
A Simple Region Inference Algorithm for a

First-Order Functional Language ⋆

Manuel Montenegro, Ricardo Peña, Clara Segura

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

montenegro@fdi.ucm.es, {ricardo,csegura}@sip.ucm.es.

Abstract. Safe is a first-order eager language with facilities for pro-
grammer controlled destruction and copying of data structures. It pro-
vides also regions, i.e. disjoint parts of the heap, where the program allo-
cates data structures. The runtime system does not need a garbage collec-
tor and all allocation/deallocation actions are done in constant time. The
language is aimed at inferring and certifying upper bounds for memory
consumption in a Proof Carrying Code environment. Some of its analyses
have been presented elsewhere [7, 8]. In this paper we present an inference
algorithm for annotating programs with regions which is both simpler to
understand and more efficient than other related algorithms. Program-
mers are assumed to write programs and to declare datatypes without
any reference to regions. The algorithm decides the regions needed by
every function. It also allows polymorphic recursion with respect to re-
gions. We show convincing examples of programs before and after region
annotation, prove the correctness and optimality of the algorithm, and
give its asymptotic cost.

1 Introduction

Safe1 [7] was introduced as a research platform for investigating the suitability of
functional languages for programming small devices and embedded systems with
strict memory requirements. The final aim is to be able to infer —at compile
time— safe upper bounds on memory consumption for most Safe programs. The
compiler produces Java bytecode as a target language, so that Safe programs
can be executed in most mobile devices and web browsers.

In most functional languages memory management is delegated to the run-
time system. Fresh heap memory is allocated during program evaluation as long
as there is enough free memory available. Garbage collection interrupts program
execution in order to copy or mark the live part of the heap so that the rest is
considered as free. This does not avoid memory exhaustion if not enough free
memory is recovered to continue execution. In that case the program simply

⋆ Work supported by the Ministry of Science grants AP2006-02154, TIN2008-
06622-C03-01/TIN (STAMP), and the Madrid Government grant S-0505/TIC/0407
(PROMESAS).

1 http://dalila.sip.ucm.es/safe

aborts. The main advantage of this approach is that programmers do not have
to bother about low level details concerning memory management. Its main
disadvantages are:

1. The time delay introduced by garbage collection may prevent the program
from providing an answer in a required reaction time.

2. Memory exhaustion may provoke unacceptable personal or economic damage
to program users.

3. The programmer cannot easily reason about memory consumption.

These reasons make garbage collectors not very convenient for programming
small devices. A possibility is to use heap regions, which are disjoint parts of the
heap that are dynamically allocated and deallocated. Much work has been done
in order to incorporate regions in functional languages. They were introduced
by Tofte and Talpin [13, 14] in MLKit by means of a nested letregion construct
inferred by the compiler. The drawbacks of nested regions are well-known and
they have been discussed in many papers (see e.g. [4]). The main problem is that
in practice data structures do not always have the nested lifetimes required by
the stack-based region discipline.

In order to overcome this limitation several mechanisms have been proposed.
An extension of Tofte and Talpin’s work [2, 11] allows to reset all the data struc-
tures in a region, without deallocating the whole region. The AFL system [1]
inserts (as a result of an analysis) allocation and deallocation commands sep-
arated from the letregion construct, which now only brings new regions into
scope. In both cases, a deep knowledge about the hidden mechanism is needed
in order to optimize the memory usage. In particular, it is required to write
copy functions in the program which are difficult to justify without knowing the
annotations inferred later by the compiler.

Another more explicit approach is to introduce a language construct to free
heap memory. Hofmann and Jost [5] introduce a pattern matching construct
which destroys individual constructor cells than can be reused by the memory
management system. This allows the programmer to control the memory con-
sumed by the program and to reason about it. However, this approach gives
the programmer the whole responsibility for reusing memory, unless garbage
collection is used.

In order to overcome the problems related to nested regions, our functional
language Safe has a semi-explicit approach to memory control: it combines im-
plicit regions with explicit destructive pattern matching, which deallocates in-
dividual cells of a data structure. This feature avoid the use of explicit copy
functions of other systems. In Safe, regions are allocated/deallocated by follow-
ing a stack discipline associated with function calls and returns. Each function
call allocates a local working region, which is deallocated when the function re-
turns. Region management does not add a significant runtime overhead because
all its related operations run in constant time (see Sec. 2.3).

Notice that regions and explicit destruction are orthogonal mechanisms: we
could have destruction without regions and the other way around. This com-
bination of explicit destruction and implicit regions is novel in the functional

prog → data i
n
; decj

m
; e

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l

{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| f ai
n @ rj

l {function application}
| C ai

n @ r {constructor application}
| . . . let, case . . .

Fig. 1. Simplified Safe

programming field. However, destructive pattern matching is not relevant to
this paper. More details about it can be found in [7, 8]

Due to the aim of inferring memory consumption upper bounds, at this
moment Safe is first-order. Its syntax is a (first-order) subset of Haskell extended
with destructive pattern matching. Due to this limitation, region inference can
be expected to be simpler and more efficient than that of MLKit. Their algorithm
runs in time O(n4) in the worst case, where n is the size of the term, including
in it the Hindley-Milner type annotations. The explanation of the algorithm and
of its correctness arguments [10] needed around 40 pages of dense writing. So, it
is not an easy task to incorporate the MLKit ideas into a new language.

