
Safety properties and memory bound analysis in a

functional language without a garbage collector

PhD Thesis

Author: Manuel Montenegro Montes

Advisors: Ricardo Peña Marí and Clara María Segura Díaz

Facultad de Informática

Universidad Complutense de Madrid

September 2011

2

Abstract

In most functional languages, memory management is delegated to the runtime system. There usually
exists a garbage collector in charge of determining, at runtime, which parts of the memory are no longer
needed and can be disposed of. The main advantage of this approach is that programmers are not
bothered about memory management issues. However, this purely implicit approach makes it difficult
to predict, at compile time, the lifetimes of the data structures at runtime. Other languages delegate the
task of memory management to the programmer. In this way, the lifetimes of data structures are known
at compile time. However, this is an error-prone approach, since the programmer might try to access
to memory areas which have been disposed of previously (dangling pointers), mainly due to unexpected
sharing between data structures.

Safe is a first-order functional language that provides a semiexplicit approach to memory manage-
ment by means of two mechanisms: regions (inferred by the compiler), and destructive pattern match-
ing (controlled by the programmer). In this way, we can do without a garbage collector to destroy the
data structures that are no longer used. As a consequence, the behaviour of programs (regarding mem-
ory usage) becomes more predictable, and eases the task of developing a static analysis to infer upper
bounds on the memory needs of a program.

The incorporation of explicit mechanisms for memory destruction implies the risk of accessing dan-
gling pointers. The first goal of this thesis is to develop a static analysis for guaranteeing the safety of
a program with regard to its memory accesses (specifically, the absence of dangling pointers). Once the
compiler has checked the presence of this property for a given program, our next goal is to formalize
this property as a certificate, so the latter can be automatically checked by the code receiver. Finally, we
will develop an abstract interpretation-based analysis for inferring upper bounds to the memory needs
of a program. Since the final aim of the Safe project is the certification of pointer-safety properties and
bounded memory execution, we have put emphasis on the formal correctness of each analysis.

3

4

Agradecimientos / Acknowledgements

En primer lugar, y como no podría ser de otra forma, me gustaría agradecer a mis directores, Ricardo
Peña, y Clara Segura, por su enorme esfuerzo e implicación en este trabajo, y por la gran cantidad de
cosas que he aprendido con ellos a lo largo de estos últimos seis años.

Thanks to the members of the Institute for Computing and Information Sciences of Radboud Univer-
sity Nijmegen, especially Marko van Eekelen, Olha Shkaravska, Alejandro Tamalet, and Rody Kersten,
for their warm hospitality during my visit to Nijmegen, for the fruitful work we started there, and for
the fruitful work that is (hopefully) still to come. Double ration of acknowledgements to Olha Shkar-
avska, because of her detailed comments on the first draft of this work.

También quiero dar gracias a mi hermana Estela, porque ya se está convirtiendo en la reprógrafa
oficial de mis trabajos (y el soporte oficial de mis neuras por entregarlos yo siempre a última hora), y a
David, por su ayuda para poder imprimir este último.

Gracias también a mis compañeros del despacho 220, que luego pasó a ser 219, por su grata com-
pañía durante todo este tiempo. También a los del despacho 220, que luego siguió siendo 220, por la
misma razón. Y a Gabi, y a Lidia, de nuevo, por la misma razón.

Por último, y no menos importante, gracias a mi familia, por estar siempre donde están, y a Ger,
Javi, Miguel, Roberto, Nacho, Juanan, e Iván por sus ánimos para inducirme a terminar este mamotreto
que ud. tiene en sus manos.

Las publicaciones asociadas a este trabajo han sido llevadas a cabo como parte de los proyectos
TIN2008-06622-C03-01 (FAST-STAMP, financiado por el Ministerio de Ciencia e Innovación), S2009/TIC-
1465 (PROMETIDOS, financiado por la Comunidad de Madrid), S-0505/TIC-0407 (PROMESAS, finan-
ciado por la Comunidad de Madrid), TIN2004-07943-C04 (SELF, financiado por el Ministerio de Ciencia
y Tecnología), y la beca FPU AP2006-02154, del Ministerio de Educación.

5

6

Contents

1 Introduction 11
1.1 Motivation . 11

1.1.1 Region-based memory management . 12

1.1.2 Explicit cell deallocation . 13

1.1.3 Safe’s approach to memory management . 14

1.2 Certification of safety properties . 15

1.3 Memory consumption analysis . 16

1.4 Goals and structure of the work . 17

1.4.1 Notation and basic assumptions . 19

2 Syntax and resource-aware semantics of Safe 21
2.1 Introduction . 21

2.2 Language concepts: Safe by example . 21

2.2.1 Region-based memory management in Safe . 23

2.2.2 Destructive pattern matching . 27

2.2.3 Runtime system implementation . 31

2.2.4 Full-Safe vs Core-Safe . 31

2.3 Syntax of Core-Safe . 33

2.4 Semantics of Safe . 34

2.4.1 Big-step semantics . 35

2.4.2 Small-step semantics . 39

2.5 Virtual machines . 41

2.5.1 SAFE-M2 abstract machine . 41

2.5.2 SVM imperative abstract machine . 43

2.6 Translating Core-Safe into SVM code . 45

2.7 Resource-aware semantics . 54

2.8 Correctness of the translation into SVM . 57

2.9 A global overview of the Safe certifying compiler . 69

2.10 Conclusions and related work . 71

3 Type system 75
3.1 Introduction . 75

3.2 Type system concepts . 75

3.3 Type expressions and environments . 79

3.4 Typing rules . 84

7

3.5 Case studies . 89

3.6 Correctness of the type system . 95

3.6.1 Preservation of region consistency . 96

3.6.2 Reachability and harmless semantics . 102

3.6.3 Correctness of the sharing analysis . 104

3.6.4 Preservation of closedness . 109

3.7 Towards the type inference of function definitions . 119

3.8 Conclusions and related work . 126

4 Region Inference 129

4.1 Introduction . 129

4.2 A high level view of the algorithm . 132

4.3 Region inference of data declarations . 133

4.4 Region inference of function definitions . 135

4.4.1 HM Inference . 135

4.4.2 Kernel of the algorithm . 139

4.4.3 Annotating function definitions with region variables 142

4.5 Correctness and optimality . 143

4.6 Case studies . 152

4.7 Conclusions and related work . 159

5 Safe types inference 161

5.1 Introduction . 161

5.2 Mark inference algorithm . 162

5.2.1 Inference rules for expressions . 162

5.2.2 Inference of function definitions . 164

5.2.3 Inference of a Core-Safe program . 167

5.3 Case studies . 167

5.4 Correctness, completeness, and efficiency . 173

5.4.1 Correctness . 173

5.4.2 Termination . 179

5.4.3 Completeness . 182

5.4.4 Efficiency . 192

5.5 Conclusions and related work . 192

6 Certified absence of dangling pointers 195

6.1 Introduction . 195

6.2 Preliminaries . 196

6.2.1 Rules regarding region deallocation . 198

6.2.2 Rules regarding explicit deallocation . 201

6.3 Certificate generation . 204

6.4 Case studies . 215

6.5 Conclusions and related work . 216

8

7 Memory consumption analysis 217
7.1 Introduction . 217
7.2 Function signatures . 218
7.3 Abstract interpretation . 224
7.4 Correctness of the abstract interpretation . 234
7.5 Memory consumption of recursive function definitions . 240

7.5.1 Preliminaries on fixed points in complete lattices . 241
7.5.2 Splitting Core-Safe sequences . 244
7.5.3 Algorithm for computing ∆0 . 245
7.5.4 Algorithm for computing µ0 . 251
7.5.5 Algorithm for computing σ0 . 257
7.5.6 Correctness in absence of admissibility conditions 261
7.5.7 Correctness in absence of parameter-decrease conditions. 262

7.6 Case studies . 263
7.7 Inference in presence of explicit destruction and polymorphic recursion 271
7.8 Conclusions and related work . 274

8 Conclusions and future work 277
8.1 Conclusions . 277
8.2 Future work . 278

A Type constraints solving by unification 283

B Correctness of the initial bounds 293
B.1 Before/after semantics with call tree counters . 293
B.2 Correctness of the initial ∆0 . 303
B.3 Correctness of the initial µ0 . 306
B.4 Correctness of the initial σ0 . 310

C Map of semantic definitions and type systems 317

Bibliography 318

9

10

Chapter 1

Introduction

This thesis describes the automatic analysis of pointer-safety properties and memory bounds for a first-
order functional language called Safe. This language has been developed in the last few years as a
research platform for analysing and formally certifying properties of programs, with regard to memory
usage. It was introduced for investigating the suitability of functional languages for programming small
devices and embedded systems with strict memory requirements. In this chapter we will motivate the
existence of Safe, and specify the goals of this thesis.

1.1 Motivation

Computer systems are not fully reliable. They just do what a programmer tells them to do, and pro-
grammers make mistakes. As software plays an increasingly relevant role on computer systems, its
reliability becomes a major concern, especially in those cases when economic damages or human losses
might arise as a consequence of a malfunction. The broad research area of formal methods deals with
the development of mathematically rigorous techniques for the specification of desirable properties of
programs, and their verification. Among the set of desirable properties of a program, the most decisive
ones are those related with its correctness, which ensures that a program does what the programmer
expects it to do. This class of properties is commonly known as functional properties.

Without regard to the correctness of the results of a program, there are some other desirable prop-
erties that are relevant to the safety of software systems. These are called non-functional properties. An
example is the fact that a program performs its task in a given amount of time, or that its memory needs
do not exceed a given limit. These two examples become part of a broader research field, whose name
is resource analysis. In this framework, a program is conceived as a resource consumer (resource may be
understood as time, memory, energy, etc.) and the aim is to compute an upper bound to the resources
being consumed by every possible execution of the program. In this work, we are particularly inter-
ested in the analysis of memory bounds. Memory consumption is specially relevant to several scenarios:
for instance, when programming embedded devices, it is necessary to make sure that the programs
running in these devices do not stop working because they try to use more memory than it is available.
It is also useful to know in advance how much memory would be needed by the program, in order to
reduce hardware and energy costs.

We believe that the choice of the programming paradigm plays a special role in the reliability of
software systems: the friendliest languages (from the programmer’s point of view) are those that in-
clude concepts from the problem to be solved, rather than those of the machine in which that problem

11

is solved. Declarative paradigms fall into this category, since they emphasize the specification of the com-
putations, instead of how these computations are carried out. Functional programming belongs to this
class of paradigms. Functional programs are based on the mathematical concept of a function, defined
as a set of equations. This paradigm abstracts the way in which these functions are evaluated. The main
advantage of pure functional programming is the absence of side effects, from which the property of
referential transparency follows: a function is defined exclusively by a correspondence between its input
and its output (in other words, the result of a function solely depends on its input parameters). This
implies that, in a pure functional setting, an expression is always evaluated to the same value, without
regard to the execution context where the evaluation takes place.

The absence of the notion of a state makes the task of reasoning about the functional properties of a
program easier. As a consequence, functional languages are, in general, better suited to several analyses,
because of this lack of state. However, the inference of memory bounds requires special attention. In
most functional programming languages, memory management is delegated to the runtime system,
which allocates memory as it is needed by the program, provided there is enough space available.
A garbage collector is in charge of determining, at runtime, which parts of the memory are no longer
needed, and can be safely disposed of. The main advantage of this approach is that programmers do
not bother about low-level details on memory management, but there are also some drawbacks. On
the one hand, the time delay introduced by garbage collection may prevent a program from providing
an answer in a required reaction time, which may be unacceptable in the context of real-time systems.
On the other hand, garbage collection makes it difficult to predict at compile time the lifetimes of data
structures, specially in those cases where the runtime system does not specify under which conditions
a garbage collection takes place. This does not necessarily prevent the development of a static analysis
for inferring memory bounds: a liveness analysis can be used to predict the part of the heap that may
still be accessed by a given program, whereas the total amount of allocated heap is not relevant, as dead
memory will be eventually reclaimed by a garbage collector. However, it is difficult to know the actual
allocated memory at a given execution time. This is specially inconvenient when several programs are
executed in the same device: if one of them runs out of memory, the remaining ones might not activate
their garbage collectors unless they also need more memory. In order to compute memory bounds for
functional programs, it is desirable to set out a memory management approach different from garbage
collection. In the next sections we shall explore some possibilities.

1.1.1 Region-based memory management

In region-based languages, each allocated object is created in a region. Regions are created and disposed
of in a stack-like fashion: the last region being created is the first one being destroyed. Allocation and
deallocation of regions take place in constant time. The compiler has to determine: (1) when regions
are created and destroyed, and (2) in which region objects must be created at runtime. The main im-
provement of region-based memory management on garbage collection approaches is that they bring
forward to compile-time the decision on when a given data structure will be created or destroyed.

