Bypassing of channels at Process Creation Time

Ricardo Pena Clara Segura

December 15, 1998

1 Compile time analysis

Full Eden is coded into Haskell at parsing time and then translated into Core by the rest of GCH
front-end phases (type checking and desugaring). From there, occurrences of # and process
functions are detected and can be converted into Extended Core, in which process abstractions
and instantiations are explicit and each single channel is an explicit variable. The following Eden
program:

pipe :: [Process a al -> Process a a

pipe [p] =p

pipe (p:ps) = process x -> pipe ps # (p # x)
y = pipe [p1l,p2,p3] # z

will be translated into the following Extended Core one:

pipe = \ ps -> case ps of
[pl ->p
p:pp -> process x ->
let x'= # p x

p°= pipe pp
y=#p x’
in y
pa = pl:pb
pb = p2:pc
pc = p3:[]

myPipe = pipe pa
y = # myPipe z

Process instantiations are floated as much as possible and, because of this, some let’s may be
joined together into bigger letrec’s. A program analysis is done on the representation resulting
from this. After that, the result is coded again into Core. Of course, Core2Core transformations
should be delayed until this process has been completed.

At first sigth, the analysis consists of a variant of sharing analysis. In sharing analysis the
underlying abstract domain is the set of subsets of {0,1, Many} with C as the ordering relation
C. Here, we seek for exactly two occurrences of a channel variable, one as inport and one as
outport. After the analysis we get a transformed annotated Core program in Ulrike “s style. In
our example:

Figure 1: Graphical conventions

pipe = \ ps -> case ps of
[pl] ->p

p:pp -> let hd = createBypass ()

ha = createBypass ()

in
process (\ x ->
let hb = createBypass ()
x'= ## p (sendTup x) ([1 -> hb]l,[[1 -> hd])
p’= pipe pp
y = ## p~ (sendTup x’) ([1 -> hal,[l -> hb])
in y) ([1 -> hd],[1 -> hal)

pa = pl:pb
pb = p2:pc
pc = p3:[]

myPipe = pipe pa
y = ## myPipe (sendTup z) ([],[1)

In graphical terms, the annotations associated to the process abstraction can be depicted as in
Figure 1. We use the following graphical conventions throughout the paper: in the left hand
side of the box, we draw the inports belonging to the process abstraction external interface and,
similarily, we show the external outports on the right hand side. Inports and outports relating
the process abstraction to its children are shown on the bottom side of the box. We will call
“handle between brothers” handles such as hb, “ascendant handles” the ones such as ha and
“descendant handles” the ones such as hd.

2 The bypassing protocol

2.1 Bypassing between brothers

One of the cases we can find in bypassing of channels arises when the parent process creates
several children in a pipeline fashion. A simple example of this is the following:

pO:...
letrec

e
Il

p2 #y
pl # inp

<
1}

p0

inp

pl p2

Figure 2: Bypassing between brothers

in

This program will be translated into the following annotated Core program in Ulrike’s style:

pO:...
letrec
hb = createBypass ()
x = ## p2 (sendTup y) ([1, [1 -> hbl)
y = ## pl (sendTup inp) ([1 -> hbl, [1)
in ...

The current topology created for this situation is not the desired one, because one of the
children produces a result sent to the parent and the parent only forwards this result to the
following child and so on, see Figure 2. The desired topology, shown in thicker lines, connects
directly the children.

2.2 Bypassing between generations

Another situation in which bypassing of channels would be useful arises when the input of a
process coming from a remote outport is merely forwarded to its child or the output of a child
is directly forwarded as an output of its parent. Examples of these two possibilities are the
following:

(DpO:...
letrec
xX=p#y
p = process y’ -> f h
where
h=qt#y’
q = process y’’ -> g i
where
i=r #y”’

in ...

(2)p0: ...
letrec
x=p#y
p = process y’> ->h
where
h=qt# (y)
q = process y’’ -> i
where
i=r # (g y’?)
in ...

In the first example, see Figure 3, the output y sent by the parent p0, is forwarded along
several descendants downwards. The desired topology, shown in thicker lines, connects directly
the outport in the parent p0O with the final destination in r.

In the second example, see Figure 4, the ouput produced by r, is forwarded along several
ascendants upwards. The desired topology, connects directly the inport in the parent p0O with
the final origin in r.

