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Abstract

Metaprogramming consists of writing programs that generate or manipulate other programs. Template
Haskell is a recent extension of Haskell, currently implemented in the Glasgow Haskell Compiler, giving
support to metaprogramming at compile time. Our aim is to apply these facilities in order to statically
analyse programs and transform them at compile time. In this paper we use Template Haskell to implement
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of the analysis. This work shows the usefulness of the tool in order to incorporate new analyses and
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1 Introduction

Metaprogramming consists of writing programs that generate or manipulate other

programs. Template Haskell [17,18] is a recent extension of Haskell, currently im-

plemented in the Glasgow Haskell Compiler [12] (GHC), giving support to metapro-

gramming at compile time. Its functionality is obtained from the library package

Language.Haskell.TH. It has been shown to be a useful tool for different purposes

[6], like program transformations [7] or the definition of an interface for Haskell with

external libraries (http://www.haskell.org/greencard/). Specially interesting is the

implementation of a compiler for the parallel functional language Eden [15] without

modifying GHC.
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Fig. 1. GHC compilation process with new analyses and transformations

Using such extension, a program written by a programmer can be inspected

and/or modified at compile time before proceeding with the rest of the compilation

process. Our aim is to apply these metaprogramming facilities in order to statically

analyse programs and transform them at compile time. This will allow us on the one

hand to quickly implement new analyses defined for functional languages and on the

other hand to incorporate these analyses into the compiler without modifying it. In

Figure 1 we show an scheme of GHC compilation process. Haskell code is desugared

into a simpler functional language called Core. Analyses and transformations in

GHC take place at Core syntax level, which are summarized as a simplifier phase.

In order to add new analyses and transformations it would be necessary to modify

the compiler. However, by using Template Haskell these can be incorporated at the

level of Haskell syntax without modifying GHC. In Figure 1 this is added as a new

pass at the level of the abstract syntax tree.

In particular, languages like Eden [5] can benefit from these facilities. Eden is

a parallel extension of Haskell whose compiler is implemented on GHC [3]. Several

analyses have been theoretically defined for this language [14,11,4] but they have

not been incorporated to the compiler because this involves the modification of

GHC, once for each new analysis we could define, which seems unreasonable. Using

Template Haskell new analyses and/or transformations could be first prototyped

and then incorporated to the compilation process without directly modifying the

internals of the compiler.

In this paper we explore the usefulness of Template Haskell for these purposes

by implementing an abstract interpretation based strictness analysis and a let-to-

case transformation that uses the results of the analysis. These are well-known and

already solved problems, which allows us to concentrate on the problems arising

from the tool. In Section 2 we describe those features of Template Haskell used

in later sections. In Section 3 we give an introduction to abstract interpretation,

and describe the strictness analysis and the let-to-case transformation. Section 4

describes their implementation using Template Haskell and shows some examples.

Finally, in Section 5 we conclude and discuss the improvements to the tool that

could make it more useful.

2 Template Haskell

Template Haskell is a recent extension of Haskell for compile-time meta-progra-

mming. This extension allows the programmer to observe the structure of the code

of a program and either transform that code, generate new code from it, or analyse

its properties. In this section we summarize the facilities offered by the extension.

The code of a Haskell expression is represented by an algebraic data type Exp,

and similarly are represented each of the syntatic categories of a Haskell program,

like declarations (Dec) or patterns (Pat). In Figure 2 we show parts of the definitions

of these data types, which we will use later in Section 4.
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data Exp =
LitE Lit -- literal
VarE Name -- variable
ConE Name -- constructor
LamE [Pat] Exp -- lambda abstraction
AppE Exp Exp -- application
CondE Exp Exp Exp -- conditional
LetE [Dec] Exp -- let expression
CaseE Exp [Match] -- case expression
InfixE (Maybe Exp) Exp (Maybe Exp) -- primitive op.
. . .

data Match =
Match Pat Body [Dec] -- pat -> body where decs

data Pat =
VarP Name -- variable
ConP Name [Pat] -- constructor
. . .

data Body =
NormalB Exp -- just an expression
. . .

data Dec =
ValD Pat Body [Dec] -- v = e where decs
FunD Name [Clause [Pat] Body [Dec]] -- f p1 ... pn = e

-- where decs

Fig. 2. Data types representing Haskell syntax

A quasi-quotation mechanism allows one to represent templates, i.e. Haskell

programs at compile time. Quasi-quotations are constructed by placing brackets,

[| and |], around concrete Haskell syntax fragments, e.g. [|\x->x|].

