
Bypassing of Channels in Eden?

Ulrike Klusik1, Ricardo Peña2, and Clara Segura2

1 Philipps–Universität Marburg, D-35032 Marburg, Germany
Phone# +49-6421-281521 ; Fax# +49-6421-285419

e-mail: klusik@Mathematik.Uni-Marburg.de
2 Universidad Complutense de Madrid, E-28040 Madrid, Spain

Phone# +34-91-3944313; Fax# +34-91-3944602
e-mail: {ricardop,csegura}@eucmax.sim.ucm.es

Abstract

We describe automatic bypassing, an optimization of Eden’s implementation to
reduce the number of messages and/or threads at runtime. Eden [BLOP97] ex-
tends the lazy functional language Haskell with a set of coordination features,
aimed to express parallel algorithms. These include process abstractions (or pro-
cess schemes) and process instantiations (or applications of a process scheme to
actual inputs).

When a new process is instantiated, their input and output channels are con-
nected to its parent process. This implies that, in principle, only tree–like process
topologies can be created. But the aimed topology may not be tree–like (e.g.
pipelines, grids, etc.). It is desirable to be able to connect every producer to its
actual consumer, trying to avoid the intermediate processes frequently used only
to set up the topology.

The strategy consists of a combination of compile time analysis and runtime
support. Both are explained in detail. Also, the savings expected with the pro-
posed strategy are commented.

?Work partially supported by the spanish projects CAM-06T/033/96 and CICYT-TIC97-0672.

1 INTRODUCTION

The parallel functional programming language Eden [BLOP97, KOP98] extends
the lazy functional language Haskell by syntactic constructs to explicitly de£ne
processes. Eden is implemented by modifying the Glasgow Haskell compiler
GHC [PHH+93] and its parallel runtime sytem1 GUM [THMP96]. In [BKL98],
more details are given.

Processes in Eden are dynamically instantiated while executing recursive func-
tions and/or process de£nitions. When a new process is created, its channels are
connected to its parent process. The parent is responsible for feeding child’s input
channels with values and for receiving values from child’s output channels. This
implies that, in principle, only tree-like process topologies can be created, see Fig-
ure 1 (left). Frequently, it is the case that the parent process just copies the values
received from one child to an input channel of another child that, in turn, forwards
these values to another process, and so on. It is a desirable optimization to detect
this situation to be able to eliminate intermediate processes in the transmissions,
i.e. to directly connect producers to consumers, see Figure 1 (right). This would
save a lot of messages and much useless computations at runtime. We call the
optimization automatic bypassing, which consists of a combination of compile
time analysis and runtime support.

The organization of the paper is as follows: in Section 2, we introduce the
Eden features relevant to bypassing and explain the bypassing problem in detail.
In Section 3, CoreEden abstract syntax, before and after annotations, is presented.
Section 4 formally de£nes the compile time analysis and applies it to a simple ex-
ample. Section 5 explains the bypassing protocol and the support given to it by the
RTS. Finally, Section 6 gives an account of the expected savings and summarizes
the state of the implementation.

2 EDEN AND BYPASSING

Functional languages distinguish between function de£nitions and function appli-
cations. Much in the same spirit, Eden offers process abstractions, i.e. abstract
schemes for process behaviour, and process instantiations for the actual creation
of processes. Process abstractions have a polymorphic type Process a b and
can be compared to functions of type a -> b, the main difference being that the
former, when instantiated, are executed in parallel. A process abstraction mapping
input variables x1, . . . , xn to output expressions exp1, . . . , expk can be speci£ed
by the following expression:

process (x 1, . . . , xn) -> (exp1, . . . , expk)
where equation1 . . . equationr

The output expressions can reference the input variables, as well as the auxiliary
functions and common subexpressions de£ned in the optional where part.