This programs will be translated into the following annotated Core programs in Ulrike’s style:

(1) pO:...
letrec
x = ## p (sendTup y) ([1,[1)
p = letrec
hdl = createBypass ()
in process (\y’ ->
letrec h = ## q (sendTup y’) ([J, [1 -> hd1])
in (sendTup (f h))
) ([1 -> hd1l, [1)
q = letrec
hd2 = createBypass ()
in process (\y’’ ->
letrec i = ## r (sendTup y’’) ([1, [1 -> hd2])
in (sendTup (g 1))
) ([1 -> hd2], [1)
in
(2)p0:...
letrec
x = ## p (sendTup y) ([1, [1)
p = letrec

hal = createBypass ()
in process (\y’> ->
letrec h = ## q (sendTup (f y’)) ([1 -> hall, [1)
in (sendTup h)

p0

flgrty)

g(r#y)

Figure 3: Bypassing between generations I

) ([0, [1 -> hall)

q = letrec
ha2 = createBypass ()
in process (\y’’ ->
letrec i = ## r (sendTup (g y’>?’)) ([1 -> ha2], [1))
in (sendTup i)

) (0, [1 -> ha2])

in

In general, this situation may be recursive, so that a process’ outport may be connected to
a remote descendant’s inport, or respectively a process’ outport may be connected to a remote
ascendant’s inport, see Section 1.

2.3 General bypassing

In a more general situation a combination of them may happen:

pO:...
letrec
x=p2 #y
y = pl # inp
p2 = process i -> (f h)

p0

gy =2

g (fy)

Figure 4: Bypassing between generations II

where
h=p3 #1
in ...

In this example, see Figure 5, we have a combination of bypassing between brothers and
generations. The desired topology connects directly the outport of p1 with the inport of p3, as
pO forwards the output produced by pl to p2 and p2 forwards it again to p3.

This programs will be translated into the following annotated Core programs in Ulrike’s style:

(1) pO:...
letrec
hb = createBypass ()
x = ## p2 (sendTup y) ([J, [1 -> hbl)
y = ## pl (sendTup inp) ([1 -> hbl, [1)
p2 = letrec
hd = createBypass ()
in process (\i ->
letrec h = ## q (sendTup i) ([1, [1 -> hdl)
in (sendTup (f h))
) ([1 -> hdl, [1)
in

p0

inp

f(p3#y)

> >

p3

Figure 5: General bypassing situation

2.4 The messages

In the general situation, it is necessary to detect the final origin and destination of the data to
be sent from one process to another. The whole hierachy is generated from the instantiation of
a process p0, which we call the grandparent.

Each process in the hierarchy will send acknowledgement messages to its parent and creation
messages to its children. The ACK message informs the parent about the inports and outports of
its child, and the CREATE-PROCESS message informs the child about the inports and outports
in the parent.

But in a bypassing situation, some of the inports and outports will not be created. The
bypassings are identified by handles, so these handles will be propagated up and down in the ack
and creation messages.

So in a creation message:

CREATE — PROCESS (idpparent, Py Otsos 115 - - - 553 O« - - 5 O)

rUn

and in an acknowledgement message:

. i .1 ! ! . .
ACK(deChildaotsovlLla R A EERER R PR PR PR R 7019)

the i} and o} may be of the form:
e (PE, port) if they are actual inports/outports

e (PE, handle) if they correspond to a handle of type hb (we will see it is not necessary to
send ha or hd handles)

In code generation, see section 3, it will be necessary another component, f, a boolean flag
indicating if the destination/origin comes directly from the father (f = True) or it has been
propagated trough intermediate processors (f = False). This will be necessary to optimize the
number of messages, see section 2.6.

N R
\. CREATE *,
ACK - LI

| BYPASS
I

1

i

. >
r‘ I

! I

Figure 6: Bypassing protocol (1)

The i; and o; are just pairs (PE,z) where £ may be a real port or a ?, indicating that the
child’s inport/outport corresponds to an hd/ha handle.

With this information the bypassing table is increasingly updated, see Section 3. When a
descendant is detected as a final origin or destination (empty bypassing lists) it communicates
the grandparent this information to get the bypassing table updated.

When the grandparent is provided with the whole information about the outport and the
inport to be connected directly, it informs about such information to the involved processes and
the desired connection is stablished.