The contribution of this paper is a simple region inference algorithm for Safe.
It allows polymorphic recursion w.r.t. regions (region-polymorphic recursion, in
the following). Hindley-Milner type inference is in general undecidable under
polymorphic recursion, but when restricting to region-polymorphic recursion it
becomes decidable. Our algorithm runs in O(n) time in the worst case (being n
as above) if region-polymorphic recursion is not inferred. If the latter appears,
the algorithm needs O(n2) time in the worst case. Moreover, the first phase of the
algorithm can be directly integrated in the usual Hindley-Milner type inference
algorithm, just by considering regions as ordinary polymorphic type variables.
The second phase involves very simple set operations and the computation of a
fixpoint. Unlike [10], termination is always guaranteed without special provisions.
There, they had to sacrifice principal types in order to ensure termination. Due
to its simplicity, we believe that the algorithm can be easily reused in a different
first-order functional language featuring Hindley-Milner types.

The plan of the paper is as follows: In Sec. 2 we summarize the language
concepts and part of its big-step operational semantics. In Sec. 3 the region
inference algorithm is presented in detail, including its correctness and cost.
Section 4 shows some examples of region inference with region polymorphic
recursion. Finally, Sec. 5 compares this work with other functional languages
with memory management facilities.

2 Language Concepts and Inference Examples

2.1 Operational semantics

In Fig. 1 we show a simplified version of the Safe language without the destruc-
tion facilities but with explicit region arguments and region types. A program

(f xi
n@ rj

m = e) ∈ Σ [xi 7→ E(ai)
n
, rj 7→ E(r′j)

m
, self 7→ k + 1] ⊢ h, k + 1, e ⇓ h′, k + 1, v

E ⊢ h, k, f ai
n@ r′j

m
⇓ h′ |k, k, v

[App]

j ≤ k fresh(p)

E[r 7→ j, ai 7→ vi
n] ⊢ h, k, C ai

n@r ⇓ h ⊎ [p 7→ (j, C vi
n)], k, p

[Cons]

Fig. 2. Operational semantics of Safe expressions

is a sequence of possibly recursive polymorphic data and function definitions
followed by a main expression e, using them, whose value is the program result.
The abbreviation xi

n stands for x1 · · ·xn. We use a, ai, . . . to denote atoms, i.e.
either program variables or basic constants. The former are denoted by x, xi, . . .
and the latter by c, ci . . . etc. Region arguments r, ri . . . occur in function defi-
nitions and in function and constructor applications. They are containers used
at runtime to pass region values around. Region values k are runtime numbers
denoting actual regions in the region stack, and region types ρ are static anno-
tations assigned to region variables and occuring in type declarations.

Safe was designed in such a way that the compiler has a complete control on
where and when memory allocation and deallocation actions will take place at
runtime. The smallest memory unit is the cell, a contiguous memory space big
enough to hold any data construction. A cell contains the mark of the constructor
and a representation of the free variables to which the constructor is applied.
These may consist either of basic values or of pointers to other constructions. It is
allocated at constructor application time and can be deallocated by destructive
pattern matching. A region is a collection of cells, not necessarily contiguous
in memory. Regions are allocated/deallocated by following a stack discipline
associated with function calls and returns. Each function call allocates a local
working region, which is deallocated when the function returns.

In Fig. 2 we show those rules of the big-step operational semantics which
are relevant with respect to regions. We use v, vi, . . . to denote values, i.e. either
heap pointers or basic constants, and p, pi, q, . . . to denote heap pointers.

A judgement of the form E ⊢ h, k, e ⇓ h′, k, v means that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to
values and region variables to actual region identifiers. We adopt the convention
that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p to construction cells w
of the form (j, C vi

n), meaning that the cell resides in region j. Actual region
identifiers j are just natural numbers denoting the offset of the region from
the bottom of the region stack. Formal regions appearing in a function body are
either region variables r corresponding to formal arguments or the constant self ,
which represents the local working region. By h⊎ [p 7→ w] we denote the disjoint

union of heap h with the binding [p 7→ w]. By h |k we denote the heap obtained
by deleting from h those bindings living in regions greater than k.

The semantics of a program is the semantics of the main expression e in an
environment Σ, which is the set containing all the function and data declarations.

Rule App shows when a new region is allocated. Notice that the body of
the function is executed in a heap with k + 2 regions. The formal identifier
self is bound to the newly created region k + 1 so that the function body may
create data structures in this region or pass this region as a parameter to other
function calls. Before returning from the function, all cells created in region k+1
are deleted. In rule Cons a fresh construction cell is allocated in the heap.

2.2 Region annotations

The aim of the region inference algorithm is to annotate both the program
and the types of the functions with region variables and region type variables
respectively. Before explaining the inference algorithm we show some illustrative
examples.

Regions are essentially the parts of the heap where the data structures live.
We will consider as a data structure (DS) the set of cells obtained by starting
at one cell considered as the root, and taking the transitive closure of the relation
C1 → C2, where C1 and C2 are cells of the same type T , and in C1 there is a
pointer to C2. That means that, for instance in a list of type [[a]], we consider
as a DS all the cells belonging to the outermost list, but not those belonging
to the individual innermost lists. Each one of the latter constitute a DS living
in a possibly different region from the outermost’s one. However, since all the
innermost lists have the same type, they will be forced to reside in the same
region. A DS completely resides in one region. A DS can be part of another DS,
or two DSs can share a third one. The basic values —integers, booleans, etc.—
do not allocate cells in regions. They live inside the cells of DSs, or in the stack.