Earlier works in this memory management technique were targeted towards imperative languages.
These works include that of Ruggieri and Murtagh [102], in which each region is associated with the
activation record of a procedure. Each region is created at the beginning of a function call and it is re-
moved when this function call finishes. This mechanism is improved in the seminal work of Tofte and
Talpin [115, 116], which provides a type-based approach to region inference in a functional language
(ML), including higher-order functions, and region-polymorphic recursion. This work have been im-

12

plemented in the MLKit Compiler [113]. Regions have also been applied to object-oriented languages
[28, 27]. Moreover, the Real Time Specification for Java [22] includes a model for providing memory
areas that are managed using regions, and are not subject to garbage collection.

In absence of garbage collection, region-based memory management is well-suited to the automatic
inference of memory bounds, since the allocation/deallocation of regions is determined at compile-
time, as well as the regions in which the different data structures are located. Regions are also time
efficient [17], since both allocation and deallocation take place in constant time. However, a major
disadvantage of regions is their strict nested discipline. Regions are created and destroyed in a LIFO
basis, which does not always correspond to the lifetimes of data structures. As described by Berger,
Zorn, and McKinley [17]:

Regions provide high-performance but force the programmer to retain all memory asso-
ciated with a region until the last object in the region dies [...]. We show that the performance
gains of regions (up to 44%) can come at the expense of excessive memory retention (up to
230%). More importantly, the inability to free individual objects within regions greatly com-
plicates the programming of server applications like Apache which rely on regions to avoid
resource leaks.

There exist many approaches for breaking this strict nested discipline of regions: region resetting [19],
dissociating region allocation/deallocation from its definition [2], annotating the program with prim-
itives for allocating/deallocating regions [54, 21], and linear regions [45], among others. These ap-
proaches require, to a greater or lesser extent, a deep knowledge about how regions are inferred by the
compiler, and some of them require help from the programmer in the form of annotations. Alterna-
tively, regions can be combined with garbage collection in order to reduce the impact of memory leaks
[114].

1.1.2 Explicit cell deallocation

Another alternative to garbage collectors, in contrast to the fully automatic approach of region-based
memory management, is to delegate the task of deallocating memory to the programmer. This approach
can be mainly found in some imperative languages (being C and C++ well-known examples of this),
but it is very rare in declarative languages. In presence of explicit deallocation, the compiler always
knows when data structures are allocated or deallocated at runtime, since this information is contained
within the source code. This makes the task of analysing memory bounds easier than in presence of
garbage collection.

However, explicit deallocation is an error-prone approach. The execution of a program may result
in abortion if it tries to access to those parts of memory which have been previously disposed of. These
parts of memory are commonly known as dangling pointers. These kind of accesses to dead memory may
arise as a consequence of unexpected sharing between the different data structures. A program is said
to be pointer-safe if dead memory is never accessed during its execution. Moreover, explicit deallocation-
based approaches are not exempt from memory leaks (i.e. unused memory that is not released by the
program), since the programmer may forget to release the data structures involved in the program.

There exist several type-based techniques for avoiding dangling pointers in a functional setting.
In [57] Hofmann describes LFPL, a linearly-typed [118] functional language that allows the in-place
modification of heap-allocated data structures. In this language, the positions of the heap are made
explicit in the program. This approach is refined in [10, 11], by making a distinction between three

13

different usage aspects. This scheme, while still being safe, allows more pointer-safe programs than its
predecessor.

In the context of imperative languages, separation logic [100] provides an extension of Hoare logic,
which allows specifying properties about programs which manage shared mutable data structures.
These ideas have been applied to Space Invader [24], which uses abstract interpretation-based tech-
niques for proving assertions on separation logic. A combination of separation logic with the work on
LFPL is developed by Konečný in [69, 67], which distinguishes different layers in the data structures,
and infers separation assertions between layers.

All these systems can prove the absence of dangling pointers, but they cannot prove their presence.
This means that there may be pointer-safe programs being rejected by the compiler, since the decision
problem of determining whether a pointer is dangling or not is undecidable. Current analyses can only
compute an approximation of this property. In case a pointer-safe program is (wrongly) considered
unsafe by a static analysis, the corresponding implementation may proceed in two ways: either it warns
the programmer about a potential dangling pointer, but allows the execution of the program, or it aborts
the generation of the object code, so ill-typed programs cannot be executed. In the first case, the pointer-
safety property of the program is no longer guaranteed. The second possibility, which makes more
sense in the context of safety-critical systems, the programmer is forced to modify his/her program
in order to remove those deallocations that make the program be rejected by the analysis. This may
result in memory leaks. Nevertheless, and as in the case of region-based memory management, explicit
destruction can be combined with garbage collection-related approaches.

1.1.3 Safe’s approach to memory management

In those scenarios where pointer-safety is a must, both of the mechanisms shown in previous sections
are able to infer an approximation of this property. This approximation is done in such a way that
pointer safety is guaranteed, although some pointer-safe programs are rejected. Over-approximation is
inherent to the inference of undecidable properties. In the context of pointer-safety, over-approximation
in data structure lifetimes may lead to memory leaks.

Safe’s memory management is a combination of region-based memory management and explicit
deallocation via destructive pattern matching (in the style of Hofmann and Jost’s LF language [58]) .
Pointer-safety is guaranteed by means of a type system. The problem of over-approximating this prop-
erty is still insurmountable, but the combination of these mechanisms can alleviate its consequences.
Explicit deallocation provides a way to selectively destroy data structures inside a region, without hav-
ing to wait the whole region to be deallocated. In those cases where the compiler forbids the explicit
deallocation of some data structure, region-based memory management guarantees that the memory
occupied by this data structure will be eventually reclaimed when the deallocation of the corresponding
region takes place. As a consequence, each approach provides an escape mechanism to the limitations
of the other.

Given the above, we say that Safe provides a semi-explicit approach to memory management, since it
features implicit (i.e. automatically inferred) regions, and explicit deallocation. A drawback of this ap-
proach is that the programmer needs some understanding on how regions are created and destroyed, in
order to be able to judge the need for explicit deallocation in his/her program. In Safe this is alleviated
by defining a model of region-based memory management which is simpler than the original system
of Tofte and Talpin [116]. There exists a single region per function call, so the programmer only has to
think whether a given data structure is local to that function call.

14

A major advantage of combining regions with explicit deallocation is that a garbage collector is not
needed. As a consequence, the lifetime of data structures is completely determined at compile-time1,
so Safe programs are amenable to analyses on memory consumption.

1.2 Certification of safety properties

Certifying program properties consists in providing mathematical evidence about them. In a Proof
Carrying Code (PCC) environment, these proofs should be mechanically checked by an appropriate tool.
The research line of PCC started with the seminal work of Necula [88]. The PCC paradigm aims to
create an infrastructure in which programs are associated with formal proofs guaranteeing the presence
of some desirable properties. These formal proofs make up a certificate. The code producer generates
both the compiled program and its certificate, and the code consumer has to check that the certificate
is consistent with the program being supplied, and that the proofs contained within the certificate are
correct. The certificate checking is done in an automatic way, and usually with the help of a proof
assistant, such as Isabelle/HOL [93].

From the code producer’s point-of-view, there are several approaches to the certificate generation.
In the standard PCC approach, the properties are determined and certified at the object-code level. In
those cases where the properties being certified are obtained as a result of a static analysis, the latter
would have to be carried out at the object-code level. Performing static analysis on object code usu-
ally involves a loss of accuracy in the property being determined, since part of the information of the
source code is lost when the latter is translated to lower-level code. Another possibility involves deter-
mining the certified properties at the source code level, and then generating the certificate at that level.
Then, both the code and the certificate are translated into their low-level counterparts, and sent to the
code consumer. The main drawback of having low-level certificates is that it requires a huge effort for
formalizing the invariants and properties of the elements that take part in the runtime system (stack
frames, program counters, a.o.), in contrast to the high-level certificates, whose properties are proved
with respect to the higher-level language semantics, much simpler. Moreover, low-level certificates are
of considerable size, since they include the proofs of these additional properties and invariants, and this
results in longer checking times.

In Safe, certificates are generated at the source-code level, and they are sent, together with the source
code, to the code consumer. The latter checks the validity of the certificate, and then performs the
translation of the source code into its lower-level counterpart. This translation is certified [39, 38], so it
guarantees the preservation of the properties being certified, when translating from higher-level code
to low-level code. A notable advantage of this approach is that the translation has to be certified only
once by the code consumer. Once done, the certified compiler is valid for every program. This has the
additional advantage that certificates are of shorter size, since they only include the program-specific
proofs. This comes at the cost of supplying the source code to the consumer, which might not be an
option in some PCC scenarios.

Among the first publications devoted to certifying compilers we have that of [89, 91, 30], in which
the authors develop a certifying compiler for a subset of Java bytecode. The MRG (Mobile Resource
Guarantees) project [103] aims at the generation of mobile code with a certificate proving bounded heap
memory consumption. Certificates are generated at the level of a Java bytecode-alike language called
Grail [9]. More recently, the Mobius (Mobility, Ubiquity, and Security) project [14] aims to extend the PCC

1The lifetime of a data structure is determined by both the programmer (when using explicit deallocation), and the compiler
(when assigning regions to data structures).

15

paradigm to more general scenarios, such as distributed and concurrent systems, resource analysis,
security attacks, etc. It is targeted toward mobile devices satisfying the MIDP (Mobile Information Device
Profile) specification of Java ME.

1.3 Memory consumption analysis

Although relatively new, the field of resource analysis has gained considerable attention in the last
years, mainly due to the application of mathematical techniques (such as linear programming, or re-
currence solving) to programming languages. In particular, the inference of memory bounds is a very
complex task that involves several auxiliary analyses, each one a challenge by itself. The first results
on memory consumption analysis were targeted towards the functional programming paradigm. The
techniques developed were subsequently adapted to mainstream languages, such as Java or C++.

Hughes and Pareto introduce in [61] a first-order functional language with a type and effect system
guaranteeing termination and execution in bounded space. This system is a combination of Tofte and
Talpin’s approach to regions with sized types [62, 96].

The first fully automatic way to infer closed-form memory bounds is due to Hofmann and Jost [58].
Their analysis, based on a type system with resource annotations, can infer linear heap memory bounds
on first-order functional programs with explicit deallocation. These techniques have been applied to
subsets of imperative languages, such as Java [59] (without type inference), and C [48] (for computing
worst-case execution time). The annotated type system also serves as a basis for a stack consumption
analysis due to Campbell [25, 26]. Hofmann and Jost’s approach is extended in [64, 63] to higher-order
programs. The latter work provides a general framework that can accommodate different notions of
cost. More recently, Hoffmann and Hofmann have extended the initial work of [58] to polynomial
memory bounds [56, 55].

The classical approach to resource analysis, due to Wegbreit [119] involves the generation of a recur-
rence relation from the program being analysed, and, in a second phase, the computation of a closed-
form expression (without recursion) equivalent to that recurrence relation. Vasconcelos and Hammond
pursue this approach in [117], which is fully automatic in the generation of recurrence equations, but
requires the use of an external solver for obtaining a closed form. The COSTA System [5] follows a
similar approach, but it provides its own recurrence relation solver, PUBS [4], which can handle mul-
tivariate, non-deterministic recurrence relations. COSTA is an abstract interpretation-based analyser
which works at the level of Java bytecode, and supports several notions of cost, such as the number of
bytecode instructions executed, heap consumption, and number of calls to a particular method. Since
memory management in Java is based on garbage collection, their approach to memory consumption
is parametric on the behaviour of the garbage collector [7]. The bounds computed by this system go
beyond linear expressions; it can compute polynomial, logarithmic, and exponential bounds.

Although not directly aimed at memory bounds, the SPEED project [49] computes non-linear sym-
bolic bounds by combining techniques such as loop transformations, counter instrumentation, and in-
variant generation.

The problem of inferring memory bounds is closely related to the inference of size relations between
data structures. The seminal work on type-based sizes is the above mentioned of Hughes, Pareto, and
Sabry [62], which is restricted to type checking. The problem of inference is addressed by Chin and
Khoo [29]. Another approach involves using abstract interpretation-based techniques on the domain of
convex polyhedra, as done by Benoy and King [16]. Abstract interpretation is also applied in [108] to

16

the approximation of the height2 of data structures. All the techniques described so far are restricted
to infer linear size relations. The work of Shkaravska, van Eekelen and van Kesteren [105] is able
to infer polynomial size relations. It provides a type system, in which checking is decidable under
certain syntactic conditions. Type inference is performed by a combination of testing and polynomial
interpolation-based techniques. More recently, these techniques have been applied to the computation
of polynomial loop-bound functions for Java programs [106].