So we need some new messages in the protocol:

e A FINAL-ORIGIN message from the final origin in the bypassing to the grandparent py,
which updates properly the bypassing table.

e A FINAL-DESTINATION message from the final destination in the bypassing to the grand-
parent, which also updates the bypassing table.

e A BYPASS message to the final receiver informing about the PE and the outport from
which it will receive the data.

e An ACKBYPASS message to the final sender informing about the PE and the inport to
which it has to send the data.

2.5 The protocol

The sequence on messages is then the following (see Figures 6 and 7):

e In each level there is a creation message for each of the children followed in sequence by
the corresponding ACK message. We don’t impose any sequentiality between the creation

0 Pl P2 PD PO

CREATEI
ACK1
CREATE2
ACK2
- FINAL-DESTINATION
FINAL-ORIGIN
BYPASS L,
ACKBYPASS

Figure 7: Bypassing protocol (2)

of brothers as we want the maximum parallelism and also to cope with cyclic connections
between children.

When all the connections of a process with respect to its parent are stablished, then it can
begin creating its children. Therefore we impose a sequentiality between the creation of
processes in different levels.

When a descendant is detected as a final origin (empty inport bypassing list) it sends a
FINAL-ORIGIN message to the grandparent:

FINAL — ORIGIN((PEsendera O'U'tportsender)a (PEgrandparenta LE))

where:

— (PEsender, 0utportsenqger) specifies the final origin in the bypassing

— = may be a real inport or a handle hb in the grandparent. In the last case the
corresponding entry in the bypassing table will be updated with the final origin in-
formation.

When a descendant is detected as a final destination (empty outport bypassing list) it sends
a FINAL-DESTINATION message to the grandparent:

FINAL — DESTINATION((PEreceivera inportreceiver)y (PEgr(mdparenty :L‘))

where:

— (PEreceivers inportreceiver) specifies the final destination in the bypassing

7 \4
“
\
CREATE CREATE |
T UL ' BYPASS
7 ‘ s i
/ \ \ ;
; ing K ;
! R Ack : i
v ACK A ' X
7 y ~ /
=T y Sem 7
A/A'
V4
>
Ve Ve
7/
ACKBYPASS

Figure 8: Symplified bypassing protocol (1)

— = may be a real outport or a handle hb in the grandparent. In the last case the
corresponding entry in the bypassing table will be updated with the final destination
information.

There does not exist any sequentiality between the FINAL — ORIGIN and FINAL —
DESTINATION messages.

e When the grandparent receives both messages, it sends a BYPASS message to the final
receiver:
BYPASS((PEsendera OUtpo'rtsender)a (PEreceivera inpo”"treceiver))

showing the receiver the connection that must be done.

e Then, the final receiver sends an ACKBYPASS message to the final sender:
ACKBYPASS((PEsendeM OUtportsender)y (PEreceivera inportreceiver))

There exists a sequentiality between the BYPASS and the ACKBYPASS message. They
have esentially the same form but the code to be executed is different when they are
received, see code generation in Section 3. Should this not be done, the sender could begin
sending data while the receiver is not yet prepared to receive them.

2.6 Special situations

The general bypassing protocol may be simplified in some particular cases, specifically in pure
situations, i.e. only bypassing between brothers or between generations.

In case we have a pure bypassing between brothers, like in example of Section 2.1, the final
origin and final destination are the brothers themselves, so if we detect this situation we could
avoid the FINAL-ORIGIN and FINAL-DESTINATION messages, as the ACK messages are
enough to obtain the whole information, see Figure 8

In the pure bypassing between generations we have two different cases:

10

! CREATE
\

/ i
7 ! . / ACK
y i £ L
i i P
i i
7 i
f : > P
/ i ,
i i !
! i A .
i i - v
; N N

i
ACKBYPASS ; ['/ CREATE :
; : i /_./ ACK

! FINAL-ORIGIN

Figure 9: Symplified bypassing protocol (2)

e If we have only downwards bypassing, then the final origin is the grandparent itself, so
we don’t need to send a FINAL-ORIGIN message. Also, the BYPASS and ACKBYPASS
messages are unnecessary (see Figure 10), as the inport connection is achieved in the final
receiver when it is instantiated. The protocol is reduced then to the sending of a FINAL-
DESTINATION message.

e If we have only upwards bypassing, then the final destination is the grandparent itself, so
we don’t need to send a FINAL-DESTINATION message and also the BYPASS message
is unnecessary (see Figure 9). The protocol is reduced then to the sending of a FINAL-
ORIGIN message followed by an ACKBYPASS message to the final sender.