This mechanism is built on top of a monadic library. The quotation monad Q

encapsulates meta-programming features as fresh name generation:

instance Monad Q

runQ :: Q a -> IO a . . .

The usual monadic operators bind, return and fail are available, as well

as the do-notation [19]. This is everything we need to know about the quotation

monad for our purposes.

The translation of quoted Haskell code makes available it abstract syntax tree

as a value of type ExpQ, where type ExpQ = Q Exp; e.g. [|\x->x|]::ExpQ.

Library Language.Haskell.TH makes available syntax construction functions

built on top of the quotation monad. Their names are the same as the con-

structors of the algebraic data types, but lower case, e.g. lamE :: [PatQ] ->

ExpQ -> ExpQ. For example, we can build expression [|\x->x|] also by writing

lamE [varP (mkName "x")] (varE (mkName "x")), where mkName:: String ->

Name.

Evaluation can happen at compile time by means of the splice notation $. This

means compile-time evaluation when placed at top level. Also, when placed in-

side a quasi-quoted expression it means evaluation when the quasi quoted code is

constructed. The result of such evaluation is spliced into the enclosing expression.

As an example, [|\x->$e|] evaluates e at compile time and the result of the

evaluation, a Haskell expression e’, is spliced into the lambda abstraction giving

[|\x->e’|].

We will use in Section 4 the quasi-quotation mechanism in order to analyse

and transform Haskell programs, and the splicing notation in order to do this at

compile time. A pretty printing library Language.Haskell.TH.PprLib will be

useful in order to visualize the results of our examples.
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There are other features of Template Haskell we are not using here; the interested

reader may look at [17,18] for more details.

3 Strictness Analysis and let-to-case transformation

3.1 Motivation

Practical implementations of functional languages like Haskell use a call-by-need

parameter passing mechanism. A parameter is evaluated only if it is used in the

body of the function; once it has been evaluated to weak-head normal form, it is

updated with the new value so that subsequent accesses to that parameter do not

evaluate it from scratch. The implementation of this mechanism builds a closure or

suspension for the actual argument, which is updated when evaluated. The same

happens with a variable bound by a let expression: A closure is built and it is

evaluated and subsequently updated when the main expression demands its value.

Strictness analysis [9,1,20,2] detects parameters that will be evaluated by the

body of a function. In that case the closure construction can be avoided and its

evaluation can be done immediately. This means that call-by-need is replaced by

call-by-value.

The same analysis can be used to detect those variables bound by a let expression

that will be evaluated by the main expression of the let. Such variables can be

immediately evaluated, so that the let expression can be transformed into a case

expression without modifying the expression semantics [16]. This is known as let-

to-case transformation:

let x = e in e′ ⇒ case e of x → e′

Notice that this transformation assumes a strict semantics for the case expression.

Core case expression is strict in the discriminant, but Haskell case with a unique

variable pattern alternative is lazy. As our analysis and transformation happen

at Haskell level we would not obtain the desired effect with the previous transfor-

mation. Additionally it can even be incorrect from the point of view of the types

because let-bound variables are polymorphic while case-bound ones are monomor-

phic.For example, the expression let x = [ ] in case x of [ ] → (1 : x,′ a′ : x) is type

correct while its transformed version is not.

However we can use Haskell’s polymorphic infix seq::a->b->b operator to ob-

tain the desired effect maintaining the types. It evaluates its first argument to weak

head normal form and then returns as result its second argument. Consequently,

our transformation is the following: let x = e in e′ ⇒ let x = e in x seq e′

3.2 Strictness Analysis by Abstract Interpretation

Strictness analysis can be done by using abstract interpretation [10]. This technique

can be considered as a non-standard semantics in which the domain of values is

replaced by a domain of values descriptions, and where each syntactic operator is

given a non-standard interpretation allowing to approximate at compile time the

run-time behavior with respect to the property being studied.

Mycroft [9] gave for the first time an abstract interpretation based strictness
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e → c { constant }

| v { variable }

| e1 op e2 { primitive operator }

| if e1 then e2 then e3 { conditional}

| λb.e { first-order lambda }

| C e1 . . . en {constructor application }

| e1 e2 { function application }

| let v1 = e1 . . . vn = en in e { let expression }

| case e of alt1 . . . altn { case expression }

alt → C b1 . . . bn → e

| b → e

Fig. 3. A first-order subset of Haskell

analysis for a first-order functional language. Later, Burn et al. [1] extended it

to higher order programs and Wadler [20] introduced the analysis of data types.

