
Automatic Falsification of Java Assertions

Rafael Caballero Manuel Montenegro

Universidad Complutense, Facultad de Informática
Madrid, Spain

email: {rafacr,mmontene}@ucm.es

Herbert Kuchen Vincent von Hof

University of Münster, Institute of Information Systems
Münster, Germany

email: {kuchen,vincent.von.hof}@wi.uni-muenster.de

Abstract—We present an approach for the static detection of
possible assertion violations in Java. The main idea is to use an
existing test-case generator in combination with a new program
transformation. A possible assertion violation is indicated by a
generated specific test case. In addition, this test case specifies
the path in the program leading to the assertion violation. This
heuristic approach is a compromise between the usual but too
late detection of an assertion violation at runtime and an often
too expensive complete analysis based on a model checker.

Keywords–assertion; automatic test-case generation; program
transformation.

I. INTRODUCTION

Assertions are part of the Java language [1] and have
become part of the routine employed by Java programmers to
detect and correct bugs. They can be used e.g. for specifying
pre- and postconditions of methods or invariants of loops.
If an assertion is violated, this is detected at runtime and a
corresponding exception is thrown. A drawback is that it may
take a long time, until assertion violations occurring in rarely
executed code show up. Possibly, this can happen when the
code has already been deployed and assertions are turned off
[2, chapter 6]. Thus, the error can be difficult to detect and its
correction become very costly.

Callahan et al. [3] proposed the use of model checkers
for the automated generation of test cases. This model-based
testing approach has been a fruitful area of research in the last
years [4], and encompasses the creation of an abstract model
which is used to automatically create test cases. However,
using model checkers often requires more effort and expertise
than the simple introduction of assertions. Additionally, the
process of finding the assertion violation can still become a
hard, time-consuming task due to the typically huge search
space.

Our idea is to find some compromise between the two
mentioned approaches and use a test-case generator [5], [6]
to obtain test-cases for the considered code. If such a tool
generates a test-case aiming at producing an assertion vi-
olation, this indicates that such an assertion violation can
actually happen and that there is some corresponding bug in
the program. Test-case generators do not explore the complete
space of all possible computations as done by a model-checker.
Typically, they apply a heuristic based on a combination of
random search and symbolic evaluation in order to generate
a set of test cases which cover the control- and/or data-
flow of a program systematically [5], [7], [8], [9], [10], [11].
This approach cannot guarantee to find all possible assertion

violations. Nevertheless, it works quite well and it is helpful
in practice.

As mentioned before, a violation of a Java assertion causes
an exception to be thrown. Unfortunately, test-case generators
often have difficulties to cover exception handling well. Thus,
our approach does not just rely on an existing test-case
generator. Before using it, we apply a program transformation,
which replaces assertions and the corresponding exception
handling by “ordinary control structures”. As we will show,
this improves the coverage rate of test-case generators signifi-
cantly. In addition, it allows test-case generators such as jPET
[6] to be used, which do not support assertions.

Roughly, the approach presented here introduces new
boolean methods representing the paths leading to possible
assertion violations. In the case of methods including directly
assertions, the body of the new method is a copy of the method
where the assertion occurs, but replacing the assertion assert
e by return e. This converts assertion violations into first-
class citizens from the point of view of automated test-case
generators, which usually focus on methods and their results.

The new return statements often produce fragments of
unreachable code in the body of the new methods. These
fragments can be automatically removed, thus simplifying the
task of the test-case generator, and achieving a simple form
of static slicing, as computations which are not relevant for
assertions are not taken into account. This transformation is
simpler than the alternative approach presented in [12], where
every method is replaced by another one delivering a pair of
the original result and a value indicating whether an assertion
violation occurred. Propagating such violation information is
technically a bit clumsy and the mentioned slicing is not
obtained.

The paper is structured as follows. In Section II, we explain
our transformation based on a running example, while in
Section III, we present our transformation in detail. Section
IV contains some experimental results. Finally, in Section V
we summarize and point out future work.