2.7 A recursive example

This bypassing protocol works in the general cases. In the pipeline example in Section 1 the
bypassing situation is a combination of several bypassing. The situation is shown in Figure 11
and the protocol in Figure 12.

3 Code generation

3.1 Conventions

e The acronym DBT will denote the Dynamic Bypassing Table located in the RTS associating
every handle identifier to its respective origin and destination.

e When in downwards messages, a destination i; is a triple (PE, f,z) where x can be
either an inport or a handle and f is a boolean flag: f = T'rue means that the destination

11

7
E

| CREATE | ,cg K
| ,
N

N

A\
v

Figure 10: Symplified bypassing protocol (3)

pipe [pl, p2, p3]

pipe [p2, p3]

Figure 11: Pipe

12

pipe [pl, p2,p3]

- ~s
e —— - S
i Sl .
./ . ..'\ .'\.
ACK Y ACKBYPASS N
H : i N \
i ! 3 N,
A i b ", .
; | "\, FINAL-ORIGIN
\ ! FINAL-DESTINATION \ \
I H . %
i i v
pl i i 5 \ Y
> > i bt
: i v
| ; : :
BY-‘PASS i i !
Pl v v P
4 i N P
B ' : i /
i Yo \ [
i Vo BYPASS / /.--’
'-‘ ",\ i , :_/ ./,~
ACKRYPASS i y rs
N %
N
e 2 3
See P p > > P >
Y
ACKBYPASS

Figure 12: Pipe protocol

comes directly from the father, and f = False means that it has been propagated through
intermediate processors.

When in downwards messages, an origin o; is a triple (PE, f,z) where z can be either
an outport or a handle and f is a boolean flag with the same meaning as in the precedent
item.

When in the DBT, both origins and destinations are represented as tuples (PE,) where
x can be either an actual outport/inport or a handle between brothers.

real Inport(j,bi) gives True if in the bypassing annotation bi input j is not annotated has
having a handle.

annotatedI B(j,bi) gives True if in the bypassing annotation b7 input j is annotated has
having a handle between brothers.

annotatedI A(j,bi) gives True if in the bypassing annotation bi input j is annotated has
having an ascendant handle.

annotatedI D(j,bi) gives True if in the bypassing annotation bi input j is annotated has
having an descendant handle.

realOQutport(j,bi) gives True if in the bypassing annotation bi output j is not annotated
has having a handle.

annotatedOB(j,bi) gives True if in the bypassing annotation bi output j is annotated has
having a handle between brothers.

13

e annotatedOA(j,bi) gives True if in the bypassing annotation bi output j is annotated has
having an ascendant handle.

e annotatedOD(j,bi) gives True if in the bypassing annotation bi output j is annotated has
having an descendant handle.

e h + handlel(j,bi) gives the handle associated to input j in the bypassing annotation bi.
e h < handleO(j, bi) gives the handle associated to output j in the bypassing annotation bi.

e setDestination(h, (PE,x)) registers in the DBT that handle h has x as destination. If A
is between brothers, z can only be an actual outport. If & is ascendant, z can be either an
actual outport or a handle between brothers.

e setOrigin(h, (PE,x)) registers in the DBT that handle h has x as origin. If h is between
brothers, x can only be an actual inport. If A is descendant, x can be either an actual
inport or a handle between brothers.

e d + getDestination(h) gets the destination of handle h from the DBT and delivers it in
d. If it is undefined, returns the value 7.

e d + getOrigin(h) gets the origin of handle A from the DBT and delivers it in d. If it is
undefined, returns the value 7.

e disposeHandle(x) deletes entry for handle z in the DBT.

e outport(z) / inport(xz) / handle(z)/ handleB(x) gives True if z is respectively an outport
/ inport / handle/ handle between brothers.