Peyton Jones and Partain [13] described how to use signatures in order to make

abstract interpretation more efficient.

We show here an abstract interpretation based strictness analysis for expressions

of a first-order subset of Haskell with data types, whose syntax is shown in Figure 3.

For the moment, this analysis is enough for our purposes. In Section 5 we discuss

the extension of the analysis to higher order and in general to full Haskell.

Notice that for flexibility reasons we allow lambda abstractions as expressions,

but we restrict them to be first-order lambda abstractions, i.e. the parameter is a

variable b that can only be bound to a zeroth order expression.

As the language is first-order the only places where lambda abstractions are

allowed are function applications and right hand sides of let bindings. Function and

constructor applications must be saturated. Let bindings may be recursive. Notice

that if we lift the previously mentioned restrictions we have a higher-order subset

of Haskell. This is the reason for our definition.

Case expressions may have at most one default alternative (b → e).

The basic abstract values are ⊥ and ⊤, respectively representing strictness and

”don’t know” values, where ⊥ ≤ ⊤. Operators ⊓ and ⊔ are respectively the greatest

lower bound and the least upper bound. In order to represent the strictness of a

function in its different arguments we use abstract functions over basic abstract

values a. For example λa1.λa2.a1 ⊓ a2 represents that the function is strict in both

arguments, and λa1.λa2.a1 represents that it is strict in its first argument but that

we do not know anything about the second one.

In Figure 4 we show the interpretation of each of the language expressions, where

ρ represents an abstract environment assigning abstract values to variables. The

environment ρ+[v → av] either extends environment ρ if variable v had no assigned

abstract value, or updates the abstract value of v if it had. The interpretation is

standard so we only give some details.
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[[c]] ρ = ⊤

[[v]] ρ = ρ(v)

[[e1 op e2]] ρ = [[e1]] ρ ⊓ [[e2]] ρ

[[if e1 then e2 then e3]] ρ = [[e1]] ρ ⊓ ([[e2]] ρ ⊔ [[e3]] ρ)

[[λb.e]] ρ = λa.[[e]] (ρ + [b → a])

[[C e1 . . . en]] ρ = ⊤

[[e1 e2]] ρ = [[e1]] ρ [[e2]] ρ

[[let v1 = e1 . . . vn = en in e]] ρ = [[e]] ρ′

where ρ′ = fix f

f = λρ.ρ + [v1 → [[e1]] ρ, . . . vn → [[en]] ρ]

[[case e of b → e′]] ρ = [[e′]] (ρ + [b → a])

where a = [[e]] ρ

[[case e of alt1 . . . altn]] ρ = a ⊓ (a1 ⊔ . . . ⊔ an) (n > 1)

where a = [[e]] ρ

ai = [[alti]] ρ a

[[C b1 . . . bn → e]] ρ a = [[e]] (ρ + [b1 → a, . . . bn → a])

[[b → e]] ρ a = [[e]] (ρ + [b → a])

Fig. 4. A strictness analysis by abstract interpretation

Primitive binary operators, like + or ∗, are strict in both arguments so we use ⊓

operator. The abstract value of a constructor application is ⊤ because constructors

are lazy. This means for example, that function λx.x : [ ] is not considered strict in

its first argument. Notice that in the lists abstract domain we have safely collapsed

the four-valued abstract domain of Wadler [20] into a two-valued domain, where for

example ⊥ : ⊥, [1,⊥, 2] and [1, 2, 3] are abstracted to ⊤, and only ⊥ is abstracted

to ⊥. In the three examples it is safe to evaluate the list to weak head normal form.

In a case expression the variables bound by the case alternatives inherit the

abstract value of the discriminant. When there is only a default alternative the

case is lazy, otherwise is strict in the discriminant.

As we have used first-order abstract functions as abstract values, function ap-

plication can be easily interpreted as abstract function application. To interpret a

let expression we need a standard fixpoint calculation as it may be recursive.