These decisions are reflected in the way the type system deals with datatype
definitions. Polymorphic algebraic data types are defined through data declara-
tions as the following one:

data Tree a = Empty | Node (Tree a) a (Tree a)

The types assigned by the compiler to constructors include an additional argu-
ment indicating the region where the constructed values of that type are allo-
cated. In the example, the compiler infers:

data Tree a @ ρ = Empty@ ρ | Node (Tree a @ ρ) a (Tree a @ ρ)@ ρ

where ρ is the type of the region argument given to the constructors. After
region inference, constructions appear in the annotated text with an additional
argument r that will be bound at runtime to an actual region, as in Node lt x

rt @ r. Constructors are polymorphic in region arguments, meaning that they
can be applied to any actual region. But, due to the above type restrictions, and

in the case of Node, this region must be the same where both the left tree lt and
the right tree rt live.

Several regions can be inferred when nested types are used, as different com-
ponents of the data structure may live in different regions. For instance, in the
declaration

data Table a b = TBL [(a,b)]

the following three region types will be inferred for the Table datatype:

data Table a b @ ρ1 ρ2 ρ3 = TBL ([(a, b)@ ρ1]@ ρ2)@ ρ3

In that case we adopt the convention that the last region type in the list is the
outermost one where the constructed values of the datatype are to be allocated.

After region inference, function applications are annotated with the addi-
tional region arguments which the function uses to construct DSs. For instance,
in the definition

concat [] ys = ys

concat (x:xs) ys = x : concat xs ys

the compiler infers the type concat :: ∀aρ1ρ2.[a]@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2

and annotates the text as follows:

concat [] ys @ r = ys

concat (x:xs) ys @ r = (x : concat xs ys @ r) @ r

The region of the output list and that of the second input list must be the same
due to the sharing between both lists introduced by the first equation. Functions
are also polymorphic in region types, i.e. they can accept as arguments any actual
regions provided that they satisfy the type restrictions (for instance, in the case
of concat, that the second and the output lists must live in the same region).
Sometimes, several region arguments are needed as in:

partition y [] = ([],[])

partition y (x:xs) | x <= y = (x:ls,gs)

| x > y = (ls ,x:gs)

where (ls,gs) = partition y xs

The inferred type is partition :: ∀ρ1ρ2ρ3ρ4.Int → [Int]@ρ1 → ρ2 → ρ3 → ρ4 →
([Int]@ρ2, [Int]@ρ3)@ρ4. The algorithm splits the output in as many regions as
possible. This gives more general types and allows the garbage to be deallocated
sooner.

When a function body is executing, the live regions are the working regions of
all the active function calls leading to this one. The live regions in scope are those
where the argument DSs live (for reading), those received as additional argu-
ments (for reading and writing) and the own self region. The following example
builds an intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)

void PushRegion () -- creates a top empty region
void PopRegion () -- removes the topmost region
cell ReserveCell () -- returns a fresh cell
void InsertCell (p, j) -- inserts cell p into region j

void ReleaseCell (p) -- releases cell p

Fig. 3. The interface of the Safe Memory Management System.

where the inferred types are as follows:

makeTree :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → Tree a@ρ2

inorder :: ∀aρ1ρ2.Tree a@ρ1 → ρ2 → [a]@ρ2

treesort :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → [a]@ρ2

After region inference, the definition is annotated as follows:

treesort xs @ r = inorder (makeTree xs @ self) @ r

i.e. the intermediate tree is created in the self region and it is deallocated upon
termination of treesort.

The region inference mechanism will not lead to rejecting programs. It always
succeeds although, of course, it will not be able to detect all garbage. Section 3
explains how the algorithm works and shows that it is optimal in the sense that
it assigns as many DS as possible to the self region of the function at hand.

2.3 Region implementation

As we said above, the heap is implemented as a stack of regions. Each region is
pushed initially empty, this action being associated with a Safe function invo-
cation. During function execution new cells can be added to, or removed from,
any active region as a consequence of constructor applications and destructive
pattern matching. Upon function termination the whole topmost region is deal-
located. In Fig. 3 we show the main interface between a running Safe program
and the Memory Management System (MMS). It is written in Java since the
code generated by the Safe compiler is Java bytecode. The MMS maintains a
pool of fresh cells, so that ‘allocating’ and ‘deallocating’ a cell respectively mean
removing it from, or adding it to the pool.

Notice that access to an arbitrary region is needed in InsertCell , whereas
ReleaseCell is only provided with the cell pointer as an argument. We have im-
plemented all the methods running in constant time by representing the regions
and the pool as circular doubly-chained lists. Removing a region amounts to
joining two circular lists, which can obviously be done in constant time. The
region stack is represented by a static array of dynamic lists, so that constant
time access to each region is provided. Fig. 4 shows a picture of the heap.

Tail recursive functions can very easily be detected at compile time so that
a special translation for them would not push a new empty region at each invo-
cation, but instead reuse the current topmost region. This translation (not yet

Fig. 4. A picture of the Safe Virtual Machine heap and fresh cells pool

implemented in our compiler) would not avoid consuming new cells at each in-
vocation but at least would consume a constant stack space in the region stack.
Consuming constant heap space in tail recursive functions is not feasible in gen-
eral because any function invocation may freely access regions below the topmost
one.