II. RUNNING EXAMPLE

In order to get an overview of our transformation, let us
consider the classes shown in Figure 1, which contain an
implementation of the insertion-sort algorithm. An instance
of InsertionSort contains a reference to the array to
be sorted. This reference is initialised within the constructor,
which previously checks, whether it is given a non-null refer-
ence. The insert method receives a number n and performs
an ordered insertion of the element x[n] into the sub-array

public class InsertionSort {
private int[] x;

public InsertionSort(int[] x) {
assert x != null;
this.x = x; }

public void insert(int n) {
assert isSorted(n-1);
assert n <= x.length;
int i = n;
while (i >= 1 && x[i-1] > x[i]) {

int e = x[i-1];
x[i-1] = x[i];
x[i] = e;

}
assert isSorted(n); }

public void insertSort() {
for (int i = 1; i < x.length; i++)

insert(i); }

public boolean isSorted(int n) {
for (int i = 1; i < n; i++)

if (x[i-1] > x[i]) return false;
return true; }

}

public class Check {
public static void check(int []x) {

InsertionSort is = new InsertionSort(x);
is.insertSort(); }

}

Figure 1. Running example “insert sort”

x[0..n-1], which is assumed to be sorted. That is why we
include an assertion that calls the method isSorted, which
checks whether the array x is sorted up to the position given
as parameter, disregarding the elements after that position.
After the insertion, we check again (via another assert)
that the resulting sub-array x[0..n] is sorted. Notice that
there is a mistake in this method, as variable i should be
decremented at the end of each iteration. Otherwise, the loop
would always terminate either before the first iteration (if
x[n-1] <= x[n]) or before the second one (when x[n-1]
> x[n] holds before the first iteration, but not afterwards).

The insertionSort method calls insert as many
times as the length of the array indicates, successively per-
forming ordered insertions from the first element to the last
one. Finally, class Check represents any arbitrary application
class that employs an object of class InsertionSort. It
is clear that some possible inputs of Check.check can
trigger an assertion exception, exposing the existence of an
error in the code. Our goal is to find such input values
employing an automated test-case generator. In particular, it
would be great, if the test-case generator could pay special
attention to the assertions in the code, since any input data
producing an assertion falsification reveals a code bug. This
reduces the problem of checking the test-suite (known as the
oracle problem [13]), as we can focus first on those test-cases
producing assertion violations.

Input: A Java program P
Output: A Java program P0 for the testing assertions

P0 = P
for all method C.M ∈ P containing assertions do

Create a boolean copy C.M’ of C.M in P0

Let n be the number of assertions in C.M
Let aj ≡ assert ej be these assertions, where 1 ≤
j ≤ n, represents the textual order of occurrence of the
assertion in C.M
for i = 1 . . . n do

Create in P0 a new method C.M0
i as copy of C.M’

except for:
Assertion ai is replaced by return ei
Every aj ≡ assert ej , j < i is replaced by
boolean vj = ej , with vj a new variable name
Every assertion aj with j > i is removed.

end for
Remove C.M’

end for

Figure 2. Algorithm 1: Level 0, methods including assertions

However, some test-case generators, such as jPET [6] or
Muggl [11], do not support assertions. Others, like EvoSuite
[5] support assertions but have some problems when the
assertions are located in a different class. In our running
example, the three automated test-case generators find a test-
case corresponding to the case of null array input, but fail
to generate any test-case exposing the error in the code of
method insert. In the next section, we present the program
transformation that will change this situation.

III. TRANSFORMATION

Given a Java program including assertions, we introduce
new methods that return the value false whenever the
assertion property does not hold. Each method represents a
certain path to an assertion violation.

In the rest of the section, given a method C.M we use
the expression create a boolean copy C.M’ of method C.M to
indicate the creation a new method M’ in class C such that
C.M’ is a copy of C.M except for:

1) The return type of C.M’, which is boolean,
2) Statements return e; in C.M, which are replaced

by return true; in C.M’.
3) If the type of C.M was void, then return true;

is added as last statement of C.M’.
4) If C.M is a constructor, then add the access modifier

static to the declaration of C.M’.

First, we produce the methods that correspond directly to
methods containing assertions.

A. Methods including assertions
The first algorithm creates a transformed program P0 as a

copy of the initial P with some additional methods (see Figure
2).

Thus, a method C.M containing n assertions gives raise
to n new methods C.M0

1, . . . , C.M0
n, all of them with return

type boolean and each one checking a particular assertion.