1In what follows we will write RTS as a shorthand for runtime system.

pipe[p1,p2,p3]

x y

p1
pipe[p2,p3]

p3p2

pipe::[Process a a] -> Process a a
pipe [p] = p
pipe (p:ps) =

process z -> pipe ps # (p # z)
y = pipe [p1,p2,p3] # x

x y

p2p1 p3

FIGURE 1: Created and Desired Topology for a Pipeline

A process instantiation is achieved by using the prede£ned in£x operator (#) 2

in the following way: (y1, . . . , yk) = p # (exp1, . . . , expn). We will refer to the
new instantiated process as the child process, while the process where the instan-
tiation takes place will be called the parent. The process abstraction bound to
p is applied to a tuple of input expressions, yielding a tuple of output variables.
The child process uses k independent threads of control in order to produce these
outputs. Correspondingly, the parent process creates n additional threads for eval-
uating exp1, . . . , expn. In both cases, value production is done eagerly. Commu-
nication is unidirectional, from one producer to exactly one consumer. Only fully
evaluated data objects are communicated. Lists are transmitted in a stream-like
fashion, i.e. element by element. To illustrate the bypassing problem, in Figure 1
the de£nition and the instantiation of a pipeline appear.
Eden’s current implementation [KOP98] unfolds at runtime the recursive de£ni-
tion and generates the process topology of Figure 1 (left). It can be seen that this
structure is far from desirable (see Figure 1 (right)) as processes are created not
only for p1, p2 and p3, but also for pipe[p1,p2,p3] and pipe[p2,p3], which
only forward data from their input to their children and from them to their output.
Channels are connected by following the unfolding of the recursive de£nition.

Automatic bypassing will deal with such situations in order to connect pro-
ducer to consumer directly, as in Figure 1 (right). Nevertheless, with our approach
the additional processes will still be instantiated, but they will terminate after cre-
ating their children processes as they neither produce nor consume data.

This example illustrates two of the three possible kinds of bypassing: bypass-
ing between siblings (e.g. p2 and p3) and bypassing between generations (e.g.
pipe[p1,p2,p3] and p2). There is a third kind, called bypassing between an-
cestors, in which an input channel value is directly copied to exactly one output
channel. The analysis will detect the three cases.

2(#)::Process a b -> a -> b

3 COREEDEN AND ANNOTATED COREEDEN

Currently in Core3, process abstractions and instantiations are hidden inside pre-
de£ned functions. In order to do bypassing analysis we need to make input and
output channels explicit. So, we introduce a new intermediate language called
CoreEden, which is an extension of Core. The basic extensions are the following:

binds→ recpar bind′1; . . . ; bind
′

n [bypass channels]
bind′ → var = exp

| channels = var # channels

channels→ {var1, . . . , varn}
exp→ process channels→ body [bypass channels]
body → [let binds in] channels

The idea is £rst to translate from Core to CoreEden; then to do the bypassing
analysis, producing an annotated CoreEden program4 and £nally to translate back
from CoreEden to Core to go on with the rest of the compilation.

4 BYPASSING ANALYSIS

Through the bypassing analysis we want to detect those situations in which a
variable is used exactly once as input channel and once as output channel (from
the parent’s point of view) and is not used in any other expression. This problem
is similar to a usage analysis [Ses91], [LGH+92].

We use an abstract bypassing domain B#, shown in Figure 2, where i1o1
represents that the channel is used only once as input and only once as output. In
such a case the channel will be bypassed. The value N represents the fact that the
channel’s value is used too many times, for example twice as input or as a free
variable. We de£ne a commutative + operation over bypassing values, shown in
Figure 2, which extends easily to environments. We also need a + operation over
sets of environments due to the fact that a variable may appear more than once as
input channel and then bypassing is not possible.

The analysis uses three main functions to analyse expressions (Aexp), bind-
ings (Abinds) and process bodies (Abindsbody) shown in Figure 35. The function
Aexp receives a CoreEden expression e and decorates it with bypassing informa-
tion, which in the end is attached to process abstraction expressions and recpar

bindings in e. Such information is local to the process abstraction, so we analyse
its body with a bypassing environment carrying all the information about input
and output channels. In a let binds in e expression we analyse e and then the
bindings, taking into account that the free variables in e cannot be bypassed (so

3Core is a minimal functional language to which Haskell is translated in GHC’s £rst steps.
4The analysis decorates process abstractions (bypassing between generations and between ances-

tors) and recpar bindings (bypassing between siblings) with bypass clauses.
5We also use the functions: cs ∩· ds = {x | x ∈ cs ∧ ∃!y ∈ ds.y = x} and (f ∧· g) x =

(f x) ∧ (g x). The £rst one is used to detect bypassing between ancestors.