3.3 Signatures

Abstract interpretation based analyses of higher order functions is expensive. Sig-

natures [13] can be used in order to improve their efficiency although they imply

losing some precision in the analysis. We use them in our implementation as we

are interested in analyses for full Haskell. Strictness basic signatures are ⊥ and

⊤. Signatures for functions of n arguments are n-tuples of signatures (s1, . . . , sn)
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indicating whether the function is strict in each of its arguments. For example,

(⊥,⊤,⊥) is the signature of a function with three arguments that is strict is the

first and the third arguments.

The strictness signature of a function is obtained by probing it with n combi-

nations of arguments. Component si is calculated by applying the function to the

combination in which the ith argument is given the value ⊥ and the rest of them are

given the value ⊤. For example, the signature of function λx.λy.λz.x+y, (⊥,⊥,⊤),

is obtained by applying the function to (⊥,⊤,⊤), (⊤,⊥,⊤) and (⊤,⊤,⊥).

When considering higher order, functions must be probed with signatures of the

appropriate functional types. For example in λf.λx.f 3 + x, the first argument is a

function, so it has to be probed with ((⊥,⊥),⊤) and ((⊤,⊤),⊥) giving (⊥,⊥), as

expected. In Section 5 we will discuss about the problems encountered in this case,

when trying to extend the analysis.

4 Implementation using Template Haskell

In this section we describe the implementation of the strictness analysis and the

corresponding transformation using Template Haskell. Given a Haskell expression

e the programmer wants to evaluate, this is the module he/she has to write:

module Main where

import Strict

import System.IO

import Language.Haskell.TH

main = putStr (show $(transfm [| e |]))

Module Strict contains the transformation function and the strictness analysis.

First we quote the Haskell expression in order to be able to inspect the abstract

syntax tree; then we modify such tree using function transfm, defined below. We

use $ to execute the transformation at compile time.

These small modifications could be even completely transparent to the program-

mer if we generate them automatically. If we want the new pass to do more things

we just have to modify function transfm.

4.1 Strictness Analysis Implementation

The analysis is carried out by function strict :: Exp -> Env -> AbsVal which

given an expression and a strictness environment returns the abstract value of the

expression. Abstract values are represented using a data type AbsVal:

data StrictAnnot = Bot | Top deriving (Show,Eq)

data AbsVal = B StrictAnnot | F [StrictAnnot] | FB Int

The basic annotations are B Bot, to represent strictness, and B Top to represent

the ”don’t know” value. The abstract value of a function with n arguments is

approximated through a signature of the form F [b1, b2, ..., bn] where each

bi indicates whether the function is strict in the ith argument. The special FB n

value is the abstract value of a completely undefined function with n arguments,

7



Segura, Torrano

strict :: Exp -> Env -> AbsVal
strict (VarE s) rho = getEnv s rho
strict (LitE l) rho = B Top
strict (InfixE (Just e1) e (Just e2)) rho =

if (isCon e) then (B Top)
else inf (strict e1 rho) (strict e2 rho)

strict (CondE e1 e2 e3) rho =
inf (strict e1 rho)

(sup (strict e2 rho) (strict e3 rho))

Fig. 5. Strictness Analysis Implementation-Basic Cases

strict (LamE ((VarP s):[]) e) rho =
let B b = strictaux e (addEnv (s,0,B Bot) rho) in
case (strict e (addEnv (s,B Top) rho)) of
B b1 -> F (b:[])
F bs -> F (b:bs)

strictaux::Exp -> Env -> AbsVal
strictaux (LamE ((VarP s):[]) e) rho =

strictaux e (addEnv (s,B Top) rho)
strictaux e rho = strict e rho

Fig. 6. Strictness Analysis Implementation-Lambda Expressions

that is, the bottom of the functional abstract domain, which is useful in several

places.

The transformation function calls this function, but if we want to prove the

prototype with examples we can write the following:

main = putStr (show $(strict2 [| e |] empty))

where e is a closed expression we want to analyse, empty represents the empty

strictness environment, and function strict2 is defined as follows:

strict2 :: ExpQ -> Env -> ExpQ

strict2 eq rho = do {e <- eq ;

return (toExp(strict e rho))}

where function toExp :: AbsVal -> Exp just converts an abstract value into

an expression. Notice that the analysis is carried out at compile time and that we

have defined strict2 as a transformation from a expression to another expression

representing its abstract value. This is because the compile time computations

happen inside the quotation monad, so both the argument and the result of strict2

must be of type ExpQ. We use do-notation in order to encapsulate strict into the

monadic world.

Function strict is the actual strictness analysis defined by cases over the syntax,

we need to remember the Exp data type definition (shown in Figure 2) and the

restrictions of our language (explained in the previous section).