The Safe virtual machine has also a conventional stack where local variables
are kept. The code generated for function invocation guarantees that tail recur-
sive functions always consume constant stack space. In this respect, no special
translation is needed.

3 The Region Inference Algorithm

The main correctness requirement to the region inference algorithm is that the
annotated type of each function can be assigned to the corresponding annotated
function in the type system defined in [7]. The main constraints posed by that
system with respect to regions are reflected in the function and constructor
typing rules, shown in Fig. 5.

In rule [FUNB] the fresh (local) program region variable self is assigned
a fresh type variable ρself that cannot appear in the function result type. This
prevents dangling pointers arising by region deallocation at the end of a function
call. The only regions in scope for writing are self and the argument regions.

Notice that region-polymorphic recursion is allowed: inside the body e, dif-
ferent applications of f may use different regions. We use gen(σ′, Γ) and tf � σ
to respectively denote (standard) generalization of a type with respect to type
variables excluding region types, and instantiation of a polymorphic type.

fresh(ρself), ρself 6∈ regions(s) R = regions(ti
n
) ∪ {ρj

l} ∪ regions(s)

Γ + [xi : ti]
n

+ [rj : ρj]
l
+ [self : ρself] + [f : ∀ρ ∈ R . ti

n
→ ρj

l → s] ⊢ e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(∀ρ ∈ R . ti
n
→ ρj

l → s, Γ)]}
[FUNB]

Σ(C) = σ si
n → ρ → T @ρm

� σ Γ = ([ai : si]
n

i=1
) + [r : ρ]

Γ ⊢ C ai
n@r : T @ρm [CONS]

Fig. 5. Typing rules for function definition and constructor application

decorProg :: Assumps -> Prog a -> (Assumps, Prog ExpTipo)
decorProg asInit (datas, defs, exp) = (as’,(datas’, concat defs’, exp’))

where (as,datas’) = decorDecsData asInit datas
groups = groupBy sameName defs
(as’, defs’) = mapAccumL decorAndGenOuterDefs as groups

exp’ = decorAndGenMainExp as’ exp

Fig. 6. A high-level view of the Hindley-Milner inference algorithm

The types of the constructors are given in an initial environment Σ built
from the datatype declarations. These types reflect the fact that the recursive
substructures live in the same region. For example, in the case of lists and trees:

[] : ∀a, ρ.ρ → [a]@ρ
(:) : ∀a, ρ.a → [a]@ρ → ρ → [a]@ρ
Empty : ∀a, ρ.ρ → Tree a@ρ
Node : ∀a, ρ.Tree a@ρ → a → Tree a@ρ → ρ → Tree a@ρ

As a consequence, rule [CONS] may force some of the actual arguments to live
in the same regions.

3.1 A high-level view of the algorithm

Figure 6 shows a high-level view of the Hindley-Milner (abbreviated HM in the
following) type inference algorithm of the Safe compiler, written in Haskell, in
which some parts have to do with region inference.

The first phase, decorDecsData, annotates the data declarations with region
variables and infers the types of the data constructors. These are saved in the
assumption environment as. A fresh region variable is generated for each non-
recursive nested data type and one more for the type being defined, which is
placed as an additional argument of each constructor. Only the recursive occur-
rences are forced to have the same region arguments. All the region variables are
reflected in the type so that all the regions in which the structure has a portion
are known. In Sec. 2.2 we have shown some examples of the result produced by
this phase.

After this, the equations defs defining functions are grouped by function
name, traversed, and their HM-types and regions inferred for each function (al-
gorithm decorAndGenOuterDefs, see below), accumulating the inferred type in
the assumption environment as in order to infer subsequent function definitions.

decorAndGenOuterDefs Γ Defs = (Γ ∪ [f 7→ t+],Defs ′′)
where f = extractFunctionName Defs

(Defs ′,Eqs ,Freshexpl , trecj
p
) = decorAndGenEqs Γ Defs

θ1 = solveEqs Eqs

t = θ1(type Defs ′)
(θ2, ϕj

p) = handleRecCalls t (θ1(trecj
p
))

θ = θ2 ◦ θ1

Rexpl = θ(Freshexpl)
(θself , t

+,RegMap) = inferRegions t Rexpl ϕj
p

Defs ′′ = annotateDef (θself ◦ θ) RegMap

Fig. 7. HM-type and region inference for a single function

Finally, the main expression exp of the program is inferred, and decorated by
decorAndGenMainExp (not shown).

3.2 Region inference of function definitions

Figure 7 shows in Haskell-like pseudocode the HM-inference process for a single
function consisting of a list Defs of equations. Let us call such function f .

We have a decoration phase decorAndGenEqs which generates fresh type
and region type variables, and equations relating types that have to be unified,
but delays all the unifications to a subsequent phase. Some of these equations
correspond to the usual HM type inference, e.g. a = [b] → b, but some other
unify region type variables, e.g. ρ1 = ρ2. The decoration phase generates a
set Freshexpl of fresh region type variables assigned to the region arguments of
constructor applications and (already inferred) function applications. This set
will be needed in the second phase of region inference.