The auxiliary method C.M’ is only introduced to facilitate the
generation of the new methods, and is removed at the end.

For instance, in the case of the method insert of our
running example, the C.M’ method is obtained by replacing the
return type by boolean and adding a new statement return
true; at the end:

public boolean insertPrime(int n) {
// same body as insert
....
return true; }

The method insert contains three assertions. Hence n =
3, and three new methods are included in the same class. The
method associated to the first assertion is:

public boolean insert1(int n) {
return isSorted(n-1);// assertion
int i = n;
// code of the while loop in insert
....
return true; }

Since the first statement is a return, any Java optimizer
will prune the rest of the code, as it is unreachable, compiling
instead:

public boolean insert1(int n) {
return isSorted(n-1); }

This is one of the main advantages of our approach: the
new methods are often much smaller than the original ones
and thus, the test-cases are obtained more easily. With respect
to insert_2, we obtain:

public boolean insert_2(int n) {
boolean _unused_1 = isSorted(n-1);
return n <= x.length; }

Although we are interested only in the second assertion of
insert, we still evaluate the condition of the first assertion,
since it may involve side effects that may affect the result of the
second one. The code of insert_3, the method associated
to the last assertion, can be found in Figure 3.

It is worth observing that the constructors can be consid-
ered as any other method (except for the introduction of the
static modifier), and no special treatment is needed. This
is an important difference with respect to [12], where a more
complicated treatment of constructors is necessary.

After this initial transformation, we can use our test-
case generator to look for values v1, . . . , vk such that
C.M0

i (v1, . . . , vk) produces the value false, indicating that
C.M(v1, . . . , vk) triggers assertion ai. However, we would like
to go one step beyond and consider if such a call can actually
occur in our application. This is the purpose of the algorithm
in the following subsection.

B. Indirect access to assertions
We say that the level of indirection of a method C.M is

zero, if the method contains an assertion (case considered in
the previous section), and l > 0, when it contains a call to

method C’.M’, and C’.M’ has a level of indirection l− 1 ≥ 0.
The idea behind this definition is that methods with levels
greater than zero can end triggering an assertion and must be
transformed as well. If a method does not contain an assertion
and it does not contain method calls (possibly indirectly)
leading to assertions, the level of indirection is undefined.

Notice that the same method can have different lev-
els of indirection related to different method calls. For
instance, method Check.check (Figure 1) has an indi-
rection level of 1 with respect to the call of constructor
InsertionSort that contains an assertion, but also level
2 with respect to the call is.insertSort, as method
InsertionSort.insertSort has indirection level 1. A
maximal level of indirection is assumed as an input parameter
of the following algorithm. It can either be obtained previously
by the tool analyzing the code of considered as an input
parameter fixed by the user to limit the number of methods
generated in case of large applications.

Our transformation creates new methods associated to each
level of indirection. We assume that it is possible to distinguish
the auxiliary methods created when processing a method at
a certain level of indirection. For instance, all the auxiliary
methods C.M0

i created by Algorithm 2 correspond to the
transformation at level 0 of their source method C.M.

Now, we apply the transformation to the
insertionSort method, which does not contain any
explicit assertion, but it may indirectly trigger an assertion
violation in insert. The call to insert occurs in a loop,
and hence first the loop is unfolded. Let us suppose that the
parameter Unfold takes value 2.

public void insertSortPrime() {
int i=1;
if (i<x.length) {

insert(i);
i++;
if (i<x.length)

insert(i); } }

In the algorithm, this means that p = 2 (two calls to insert)
and q = 3 (three versions of insert have been already
generated). Thus, we obtain a family of 2 × 3 = 6 methods
insertSort_i_j, with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. The
method insertSort_i_j checks whether the condition of
the j-th assertion executed within the i-th call of insert is
satisfied.

For instance, insertSort_1_3 in Figure 3 cor-
responds to the possibility that the first insert in
insertSortPrime falsifies the post-condition of insert
(its third assertion).

The transformation can also be applied to constructors, like
InsertionSort_1 prefix. Therefore, when transforming a
method that involves the instance creations of InsertSort,
we have to replace the new InsertSort(...) expres-
sions by calls to this static method in order to check the validity
of the assertions contained in the constructor. This is the case
of Check.check_1_1 in Figure 3.

