generateChannels (n-1))

-- Sends a list of values through their dynamic channels, and continues with e
sendValues [] e = e
sendValues ((v,ch):more) e = ch !* v par sendValues more e

FIGURE 1.11. Parent process of the grid skeleton using dynamic channels

as the pgrid processes only use dynamic channels, and the main process needs
to communicate with them, it is necessary to adapt it to use dynamic channels.
This is done with four steps: (1) creating as many dynamic channels as values
are to be received from the children; (2) everywhere a value from a child was to
be used, the corresponding value of the dynamic channel is used; (3) instead of
sending values to the children, the names of the new dynamic channels are sent;
and (4) values are sent to the children through the names of the dynamic channels
received from the children.
Figure 1.11 shows the source code of grid. Note that the main structure is

still the same as before, and that it has been straightforward to add the extra code.

1.5 CONCLUSIONS AND FUTUREWORK

Even though Eden process abstractions and instantiations only allow the devel-
opment of hierarchical topologies, we have presented a methodology that allows

11

the obtaining of non-hierarchical ones. The hierarchical implementations are used
as high-level speci£cations, that are re£ned into a lower lever implementation by
using dynamic channels. By providing both levels in the same language we can
easily transform the programs. Moreover, the lower level will only be used in the
critical points, and it will only be used by following a clear methodology, avoiding
the necessity of handling the typical gory details of the low-level features.
The usefulness of the method has been proved with three typical examples of

non-hierarchical topologies, namely a pipeline, a ring and a grid. In [PRS01],
satisfactory actual speedups has been obtained for a real application using a torus,
outperforming by a factor of three the results obtained with the best implementa-
tion that uses a hierarchical topology.
As future work we plan to implement an automatic transformation to help

obtaining non-hierarchical topologies. The programmer should only need to an-
notate appropriately the program with the bypassing information that will be used
by the transformation tool.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for valuable comments on a draft
version of this paper. This work was partly supported by the Spanish project
TIC2000-0738 and the Spanish-British Acción Integrada HB 1999-0102.

REFERENCES

[BKL+98] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, and R. Peña. DREAM:
the Distributed Eden Abstract Machine. In Implementation of Functional Lan-
guages, IFL’97, pages 250–269. LNCS 1467. Springer-Verlag, 1998.

[BLOP98] S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. Eden: Language
De£nition and Operational Semantics. Technical Report, Berich 96-10. Re-
vised version 1998, Philipps-Universität Marburg, Germany, 1998.

[GBDJ94] A. Geist, Ad. Beguelin, J. Dongarra, and W. Jiang. PVM: Parallel Virtual
Machine. MIT Press, 1994.

[KOP99] U. Klusik, Y. Ortega-Mallén, and R. Peña. Implementing Eden - or: Dreams
Become Reality. In Implementation of Functional Languages, IFL’98, London,
Sept. 1998. Selected Papers, pages 103–119. LNCS 1595, 1999.

[KPS00] U. Klusik, R. Peña, and C. Segura. Bypassing of Channels in Eden. In Trends
in Functional Programming (Selected papers of the 1st Scottish Functional
Programming Workshop, SFP’99), pages 2–10. Intellect, 2000.

[Mes94] Message Passing Interface Forum. MPI: A Message-passing Interface Stan-
dard. International Journal of Supercomputer Applications, 8(3/4), 1994.

[Pey96] S. L. Peyton Jones. Compiling Haskell by Program Transformations: A Report
from the Trenches. In ESOP’96, LNCS 1058, 1996.

[PRS01] R. Peña, F. Rubio, and C. Segura. Deriving Non-Hierarchical Process Topolo-
gies. In Draft Proceedings of the 3rd Scottish Functional Programming Work-
shop, SFP’01), pages 157–168, 2001.

12