0

i1 o1

i1o1

N

N + x = N

0 + x = x

i1o1 + x = N (x 6= 0)
i1 + o1 = i1o1
i1 + i1 = N

o1 + o1 = N

FIGURE 2: Bypassing Domain

we set all the free variables to N in the environment used to analyse the bindings).
The rest of the cases are trivial recursive calls to Aexp.

The functions Abinds and Abindsbody combine the information coming from
each individual binding (see Figure 3). In a binding of the form var = e and in
a let binds in e expression, those variables free in e cannot be bypassed, so they
must be set to a bypassing value of N . The de£nition of freevars is the usual one
extended as expected for the new constructions.

Applying this algorithm to the (translated to CoreEden) example of Section 2,
we would obtain the following annotations for the binding of pipe:

pipe = λ ps → case ps of

[p] → p

p : pp → process z → let recpar inter = p # z

p′ = pipe pp

y = p′ # inter

bypass inter

in y bypass z, y

As there are no £xpoint computations, the ef£ciency of this analysis is linear with
respect to code’s size.

5 THE BYPASSING PROTOCOL

In what follows, we will call a connection from a real ouport6 (also called the
producer) to a real inport (also called the consumer) through a sequence of in-
termediate local forwards a forward chain. At process creation time, we must
introduce these £nal ports to each other.

5.1 The protocol without bypassing

The original communication protocol has been described in [KOP98]. Here, we
only present the process creation part, which uses the following messages:

6An inport (respectively an outport) is the implementation view of an input (respectively an output)
of a process instantiation.

Aexp :: Exp→ DExp

Aexp (let binds in e) = let (Abinds binds (freevars e)) in (Aexp e)
Aexp (process cs1 → cs2) =

process cs1 → cs2 (if cs1 ∩· cs2 = ∅ then ε else bypass (cs1 ∩· cs2))
Aexp (process cs1 → let binds in cs2) =

process cs1 → let binds′ in cs2 byp

where ρ0 = {c 7→ o1 | c← cs1}+ +{{d 7→ i1} | d← cs2}
(binds′, ρ′) = Abindsbody binds ρ0 (cs1 ∪ cs2)
b = filter (== i1o1) (map ρ′ (cs1 ∪ cs2))
byp = if b = ∅ then ε else bypass b

Abinds :: Binds→ Free→ DBinds

Abinds binds free = fst (Apropagate binds {x 7→ N | x← free} ∅)

Abindsbody :: Binds→ Env → (DBinds,Env)
Abindsbody binds ρ cs = Apropagate binds ρ cs

Apropagate :: Binds→ Env → Channels→ (DBinds,Env)
Apropagate (v = e) ρ cs = (bind′, ρ + ρ′)

where (bind′, ρ′) = Aonebind (v = e)
Apropagate (rec binds) ρ cs = (rec binds′, ρ + ρ′)

where (binds′, ρ′) = Alistbinds binds

Apropagate (recpar binds) ρ cs =
(recpar binds′ byp, ρ′′)
where (binds′, ρ′) = Alistbinds binds

ρ′′ = ρ + ρ′

b = filter ((== i1o1 · get) ∧· (not · in cs)) (dom ρ′′)
byp = if b = ∅ then ε else bypass b

Alistbinds :: [Bind]→ ([DBind], Env)
Alistbinds (bind : binds) = (bind′ : binds′, ρ′ + ρ′′)

where (bind′, ρ′) = Aonebind bind

(binds′, ρ′′) = Alistbinds binds

Alistbinds [] = ([], ∅)

Aonebind :: Bind→ (DBind,Env)
Aonebind (v = e) =

(v = e′, {v 7→ N}+ {x 7→ N | x← freevars e})
where e′ = Aexp e

Aonebind (cs1 = p # cs2) = (cs1 = p # cs2, ρ
′)

where ρ′ = {c 7→ o1 | c← cs1}+ +{{d 7→ i1} | d← cs2}+ {p 7→ N}

FIGURE 3: The Analysis Functions

• CREATE-PROCESS(pabs,insp,outsp): Initiates the creation of a child process
in a PE by using the process abstraction pabs and the parent’s inports and
outports, respectively insp and outsp, which will be connected to the child.