The same figure includes a family of methods
check_2_i_j that reports the assertions being violated
by the indirect through the insertSort method. Each

.... // original methods

public static boolean
InsertionSort_1(int[] x) {
return x != null; }

public boolean insert_1(int n) {
return isSorted(n-1); }

public boolean insert_2(int n) {
boolean _unused_1 = isSorted(n-1);
return n <= x.length; }

public boolean insert_3(int n) {
boolean _unused_1 = isSorted(n-1);
boolean _unused_2 = n <= x.length;
int i = n;
while (i >= 1 && x[i-1] > x[i]) {

int e = x[i-1];
x[i-1] = x[i];
x[i] = e;

}
return isSorted(n); }

public boolean insertSort_1_1() {
int i = 1;
if (i < x.length)

return insert_1(i);
return true;}

public boolean insertSort_1_2() {
int i = 1;
if (i < x.length)

return insert_2(i);
return true; }

public boolean insertSort_1_3() {
int i = 1;
if (!(i < x.length))

return insert_3(i);
return true;}

public boolean insertSort_2_1() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)
return insert_1(i);}

return true;}

public boolean insertSort_2_2() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)
return insert_2(i);}

return true; }

public boolean insertSort_2_3() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)

return insert_3(i);}
return true;}

public class Check {
public static boolean check_1_1(int []x) {
return InsertionSort.InsertionSort_1(x);}

public static boolean check_2_1_1(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_1(); }

public static boolean check_2_1_2(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_2();}

public static boolean check_2_1_3(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_3();}

public static boolean check_2_2_1(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_1();}

public static boolean check_2_2_2(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_2();}

public static boolean check_2_2_3(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_3();}}

Figure 3. Running example after the transformation

of these methods subsequently calls the corresponding
insertSort_i_j variant.

After the transformation and in order to check, whether an
assertion may be violated at runtime, we just have to invoke
a test-case generator on one of these generated methods and
look for those cases that yield false as a result. For instance,
when given the method check_2_2_3), jPET generates a

test case (an instance of InsertionSort containing the
array [−8,−9,−10]) which violates the third assertion exe-
cuted by the second call to insert. Analogously, EvoSuite
and Muggl also find an assertion violation associated with
check_2_2_3. Observe that the name of the method spec-
ifies a very detailed scenario: it indicates that with the given
input array, check causes an assertion falsification in its sec-

Input:
• Program P0: output of Algorithm 1
• Level: maximum level of indirection allowed (greater

than 0).
• Unfold: A positive number indicating the number of

iterations to unfold the loops in the body methods.
Output: PT : A Java program ready to be used to obtain the

test-cases falsifying the properties indicated in the asser-
tions.

PT = P 0

Mark PT methods containing assertions with level 0.
for l=1 . . . level do

for all method D.N in PT containing calls to methods
marked as level l − 1 do

Mark D.N as method of level l.
Create a boolean copy D.N’ of D.N in PT

if any call to a l − 1 method in D.N’ occurs in a loop
statement then

Unfold the loop in the copy D.N’ the number of
times specified by the algorithm input parameter
unfold.

end if
for all call T x = C.M(...); occurring in method
D.N’, with C.M marked as level l − 1 do

Let p be the number of calls to method C.M in D.N’
Let C.Ml−1

s1 , . . . , C.Ml−1
sq be the q auxiliary methods

created at level l − 1 for C.M
for i=1 . . . p, j = 1 . . . q do

Create a copy D.Nl
i,sj

of D.N’.
Replace in D.Nl

i,sj
the statement T x = C.M; by

return C.Ml−1
s1 ;.

end for
Delete D.N’

end for
end for

end for

Figure 4. Algorithm 2: Level of indirection greater than 0

ond call is.insertSort(); (first number 2). Moreover, it
also shows that insertSort causes the assertion falsification
in the second iteration of the loop (this is represented by the
second number 2 in the name), and the falsification occurs in
the last assertion of insert (final number 3).

By including the decrement instruction i--; at the end
of the loop within insert (as explained above), no assertion
violations are found.