In Figure 5 we show the interpretation of constants, primitive operators, vari-

ables and conditional expressions, as shown in the previous section. We have to

be careful with infix operators because some constructors like lists : are infix. We

distinguish them using function isCon, which we do not show here. Operator inf

calculates the greatest lower bound and sup the least upper bound, and getEnv

gets from the environment the abstract value of a variable.

In Figure 6 we show the interpretation of a lambda abstraction. Its value is a

signature F [b1, ..., bn], being n the number of arguments, obtained by probing

the function with several combination of arguments, as we explained in Section 3.3.

We start probing the function with the first argument. First, we give it the value
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strict (ConE cons) rho = B Top
strict (AppE (ConE cons) e) rho = B Top
strict (AppE e1 e2) rho =

if (isCon e1) then B Top
else absapply (strict e1 rho) (strict e2 rho)

absapply::AbsVal -> AbsVal -> AbsVal
absapply (FB n) a

| n==1 = B Bot
| n > 1 = FB (n-1)

absapply (F (h:tl)) (B b)
| null tl = B x
| x == Top = F tl
| otherwise = FB (length tl)
where x = sups h b

Fig. 7. Strictness Analysis Implementation-Applications

B Bot and the auxiliary function strictaux gives the rest of the arguments the

value B Top. Then we give it the value B Top and recursively probe with the rest

of the arguments. In such a way we obtain all the combinations we wish.

In Figure 7 we show the interpretation of both constructor and function applica-

tions. From the point of view of the language they are the same kind of expression,

so we use again function isCon to distinguish them.

If it is a function application, absapply carries out the abstract function appli-

cation. The abstract value FB n represents the completely undefined function so

it returns B Bot when completely applied and FB (n-1) when there are remaining

arguments to be applied to.

When a signature F [b1, ..., bn] is applied to an abstract value B b we need

to know whether it is the last argument. If that is the case we can return a basic

value, otherwise we have to return a functional value. The resulting abstract value

depends on both b1 and b.

If b1 is Top the function is not necessarily strict in its first argument, so indepen-

dently of the value of b we can return B Top if it was the last argument or continue

applying the function to the rest of the arguments by returning the rest of the list.

The same happens if b is Top as head xs was obtained by giving the first ar-

gument the value Bot: we have lost information and the only thing we can say is

”we don’t know” and consequently either return B Top or continue applying the

function.

If neither b1 nor b is Top (i.e. when the least upper bound sups returns Bot)

then the function is strict in its first argument, which is undefined, so we can return

B Bot independently of the rest of the arguments. However if there are arguments

left we return the completely undefined function FB (n-1).

In Figure 8 we show the interpretation of a let expression. Auxiliary function

strictdecs carries out the fixpoint calculation. Function splitDecs splits the left

hand sides (i.e. the bound variables) and the right hand sides of the declarations.

The initial environment init is built by extending the environment with the new

variables bound to an undefined abstract value of the appropriate type, done by

extendEnv. Function combines updates the environment with the new abstract

values in each fixpoint step; it also returns a boolean value False when the envi-

ronment does not change and consequently the fixpoint has been reached.

Finally, in Figure 9 we show the interpretation of a case expression. Function

nostrict returns true if it is a lazy case expression. The first two branches of

casealt correspond to constructor pattern matches (either infix or prefix) and the
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strict (LetE ds e) rho = strict e (strictdecs ds rho)

strictdecs:: [Dec] -> Env -> Env
strictdecs [ ] rho = rho
strictdecs ds rho =
let

(varns,es) = splitDecs ds
init = extendEnv rho varns
f = \ rho’ ->let

aes = map (flip strict rho’) es
triples = zipWith triple varns aes

in
combines rho’ triples

fix g (env,True) = fix g (g env)
fix g (env,False) = env

in
fix f (init,True)

Fig. 8. Strictness Analysis Implementation-Let Expressions

strict (CaseE e ms) rho =
let

se = strict e rho
l = caseaux ms se rho
sl = suplist l

in
if (nostrict ms) then sl
else (inf se sl)

caseaux :: [Match] -> AbsVal -> Env -> [AbsVal]
caseaux ms se rho = map (casealt se rho) ms

casealt :: AbsVal -> Env -> Match -> AbsVal
casealt abs rho m =

case m of
Match (InfixP (VarP h) con (VarP tl)) (NormalB e) [] ->

let rho’ = addEnvPat abs [VarP h, VarP tl] rho
in strict e rho’