1.4 Goals and structure of the work

When considered as a whole, the Safe project aims to study the appropriateness of functional languages
to devices with strict memory requirements. The goals of this thesis are intended to get closer to this
general objective. These goals are the following:

1. Develop an efficient, fully automatic, type-based, static analysis for ensuring pointer safety.

Given the memory model of Safe, informally explained in Section 1.1.3, the analysis must accom-
modate region-based memory management and explicit destruction. This analysis will be based
on a type system, which will be proven correct with respect to the operational semantics of the
language.

With regard to type inference, we will consider regions and explicit destruction separately:

(a) A region inference algorithm will annotate the source program with region variables, in such
a way that the resulting program is well-typed w.r.t. the above mentioned type system. This
annotation process will be done in an optimal way, in the sense that every data structure will
be placed in the region with the shortest lifetime that does not compromise the pointer safety
of this data structure. The algorithm will support polymorphic-recursive functions, and will
be proved correct with respect to the type system.

(b) A mark inference algorithm will ensure that the explicit destruction specified by the pro-
grammer does not generate dangling pointers at runtime. In this case, the sharing relations
between the different data structures play a fundamental role. The approximation of these
relations given by an already existing sharing analysis will serve as a basis for the inference
of safe destruction. The inference algorithm will also be proven correct with respect to the
type system.

2. Certify pointer-safety in an automatic way.

Assuming that a Safe program is well-typed with regard to the type system described above, we
will describe how the compiler generates a certificate that can be mechanically checked by the
Isabelle proof assistant. This certificate proves the pointer-safety property of the program being
compiled. The process of certificate generation can be split into two tasks:

(a) The first task involves proving that well-typed programs do not access dangling pointers.
This tasks involves a formalization of the type system’s correctness in a proof assistant. The
corresponding theorems are generic, in the sense that they are proved once for all, and reused
in every certificate.

2The height of a data structure is the longest chain of pointers that can be followed from a given one.

17

(b) The second task involves proving that the specific program being certified is well-typed. By
combining this part with the results of the first task, the certificate proves that the program
being certified does not access dangling pointers.

In this thesis we shall deal only with the latter point: the generation of the program-specific part
of the certificate. The details of the generic part can be found in [37, 35].

3. Develop a memory cost model for Safe programs.

A memory cost model provides a way to formally describe the memory needs of each syntactical
construction of the language. Our cost model will be included in the Safe big-step operational
semantics, and it will take both heap and stack memory needs into account. This model will be
formally derived from the translation of Safe source code to the code of the imperative SVM (Safe
virtual machine), and it will be proven correct with respect to this translation.

4. Develop an abstract interpretation-based analysis for inferring heap and stack memory bounds.

Given the cost model of the previous point, we aim to use abstract interpretation-based techniques
[33] for inferring non-linear, monotonic, closed-form expressions bounding the heap and stack
memory costs of a program. The resulting bounds will be functions on the sizes of the program’s
input.

Even if we restrict ourselves to a first-order functional language, like Safe, the inference of safe
memory bounds is a very complex task, which involves considering several preliminary results,
such as size analysis, and call-tree size analysis. Each one of these analysis could be, by itself,
a subject of a PhD thesis. Therefore, we will focus on the inference of heap and stack memory
bounds by assuming that the size and call-tree information is given externally.

We will formally prove the correctness of the results of the analysis with respect to the memory
cost model. We will also specify certain conditions on the externally-given call tree information,
which allows to prove the reductivity of the resulting bounds. The advantage of having reductive
bounds is that they will allow us to obtain a decreasing sequence of bounds, as a result of iterating
the analysis several times for the input program.

In this work we have put emphasis on the formal correctness of each of the analyses. We believe that,
in general, formal proofs play an important role when developing languages devoted to safety-critical
systems, but, in particular, they are very relevant to the Safe project, since its goals include the formal
certification of the properties being proved. In this work we only deal with the certification of pointer-
safety properties, but much work has also been done in Safe for certifying memory bounds [40, 35].

The structure of the thesis is as follows:

• In Chapter 2 we introduce, through several examples, the basic concepts of the Safe language.
Then we formalize the operational semantics of the language, which serve as a basis for deriving
and abstract virtual machine for Safe programs (SVM). The translation of Safe into instructions of
SVM will allow us to derive a memory cost model, whose correctness will be proved with respect
to the translation. With this cost model we will have achieved the third goal shown above. This
chapter is an extended version of the work described in [82, 86].

• Chapter 3 presents a type system guaranteeing that regions and explicit destruction are done in
a safe way. There we assume that the source program is already annotated with regions, and
show that well-typed programs do not access dangling pointers. The problem of inferring correct

18

typing derivations is deferred to the next two chapters. This chapter is an improved version of
the work in [84].

• Chapter 4 addresses the problem of region inference. Given a Safe program, the algorithm dec-
orates its abstract syntax tree with region variables, in such a way that the resulting program is
well-typed. The correctness and optimality of the algorithm are formally proved. Our algorithm
has been published in [85].

• Chapter 5 deals with explicit destruction. In this chapter we develop an algorithm guarantee-
ing the safety of the explicit deallocations specified by the programmer. It is proved correct and
complete with respect the type system of Chapter 3. This chapter is an extended version of the
publication [81].

• The work of Chapters 3, 4, and 5 is aimed at obtaining typing derivations for a Safe program
(first goal). Once these derivations have been obtained, Chapter 6 explains how to represent
them formally as Isabelle/HOL proof scripts, in order to certify pointer-safety (second goal). It
corresponds to the publication [36].

• In Chapter 7 we develop an abstract interpretation-based analysis for inferring heap and stack
memory bounds for Safe programs (fourth goal). Firstly we define the abstract domain, and the
abstraction function which maps program expressions to elements of the abstract domain. This
function is proved correct with respect to the cost model of Chapter 2. This chapter extends our
previous work on space consumption analysis [83].

• Finally, in Chapter 8 we discuss the obtained results, and draft some future research directions.

1.4.1 Notation and basic assumptions

We denote by N the set of natural numbers (including zero), whereas R+ denotes the set of non-
negative real numbers.

The notation xi
n abbreviates the sequence x1 x2 . . . xn. More generally, if e(i) is an expression which

depends on the i variable, e(i)
n

denotes the sequence e(1) e(2) . . . e(n). With this sequence notation, we
normally use i and j to denote the bound variable that ranges from 1 to n. When this notation occurs
nested, i stands from the bound variable of the outermost sequence, whereas j is the bound variable
of the innermost one. For instance, the abbreviation case x of Ci xij

ni → ei
n

denotes the following
expression:

case x of C1 x11 x12 . . . x1,n1 → e1

C2 x21 x22 . . . x2,n2 → e2
...

...
Cn xn1 xn2 . . . xn,nn → en

The superscript denoting the number of elements will be left out when it is not relevant (for instance, as
in xi). The sequence notation can also be applied when defining a set with a finite number of elements.
For instance, {ρi

m} denotes the set {ρ1, . . . , ρm}.
If A and B are sets, we use A → B to denote the set of partial functions (or partial mappings) which

map elements from A to elements of B. By abuse of terminology, these partial functions will be denoted
simply functions, or mappings. If f belongs to A → B, the domain of f is denoted by dom f . By
convention, the application of a function f (x) implicitly assumes that x ∈ dom f . Our partial functions

19

may be considered as a set of bindings of the form x 7→ y, where x ∈ A and y ∈ B, provided that no
element of A appears bound to two different values in the same function. This allows us to use the
usual notation of sets with mappings. For instance:

• Γ1 ⊆ Γ2 denotes that dom Γ1 ⊆ dom Γ2, and that ∀x ∈ dom Γ1.Γ1(x) = Γ2(x).

• [ai 7→ bi
n
] abbreviates the function [a1 7→ b1, . . . , an 7→ bn].

• [x 7→ 0 | x ∈ D] is the function which maps every element of D to 0.

• If f , g ∈ A → B and dom f ∩ dom g = ∅, the function f] g has (dom f ∪ dom g) as its domain,
and is defined as follows:

(f] g)(x) =

 f (x) if x ∈ dom f

g(x) if x ∈ dom g

• The notation Γ\x denotes the restriction of Γ to the set (dom Γ)\{x}.

In the context of type environments, we use the more familiar notation xi : yi for denoting their bind-
ings, and we use + instead of] to denote the disjoint union of two environments.

Remark. Deviating from other authors, the notation f [x 7→ y] specifies that the binding x 7→ y already
belongs to f . On the contrary, f] [x 7→ y] denotes the function which maps x to y, and behaves likes f
for the rest of elements in its domain.

20

Chapter 2

Syntax and resource-aware semantics of Safe

2.1 Introduction

As it was pointed out in the last chapter, a novel feature in Safe is the combination of two mechanisms
for replacing garbage collection: region-based memory management and destructive pattern matching.
In this chapter we will make this idea more precise. We start with an informal description of these
mechanisms from a programmer’s point of view. Then we formally define the syntax and semantics
of the language, and in a series of successive formal steps we derive an abstract virtual machine for
executing Safe programs. This allows us to obtain a memory model, which will be useful when inferring
upper-bounds to memory consumption (Chapter 7). This chapter provides the theoretical foundations
which will serve as a basis for the correctness results of next chapters.

This chapter is an extended version of the work described in [82]. It also includes some implemen-
tation aspects of the Safe runtime system and its compiler. These were taken from [80]. Firstly we
present in Section 2.2 a high-level view of the language Safe, and how its memory facilities are im-
plemented. After this, a desugared variant of Safe is formally defined via its syntax (Section 2.3) and
semantics (Section 2.4). In Section 2.5 we present the abstract machine in which Safe programs are run
and the translation process between Safe programs and the code being executed by the abstract ma-
chine (Section 2.6). The abstract machine will serve as a reference implementation which will allow us
to determine the memory consumption of a Safe program. This will be made apparent by enriching our
semantics with a resource vector specifying how much memory is needed by a program in order to be
executed (Section 2.7). Finally, Section 2.9 gives a broad overview of the Safe compiler’s implementation
and Section 2.10 concludes.

2.2 Language concepts: Safe by example

Safe is a first-order polymorphic functional language, whose syntax is similar to that of (first-order)
Haskell or ML, but with some facilities to manage memory. Polymorphic data types are defined in the
same way as in Haskell. As an example, we have the following data declarations of binary search trees
and lists:

data BSTree α = Empty | Node (BSTree α) α (BSTree α)

data [α] = [] | (α : [α])

Functions are defined as a set of equations with the same syntax as Haskell functions. For example,

21

C vi
#jn

(a) Cell

5: 7: []
#2

(b) List

Node 4

Node 2

#5

Empty

Empty Empty

(c) Binary tree

Figure 2.1: Graphical representation of cells and regions.

the following definitions compute the length of a list and the number of nodes in a tree:

length :: [α]→ Int
length [] = 0
length (x : xs) = 1 + length xs

size :: BSTree α→ Int
size Empty = 0
size (Node i x d) = 1 + size i + size d

Safe’s memory model is based on heap regions. Regions are disjoint parts of the heap where data
structures are built. A region can be created and disposed of in constant time.

A cell is a piece of memory big enough to hold a data constructor with its parameters. In implemen-
tation terms, a cell contains the identifier of a data constructor, and a representation of the values to
which this constructor is applied. These values can be either basic (integers or booleans), or pointers to
other cells. With the term “big enough” we mean that a cell being disposed of the heap may be immedi-
ately reused by the runtime system. A naive implementation would define this size as the space taken
by the biggest constructor (i.e. with the highest number of parameters). In a more efficient approach we
would have a fixed number of cell sizes, all of them multiples of the smallest one. In any case, the aim
is to be able to reuse a cell in constant time.

We represent regions and cells as in Figure 2.1. A cell is depicted as a white square which contains
the constructor and its arguments to which it is applied. Pointers are represented via arrows between
cells, whereas basic values are shown in the cell itself. Shaded rectangles correspond to regions, which
are labelled with a number identifying them (see Figure 2.1a). As an example, Figure 2.1b shows a list
of integers, in which the constructor (:) is shown in infix form.

Cells are combined in order to build data structures. A data structure (DS in the following) is the
set of cells that results from taking a particular cell (the root) and following the transitive closure of the
relation C1 → C2, which denotes that C1 and C2 are cells of the same type, and there is a pointer in C1

to C2. This relation will be described more precisely in the next chapter, as well as the concept of type.
An important thing to note, however, is that we only consider as part of a DS the set of cells with the
same type as the root cell. For instance, if we have a list of lists (type [[α]]), the cells that make up the
recursive spine of the outer list constitute a DS, to which the inner lists do not belong, even when there
are pointers from the outer list to them. Each one of the inner lists constitute a separate DS on its own.

During the design of the language several decisions were taken. The first one involves the corre-
spondence between DSs and regions.

22

Axiom 2.1. A DS completely resides in a single region.

This decision poses a constraint to the data constructors: the recursive children of a cell (i.e. those
with the same type) must belong to the region of the father.