IV. EXPERIMENTAL RESULTS

To observe the effects of the transformation, we have
utilized experimentation. In addition to the running example
shown above, we have investigated several additional examples
[14], ranging from the implementation of the binary tree
data structure, Kruskal’s algorithm, to Mergesort. Finally, we
used two examples representing a blood donation scenario
BloodDonor and a larger application, namely a library system,
where users can lend and return books. In the next step, we
have evaluated the examples with different test-case generators
with and without our program transformation.

TABLE I. DETECTING ASSERTION VIOLATIONS

EvoSuite jPet
Example Total P PT P PT

InsertionSort 4 3 4 0 4
CircleRadius 2 2 2 0 2
BloodDonor 2 1 2 0 2
InsertTree 2 1 2 0 2
Kruskal 1 1 1 0 1
Library 5 0 5 0 5
MergeSort 2 1 1 0 1
Numeric 2 2 2 0 2

We have used two test-case generators for exposing pos-
sible assertion violations. First of all, we can note that this
approach works. Moreover, we can note that our program
transformation typically improves the detection rate, as can
be seen in Table I. In this table, column Total displays for
each example the number of possible assertion violations that
can be raised for the method. Column P shows the number of
detected assertion violations using the test-case generator (0 in
the case of JPet because it does not handle assertions) and the
original program and column PT displays them after applying
the transformation. For instance in our running example four
assertion violations can be raised. Without the transformation,
three assertion violations are found by EvoSuite. With the
transformation, EvoSuite correctly detects all four assertion
violations. An improvement in the assertion violation detection
rate is observed for all examples. jPET does not consider
assertions in its current state, but can detect them after our
program transformation.

Thus both tools that do and do not support assertions
benefit from our program transformation. The runtime of our
analysis can range from a few seconds to several minutes.

V. CONCLUSION

Assertions constitute a useful, widely-used feature of the
Java language. They are widely used for detecting bugs in the
testing-phase. However, only those assertion violations actually
occurring at runtime can be detected.

Automated test-case generators can be situated somehow
in the middle of the very light-weight technique of run-time
checking Java assertions and the formal methods such as
model checking. They do not require the definition of abstract
models, but aim to cover as many executions as possible of the
program, yielding test-case suites that can be used to look for
possible errors. The main difficulty is to check the generated
test-suites looking for test-cases producing erroneous results.
This is known as the oracle problem [13]. In order to solve
this problem, [15] proposes including the assertions as part
of the code and use automated test-case generation to obtain
inputs that falsify the conditions. This approach was already
presented in [11] and has given rise to the so called assertion-
based software-testing technique.

In this paper, we have presented a proposal for transforming
a Java program including new boolean methods that help to
check the program assertions. Each of these methods returns
false, whenever its input parameters lead -directly or indirectly-
to a falsification of some assertion property. Moreover, the
name of the method contains a path to the assertion.

Some automated test-case generation tools do not consider
assertions. The presented transformation allows the user to

employ even such test-case generators to generate test-cases
exposing assertion violations. Moreover, we have seen that it
can also contribute to increase the completeness of the test-
cases obtained in some tools such as EvoSuite [5] that already
consider assertions. We also think that this proposal can be
useful during the development of new test-case generators
in order to include readily the possibility of dealing with
assertions. The advantage of our technique is that assertions
are replaced by standard code that can be analyzed using the
usual techniques.

It is worth observing that using our transformation, the test-
cases corresponding to assertions are easy to distinguish, since
they correspond to new auxiliary methods returning false.
Thus, it is possible to implement readily an automatic tool that
extracts from the test-suite the test-cases falsifying assertions.

The main limitations of the proposal are:

1) The necessity of unfolding the loop statements where
assertions are included. Since the unfolding is done
a fixed number of times, this can reduce the effective
covering of the test-cases.

2) The combinatorial explosion in the number of meth-
ods. We have seen in the description of the transfor-
mation that if a method contains n assertions and is
called m times by other methods, we need to generate
n auxiliary methods for the first one and n × m
auxiliary methods for the second one.