• ACK(outsc → insp,outsp → insc): Acknowledges the creation of the child
process to the parent, including the connections between parent and child.

While the child immediately starts sending values to the parent, the parent must
wait for the ACK message in order to know to which child ports the values should
be sent. These are sent by using a SENDVAL(in,value) message.

5.2 New RTS components: Forward handles and forward table

To represent each local forward we use a unique identi£er within a processing el-
ement (PE), called forward handle: type HForward = (PE, Int, Level).
The third component is the level of the process in the process creation tree to
which the forward handle belongs. It is an additional information whose utility
will be explained later. Forward handles can take the place of inports and out-
ports in the messages of the bypassing protocol. To store intermediate connection
information we add to the RTS a new runtime table called the forward table.

5.3 The revised protocol

5.3.1 The messages

In contrast to what happened in the old CREATE-PROCESS message, the ports
now do not necessarily belong to the parent itself but forward handles are also
allowed. Apart from the CREATE-PROCESS message, there are three new by-
passing messages:

• CONSUMER(out→ in): Tells the producer which is the real consumer of the
chain. Always, in is a real inport, whereas out may be an outport or a handle.

• PRODUCER(out→ in): Tells the consumer which is the real producer of the
chain. Always, out is a real outport, whereas in may be an inport or a handle.

• LOOP(out→ in): In this case, both out and in are descendant forwards. It is
used in special cases in which an ancestor forward is involved in the chain.
This is explained below.

The old ACK message can be described by the new bypassing messages, so it is
logically not needed anymore.

5.3.2 Protocol Scheme

Phase 1: modi£ed process creation In the presence of a descendant forward, some
inports and/or outports will not be created. In the CREATE-PROCESS mes-
sage, forward handles replace such absent ports. This happens, for example,
in the second and third CREATE-PROCESS messages of Figure 4, where we

p1 p2pipe [p1,p2]

CREATE-PROCESS
(p1,?inter,x)

CREATE-PROCESS
(pipe [p2],y,?inter)

CREATE-PROCESS
(...,y,x) inter = (?,?)

CONSUMER(?inter->i2)

PRODUCER(o2->y)

PRODUCER(o1->i2)

CONSUMER(o1->i2)

inter = (o1,?)

PRODUCER(o1->?inter)

CONSUMER(x->i1)

inter = (o1,i2)

SENDVAL(y,c)

SENDVAL(i1,a)
SENDVAL(i2,b)

P
h
a
s
e

1

P
h
a
s
e

2

P
h
a
s
e

3

FIGURE 4: Protocol with Bypassing for a two Stages Pipeline

denote forward handles by pre£xing their names with a ? symbol. If some
connection information is already known, it is sent instead of the local for-
ward handle. This is the case with inter-generational forwards. In Figure 4,
the real outport x is propagated downwards through the descending forward
of pipe[p1,p2]. Ancestor forwards are not involved in the process instan-
tiation on the parent side. After all processes have been created, we have the
following situation: all inter-generational forwards have been removed. Each
process at the end of a chain has received as opposite end either a descendant
forward or a real port of an ancestor process.

Phase 2: sending bypassing messages upwards When a child process is the real
producer/consumer of a chain, it must inform to the other side of the chain.
This is done by a CONSUMER/PRODUCER message. If an outport already
knows its consumer, it can directly start sending data. In Figure 4 these situ-
ations are re¤ected by the four upwards messages. In this phase we also take
care of the ancestor forwards. When at least one of the ends is a real port, we
pass the information to the other end by using a CONSUMER/PRODUCER
message. A special case arises when both ends are connected to descendant
forwards. This is separately explained below.