Axiom 2.2. A DS can be part of another DS, and two DS may share a third DS.

As an example, consider the binary tree of Figure 2.1c. The left and the right subtrees of the root are
separate DS, which belong to the whole binary tree, which is another DS.

Axiom 2.3. Basic values (integers and booleans) occurring in the heap do not belong to any region by themselves.
They are contained within cells.

2.2.1 Region-based memory management in Safe

A distinctive aspect of Safe is the way in which regions are created and destroyed:

Axiom 2.4. Allocation of regions takes place at function calls. Deallocation of regions takes place when a function
call finishes.

This implies that new regions are created as functions are called, so there exists a correspondence
between the function call stack and regions, which are also created and disposed of in a stack-like
fashion. Since function calls have nested lifetimes (for instance, if f calls to a function g, the execution of
the latter begins after the execution of f has started, and it finishes before the execution f has finished),
regions also have nested lifetimes. That is why they are stored in a stack-like fashion: the last region
being created is the first being destroyed.

The region associated to a given function call f is its working region. The function may create DSs
in this region, provided these DS are not accessed outside the function’s context, since they will be
destroyed when the function finishes. A function may also access the working regions of the function
calls situated below it in the call stack. These regions must be passed as parameters by the functions
calling f . Each region existing at a given execution point is uniquely identified by a natural number
ranging from 0 (which identifies the bottommost region in the stack) to the number k of active regions
minus one (which identifies the topmost one).

An important point is the fact that regions are not handled directly by the Safe programmer. The
compiler determines which DSs will be created in the working region and which regions should be
passed as parameters between functions. However, in order to get an idea on how regions are inferred,
we will consider a syntactically-extended version of Safe, which we call Safe with regions. In this version
regions become apparent. The main syntactical additions of Safe with regions include the following:

• A function definition may have additional region parameters r1 . . . rm separated by a @ from the
rest of formal parameters. As an example, we may have the following function definition:

f x1 x2 x3 @ r1 r2 = . . .

These extra parameters will contain, at runtime, the identifiers of the regions in which f will build
its output. These regions are, in general, different from the regions in which the DSs given as input
live. However, in those cases when the result is build upon a DS passed as parameter, at least one
output region will be the same as the one in which that DS lives. The compiler determines, in each
call to f , whether output regions are equal or different from the input regions.

23

• The working region is referred to by the identifier self .

• When calling a function with these extra parameters, the region arguments are also separated
from the rest of arguments by the @ symbol. For example:

f 4 x z @ self r1

where r1 is a region variable in scope.

• Each constructor expression is attached a region variable which contains, at runtime, the identifier
of the region where the resulting cell will be built. For example:

[] @ r2 (4 : [] @ self) @ self

In the latter example, the outermost self annotates the application of the list constructor (:).

Example 2.5. Consider a function append for concatenating two lists. The following is Safe code, as
written by the programmer:

append :: [α]→ [α]→ [α]

append [] ys = ys
append (x : xs) ys = x : append xs ys

This function is annotated by the compiler as follows:

append [] ys @ r = ys
append (x : xs) ys @ r = (x : append xs ys @ r) @ r

There is a new region parameter r, which is used to build the resulting list, and is passed to the subse-
quent recursive calls. Assume this function is called in the context of a function f :

f xs = . . . append xs [3] . . .

and that its definition is annotated as follows:

f xs = . . . append xs ((3 : []@ self)@ self) @ self . . .

Figure 2.2a shows the correspondence between call and region stacks when evaluating the call f [1, 2].
Assuming that the identifier of the working region corresponding to this call is number 1, Figure 2.2a
shows the regions created when the execution reaches the base case of append. This function receives
the region identifier bound to the self region of f , that is, 1. Each recursive call to append has its own
working region (regions 2, 3 and 4), but nothing is built there, since the result is built in region 1, which
is the value of the region parameter being propagated through the recursive calls to append. When the
initial call to append finishes, we get the situation of Figure 2.2b. Notice that the result is forced to be
built in the same region as the list passed as second parameter. This is because this parameter is reused
in the base case of append, and a DS must be contained within a single region. The compiler takes this
into account when annotating the call to append.

The working region self of a function is used to build temporary DSs which are not part of the result.
An example of a function with this kind of behaviour is treesort.

24

1: 2: [] #0

3: [] #1

append [1,2] [3] @ #1

append [2] [3] @ #1

append [] [3] @ #1

f

#2

#3

#4

Call stack Region stack

(a) Base case of append

1: 2: [] #0

3: [] #1f [1,2]

Call stack Region stack

1: 2:

(b) After append finishes

Figure 2.2: Call and region stacks of the append function.

2: []5: 9: 3: 9: []2: 3: 5:

Node 5

Node 3

EmptyNode 2

Empty Empty

Node 9

Empty Empty

Input Output

Working
region

Figure 2.3: DSs involved in the treesort function. The working region contains the intermediate repre-
sentation of the list as a binary tree.

25

Example 2.6. A tree sort algorithm builds a binary search tree from the input list to be sorted. Then it
does an inorder traversal of the tree, so that the elements come out in sorted order. Figure 4.12 en la
página 156 shows the full Safe code with regions. For the purposes of this example, the treesort function
is enough:

treesort :: [α]→ [α]

treesort xs = inorder (mkTree xs)

where mkTree builds a binary search tree from the list given as parameter, and inorder performs an
inorder traversal of a binary search tree by adding the visited elements to a list that is returned as
result. Now we show the Safe code with regions:

treesort xs @ r = inorder (mkTree xs @ self) @ r

Both functions inorder and mkTree receive a region parameter specifying where to build the resulting
list (resp. tree). The mkTree function is given the self identifier, so the tree will be built in the working
region. The inorder function receives the parameter given to treesort, which is the output region in which
the sorted list will be built (Figure 2.3). When treesort finishes its working region will disappear from
the heap, together with the temporary tree.

Safe provides a built-in facility for copying data structures: the @ notation. The expression ys@
returns a copy of the DS pointed to by ys. The copy of the data structure will be located in a (possibly)
different region, if this does not contradict Axiom 2.1. The copy facility is useful when the programmer
does not want to build DS upon already existing ones.

Example 2.7. The append function of Example 2.5 forces the resulting list to be located in the same region
as the list passed as second parameter. This is because the result is linked to this parameter, so that the
latter becomes part of the former, and, by Axiom 2.1, they must live in the same region. Let us consider
the following variant in which the result is built upon a copy of the list passed as second parameter:

appendC [] ys = ys@
appendC (x : xs) ys = x : appendC xs ys

The compiler annotates every copy expression with the region variable in which the copy will be re-
turned. In the case of appendC function, it produces the following code with regions:

appendC [] ys @ r = ys @ r
appendC (x : xs) ys @ r = (x : appendC xs ys @ r) @ r

The copy of ys is created in the output region r, which may now be different from the region of the
second parameter ys. (Figure 2.4).

Example 2.8. The copy of a DS might not be able to live in a region different from that of the DS being
copied. In the following example:

duplicate t = Node t 0 (t@)

The original binary tree t and its copy t@ are forced to live in the same region, as they belong to the
same DS.

26

1: 2: []

3: []1: 2:

3: []

copy

Result

Figure 2.4: Runtime behaviour of appendC [1, 2] [3]: the list passed as second parameter is copied, so it
does not share cells with the result, with may be built in an independent region.

1: 2: []

3: []1: 2: 3: [] Result

1: 2: []

ys

xs xs

ys
Before After

Figure 2.5: Regions of the input parameters before and after a call to appendD [1, 2] [3]. Every cell of the
input list is removed in each recursive call to appendD.

2.2.2 Destructive pattern matching

Destructive pattern matching allows the selective disposal of a DS inside a region, without the need
of waiting the whole region to be disposed of. This allows the programmer to break the strict nested
discipline of nested regions, an issue which was discussed in Section 1.1.1.

Destructive pattern matching, denoted by (!) or a case! expression, deallocates the cell correspond-
ing to the outermost constructor of the DS being matched against. In this case we say that the DS
involved in the destructive pattern matching is condemned.

Axiom 2.9. Every function has the following capabilities over their input data structures:

• A function may only read a DS which is not a condemned parameter.

• A function may read (before destroying) and destroy a DS which is a condemned parameter.

As an example, we will consider a destructive variant of append.

Example 2.10. Assume the following definition:

appendD []! ys = ys
appendD (x : xs)! ys = x : appendD xs ys

The (!) mark in the first parameter specify that the cell to which the pattern matching is done will be
destroyed at runtime. The function destroys the first cons cell of the list passed as first parameter. The
remaining cells will be destroyed in the subsequent recursive calls to appendD, until we reach the base
case in which the empty list matches the first equation, and it is also destroyed (Figure 2.5).

This version of append needs no additional heap space: a cell is destroyed and another cell is built in
each recursive call. The destruction of the first parameter is reflected in the type of the function:

appendD :: [α]!→ [α]→ [α]

27

9: []3: 5:

3: 5: 8:

Input

Output

Figure 2.6: Inserting the number 8 in the list [3, 5, 9]. The part of the list before the new cell must be
reconstructed.

Destructive pattern matching allows the programmer to define functions requiring constant addi-
tional heap space. (see Chapter 3 for more examples). This facility is also very useful for breaking the
restriction (imposed by regions) of having DSs with nested lifetimes.

Example 2.11. Given a list of elements, the insertion sort algorithm starts with an empty list and does
successive ordered insertions in it with the elements of the input list. The function for inserting an
element in an ordered list is defined as follows:

insert x [] = [x]
insert x (y : ys)

| x ≤ y = x : y : ys
| x > y = y : insert x ys

The compiler produces the following region-annotated version:

insert x [] @ r = (x : [] @ r) @ r
insert x (y : ys) @ r

| x ≤ y = (x : (y : ys)@r)@r
| x > y = (y : insert x ys @ r)@r

In the equation guarded by x ≤ y the result is built upon the input ys, so the region of the output
list must be the same as that of the input list (Figure 2.6). As a result, the following inssort function,

inssort [] = []

inssort (x : xs) = insert x (inssort xs)

whose regions are inferred by the compiler in the following way,

inssort [] @ r = [] @ r
inssort (x : xs) @ r = insert x (inssort xs @ r) @ r

builds every intermediate result in the region of the empty list being created in the base case, that is,
the output region r, whereas the working regions of the calls to inssort remain unused. This implies that
the inssort function has a O(n2) worst-case space complexity, where n is the number of elements of the
input list (Figure 2.7).

We could return a copy of ys in the insert function. In this way the result is built upon that copy,

28

[] #0

#1inssort [5,4,2] @ #0

#2

#3

#4

Call stack Region stack

inssort [4,2] @ #0

inssort [2] @ #0

inssort [] @ #0

inssort caller

(a) Base case finishes

2: [] #0

#1inssort [5,4,2] @ #0

#2

#3

Call stack Region stack

inssort [4,2] @ #0

inssort [2] @ #0

inssort caller

(b) Call to inssort [2] finishes

2: [] #0

#1inssort [5,4,2] @ #0

#2

Call stack Region stack

inssort [4,2] @ #0

inssort caller

4: 2:

(c) Call to inssort [4,2] finishes

2: [] #0

#1inssort [5,4,2] @ #0

Call stack Region stack

inssort caller

4: 2:

4: 2: 5:

(d) Call to inssort [5,4,2] finishes

Figure 2.7: Memory consumption of the inssort function.

29

(a) Base case finishes (b) Call to inssort [2] finishes

(c) Call to inssort [4,2] finishes (d) Call to inssort [5,4,2] finishes

Figure 2.8: When doing a copy of the input list before inserting, inssort becomes O(n) space.

which does not necessarily live in the same region as the input list. This will allow the function inssort
to build the intermediate lists in the working region self :

inssort [] @ r = [] @ r
inssort (x : xs) @ r = insert x (inssort xs @ self) @ r

This results in an algorithm of O(n) space complexity (see Figure 2.8). However, it could not be trivial
for the programmer to discover that doing a copy may result in avoiding such memory leaks. A more
direct approach is to consider a destructive version of insert:

insertD x []! = [x]
insertD x (y : ys)!

| x ≤ y = x : (y : ys)
| x > y = y : insertD x ys

This version only needs an additional cell in memory to build the new list node. Assuming that we
replace the call to insert by insertD in the inssort function, Figure 2.9 shows the state of the output region
when returning from every recursive call. We can even develop a destructive version of inssort that also

30

#0[]

(a) Base case finishes

2: #0[]

(b) Call to inssort [2] finishes

2: #0

4: 2:

[]

(c) Call to inssort [4,2] finishes

2: #0

4: 2:

4: 2: 5:

[]

(d) Call to inssort [5,4,2] finishes

Figure 2.9: Insertion sort destroying the intermediate results in each call to insert

void PushRegion () -- creates a top empty region
void PopRegion () -- removes the topmost region
cell ReserveCell () -- returns a fresh cell
void InsertCell (p, j) -- inserts cell pinto region j
void ReleaseCell (p) -- releases cell p

Figure 2.10: The interface of the Safe Memory Management System.

disposes of the input list.

inssortD []! @ r = [] @ r
inssortD (x : xs)! @ r = insertD x (inssortD xs @ r) @ r

The cell of the input list being destroyed in the pattern matching can be reused by the insertD function.
Thus inssortD needs no additional heap space for building the result.