The unfolding (or ‘unrolling’) of the loops containing
methods using assertions is not a very severe restriction in
practice, because most automated test-case generators do the
same internally. Moreover, we have found that most errors
show up after just two iterations, like in the running example
of this paper. Anyway they can add more incompleteness to
the results.

The positive part of unfolding the loops is that errors found
are very precise. In our running example we can check that
all the methods leading to assertion violations require two
iterations of the loop. This points out the updating of variables
at the end of the loop as a possible cause of the bug, which
is indeed the case. To the best of our knowledge, no test-case
generator can provide such detailed information.

The combinatorial explosion in the number of auxiliary
methods can become an issue for large programs with many
assertions. We have found that processing each assertion
separately instead of all the assertions at the same time results
in a considerable speed-up. Anyway, it is worth observing that
the process is automatic and requires no user-interaction once
it has been started.

As future work, we plan to finish a prototype that automa-
tizes both the transformation and its connection with different
test-case generators. An important part of the prototype is the
decodification of the auxiliary method names once an assertion
falsification has been found, in order to show to the user a
detailed information about the source of the bug. We also
plan to extend the framework to the case of inheritance and
polymorphism. Our preliminary results in this sense indicate
that the same technique can be applied in the presence of
polymorphism with the creation of ‘dummy’ auxiliary methods
in the ancestor classes of the class hierarchy to ensure that the
method exists and can be used also in polymorphic contexts.

ACKNOWLEDGMENT

This work has been supported by the German Aca-
demic Exchange Service (DAAD, 2014 Competitive call
Ref. 57049954), the Spanish MINECO project CAVI-
ART (TIN2013-44742-C4-3-R), Madrid regional project N-
GREENS Software-CM (S2013/ICE-2731) and UCM grant
GR3/14-910502.

REFERENCES
[1] Oracle, “Programming With Assertions,”

http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.
html, retrieved: August, 2015.

[2] G. Travis, JDK 1.4 Tutorial. Manning Publications, 2002.
[3] J. Callahan, F. Schneider, and S. Easterbrook, Eds., Automated software

testing using model-checking, 1996, proceedings 2nd SPIN workshop.
[4] M. Shafique and Y. Labiche, “A systematic review of state-based

test tools,” Int. J. Softw. Tools Technol. Transf., vol. 17, no. 1,
Feb. 2015, pp. 59–76. [Online]. Available: http://dx.doi.org/10.1007/
s10009-013-0291-0

[5] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 416–419. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025179

[6] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gómez-Zamalloa, and
S. Gutierrez, “jPET: An automatic test-case generator for Java,” in 18th
Working Conference on Reverse Engineering, WCRE 2011, Limerick,
Ireland, October 17-20, 2011, 2011, pp. 441–442.

[7] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” in IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE,
2013, pp. 360–369.

[8] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, 2005, pp. 213–223. [Online].
Available: http://doi.acm.org/10.1145/1065010.1065036

[9] M. Gómez-Zamalloa, E. Albert, and G. Puebla, “Test case generation
for object-oriented imperative languages in CLP,” TPLP, vol. 10, no.
4-6, 2010, pp. 659–674. [Online]. Available: http://dx.doi.org/10.1017/
S1471068410000347

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[11] M. Ernsting, T. A. Majchrzak, and H. Kuchen, “Dynamic solution
of linear constraints for test case generation,” in Sixth International
Symposium on Theoretical Aspects of Software Engineering, TASE
2012, 4-6 July 2012, Beijing, China, 2012, pp. 271–274. [Online].
Available: http://dx.doi.org/10.1109/TASE.2012.39

[12] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof,
“Checking java assertions using automated test-case generation,” in
25th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2015), 2015, retrieved: August, 2015.
[Online]. Available: https://gpd.sip.ucm.es/rafa/papers/lopstr15.pdf

[13] E. Barr, M. Harman, P. McMinn, M. Shabaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Transactions on Software
Engineering, vol. PP, no. 99, 2014, pp. 1–1.

[14] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof, “Exam-
ples used,” https://github.com/wwu-ucm/valid-15-examples, retrieved:
August, 2015.

[15] B. Korel and A. M. Al-Yami, “Assertion-oriented automated test data
generation,” in Proceedings of the 18th International Conference on
Software Engineering, ser. ICSE ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 71–80.