Phase 3: £nal connection When a descendant forward has received the messages
from the real consumer and the real producer of the chain, it introduces them
to each other by also sending a CONSUMER and a PRODUCER message. In
Figure 4 this situation is re¤ected by the next two downwards messages.

5.3.3 The special case: Loop

A loop consists of an ancestor forward connecting two descendant forwards as

a

b

c

d
CONSUMER(d->f)

LOOP(a->d)

f

CONSUMER(a->f)

FIGURE 5: Special Case: Loop

illustrated in Figure 5. For this spe-
cial case a LOOP message is sent to
the descendant forward in the lower
process. The upper forward handle
will eventually be informed by the
lower one. This is the reason why
we need the level information in for-
ward handles. After receiving the
LOOP there may be a fusion of for-
ward handles according to the class
of the receiver’s forward.

6 COMMUNICATION
COSTS AND CONCLUSIONS

We said before that the old ACK message was not needed anymore, but in the
real implementation it is still used to collect several bypassing messages into one
message to the parent. Then, if the program contains no forwards, the messages in
the old and in the revised protocol are identical, i.e. the creation of tree topologies
costs exactly the same. For each descendant forward in the chain, two messages
are needed in the second phase and two additional messages in the £nal con-
nection phase. In chains not containing descendant forwards, only one message
is needed from the lower to the upper end. The expected savings of bypassing
come from the fact that the number of data messages is usually much greater than
the number of protocol messages needed to create the direct connection. This
is because, when programming in Eden, many of the channels are lists whose
transmission implies as many data messages as list elements. For a forward chain
of length n, n ≥ 2, a total of n − 1 messages are saved for every data message
sent through the direct connection. On the other hand, the number of additional
messages of the new protocol, with respect to the old one, increases linearly with
the length of the chain. Even in the case of one data value the savings are clear
when the length of the forward chain is greater than 4. For example, in a pipeline
with n processes and m data values passing through it, the saved messages are
3m(n − 1) − (3n − 2) (where 3m(n − 1) are data messages and 3n − 2 are the
additional protocol messages). So, if n = 2 then the optimization is worth if at
least 2 data values are passed. The savings must also take into account the over-
heads of the threads not created in all the intermediate processors. In the previous
example, the number of saved threads is 3(n− 1).

The current state of the implementation is as follows: the RTS has already
been modi£ed for the new protocol and it is under debugging. The compile time
analysis and the many transformations involved to produce a ‘good’ CoreEden are
still being implemented.

REFERENCES

[BKL98] S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Par-
allel) Eden: An Implementation Point of View. In Programming Languages:
Implementations, Logics, and Programs, PLILP’98, pages 318–334. Springer
LNCS 1490, Pisa, September 1998.

[BLOP97] S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña. The Eden Coordi-
nation Model for Distributed Memory Systems. In Workshop on High-level
Parallel Programming Models, HIPS’97. In conjuntion with the IEEE In-
ternational Parallel Processing Symposium, IPPS’97, pages 120–124. IEEE
Computer Science Press, Geneva, April 1997.

[KOP98] U. Klusik, Y. Ortega Mallén, and R. Peña. Implementing Eden - or: Dreams
Become Reality. In Implementation of Functional Languages, IFL’98, pages
1–16, London, September 1998. Springer-Verlag, LNCS 1595.

[LGH+92] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S. L. Peyton Jones, and
P. Wadler. Avoiding Unnecessary Updates. In Glasgow Functional Program-
ming Workshop. Springer-Verlag, 1992.

[PHH+93] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler.
The Glasgow Haskell Compiler: A Technical Overview. In Proceedings of
Joint Framework for Information Technology, Keele, DTI/SERC, pages 249–
257, March 1993.

[Ses91] P. Sestoft. Analysis and Ef£cient Implementation of Functional Programs.
PhD thesis, DIKU, October 1991.

[THMP96] P. W. Trinder, K. Hammond, J. S. Mattson Jr., and A. S. Partridge. GUM: A
Portable Parallel Implementation of Haskell. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, Philadelphia, USA,
pages 259–280. ACM Press, May 1996.