Match (ConP con ps) (NormalB e) []->
let rho’ = addEnvPat abs ps rho
in strict e rho’

Match (VarP x)(NormalB e)[] ->
let rho’ = addEnvPat abs ((VarP x):[]) rho
in strict e rho’

Fig. 9. Strictness Analysis Implementation-Case Expressions

third one to the variable alternative. Function suplist calculates the least upper

bound of the alternatives, and casealt interprets each of the alternatives. The vari-

ables bound by the case alternatives inherit the abstract value of the discriminant,

which is done by function addEnvPat.

Example 4.1 Given the expression \ x -> \ y -> 3 * x , the analysis returns

F [Bot, Top], as expected; i.e. the function is strict in the first argument.

Example 4.2 Another example with a case expression is the following one:

\ x -> \ z-> case 1:[] of [] -> x

y:ys -> x + z

The result is F [Bot, Top] as expected, telling us that the function is strict in

the first argument but maybe not in the second one, although we know it is. Notice

the loss of precision. This is because the analysis is static, but not because of the

implementation.

Example 4.3 The use of signatures in the implementation implies a loss of preci-

sion with respect to the analysis shown in Section 3. For example, function

\ x -> \ y -> \ z -> if z then x else y

has abstract value λa1.λa2.λa3.a3 ⊓ (a1 ⊔ a2) but the implementation would assign
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transf :: Exp -> Env -> Exp
transf (LetE ds e) rho =
if (isRecorFun ds) then
let

(vs,es) = splitDecs ds
rho’ = foldr addEnvtop rho vs
es’ = map (flip transf rho’) es
ds’ = zipWith makeDec ds es’
te’ = transf e rho’

in LetE ds’ te’
else
case (head ds) of

ValD (VarP x) (NormalB e’) [] ->
let
te’ = transf e’ rho
te = transf e (addEnv (x,B Top) rho)
ds’ = ValD (VarP x) (NormalB te’) []:[]
lambda = LamE ((VarP x):[]) te
F bs = strict lambda rho

in if (head bs) == Bot then
LetE ds’ (InfixE (Just (VarE x))

(VarE (mkName "Prelude:seq"))
(Just te))

else LetE ds’ te

Fig. 10. Transformation of a let expression

it signature F [Top, Top, Bot] which is undistinguishable from abstract value

λa1.λa2.λa3.a3. Function \ x -> \ y -> \ z -> z has the same signature.

4.2 Transformation implementation

The let-to-case transformation has been developed in a similar way. We want

the transformation function to be applied not only to the main expression at

top level but also, when possible, to all its subexpressions. For example, func-

tion \ x -> let z = 3 in x + z can be transformed to \ x -> let z = 3 in

z seq (x + z). But then, even when the main expression is closed, subexpres-

sions may have free variables. Consequently, we need a strictness environment,

initially empty, carrying the abstract values of the free variables:

transfm e = transf2 e empty

transf2 :: ExpQ -> Env -> ExpQ

transf2 eq rho = do {e <- eq;

return (transf e rho)}

In this case, if we want to view the result of the transformation instead of

the evaluation of the transformed expression, we can use the function runQ of the

monad, which allows us to extract the transformed expression before proceeding

with the rest of the compilation. Then we print it with function ppr from the

library Language.Haskell.TH.PprLib:

main = do {e <- runQ (transf2 q empty) ;

putStr (show (ppr e))}

The function doing all the important work is transf. We show in Figure 10 only

the most interesting case, the let expression. We are assuming that several defini-

tions appearing in a let expression are mutually recursive. The compiler partitions

these definitions into strongly connected components in order to benefit of poly-

morphism as much as possible. The content of all quasi-quoted code is typechecked

[8] so it seems a reasonable assumption.

So when the let expression defines a function or is a set of recursive definitions

11
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(told by function isRecorFun) we do not apply the transformation at top level

but we could apply it in the right hand sides of the declarations and in the main

expression of the let. When transforming these expressions, the abstract values of

the bound variables are irrelevant so we give them the top abstract value. This is

done by addEnvtop.

When there is only a non-recursive binding let x = e in e′ we build a lambda

abstraction λx.e′ and analyse it in order to see if the body of the let is strict in the

bound variable. If that is the case, the transformation is done. At the same time

the right hand side of the binding and the body may also be transformed.