Unification equations are solved by solveEqs and handleRecCalls . The former
solves all the equations in the usual HM style except those related to the recursive
applications of f , which are solved in a special way by the latter: Hindley-Milner
types of recursive applications are unified with the inferring function’s type,
while region type variables are not unified. This is due to the fact that the type
trecj of every application of f should be a fresh instance of the HM type t of the
function with respect to the region types. Each region substitution ϕj reflects
this fact by mapping the region type variables in t to those in trecj. For instance,
if the type inferred for a function after solveEqs is [a]@ρ1 → b and there is a
single recursive application with type [a]@ρ2 → [c]@ρ2, the resulting substitution
of handleRecCalls is θ = [b 7→ [c]@ρ1] with a region mapping ϕ = [ρ1 7→ ρ2].

The next step is the application of the final substitution θ to the set Freshexpl

of explicit region types obtained above, obtaining the smaller set Rexpl . Then, the
second and final phase, inferRegions , of region inference is done. Its purpose is
to detect how many explicit region arguments the (possibly recursive) function
f must have, and to infer which region types must be assigned to the local
working region self . This algorithm is depicted in Fig. 8 and explained in the
next section. It delivers a substitution θself mapping some region type variables
to the reserved type variable ρself assigned to the local region self , a map RegMap

inferRegions t Rexpl ϕj
p = ([ρ 7→ ρself | ρ ∈ Rself], ti

n
→ ρk

m → t′, [ρk 7→ rj
m])

where ti
n
→ t′ = t

Rout = regions t′

Rin = regions ti
n

Rarg = Rexpl ∩ (Rin ∪ Rout)
(R′

arg , R
′

expl) = computeRargFP Rin Rout Rarg Rexpl ϕj
p

Rself = R′

expl − (Rout ∪ Rin)
ρk

m = R′

arg

computeRargFP Rin Rout Rarg Rexpl ϕj
p

| Rarg == R′

arg = (R′

arg , R
′

expl)
| otherwise = computeRargFP Rin Rout R′

arg R′

expl ϕj
p

where R′

expl = Rexpl ∪
Sp

j=1
{ϕj(ρ) | ρ ∈ Rarg}

R′

arg = R′

expl ∩ (Rin ∪ Rout)

Fig. 8. Second phase of the region inference algorithm

mapping some other region type variables to region arguments, and the extended
function type t+. The last step adds these region arguments to the definition of f .
The function’s body is traversed again and the above substitutions and mappings
are used to incorporate the appropriate region arguments to all the expressions,
including the recursive applications of f . Additionally, the final substitution
θself ◦ θ is applied to all the types.

3.3 Second phase of region inference

Algorithm inferRegions of Fig. 8 receives the type t obtained for the function
f by the HM inference, the set Rexpl of initial explicit region types, and the
list of substitutions ϕj

p associated with the recursive applications of f . First,
it computes the sets Rin and Rout of region type variables of respectively the
argument and the result parts of t. Let ρself be an additional fresh type variable
for self .

Given these three sets, the region inference problem can be specified as finding
three sets R′

expl , R′

arg and Rself , respectively standing for the sets of final explicit
region types, of region types needed as additional arguments of f , and of region
types that must be unified with ρself , subject to the following restrictions:

1. R′

expl ⊆ Rself ∪ R′

arg 3. Rself ∩ (Rin ∪ Rout) = ∅
2. Rself ∩ R′

arg = ∅ 4. Every recursive application of f is typeable

The first one expresses that everything built by f ’s body must be in regions in
scope. The second and third ones state that region self is fresh and hence differ-
ent from any other region received as an argument or where an input argument
lives. These restrictions and the extension of (3) to Rout are enforced by the
typing rule [FUNB]. The last one can be further formalised by requiring that f ’s
type, extended with the region arguments in R′

arg , can produce type instances
for typing all the recursive applications of f , each one extended with as many

region arguments as the cardinal of R′

arg . So, in order to satisfy restriction (4)
one must provide a decoration of each recursive application of f with appropri-
ate region arguments, of region types belonging either to Rself or to R′

arg , as
restriction (1) requires.

In the extended version of this paper [9] we show that any sets R′

expl , R′

arg

and Rself satisfying these restrictions produce a version of f which admits a
type in the type system. The correctness of the type system with respect to the
semantics was established in [7]. There, we proved that dangling pointers arising
from region deallocation or destructive pattern matching are never accessed by
a well-typed program.

Notice that an algorithm choosing any R′

arg ⊇ R′

expl and Rself = ∅ would be
correct according to this specification. But this solution would be very poor as,
on the one hand no construction would ever be done in the self region and, on
the other, there might be region arguments never used. We look for an optimal
solution in two senses. On the one hand, we want R′

arg to be as small as possible,
so that only those regions where data are built are given as arguments. On the
other hand, we want Rself to be as big as possible, so that the maximum amount
of memory is deallocated at function termination.

3.4 The kernel of the algorithm

Our algorithm initially computes Rarg = Rexpl ∩ (Rin ∪ Rout), by using the
set Rexpl of initial explicit region types. Then, it starts a fixpoint algorithm
computeRargFP (see Fig. 8) trying to get the type of f ’s recursive applications
as instances of the type of f extended with the current set Rarg of arguments.
It may happen that the set of explicit regions R′

expl may grow while considering
different applications (see the examples in Sec. 4). Adding more explicit variables
to one application will influence the type of the applications already inferred.
As R′

arg depends on R′

expl , it may also grow. So, a fixpoint is used in order
to obtain the final R′

arg and R′

expl from the initial ones. Due to our solution
above, R′

arg cannot grow greater than Rin ∪Rout , so termination of the fixpoint
is guaranteed. Once obtained the final R′

arg and R′

expl , the set Rself is computed
as Rself = R′

expl − (Rin ∪ Rout). Notice that R′

arg = R′

expl ∩ (Rin ∪ Rout) is an
invariant of the algorithm.