2.2.3 Runtime system implementation

As we said above, the heap is implemented as a stack of regions. Each region is pushed initially empty,
this action being associated to a Safe function invocation. During function execution new cells can
be added to (or removed from) any active region as a consequence of constructor applications and
destructive pattern matching. Upon function termination the whole topmost region is deallocated. In
Figure 2.10 we show, in a Java-like syntax, the main interface between a running Safe program and the
Memory Management System (MMS). The MMS maintains a pool of fresh cells, so that ‘allocating’ and
‘deallocating’ a cell respectively mean removing it from, or adding it to the pool.

Notice that access to an arbitrary region is needed in InsertCell, whereas ReleaseCell is only provided
with the cell pointer as an argument. We have implemented all the methods running in constant time
by representing the regions and the pool as circular doubly-linked lists. Figure 2.11 shows a picture
of the heap. Removing a region amounts to joining two circular lists, which can obviously be done in
constant time. The region stack is represented by a static array of dynamic lists, so that constant time
access to each region is provided.

2.2.4 Full-Safe vs Core-Safe

The functions presented in previous sections were written in Full-Safe, which is the language in which
the programmer writes his programs. However, Full-Safe results cumbersome when designing pro-
gram analyses, since the number of language syntactic constructs to consider becomes overwhelming.

31

Reg. 0

Reg. 1

Reg. n

Reg. i
Cell

.

.

.

.

.

.

Region
stack

Freelist

Figure 2.11: A picture of the Safe Virtual Machine heap and fresh cells pool

For this reason, we have a simplified variant of Full-Safe (which is called Core-Safe), with a fewer num-
ber of syntactic expressions. This is similar to the translation of Haskell programs into a Core language,
as done in the GHC compiler [60]. The details of the translation phase from Full-Safe to Core-Safe are
beyond the scope of this thesis (see [31] for details), but this process follows these general guidelines:

• Each function is represented by a single equation.

• Pattern matching is translated into case expressions, whose syntax are similar to that of Haskell.

• Destructive pattern matching is translated into case! expressions, which will be explained in Sec-
tion 2.3.

• Region variables are made explicit in Core-Safe.

• Only atomic expressions (constants and variables) are allowed in function and constructor appli-
cations. Non-atomic expressions occurring inside function and constructor arguments must be
introduced via let bindings, in the style of A-normal form [44]. For instance, f (2 + 4) is trans-
formed into let z = 2 + 4 in f z.

Example 2.12. The translation phase applied to the append and appendD functions defined previously
yields the following result:

append xs ys @ r = case xs of

[]→ ys

(x : xx)→ let x1 = append xx ys @ r in (x : x1)@r

appendD xs ys @ r = case! xs of

[]→ ys

(x : xx)→ let x1 = appendD xx ys @ r in (x : x1)@r

32

Prog 3 prog → datai; defi ; e
DecData 3 data → data T αi @ ρj = Ci sij

ni @ ρ
DecFun 3 def → f xi @ rj = e

Exp 3 e → a {atom: literal c or variable x}
| x @ r {copy}
| a1 ⊕ a2 {basic operator application}
| C ai @ r {constructor application}
| f ai @ rj {function application}
| let x1 = e1 in e2 {let declaration: nonrecursive, monomorphic}
| case x of Ci xij

ni → ei {read-only pattern matching}
| case! x of Ci xij

ni → ei {destructive pattern matching}

Figure 2.12: Core-Safe language definition.

Since every analysis and inference algorithm in this thesis works at the Core-Safe level, this language
will be described in detail in next section. However, and for the sake of clarity, we will use Full-Safe
for most medium- and large-sized examples. We shall even use region-annotated Full-Safe code, when
regions are relevant.

2.3 Syntax of Core-Safe

In Figure 2.12 we show the syntax of Core-Safe programs and expressions. A program prog is a sequence
of data declarations, followed by a sequence of function definitions def i and a main expression e, whose
result is the result of the program. The data declarations section follows a syntax similar to that of
Haskell, with the addition of region type variables ρ. The role of region type variables, and the syntax
of the sequence of types sij are not relevant at this point, and we shall defer their explanation until
Chapter 3.

A function definition is a function name f , followed by a list of formal parameters xi (which are
variables), a list of formal region parameters rj (which are called region variables) and the body of the
function e. The sets of function symbols, variables and region variables are respectively denoted by
Fun, Var and RegVar.

We denote by Exp the set of Core-Safe expressions. Basic expressions include: atomic expressions
(literals or variables), copy expressions (Section 2.2.1), function and constructor applications, and a
special kind of function applications that we consider to be built-in: basic operator applications. The
set of basic operators⊕ is left unspecified. We only demand that applications of these operators require
no additional heap space and only two stack words for the arguments. In this work we will only
make distinction between basic operator applications and the rest of function applications when this
distinction is relevant: when translating Core-Safe to machine language, and when considering resource
consumption. In the rest of cases basic operator applications are treated as plain function applications.

We assume the existence of a set Cons of constructor names, and that, for every constructor C, the
set of its recursive positions (denoted by RecPos(C)) is known at runtime. For instance,

RecPos([]) = ∅ RecPos(:) = {2} RecPos(Empty) = ∅ RecPos(Node) = {1, 3}

We also assume that there is no mutual recursion between functions. This is done for the sake of sim-

33

plicity. Every analysis and the algorithm described in the next chapters can be adapted with relative
ease in order to support mutual recursion.

The let construct allows having non-recursive, monomorphic intermediate declarations. Through-
out this thesis we use the terms auxiliary and main expression to refer to the e1 and e2 components,
respectively.

Core-Safe supports two kinds of pattern matching: read-only (case) and destructive (case!). In the
latter, the cell against which the patterns are matched is also disposed of, so its space can be reused by
the runtime system.

By the notation fv(e) we denote the set of variables occurring free in e. These do not include region
variables and function names. When e is in the context of a function definition, scope(e) denotes the set
of variables in scope in the given expression (again, excluding region variables and function names).

2.4 Semantics of Safe

In the following subsections we will define a big-step and a small-step operational semantics for Safe.
All the correctness results in this thesis are proven with respect to the big-step operational semantics.
However, the small-step operational semantics is useful as an intermediate step for deriving the Safe
virtual machines of Section 2.5.

Both semantics describe how a Core-Safe expression e is reduced to a value (normal form). We use
v, vi, . . . metavariables to denote values, which are defined by the following grammar:

Val 3 v ::= p ∈ Loc { heap pointer }
| c ∈ Int ∪ Bool { literal: integer or boolean }

Since one of the aims of the language is the inference of safety properties regarding memory pointers,
our semantics needs a model of the heap. A heap h is defined as a finite mapping from heap pointers to
construction cells. Heap pointers specify memory locations. We assume the existence of a denumerable
set of pointers Loc and use p, pi, q, . . . to denote elements from this set. A construction cell w is an
element of the form (j, C vi

n), where j is a natural number, C ∈ Cons a constructor symbol of arity n,
and vi

n is the list of values to which C is applied. The number j stands for the region of the heap in
which the cell is located. With this heap model the region number may be considered as a property of a
cell. This implies, on the one hand, that every cell belongs to a region and, on the other hand, that every
cell belongs to a single region (in other words, regions are disjoint). For example, the following mapping
h0 models the heap shown in Figure 2.1b.

h0 =

 p1 7→ (2, 5 : p2)

p2 7→ (2, 7 : p3)

p3 7→ (2, [])

The notation region(w) represents the region where w lives (that is, the first component of the pair

(j, C vi
n)), whereas freshh(p) denotes that the pointer p is fresh in h, that is, it does not occur neither in

its domain nor in their cells.

34

2.4.1 Big-step semantics

In Figure 2.14 we show the big-step operational semantics of Core-Safe expressions. A judgement of
the form E ` h, k, e ⇓ h′, k, v means that expression e is successfully reduced to a normal form v under a
runtime environment E and a heap h with k+ 1 regions (ranging from 0 to k) and that a final heap h′ with
the same number k of regions1 is produced as a side effect. A runtime environment E (also denoted value
environment) is a pair of partial functions in (Var → Val)× (RegVar → N) which map, respectively,
program variables x to values and region variables r to actual regions (i.e. natural numbers) in the heap.
By abuse of notation, and since we use different metavariables to distinguish program variables from
region variables (respectively x and r), we will consider both mappings as a single one. Whenever we
use E(x) or E(r) we will know which mapping we are referring to. We adopt the convention that, for
every value environment E, if c is a literal, E(c) = c.

We assume that, during the evaluation of an expression, a program signature Σ is propagated
through the ⇓ judgements. This signature maps function names to program definitions. Since the
function name itself occurs in its definition, we shall use the notation (f xi

n @ rj
m = e f) ∈ Σ for denot-

ing the result of Σ(f). Sometimes a signature will be made explicit in the semantic judgements when it
is attached to the arrow symbol (⇓Σ).

The semantics of a program prog ≡ datai; defi; e is the result of evaluating its main expression e in an
environment Σ containing all the function declarations def i, under an empty heap with a single region
and a value environment which maps the self identifier to that region:

[self 7→ 0] ` [], 0, e ⇓ h′, k′, v (2.1)

Now we explain in detail the semantic rules. Rules [Lit] and [Var] just say that literals and heap
pointers are normal forms. Rule [Copy] executes a copy expression by copying the data structure
pointed to by p and living in a region j′ into a (possibly different) region j. The runtime system function
copy follows the pointers in recursive positions of the structure starting at p and creates in region j a
copy of all recursive cells. Some restricted type information is assumed to be available in our runtime
system (namely, the recursive positions of each constructor) so that this function can be implemented.

Definition 2.13. The copy function is defined as follows:

copy(h0[p 7→ (k, C vi
n)], p, j) = (hn] [p′ 7→ (j, C v′i

n
)], p′)

where freshhn
(p′)

∀i ∈ {1..n}.(hi, v′i) =

{
(hi−1, vi) if i /∈ RecPos(C)
copy(hi−1, vi, j) otherwise

Should copy find a dangling pointer during the traversal, then the whole rule would fail. If there
is no failure, the normal form becomes a fresh pointer p′ pointing to the copy. The pointers in non
recursive positions of all the copied cells are kept identical in the new cells. This implies that both data
structures (the original and the copy), may share some subparts. For instance, if the original DS is a list
of lists, the structure created by copy is a copy of the outermost list, while the innermost lists become
shared between the old and the new list (see Figure 2.13).

Rule [App] shows when a new region is allocated. Notice that the body of the function is executed
in a heap with k + 2 regions (from 0 to k + 1). The formal identifier self is bound to the newly created

1Actually, the latter k is redundant, as the final heap always has the same number of regions as the initial one. However, in
this thesis we shall make the k of the final configuration explicit.

35

 []

#5

1: 4: []6: 8:[]0:

 : : : []

 : : : [] #1p

p'

Figure 2.13: Result (pointed to by p′) of copying the list of lists pointed to by p into the region number
5. Only the outermost list spine is copied, whereas the innermost lists are shared between original and
copy.

region k + 1 so that the function body may create DSs in this region or pass this region as a parameter
to other function calls. Before returning from the function, all cells created in region k′ + 1 are deleted.
This action is a source of possible dangling pointers. By the notation h |k we denote the heap obtained
by deleting from h those bindings living in regions greater than k:

h |k
def
= h |P(k,h) where P(k, h) = {p ∈ dom h | region(h(p)) ≤ k}

Rule [Cons] generates a fresh location p pointing to the newly constructed cell. The parameters of
the corresponding constructor are looked up into the value environment E.

Rule [Let] shows the eagerness of the language: first, the auxiliary expression e1 is reduced to normal
form and then the main expression e2 is evaluated. In the latter evaluation the environment is extended
by binding the program variable x1 to the normal form to which e1 is reduced.

The [Case] rule is the usual one for an eager language, whereas the [Case!] rule expresses what
happens in a destructive pattern matching: the binding of the discriminant variable disappears from
the heap. This action is another source of possible dangling pointers.

Now we use these semantics to prove some general properties of the language. In principle we are
interested only in those value environments that map the self identifier to the highest possible region
number, and the remaining region variables to numbers strictly lower than the one bound to self . When
a value environment meets these requirements, it is said to be admissible.

Definition 2.14. A value environment E is admissible with respect to k iff E(self) = k and for every
other region variable r ∈ dom E it holds that E(r) < k.