3.2 Process instantiation

We need to modify the code generation of the different constructions to treat bypassing, as some
of the tasks usually achieved are now eliminated (see Figure 13). For instance, if a father input
is associated to a handle, the corresponding inport and queueMe closure should not be created.
Also, if a father output is associated to a handle, the corresponding outport is not created and
the associated thread should not be created by the function create?Thread (see below). The
new proposed code is:

(U17U27k7n7bi) d:ef

for j € {1..k} do —— father’s inports

[realInport(j,bi) — aj < createQM();i; < (ownPE(), True, createInport(a;))

[] annotatedI B(j,bi) — i = (ownPE(), True, handlel (5, bi))

[] annotatedI A(j, bi) — (PE, z) < getDestination(handlel(j, bi));i; « (PE, False,)
]

end for ;

14

Figure 13: The changes

for [€ {1.n} do —— father’s outports

[realOutport(l,bi) — o] < (ownPE(), True, createOutport(undefT))

[] annotatedOB(l, bi) — 0] + (ownPE(), True, handleO(l, bi))

[] annotatedOD(l,bi) — (PE,x) + getOrigin(handleO(l,bi)); o) < (PE, False, x)
]

end for

tso < createThread(vy, undefD);

0150 < createQutport(tso);

PE pjiq < sendCreateProcess(vi, 050,815 - -« 115,01, ,0});

returnTuple(ay, . .., ar)

3.3 Reception of CREATE-PROCESS at child’s side

In this case we don’t need to modify anything. When the message
CREATE — PROCESS(PEparent; Dy Otsos i1y -« - 455 Oy - - -5 0p)

arrives, the closure p is unpacked and copied to the local heap. Let p’ denote the address of the
copied closure. Then the following actions are executed:

tso < createThread(p’, undef);
initStack(tso, PEparent, Otso, k, 1,41, ... i), 01, ...,0});
scheduleThread(tso)

3.4 Process abstraction

In this code the first thing we do is to obtain parent’s inports and outports from the stack, some
of which, may be handles. Besides that, some child’s inports and outports may be annotated
as being respectively descendant/ ascendant handles. We must inform the parent of this cir-
cumstance in the ACK message. Besides that, we register in the DBT the origin/destination
associated to the handle.

15

In case a child’s inport/outport is a real one, we must send the FINAL-DESTINATION /
FINAL-ORIGIN message to the PE having the corresponding origin/destination of the channel,
except in the case that this origin/destination belongs to the parent process. When this happens,
we save the FINAL-DESTINATION / FINAL-ORIGIN messages as the information is coded in
the ACK message.

So, the new translation is the following:

.\ def
process (v,n,k,bi) =

PE,qrent < popStack(); 0450 < popStack();
{il; < popStack(); }i_,; {0} + popStack(); }-,
for j € {1..k} do —— child’s outports
[realOutport(j,bi) — (PE, f,x) + i%;
[f—o0j < (ownPE(),createOutport(undefT))
[] ~f = 0j < (ownPE(), createOutport(undefT)); sendFinal Origin(PE, z, o)
]
[] annotatedOA(j, bi) — (PE, f,x) « i}; setDestination(handleO(j, bi), (PE, x));
0j < (ownPE(),?)
]
end for
for [€ {1.n} do —— child’s inports
(PE, f,z) < of;
[realInport(j,bi) — i) < (ownPE(),createlnport(create@QM()));
[outport(z) — connectInport(iy,op)l;
[-f — sendFinal Destination((PE, x),1;)]
[] annotatedI D(1,bi) — (PE, f,z) < o}; setOrigin(handleI(l, bi), (PE, x));
iy < (ownPE(),7)
]

end for

tso < getOwnldentity() :

saveDestinations(tso, i}, ... ,1});

saveQutports(tso,o1,...,0);

sendAck(PEparent, Otsos 81 - - 15g, 01, -+ 00, 01,01, ..., in,01,...,0k);
a < createTuple(by, ..., by);

pushStack(a);

enter(v)

3.5 Reception of ACK message at parent’s side
When the acknowledge message

ACK(PEChild,Otso,’ill, e ,i;c,oll, e ,0;1,2-1, e ,in,Ol, e ,Ok)
arrives to the parent’s PE in a bypassing situation:

e Some of the father’s outports may be annotated as being handles. We save them anyway
so that the function create?Thread will detect it and will not create the corresponding
thread.

e Some of the father inports may be annotated as being handles. In this case we should not
do the connectInport done in the normal case.

16

e When we save the destinations, ij, some of these may be of the form (PFE,?) meaning
that they correspond to handles in the child, so that when we go inside the code for
create?Thread the thread will be created but not inmediately scheduled.

e If a parent’s input/output is annotated as being a handle and the corresponding child’s
origin/destination is an actual outport/inport, we register this circumstance in the entry of
the DBT associated to the handle. If this message is the second one related to this entry,
that means that we have completed the actual origin and destination of the handle. So we
send a BYPASS message to the receiver process.