We show below that these choices maximise the data allocated to the self

region, which in turn maximises the amount of memory reclaimed at runtime
when the corresponding function call finishes. With respect to the remaining DSs
not being inferred to live in self , they will be allocated to the regions which are
parameters to the function being called. It is the caller function’s responsibility
to determine where to put these DSs by passing the suitable arguments. Since the
caller function is also inferred by the algorithm, the parameter assignment is done
in such a way that the data allocated in the caller’s self region is also maximised.
From a global point of view, every cell not being created in the current topmost
region (i.e. the region bound to the self identifier) will be created in the highest
possible region and hence, will be deallocated at the earliest time allowed by the
type system.

3.5 Correctness, optimality and efficiency

First we prove that the proposed solution satisfies the above specification:

1. R′

expl ⊆ (R′

expl − (Rin ∪ Rout)) ∪ (R′

expl ∩ (Rin ∪ Rout))

2. (R′

expl − (Rin ∪ Rout)) ∩ (R′

expl ∩ (Rin ∪ Rout)) = ∅
3. (R′

expl − (Rin ∪ Rout)) ∩ (Rin ∪ Rout) = ∅

The three immediately follow by set algebra. We will show now that it is optimal:
let us assume a different solution R̂self , R̂expl , R̂arg satisfying the above restric-
tions. Notice that Rexpl ⊆ R′

expl by construction. Without loss of generality we

can rename those variables in R̂expl which decorate copy expressions, constructor
applications and function calls differerent from f , so that such decorations coin-
cide with those in R′

expl . After such renaming Rexpl ⊆ R̂expl . We can also rename
the argument regions in recursive calls to f that also appear in R′

expl . For exam-

ple, assume there is a recursive call decorated by R′

expl as f :: ti
n
→ ρ′1 → ρ′2 → t.

If that recursive call was decorated by R̂expl as f :: t′i
n
→ ρ̂1 → ρ̂2 → ρ̂3 → t′,

then ρ̂1 would be renamed as ρ′1 and ρ̂2 as ρ′2.
We must show that R̂self ⊆ Rself and R′

arg ⊆ R̂arg . Let us assume ρ ∈ R′

arg .
By definition of R′

arg , ρ ∈ R′

expl and ρ ∈ Rin ∪ Rout . By (3), ρ ∈ Rin ∪ Rout

implies that ρ /∈ R̂self . Now we distinguish two cases:

ρ ∈ Rexpl As Rexpl ⊆ R̂expl , then ρ ∈ R̂expl . By (1) ρ ∈ R̂arg .

ρ ∈ R′

expl − Rexpl If ρ ∈ R̂expl , then by ρ ∈ R̂arg . Otherwise, R′

expl contains more

explicit variables which are also arguments of f than R̂expl . This case is not
possible because R′

expl is the least fixpoint of function computeRargFP by

construction. By (4), R̂expl is also a fixpoint of computeRargFP ; otherwise,
the recursive calls would not be typeable.

Consequently, ρ ∈ R′

arg . So, Rarg is as small as possible. By constraints (2)
and (1), then Rself is as big as possible. Regarding regions, there are no principal
types in our system, since other correct types bigger than our minimal type could
not be obtained as an instance of it.

Our sets are implemented as balanced trees, and operations such as ∪, ∩,
and ‘−’ are done in a time in Θ(n + m), being n and m the cardinalities of
the respective sets, so each iteration of the fixpoint algorithm is linear with the
number of region type variables occurring in a function body. As it is done in
[10], considering as the term size n the sum of the sizes of the abstract syntax
tree and of the HM type annotations, each iteration needs time linear with this
size. If several iterations are needed, these cannot be more than the number of
region type variables in Rin ∪ Rout . This gives us O(n2) cost in the worst case.

4 Examples

As a first example, consider the previously defined function partition . A region
variable ρ1 is created for the input list, so that it has type [Int]@ρ1. In addi-
tion seven fresh type region variables are generated, one for each constructor

application, let say ρ2 to ρ8, and so Freshexpl = {ρ2, . . . , ρ8}. We show them as
annotations in the program just in order to better explain the example:

partition y [] = ([] :: ρ2, [] :: ρ3) :: ρ4

partition y (x : xs) | x ≤ y = (x : ls :: ρ5, gs) :: ρ6

| x > y = (ls , x : gs :: ρ7) :: ρ8

where(ls , gs) = partition y xs

The type inference rules generate the following equations relative to these type
region variables: ρ2 = ρ5, ρ3 = ρ7, and ρ4 = ρ6 = ρ8, so the initial Rexpl in this
case is {ρ2, ρ3, ρ4}. After unification, the type of partition is Int → [Int]@ρ1 →
([Int]@ρ2, [Int]@ρ3)@ρ4, so Rin = {ρ1} and Rout = {ρ2, ρ3, ρ4}. Then, Rarg =
{ρ2, ρ3, ρ4}. Now we shall compare the type of the definition (augmented with
the variables of Rarg) and the type used in the recursive call, where the tuple
(ls , gs) is assumed to live in the region ρ9.