Example 4.4 The following expression

let a = 1 in let b = 2 in a + b

is transformed to:

let a_0 = 1

in a_0 Prelude:seq (let b_1 = 2

in b_1 Prelude:seq (a_0 GHC.Num.+ b_1))

Example 4.5 In the following example it is possible to see that the transformation

may happen not only at the top level but also in any subexpression of the main

expression. Function

\ x -> (let a = 1 in a + 3) * (let y = 2 in y + x )

is transformed to:

\ x_0 -> (let a_1 = 1 in a_1 Prelude:seq (a_1 GHC.Num.+ 3))

GHC.Num.*

(let y_2 = 2 in y_2 Prelude:seq (y_2 GHC.Num.+ x_0))

5 Conclusions and Future Work

Template Haskell is a recent extension of Haskell for metaprogramming, currently

implemented in GHC 6.4.1. The design of the extension and the facilities it of-

fers are described in detail in [17,18]. Its functionality is obtained from the library

Language.Haskell.TH. Template Haskell has been shown to be a useful tool for differ-

ent purposes [6], like program transformations [7] or the definition of an interface

for Haskell with external libraries (http://www.haskell.org/greencard/). Specially

interesting is the implementation of a compiler for the parallel functional language

Eden [15] without modifying GHC.

In this paper we have studied how to use Template Haskell in order to incorporate

new analyses and transformations to the compiler without modifying it. We have

presented the implementation of a strictness analysis and a subsequent let-to-case

transformation. The source code can be found at http://dalila.sip.ucm.es/miem-

bros/clara/publications.html. These are well-known problems, which has allowed

us to concentrate on the difficulties and limitations of using Template Haskell for

our purposes, see the discussion below. As far as we know, this is the first time

that Template Haskell has been used for developing static analyses. There are some

compiling tools available for GHC (see http://www.haskell.org/libraries/#compila-

12
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tion) which are useful to write analyses prototypes, but our aim is to use the results

of the analyses and to continue with the GHC’s compilation process.

The analysis has been developed for a first-order subset of Haskell. This has

been relatively easy to define. The only difficulty here is the absence of a properly

commented documentation of the library. The analysis could be extended to higher-

order programs. We have not done this for the moment for the following reason.

When analysing higher order functions, it is necessary to probe functions with

functional signatures, which we have to generate, as we explained in Section 3.3.

In order to generate such signatures we need to know how many arguments the

function has, which in the first order case was trivial (we just counted the lambdas)

but not in the higher order case due to partial applications. If we had types available

in the abstract syntax tree, it would be trivial again. In this analysis the probing

signatures are quite simple; if the argument function has n arguments then the

probing signature is FB n. But in other analyses, like non-determinism analysis [14],

probing signatures are more complex and types are fundamental to generate them

properly.

Although there is a typing algorithm for Template Haskell [8], the type infor-

mation is not kept in the abstract tree. We could of course develop our own typing

algorithm but it would be of no help for other users if it is not integrated in the

tool. This would be very useful also to do type-based analyses, which we plan to

investigate.

Using Template Haskell for analyses and transformations has several disadvan-

tages. First, the analysis and transformation must be defined for full Haskell.

Analyses and transformations are usually done over a simplified language where

the syntactic sugar has disappeared (Core in GHC). Of course this would make

sense if it were possible to control in which phase of the compiler we want to access

the abstract syntax tree, and for the moment this is not the case. If the analy-

sis is defined for a subset of Haskell, like ours, it would be necessary to study the

transformations done by GHC’s desugarer in order to determine how to analyse the

sugared expressions. An analysis at the very beginning of the compilation process

is still useful when we want to give information to the user about the results of

the analysis. In that case we want to reference the original variables written by

him/her, which are usually lost in further phases of the compiler. Notice that in

our examples variables are indexed but they still maintain the original string name.

The desugarer however generates fresh variables unknown for the programmer.

Second, we can profit only of those analyses whose results are used by a subse-

quent transformation. The results of the analysis cannot be propagated to further

phases of the compiler, which would be affected by them. Examples of this situa-

tion is the non-determinism analysis [14] whose results are used to deactivate some

transformations done by the simplifier, or the usage analysis which affects to the

STG code generated by the compiler [21].

However it is useful for developing abstract interpretation based analyses whose

results can be used to transform Haskell code, and incorporate easily such transfor-

mation to the compilation process.
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