In consequence, the code executed by the RTS is:

tso < getThread(oso);

saveDestinations(tso, iy, ..., in);
saveOutports(tso,oy,...,0,);
for j € {1..k} do —— father’s inports

(PEp, f,z) + Z;a
(PEchay) < 055
[inport(x) A outport(y) — connectInport(x,o;)
[] handleB(x) A outport(y) — setOrigin(z, (PEc,y));
(PE, z) «+ getDestination(x); dispose Handle(x)
[(PE7 Z) # 1= sendBypass((PE,z), (PEChay))]
]
end for ;
for [€ {1.n} do —— father’s outports
(PEp, x) < of;
(PEch,y) < ir;
[handleB(z) A inport(y) — setDestination(x, (PE.,y));
(PE, z) «+ getOrigin(z); dispose Handle(x)
[(PE7 Z) # 1= sendBypass((PEch,y), (PE,Z))]
]
end for ;
scheduleT hread(tso)

3.6 Thread creation

The code can be the same both in parent and child sides. First, the outport and the destination
of the thread is retrieved. The only case analysis needed is the following:

e If the outport is an actual one, a thread must be created. If, additionally, the destination
is an actual inport, the thread must be inmediately scheduled.

e Otherwise, nothing should be done.

17

def

create?Thread (e l) =
(PEg4,i) + getDestination(l);
(PE,,0) + getOutport(l);
[outport(o) A inport(i) — tso < createThread(e,(PEy,1));
connectOutport(o, tso);

scheduleT hread(tso)]

[] outport(o) A handle(i) — tso < createT hread(e, undefD);
connectOutport(o, tso)

[] otherwise — skip

]

3.7 Reception of the FINAL-ORIGIN message

If a message
FINAL — ORIGIN((PEsendera OUtportsender)a (PEgrandparenty :L‘))

is received in a PE, the RTS does a case analysis on z. If z is a handle and this is the second
message received for it, it sends the BYPASS message to the destination of the handle. If it is
an actual inport, the normal protocol is simplified and only the ACKBYPASS message is sent
to the origin of the channel. So, it executes the following actions:

[handleb(z) — setOrigin(x, (P Esender, 0utportsender));
(PE, z) < getDestination(z); dispose Handle(x)
[(PE’Z) 7é [SendBypas((PE, Z)’ (PEsenderaO'U'tpo'rtsender))]
[] inport(z) — connectInport(z, (P Esender, 0utportsender));
sendACkBypass((PEsendera O'U'tportsender)a (ownPE(), *’I;))

]

3.8 Reception of the FINAL-DESTINATION message

If a message

FINAL — DESTINATION((PEreceivera inportreceiver)y (PEgr(mdparenta 37))

is received in a PE, the RTS actions are symmetric to those of the FINAL-ORIGIN message.
If z is an actual outport, the general protocol is simplified so that messages BYPASS and
ACKBYPASS are saved. The thread associated to this outport is inmediately scheduled and it
starts producing data messages. So, the following actions are executed:

[handleb(z) — setDestination(z, (P Ereceiver, iNportreceiver));
(PE, z) « getOrigin(z); disposeHandle(x)
[(PE,z) # 7 — sendBypass((P Ereceiver, inportreceiver), (PE, z))]
[] outport(z) — tso < getThread(xz);
updateDestination(tso, (P Ereceiver, iNPoTtreceiver));
scheduleThread(tso)

18

3.9 Reception of the BYPASS message

If a message
BYPASS((PEreceivera inpo'rtreceiver)a (PEsendera OUtportsender))

arrives to a receiver PE, then the RTS connects the receiver inport to the sender outport and
sends the ACKBYPASS message to the last one:

PE,cceiver OwnPE();
connectInport(inport,eceivers P Esender, 0Utportsender);
SendACkBypass((PEsendera OUtpo'rtsender)a (PEreceivera inpo'rtreceiver))Q

3.10 Reception of the ACKBYPASS message

If an
ACKBYPASS((PEsendera OUtportsender)y (PEreceivery inportreceiver))

message arrives to a sender PE, then the RTS sets the destination in the thread that was waiting
for this message and schedules it:

tso < getThread(outportsender);
updateDestination(tso, (P Ereceiver, inPoTtreceiver));
scheduleThread(tso)

19