Definition: Int → [Int]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int]@ρ2, [Int]@ρ3)@ρ4

Rec. call: Int → [Int]@ρ1 → ρ2 → ρ3 → ρ9 → ([Int]@ρ2, [Int]@ρ3)@ρ9

We obtain the region substitution ϕ = [ρ1 7→ ρ1, ρ2 7→ ρ2, ρ3 7→ ρ3, ρ4 7→ ρ9].
As a consequence, the variable ρ9 is made explicit, so Rexpl = {ρ2, ρ3, ρ4, ρ9}.
The set Rarg does not change and hence the fixpoint has been computed. We
get Rself = {ρ9} and the program is annotated as follows:

partition :: Int → [Int]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int]@ρ2, [Int]@ρ3)@ρ4

partition y [] @ r2 r3 r4 = ([]@r2, []@r3)@r4

partition y (x : xs) @ r2 r3 r4 | x ≤ y = ((x : ls)@r2, gs)@r4

| x > y = (ls , (x : gs)@r3)@r4

where (ls , gs) = partition y xs @ r2 r3 self

Notice that the tuple resulting from the recursive call to partition is located in
the working region. Without region-polymorphic recursion this tuple would have
to be stored in the output region r4, requiring O(n) space in a caller region.

Another example is the dynamic programming approach to computing bi-
nomial coefficients by using the Pascal’s triangle. We start from the unit list
[1], which corresponds to the 0-th row of the triangle. If [x0, x1, . . . , xi−1, xi] are
the elements located on the i-th row, then the elements of the i + 1-th row are
given by the list [x0 +x1, x1 +x2, . . . , xi−1 +xi, xi]. The binomial coefficient

(

n

m

)

can be obtained from the m-th element in the n-th row of the Pascal’s triangle.
Function sumList , computes the i + 1-th row of the triangle from its i-th row:

sumList (x : []) = (x : [] :: ρ2) :: ρ3

sumList (x : xs) = (x + y : sumList xs) :: ρ4 where (y :) = xs

In the definition above we just show those region variables belonging to
Freshexpl . Let us assume that after unification the input list has type [Int]@ρ1. In
addition, the variables ρ2, ρ3 and ρ4 are unified, so Rexpl = {ρ2} and the inferred
type (without region parameters) for sumList is [Int]@ρ1 → [Int]@ρ2. Hence we
get Rin = {ρ1}, Rout = {ρ2} and Rarg = {ρ2}. We extend the signature of
sumList to [Int]@ρ1 → ρ2 → [Int]@ρ2.

Next we analyse the recursive call. Since the inferred type for xs is [Int]@ρ1

and the type of the recursive call’s result is [Int]@ρ2, the type for sumList in
this call is [Int]@ρ1 → [Int]@ρ2. By pairing with the type of sumList in the
definition, we get that the additional argument needed in the recursive call also
has type ρ2. Therefore, ρ2 is added to the set of explicit variables Rexpl . Since
it was already in this set, Rexpl stays the same as the one calculated previously
and hence Rarg also does, so the fixpoint has been reached. Finally we obtain
Rself = ∅ and the function is annotated as follows:

sumList :: [Int]@ρ1 → ρ2 → [Int]@ρ2

sumList (x : []) @ r = (x : ([] @ r))@ r
sumList (x : xs) @ r = (x + y : sumList xs @ r) @ r where (y :) = xs

Function pascal iterates over the initial list in order to get the desired row.
Below we show the region variables generated in constructor applications and in
non-recursive function applications, just after type unification:

pascal 0 = (1 : [] :: ρ1) :: ρ1

pascal n = (1 : sumList (pascal (n − 1))) :: ρ1

The type inferred for pascal is Int → [Int]@ρ1. Hence Rin = ∅, Rout = {ρ1}
and Rexpl = {ρ1}, which gives us an initial Rarg = {ρ1}. The type signature
for pascal changes accordingly to Int → ρ1 → [Int]@ρ1. Let us assume that the
result of the recursive call to pascal has type [Int]@ρ2. Therefore, the type of
this function in the recursive call is Int → ρ2 → [Int]@ρ2. Since ρ2 is now made
explicit, it is added to Rexpl , which now contains the region variables {ρ1, ρ2}.
However, Rarg stays the same and hence the fixpoint has been reached. Finally,
we get Rself = {ρ2} and the program is annotated as follows:

pascal :: Int → ρ1 → [Int]@ρ1

pascal 0 @ r = (1 : [] @ r)@ r
pascal n @ r = (1 : sumList (pascal (n − 1) @ self) @ r) @ r

The resulting list from the recursive call to pascal will be destroyed once the
calling function finishes. Hence a function call pascal n has a cost of O(n) in
space. Without region-polymorphic recursion the result of every recursive call
would be built in the output region r, which would imply O(n2) heap cost.

5 Related Work and Conclusions

The pioneer work on region inference is that of M. Tofte, J.-P. Talpin and their
colleagues on the MLKit compiler [14, 10] (in what follows, TT). Their language
is higher-order and they also support polymorphic recursion in region arguments.
The TT algorithm has two phases, respectively called S and R. The S-algorithm
just generates fresh region variables for values and introduces the lexical scope of
the regions by using a letregion construct. The R-algorithm is responsible for
assigning types to recursive functions. It deals with region-polymorphic recursion
and also computes a fixpoint. The total cost is in O(n4). The meaning of a typed
expression letregion ρ in e : µ is that region ρ does not occur free in type

µ, so it can be deallocated upon the evaluation of e. Our algorithm has some
resemblances with this part of the inference, in the sense that we decide to unify
with ρself all the region variables not occurring in the result type of a function.
They do not claim their algorithm to be optimal but in fact they create as many
regions as possible, trying to make local all the regions not needed in the final
value. One problem reported in [12] is that most of the regions inferred in the first
versions of the algorithm contained a single value so that region management
produced a big overhead at runtime. Later, they added a new analysis to collapse
all these regions into a single one local to the invocation (allocated in the stack).
So, having a single local region self per function invocation does not seem to us
to be a big drawback if function bodies are small enough. We believe that region-
polymorphic recursion has a much bigger impact in avoiding memory leaks than
multiplicity of local regions. So, we claim that the results of our algorithm are
comparable to those of TT for first-order programs.