The next Proposition shows that admissibility is preserved by the evaluation of an expression.

Proposition 2.15. Let us consider a judgement E ` h, k, e ⇓ h′, k, v in which E is admissible w.r.t. k. Then any
value environment occurring in the derivation of this judgement is also admissible w.r.t. its corresponding k.

Proof. The property is true at the initial judgement and is preserved in every inductive rule. The only
relevant case is the [App] rule.

It is easy to show that the initial value environment in the execution of a Core-Safe program (2.1) is
admissible and, hence, that all the value environments taking place in the execution of the program are
admissible. This allows us to leave out the conditions j ≤ k in [Copy] and E(r) ≤ k in [Cons], since they
are guaranteed to hold when their corresponding judgements are admissible.

36

E ` h, k, c ⇓ h, k, c
[Lit]

E[x 7→ v] ` h, k, x ⇓ h, k, v
[Var]

E ` h, k, a1 ⊕ a2 ⇓ h, k, E(a1)⊕ E(a2)
[PrimOp]

j ≤ k (h′, p′) = copy(h, p, j)
E[x 7→ p, r 7→ j] ` h, k, x @ r ⇓ h′, k, p′

[Copy]

E(r) ≤ k freshh(p)

E ` h, k, C ai
n @ r ⇓ h] [p 7→ (E(r), C E(ai)

n
)], k, p

[Cons]

(g yi
n @ r′j

m
= eg) ∈ Σ [yi 7→ E(ai)

n
, r′j 7→ E(rj)

m
, self 7→ k + 1] ` h, k + 1, eg ⇓ h′, k + 1, v

E ` h, k, g ai
n @ rj

m ⇓ h′|k, k, v
[App]

E ` h, k, e1 ⇓ h1, k, v1 E] [x1 7→ v1] ` h1, k, e2 ⇓ h′, k, v
E ` h, k, let x1 = e1 in e2 ⇓ h′, k, v

[Let]

E] [xrj 7→ vj
nr] ` h, k, er ⇓ h′, k, v

E[x 7→ p] ` h[p 7→ (j, Cr vi
nr)], k, case x of Ci xij

ni → ei
n ⇓ h′, k, v

[Case]

E] [xrj 7→ vj
nr] ` h, k, er ⇓ h′, k, v

E[x 7→ p] ` h] [p 7→ (j, Cr vi
nr)], k, case! x of Ci xij

ni → ei
n ⇓ h′, k, v

[Case!]

Figure 2.14: Big-step operational semantics of Core-Safe expressions.

37

We are interested in the following question: given a value environment E, an initial heap h with
k regions, and a Core-Safe expression (assuming E admissible w.r.t. k), is the judgement E ` h, k, e ⇓
h′, k, v is derivable for some h′ and v? The answer would be negative if the derivation of E ` h, k, e ⇓
h′, k, v requires proving a judgement in which none of the rules of Figure 2.14 is applicable. This happens
in the following situations:

1. Access to a variable or region variable which does not belong to the domain of the value environ-
ment E (rules [Var], [Copy], [App], [Cons], [Case] and [Case!]).

2. Call to a function not contained in the signature Σ (rule [App]).

3. Unsatisfiability of the disjointness conditions imposed by the] operator in value environments.
For example, when we obtain E] [x1 7→ v1] and the x1 variable is already in dom E. (rules [Let],
[Case] and [Case!]).

4. Impossibility of obtaining a finite derivation for a given judgement.

5. Pattern matching-related errors: the data constructor of the cell pointed to by the discriminant of
a case(!) does not match any of the provided alternatives (rules [Case] and [Case!]).

6. A literal is found in E, when a pointer was expected (rules [Copy], [Case], [Case!]).

7. Access to a dangling pointer, that is, a location p not belonging to the domain of h (rules [Copy],
[Case] and [Case!]).

The first two points are easy to address. Most compilers provide a contextual constraints checker for
ensuring that every variable only occurs in the scope of its definition. Safe’s compiler is not an excep-
tion, so we will always assume that, during the evaluation of e under a value environment E, it holds
that fv(e) ⊆ dom E. Moreover, we assume that every function being called (direct or indirectly) from e
is defined in the signature Σ under which e is evaluated. With respect to the third point, an intermediate
renaming phase in the Safe compiler prevents us from having two variables with the same name and
non-disjoint scopes. Therefore we can safely assume that the disjoint union E] [x1 7→ v1] in the [Let]
rule, and those occurring in the value environments of the [Case] and [Case!] rules are well-defined.

The fourth point (non-finite derivations) arises when dealing with non-terminating expressions. In
general, semantic definitions written in a big-step style can only specify finite computations, since a
finite proof of the judgement E ` h, k, e ⇓ h′, k, v implicitly assumes that the evaluation of e terminates
under the environment E and initial heap h. Whenever we prove a semantic property of a program
via the rules of Figure 2.14, the finiteness of the corresponding derivation is implicitly assumed. To
approximate whether a program terminates or not under a given input is a currently active research
field, and there are numerous techniques for proving termination of programs. This topic is closely
related to resource analysis, since a terminating program always consume a finite amount of resources.
In Chapter 3.2 this connection will become more apparent.

The fifth and sixth points are addressed with a Hindley-Milner type system [34] which guarantees
the absence of failed pattern matchings, since every case(!) expression must have a branch for every
constructor of the type of its discriminant.

The last point is one of the aims of this thesis. In Chapter 3 we will introduce a type system guaran-
teeing that dangling pointers are never accessed by a program. First we need to focus on how dangling
pointers are created: they arise as a result of removing a binding from the heap. If we inspect the rules
in Figure 2.14, it turns out there are two possible sources of dangling pointers:

38

• The deallocation of the topmost region h |k when the evaluation of a function application finishes
([App] rule).

• The removal of a pointer mapped by a case! discriminant ([Case!] rule).

Example 2.16. Consider the following region-annotated function definitions:

copyToSelf xs = xs @ self

f xs ys @ r = let zs = appendD xs ys @ r in length xs + length zs

The first one builds a copy of the input list in the working region and returns a reference to it. How-
ever, and since the working region disappears when the function finishes, copyToSelf actually returns
a dangling pointer. In the second function, the length function access the xs list, which has been previ-
ously destroyed by appendD. The execution of length fails because xs refers to a dangling pointer. Both
functions are rejected by the type system of Chapter 3.

2.4.2 Small-step semantics

In Figure 2.15 we show the small-step semantic rules. There are two kinds of judgements:

• The first kind, E, h, k0, k, e −→ h′, k0, v, is applied when an expression e is evaluated to a value v in
a single step. These correspond to literals, variables, copy expressions and constructors.

• The other kind, E, h, k0, k, e −→ E′, h′, k0, k′, e′, covers the remaining cases: function application,
let, case and case! expressions.

In the configurations, k denotes the highest region available in h, as in the big step semantics. The
meaning of k0 will be explained below. Notice that, in the rules, let expressions are marked with a
natural number δ and an environment E. In rule [App-s], the number of available regions is incremented
by one, as a new local region is allocated and assigned number k+ 1. Additionally, this rule discards the
environment E, as in the function body only the arguments and the self region are in scope. However,
and due to let expressions, a continuation is possible after function application. Thus we need to recover
the discarded environment and the original value of k. The environment and the number δ are attached
to the let-binding in order to remember the newly created regions during the evaluation of the auxiliary
expression, so that the original k can be later recovered. The initial values of δ and E are respectively
0 and ⊥, which are assumed to be annotated in the text of the program being executed. Rule [Let2-s]
saves the environment for the first time, whereas the [Let4-s] rule updates the information as necessary
during the evaluation of the auxiliary expression. In case this evaluation is successful, rules [Let1-s] or
[Let3-s] are applied to proceed with the evaluation of the main expression e2.

New regions being created during the evaluation of the bound expression e1 of a let cannot contain
the result of the evaluation because these regions are removed from the heap when e1 is reduced to
a normal form. Region k0 denotes the highest region that must be available when the machine stops
reducing the expression. It can be considered a lower watermark indicating which was the topmost
region when the expression under evaluation began to be evaluated. When a normal form is reached,
we remove all the regions {k, k − 1, . . . , k0 + 1} from the heap. Initially k = k0 = 0. Rule [App-s]
increments k while rules [Lit-s], [Var-s], [Copy-s] and [Cons-s] discard all the local regions greater than
k0.

39

k ≥ k0

E, h, k0, k, c −→ h |k0 , k0, c
[Lit-s]

k ≥ k0

E[x 7→ v], h, k0, k, x −→ h |k0 , k0, v
[Var-s]

k ≥ k0 k ≥ j (h′, p′) = copy(h, p, j)
E[x 7→ p, r 7→ j], h, k0, k, x @ r −→ h′ |k0 , k0, p′

[Copy-s]

E(r) ≤ k freshh(p)

E, h, k0, k, C ai
n @ r −→ (h] [p 7→ (E(r), C E(ai)

n
)]) |k0 , k0, p

[Cons-s]

(g yi
n @ r′j

m
= eg) ∈ Σ

E, h, k0, k, g ai
n @ rj

m −→ [yi 7→ E(ai)
n
, r′j 7→ E(rj)

m
, self 7→ k + 1], h, k0, k + 1, eg

[App-s]

E, h, k, k, e1 −→ h′, k, v1

E, h, k0, k, let x1 =⊥0 e1 in e2 −→ E] [x1 7→ v1], h′, k0, k, e2
[Let1-s]

E, h, k, k, e1 −→ E′, h′, k, k + η, e′1
E, h, k0, k, let x1 =⊥0 e1 in e2 −→ E′, h′, k0, k + η, let x1 =E

η e′1 in e2
[Let2-s]

E′ 6= ⊥ E, h, k, k + δ, e1 −→ h′, k, v1

E, h, k0, k + δ, let x1 =E′
δ e1 in e2 −→ E′] [x1 7→ v1], h′, k0, k, e2

[Let3-s]

E′ 6= ⊥ E, h, k, k + δ, e1 −→ E′′, h′, k, k + η, e′1
E, h, k0, k + δ, let x1 =E′

δ e1 in e2 −→ E′′, h′, k0, k + η, let x1 =E′
η e′1 in e2

[Let4-s]

E(x) = p

E, h[p 7→ (j, Cr vi
nr)], k0, k, case x of Ci xij

ni → ei
m −→ E] [xrj 7→ vj

nr], h, k0, k, er
[Case-s]

E(x) = p

E, h] [p 7→ (j, Cr bi
nr)], k0, k, case! x of Ci xij

ni → ei
m −→ E] [xrj 7→ vj

nr], h, k0, k, er
[Case!-s]

Figure 2.15: Small-step operational semantics of Core-Safe expressions.

40

This small-step semantics is equivalent to the big-step semantics described in Section 2.4.1: for any
k and k0 ≤ k, E ` h, k, e ⇓ h′, k, v if and only if E, h, k0, k, e −→∗ h′ |k0 , k0, v. However, we leave out
the proof of this fact, since these semantics are only of interest for deriving the SAFE-M2 and SVM
machines described below. We shall directly prove the equivalence between big-step semantics and the
translation to SVM code in Section 2.8.

2.5 Virtual machines

In this section we formally describe two abstract machines for executing Safe expressions: SAFE-M2
and SVM (Safe Virtual Machine). The former is functional and it serves as an intermediate step between
the SVM and the small-step semantics defined previously. The SVM is an imperative abstract machine
based on the execution of a sequence of instructions.

2.5.1 SAFE-M2 abstract machine

Our next refinement is to introduce an abstract machine, called SAFE-M2 because there was a previous
one called SAFE-M1 now abandoned. Both are named after Sestoft’s Mark-1 and Mark-2 abstract ma-
chines [104]. A configuration of the machine is a 7-tuple (h, k0, k, e, E, S, Σ), where h is the heap, k0, k
are region numbers as in the small-step semantics, e is the expression being executed, E is the runtime
environment, S is a stack, and Σ is a function giving the code of every defined Core-Safe function. In
Figure 2.16 we show the transitions of the abstract machine SAFE-M2. The only new element w.r.t. the
small-step semantics is the stack S, which is intended to replace the annotations in let expressions. A
stack is a sequence of continuation frames of the form (k0, x1, e2, E). More precisely,

S ::= (k0, x1, e2, E) : S { where k0 ∈N, x1 ∈ Var, e2 ∈ Exp, E ∈ (Var→ Val)× (RegVar→N)}
| [] { empty stack }

The e2 corresponds to the pending main expression of a let whose auxiliary expression e1 is under
evaluation. Region k0 is the topmost region where the normal form of e2 will be returned; higher regions
will be disposed of after that normal form is reached. Variable x1 is the let-bound variable free in e2, and
E is the environment which has been kept before the evaluation of e1, and that will be restored before
the evaluation of e2. Corresponding to the inductive small-step semantic rules ([Let1-s] to [Let4-s]), the
abstract machine rule [Let-M2] pushes a continuation to the stack and proceeds with the evaluation of
the auxiliary expression e1. When the normal form of e1 is reached in rules [Lit2-M2] and [Var2-M2], the
continuation is popped and the machine proceeds with the evaluation of the main expression. If there
are no continuations in the stack, the machine stops. This situation would happen if (and only if) the
normal form of the main expression is reached.

Notice that the current environment is discarded in rules [Lit2-M2] and [Var2-M2] when a continu-
ation is popped from the stack. Also, it is discarded in rule [App-M2] when a function body is entered
and the formal arguments become the only variables in scope. In Section 2.6 this will have the impor-
tant consequence that tail recursion is translated so that only a constant stack space is needed. Notice
also in rule [Let-M2] that the current environment is saved in the stack but it is not discarded from the
control. One important aspect of the translation given in Section 2.6 is that it manages to avoid this
implicit duplication of environments.

The current environment is extended with new bindings in the following situations:

41

Initial/final configuration Condition Label

(h, k0, k, c, E, S, Σ) k > k0 [Lit1-M2]
→ (h |k0 , k0, k0, c, E, S, Σ)

(h, k, k, c, E′, (k0, x1, e, E) : S, Σ) [Lit2-M2]
→ (h, k0, k, e, E] [x1 7→ c], S, Σ)

(h[p 7→ (j, C vi
n)], k0, k, x, E[x 7→ p], S, Σ) k > k0 [Var1-M2]

→ (h |k0 , k0, k0, x, E, S, Σ)

(h[p 7→ (j, C vi
n)], k, k, x, E′[x 7→ p], (k0, x1, e, E) : S, Σ) [Var2-M2]

→ (h, k0, k, e, E] [x1 7→ p], S, Σ)

(h, k0, k, a1 ⊕ a2, E, S, Σ) [PrimOp-M2]
→ (h′, k0, k, y, E] [y 7→ E(a1)⊕ E(a2)], S, Σ) fresh(y)

(h[p 7→ (l, C vi
n)], k0, k, x @ r, E[x 7→ p, r 7→ j], S, Σ) (h′, p′) = copy(h, p, j) [Copy-M2]

→ (h′, k0, k, y, E] [y 7→ p′], S, Σ) j ≤ k, fresh(y)

(h, k0, k, C ai
n @ r, E, S, Σ) E(r) ≤ k [Cons-M2]

→ (h] [p 7→ (E(r), C E(ai)
n
)], k0, k, y, E] [y 7→ p], S, Σ) freshh(p), fresh(y)

(h, k0, k, g ai
n @ rj

m, E, S, Σ) (g yi
n @ r′j

m
= eg) ∈ Σ [App-M2]

→ (h, k0, k + 1, eg, [yi 7→ E(ai)
n
, r′j 7→ E(rj)

m
, self 7→ k + 1], S, Σ)

(h, k0, k, let x1 = e1 in e2, E, S, Σ) [Let-M2]
→ (h, k, k, e1, E, (k0, x1, e2, E) : S, Σ)

(h[p 7→ (j, Cr vi
nr)], k0, k, case x of Ci xij

ni → ei, E[x 7→ p], S, Σ) [Case-M2]
→ (h, k0, k, er, E] [xrj 7→ vj

nr], S, Σ)

(h] [p 7→ (j, Cr vi
nr)], k0, k, case! x of Ci xij

ni → ei, E[x 7→ p], S, Σ) [Case!-M2]
→ (h, k0, k, er, E] [xrj 7→ vj

nr], S, Σ)

Figure 2.16: Transition rules of the SAFE-M2 abstract machine.

42

Initial/final configuration Condition

(DECREGION : is, h, k0, k, S, cs) k ≥ k0
→ (is, h |k0 , k0, k0, S, cs)

([POPCONT], h, k, k, b : (k0, p) : S, cs[p 7→ is])
→ (is, h, k0, k, b : S, cs)

(PUSHCONT p : is, h, k0, k, S, cs[p 7→ is′])
→ (is, h, k, k, (k0, p) : S, cs)

(COPY : is, h, k0, k, p : j : S, cs) (h′, p′) = copy(h, p, j)
→ (is, h′, k0, k, p′ : S, cs) j ≤ k

([CALL p], h, k0, k, S, cs[p 7→ is])
→ (is, h, k0, k + 1, S, cs)

(PRIMOP ⊕ : is, h, k0, k, c1 : c2 : S, cs) c = c1 ⊕ c2
→ (is, h, k0, k, c : S, cs)

([MATCH l pj
m], h[S!l 7→ (j, Cm

r vi
n)], k0, k, S, cs[pj 7→ isj

m
])

→ (isr, h, k0, k, vi
n : S, cs)

([MATCH! l pj
m], h] [S!l 7→ (j, Cm

r vi
n)], k0, k, S, cs[pj 7→ isj

m
])

→ (isr, h, k0, k, vi
n : S, cs)

(BUILDENV Ki
n : is, h, k0, k, S, cs)

→ (is, h, k0, k, Itemk(Ki)
n

: S, cs) (1)

(BUILDCLS Cm
r Ki

n K : is, h, k0, k, S, cs) Itemk(K) ≤ k, fresh(b)
→ (is, h] [b 7→ (Itemk(K), Cm

r Itemk(Ki)
n
)], k0, k, b : S, cs) (1)

(SLIDE m n : is, h, k0, k, bi
m

: b′i
n

: S, cs)
→ (is, h, k0, k, bi

m
: S, cs)

(1) Itemk(K)
def
=

 S!j if K = Pos j ∈N

c if K = Lit c
k if K = self

Figure 2.17: Transition rules of the SVM abstract machine.

• In rules [Case-M2] and [Case!-M2], as soon as let-bound or case-bound variables become free vari-
ables in scope in the continuation expression.

• In rules [Copy-M2] and [Cons-M2], the environment is extended with a fresh program variable
y. This is merely an artifact due to the fact that a fresh data structure must be referenced in the
control expression.

• In rules [Lit2-M2] and [Var2-M2], the environment E saved in the continuation must be extended
with the new binding introduced by let.

2.5.2 SVM imperative abstract machine

The main differences of the SVM with respect to SAFE-M2 are two:

• Expressions are replaced by a sequence of imperative instructions.

43

• There are no runtime environments: values and continuations live in the stack.

Instructions and instruction sequences of the SVM are given by the following grammar:

ι ::= DECREGION | COPY | MATCH l pi | BUILDCLS C Ki K
| POPCONT | CALL p | MATCH! l pi | SLIDE m n
| PUSHCONT p | PRIMOP⊕ | BUILDENV Ki

is ::= []

| ι : is

In this section we introduce only the semantics of these instructions in the context of the SVM ma-
chine. Their specific role will become clearer when dealing with the translation from Core-Safe to SVM
code. During the execution a code store (resulting from the compilation of program fragments) is kept.
A code store maps code pointers to instruction sequences. We use the metavariables p, pi, ... for denoting
code pointers. We assume the existence of a denumerable set PCode containing them. The l variable
occurring in the MATCH and MATCH! instructions stands for a natural number representing a stack posi-
tion (counting from the topmost element). Finally, the elements K occurring in BUILDENV and BUILDCLS,
which will be called keys, are generated by the following grammar:

K ::= Pos j { j ∈N, stack position }
| Lit c { literal }
| self { working region identifier }

A SVM configuration c consists of six components

c ≡ (is, h, k0, k, S, cs)

where is is the instruction sequence currently being executed, h is a heap with k regions, and k0 plays a
similar role as in the small-step semantics and the SAFE-M2 abstract machine: it denotes the identifier
of the highest region available after a normal form is computed. The cs variable denotes a code store
containing all the program fragments, whereas S denotes a stack which may contain values, region
numbers and continuations of the form (k0, p). We use the metavariable b for denoting stack values:

b ::= j { where j ∈N}
| v { where v ∈ Val}
| (k0, p) { continuation: k0 ∈N, p ∈ PCode}

In Figure 2.17 we show the semantics of SVM instructions in terms of transitions between configu-
rations. By Cm

r we denote the data constructor which is the r-th in its data definition out of a total of m
data constructors. By S!j we denote the j-th element of the stack S counting from the top and starting at
0 (i.e. S!0 is the topmost element). Notice that continuations take up two words in the stack, so, if n ≥ 2
we get ((k0, p) : S)!n = S!(n− 2). The notation bi

n
: S abbreviates the stack b1 : · · · : bn : S.

Instruction DECREGION deletes from the heap all the regions, if any, between the current region k and
region k0, excluding the latter. It will be used when a normal form is reached.

Instruction POPCONT pops a continuation from the stack or stops the execution if there is none. It
is always assumed to be the last element of the current instruction sequence (the notation [POPCONT]

stands for POPCONT : []). Notice that b (which is usually a value) is left in the stack so that it can be
accessed by the continuation. Instruction PUSHCONT pushes a continuation in the stack. It is used in the

44

translation of a let.
The COPY instruction just mimics its counterpart [Copy-M2] in the SAFE-M2 abstract machine.
Instruction CALL jumps to a new instruction sequence and creates a new region. It will be used in

the compilation of a function application.
Instruction PRIMOP operates two basic values located in the stack and replaces them by the result of

the operation.
Instruction MATCH performs a vectored jump depending on the constructor of the matched closure.

The vector of sequences pointed to by the pj corresponds to the compilation of a set of case alternatives.
The MATCH! instruction additionally destroys the matched cell.

The BUILDENV instruction receives a list of keys Ki and creates a portion of environment on top of
the stack: If a key K is a natural number j, the item S!j is copied and pushed on the stack; if it is a basic
constant c, it is directly pushed on the stack; if it is the identifier self , then the current region number k
is pushed on the stack.

Instruction BUILDCLS allocates fresh memory and constructs a new cell in the style of the [Cons-M2]
rule in SAFE-M2. Similarly to BUILDENV, it receives a list of keys and uses the same conventions. It also
receives the constructor Cm

r of the cell being created.
Finally, instruction SLIDE removes some parts of the stack. It will be used to remove environments

when they are no longer needed.

2.6 Translating Core-Safe into SVM code

A major difference of SVM with respect to M2 is the lack of a value environment E in the SVM. The
values of E are assumed to live in the stack S. In order to perform the translation from Core-Safe into
SVM instructions, we need to set up a correspondence between program variables (which are no longer
present during the execution of a SVM program) and the positions of the stack which contain the values
of these variables.

The main idea of the translation is to keep a compile-time environment ρ mapping program vari-
ables to stack positions. As the stack grows dynamically, a first idea is to assign numbers to the variables
from the bottom of the environment to the top. In this way, if the current environment occupies the top
m positions of the stack and ρ(x) = 1, then S!(m− 1) will contain the runtime value corresponding to
x (see Figure 2.18).

A second idea is to reuse the current environment when pushing a continuation into the stack. Let
us recall the [Let-M2] rule of Figure 2.16. The environment E being pushed into the stack is the same
as the environment in which the auxiliary expression e1 is evaluated. In a naive implementation, the
current environment E would be duplicated, and its copy pushed into the stack. Our aim is to share the
environment instead of duplicating it, and to push only the following two elements of the continuation:
k0 and e (more precisely, the code pointer containing the SVM code of e). The variable x1 is not needed,
since the compilation process will ensure that a pointer to its value will be on top of the stack when the
continuation is popped.

In order to carry out this sharing between runtime environments, we split the whole compile-time
environment ρ into a list of smaller environments [ρ1, . . . , ρn], each one topped with a continuation,
except the topmost one (ρ1). Each individual block ρi consists of a triple (∆i, li, ni) with the actual
environment ∆i mapping variables to numbers in the range (1 . . . mi), its length li = mi + ni, and an
indicator ni whose value is 2 for all the blocks except for the first one, whose value is n1 = 0. (see Figure
2.19). This value stands for the length of the continuation (k0, p): we assume that a continuation needs

45

E(x)
E(y)
E(z)

Stack (S)

1

2

3
Stack

positions

S!0

S!1

S!2

(a) Stack representation

 x 7→ 1
y 7→ 2
z 7→ 3

(b) Compile-time environment

Figure 2.18: A first approach to mapping program variables to stack offsets.

Continuations

ρ3

ρ2

ρ1 ni

mi

li

ρi

Figure 2.19: Division of ρ into a list of smaller environments.

two words in the stack and that the remaining items need one word. The positions given by the smaller
environments ∆i are relative to the bottommost position of their block in the stack.

Given this definition of a compile-time environment, we can compute the offset w.r.t. the top of the
stack of a given variable x, defined in the k-th block. We use the notation ρ(x) to denote this offset.