A radical deviation from these approaches is [4] which introduces a type sys-
tem in which region life-times are not necessarily nested. The compiler annotates
the program with region variables and supports operations for allocation, releas-
ing, aliasing and renaming. A reference-counting analysis is used in order to
decide when a released region should be deallocated. The language is first-order.
The inference algorithm [6] can be defined as a global abstract interpretation
of the program by following the control flow of the functions in a backwards
direction. Although the authors do not give either asymptotic costs or actual
benchmarks, it can be deduced that this cost could grow more than quadrati-
cally with the program text size in the worst case, as a global fixpoint must be
computed and a region variable may disappear at each iteration. This lack of
modularity could make the approach unpractical for large programs.

Another approach is [3] in which type-safe primitives are defined for creat-
ing, accessing and destroying regions. These are not restricted to have nested
lifetimes. Programs are written and manually typed in a C-like language called
Cyclone, then translated to a variant of λ-calculus, and then type-checked. So,
the price of this flexibility is having explicit region control in the language.

The main virtue of our design is its simplicity. The previous works have no
restrictions on the placement of cells belonging to the same data structure. Also,
in the case of TT and its derivatives, they support higher-order functions. As a
consequence, the inference algorithms are more complex and costly. In our lan-
guage, regions also suffer from the nested lifetimes constraint, since both region
allocation and deallocation are bound to function calls. However, the destructive
pattern matching facility compensates for this, since it is possible to dispose of
a data structure without deallocating the whole region where it lives. Alloca-
tion and destruction are not necessarily nested, and our type system protects
the programmer against misuses of this feature. Since allocation is implicit, the
price of this flexibility is the explicit deallocation of cells.

In the near future we plan to extend Safe to support higher-order functions
and mutually recursive data structures. We expect high difficulties in other as-
pects of the language such as extending dangling pointers safety analyses or

memory bounds inference, but not so many to extend the region inference al-
gorithm presented here. It is still open whether we could achieve a cost better
than the O(n4) got by Tofte and Talpin.

References

1. A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: im-
proving region-based analysis of higher-order languages. In ACM SIGPLAN Con-

ference on Programming Languages Design and Implementation, PLDI’95, pages
174–185. ACM Press, 1995.

2. L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann
machines via region representation inference. In 23rd ACM Symposium on Prin-

ciples of Programming Languages, POPL’96, pages 171–183. ACM Press, 1996.
3. M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In 15th

European Symposium on Programming, ESOP 2006. LNCS, vol. 3924, pages 7–21.
Springer, 2006.

4. F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow sensitive
region-based memory management. In 3rd ACM SIGPLAN International Con-

ference on Principles and Practice of Declarative Programming, PPDP’01, pages
175–186. ACM Press, 2001.

5. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In 30th ACM Symposium on Principles of Programming

Languages, POPL’03, pages 185–197. ACM Press, 2003.
6. H. Makholm. A language-independent framework for region inference. Ph.D thesis,

Univ. of Copenhagen, Dep. of Computer Science, Denmark, 2003.
7. M. Montenegro, R. Peña, and C. Segura. A type system for safe memory man-

agement and its proof of correctness. In 10th International ACM SIGPLAN Sym-

posium on Principles and Practice of Declarative Programming, PPDP’08, pages
152–162, 2008.

8. M. Montenegro, R. Peña, and C. Segura. An inference algorithm for guarantee-
ing safe destruction. In 18th International Symposium on Logic-Based Program

Synthesis and Transformation, LOPSTR’08, Lecture Notes in Computer Science

5438, pages 135–151, 2009.
9. M. Montenegro, R. Peña, and C. Segura. A simple region inference algorithm

for a first-order functional language (extended version). Technical report, SIC-
5-09. Dpto. de Sist. Informáticos y Computación. UCM, 2009. Available at
http://federwin.sip.ucm.es/sic/investigacion/publicaciones/informes-tecnicos/.

10. M. Tofte and L. Birkedal. A region inference algorithm. ACM Transactions on

Programming Languages and Systems, 20(4):724–767, 1998.
11. M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, and P. Sestoft.

Programming with regions in the MLKit (revised for version 4.3.0). Technical
report, IT University of Copenhagen, Denmark, 2006.

12. M. Tofte and N. Hallenberg. Region-Based Memory Management in Perspective.
In Invited talk Space 2001 Work., London, pages 1–8. Imperial College, Jan. 2001.

13. M. Tofte and J.-P. Talpin. Implementing the call-by-value lambda-calculus us-
ing a stack of regions. In 21st ACM Symposium on Principles of Programming

Languages, POPL’94, pages 188–201, Jan. 1994.
14. M. Tofte and J.-P. Talpin. Region-based memory management. Information and

Computation, 132(2):109–176, 1997.