ρ(x) def
=

k

∑
i=1

li − ∆k(x)

We assume by convention that ρ(self) = self . As soon we introduce new variables in scope, we need
to update the environment ρ accordingly. Only the topmost environment can be extended with new
bindings. We define the following operations and functions on compile-time environments:

1. Operator +. It adds new bindings to the compile-time environment:

((∆, m, 0) : ρ) + [xi 7→ ji
n
]

def
= (∆] [xi 7→ m + ji

n
], m + n, 0) : ρ

46

a
b
c

ρ Δ

+ =m

1
2

m

1
2
3

1
2

m
a
b
c

m+1
m+2
m+3

ρ + Δ

m+3

2. Operator ++. It finishes the topmost block, and starts a new one above it:

((∆, m, 0) : ρ)++
def
= ([], 0, 0) : (∆, m + 2, 2) : ρ

ρ

+

m

1
2

m

+

=

ρ

m+2

++

3. Function topDepth. It returns the length of the topmost block. Its result is undefined when applied
to empty environments.

topDepth((∆, m, 0) : ρ)
def
= m

ρ

topDepth()ρ

Given these conventions, in Figure 2.20 we show the translation function trE which receives a
Core-Safe expression with a compile-time environment ρ, and returns a list of SVM instructions and

47

trE c ρ = BUILDENV [c];
NormalForm ρ

trE x ρ = BUILDENV [ρ(x)];
NormalForm ρ

trE (x @ r) ρ = BUILDENV [ρ(x), ρ(r)];
COPY;
NormalForm ρ

trE (a1 ⊕ a2) ρ = BUILDENV [ρ(a1), ρ(a2)];
PRIMOP ⊕;
NormalForm ρ

trE (g ai
n @ rj

m) ρ = BUILDENV [ρ(ai)
n
, ρ(rj)

m
];

SLIDE (n + m) (topDepth(ρ));
CALL p

where (g yi
n @ r′j

m
= eg) ∈ Σ

[p 7→ trE eg [([r′j 7→ m− j + 1
m

, yi 7→ n− i + m + 1
n
], n + m, 0)]] ∈ cs

trE (Cm
l ai

n @ r) ρ = BUILDCLS Cm
l [ρ(ai)

n
] (ρ(r));

NormalForm ρ

trE (let x1 = e1 in e2) ρ = PUSHCONT p; & cs] [p 7→ trE e2 (ρ + [x1 7→ 1])]
trE e1 ρ++

trE (case x of alti
n
) ρ = MATCH (ρ(x)) pi

n & cs] [pi 7→ trA alti ρ
n
]

trE (case! x of alti
n
) ρ = MATCH! (ρ(x)) pi

n & cs] [pi 7→ trA alti ρ
n
]

trA (C xi
n → ei) ρ = trE ei (ρ + [xi 7→ n− i + 1

n
])

Figure 2.20: Translation schemes from Core-Safe expressions to SVM instructions

48

x

x

x

(1) (2) (3) (4)

Figure 2.21: Evaluation of a let expression in the SVM. The white areas separate the different blocks,
First, a continuation is inserted (1). Then, the evaluation of the auxiliary expression takes place until a
normal form is reached and it is placed at the top of the stack (2). The previous environment is discarded
(3) and the topmost continuation is removed (4), so the evaluation of the main expression begins, with
the value of the bound variable at the top of the stack.

a code store. The latter is handled as an accumulator parameter of trE that is implicitly passed to every
subexpressions being compiled. The notation & cs] [...] should be understood as the addition of the
specified binding to the code store accumulated so far. The expression NormalForm ρ is a compilation
macro defined as follows:

NormalForm ρ
def
= SLIDE 1 (topDepth(ρ))

DECREGION

POPCONT

This macro is used when the expression being translated gives place to a normal form (i.e. no additional
evaluations are needed). This is the case of literal, variables, copy and constructor expressions, and also
the case of primitive operators.

When evaluating a let expression (see Figure 2.21), a continuation is inserted before evaluating the
auxiliary expression e1. During translation, every binding added to the compile-time environment ρ

will be added to a separate block, which is now the topmost one, until the translation of e1 finishes. This
corresponds to the removal of topmost block and the continuation at runtime, so that the evaluation of
the main expression e2 begins.

A interesting case is that of function application (Figure 2.22). Firstly the actual parameters are
inserted into the stack. Since the execution of the function being called occur in a different context, the
previous environment can be discarded before the evaluation of the body of the function. The removal
of the previous environment allows us to obtain constant stack space for tail-recursive functions, as the
following example shows.

Example 2.17. Let us consider the following function definitions:

sum xs = case xs of
[]→ 0
(x : xx)→ let x1 = sum xx in x + x1

49

x
x

x

(1) (2) (3) (4)

Figure 2.22: Evaluation of a function application in the SVM. The arguments of the function (dark-gray
elements) are inserted at the top of the stack (1). Then, the previous environment, until the topmost
continuation, is discarded in (2), so that, the only stack elements available during the evaluation of the
body of the function are the arguments (corresponding to the formal parameters of the function, which
are the only variables in scope before its evaluation).

sumAc xs ac = case xs of
[]→ ac
(x : xx)→ let x1 = x + ac in sumAc xx x1

Function sum adds the elements of a list. Function sumAc is its tail-recursive version with an accu-
mulator parameter ac. The translation function trE applied to sum returns the following SVM code:

1 sum : MATCH 0 [p1, p2] 8 SLIDE 1 0
2 p1 : BUILDENV [Lit 0] 9 CALL sum
3 SLIDE 1 1 10 p3 : BUILDENV [Pos 0, Pos 1]
4 DECREGION 11 PRIMOP +

5 POPCONT 12 SLIDE 1 4
6 p2 : PUSHCONT p3 13 DECREGION

7 BUILDENV [Pos 3] 14 POPCONT

Let us assume we execute sum with the list [5, 7] given as input. In other words, we execute the SVM
code starting from the sum label, with an initial heap h = [p1 7→ (1, (:) 5 p2), p2 7→ (1, (:) 7 p3), p3 7→
(1, [])], and assuming p1 at the top of the evaluation stack. Figure 2.23 shows how the stack evolves
during the execution of sum. The arrows between stacks contain the number of the SVM instruction
being executed in each step (as labelled in the code above).

With respect to sumAc, the translation generates the following SVM code:

1 sumAc : MATCH 0 [p1, p2] 8 PRIMOP +

2 p1 : BUILDENV [Pos 1] 9 SLIDE 1 0
3 SLIDE 1 2 10 DECREGION

4 DECREGION 11 POPCONT

5 POPCONT 12 p3 : BUILDENV [Pos 2, Pos 0]
6 p2 : PUSHCONT p3 13 SLIDE 2 5
7 BUILDENV [Pos 2, Pos 5] 14 CALL sumAc

Under the same conditions as above, Figure 2.24 shows how the stack changes as the execution of sumAc

50

7

5

0

7

0

p
3

p
3

7

p
3

p
2

p
3

p
2

5

p
1

p
1

p
2

5

p
1

p
3

p
2

5

p
1

p
2

p
3

p
2

5

p
1

7

p
3

p
2

p
3

p
2

5

p
1

p
3

7

p
3

p
2

p
3

p
2

5

p
1

p
3

p
3

7

p
3

p
2

p
3

p
2

5

p
1

0

p
3

7

p
3

p
2

p
3

p
2

5

p
1

0

7

p
3

p
2

p
3

p
2

5

p
1

0

7

p
3

p
2

p
3

p
2

5

p
1

7

0

7

p
3

p
2

p
3

p
2

5

p
1

7

p
3

p
2

5

p
1

7

p
2

5

p
1

7

p
2

5

p
1

12

7

p
2

5

p
1 12

1 6 7 1 6

7 2 3 5 10 11

12 14 10 11 12

Figure 2.23: Contents of the stack during the execution of sum.

51

12

12

p
3

12

p
3

12

p
3

12

p
3

7

5

p
2

12

p
3

7

5

p
2

12

p
3

p
3

7

5

p
2

7

5

p
3

p
3

7

5

p
2

p
3

p
3

7

5

p
2

p
3

7

5

p
2

5

p
2

5

p
2

5

p
2

5

0

p
1

5

p
2

5

0

p
1

5

p
3

p
2

5

0

p
1

5

0

p
3

p
2

5

0

p
1

p
3

p
2

5

0

p
1

p
2

5

0

p
1

0

p
1

12

1 6 7 8 11

12 13 1 6 7 8

11 12 13 2 3

Figure 2.24: Contents of the stack during the execution of sumAc.

progresses. In tail-recursive functions there are no continuations left in the stack when doing a recursive
call. This means we can discard the whole environment in the current function call before proceeding
to the next recursive call. As a result, sumAc runs in constant stack space (6 words), while sum needs
linear stack space (5n + 1 words, where n is the number of elements in the input list).

Although the bytecode of the SVM is not very close to that of the Java Virtual Machine (JVM),
the compiler provides a further translation phase from SVM to JVM bytecode (Figure 2.25). This is
described in [38]. We have two translation phases: from Core-Safe to the SVM (shown in this section),
and from SVM to the JVM. It is worth mentioning that both phases have been formally certified [38, 39].
The proof of the latter phase consists in establishing a bijection between the heap of the SVM and the
(more complex) heap of the JVM, which is preserved along the execution of both machines. This does
not only certify the correctness of the translation itself, but also certifies that the memory consumption
properties and the absence of dangling pointers are preserved in the JVM.

52

Core-Safe

SVM

JVM

Figure 2.25: The SVM serves as an intermediate step between the Core-Safe code and the Java Virtual
Machine (JVM). Both translations have been certified, and preserve memory costs. The translation from
Core-Safe to SVM is deal with in this chapter. The translation from SVM to JVM is described in [38].

E ` h, k, td, c ⇓ h, k, c, ([]k, 0, 1)
[Lit]

E[x 7→ v] ` h, k, td, x ⇓ h, k, v, ([]k, 0, 1)
[Var]

E ` h, k, td, a1 ⊕ a2 ⇓ h, k, E(a1)⊕ E(a2), ([]k, 0, 2)
[PrimOp]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)
E[x 7→ p, r 7→ j] ` h, k, td, x @ r ⇓ h′, k, p′, ([j 7→ m]k, m, 2)

[Copy]

(g yi
n @ r′j

l
= eg) ∈ Σ

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1] ` h, k + 1, n + l, e ⇓ h′, k + 1, v, (δ, m, s)

E ` h, k, td, g ai
n @ rj

l ⇓ h′ |k, k, v, (δ |k, m, max {n + l, s + n + l − td})
[App]

E(r) = j j ≤ k freshh(p)

E ` h, k, td, C ai
n @ r ⇓ h] [p 7→ (j, C E(ai)

n
)], k, v, ([j 7→ 1]k, 1, 1)

[Cons]

E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1, m1, s1)
E ∪ [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2, m2, s2)

E ` h, k, td, let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2, max{m1, |δ1|+ m2}, max{2 + s1, 1 + s2})
[Let]

C = Cr E(x) = p E] [xrj 7→ vj
nr] ` h, k, td + nr, er ⇓ h′, k, v, (δ, m, s)

E ` h[p 7→ (j, C vi
nr)], k, td, case x of Ci xij

ni → ei
n ⇓ h′, k, v, (δ, m, s + nr)

[Case]

C = Cr E(x) = p E] [xrj 7→ vj
nr] ` h, k, td + nr, er ⇓ h′, k, v, (δ, m, s)

E ` h] [p 7→ (j, C vi
nr)], k, td, case! x of Ci xij

ni → ei
n ⇓ h′, k, v, (δ + [j 7→ −1]k, max{0, m− 1}, s + nr)

[Case!]

Figure 2.26: Resource-aware operational semantics of Core-Safe expressions.

53

time

y

evaluation of e

| |δ

m

Figure 2.27: Intuitive meaning of δ and m components in the resource vector. The y coordinate repre-
sents the number of cells in the heap.

2.7 Resource-aware semantics

Once the resource consumption of each instruction of the SVM is known, we enrich the big-step se-
mantics given in Section 2.4.1 with a resource vector (δ, m, s), which can be conceived as a side effect of
evaluating an expression e.

• The first component is a partial function δ : N→ Z giving, for each region k, the signed difference
between the number of cells after and before evaluating the expression. A positive difference
means that more cells have been created than destroyed. A negative one describes the opposite
situation.

• The component m is a natural number describing the minimum number of fresh cells in the heap
needed to successfully evaluate e. This number corresponds to the maximum amount of cells
existing simultaneously in memory during the evaluation of this expression.

• The component s is a natural number whose meaning is analogous to that of the m component.
The s component describes the minimum size of stack (in words) needed for the evaluation of the
expression.

Figure 2.27 gives an intuition on the meaning of the first two components. Assume the evaluation
of an expression e. The figure represents the global amount of cells in memory as the evaluation of e
proceeds. In this case, the evaluation of e reclaims memory until some time point, from which memory
is disposed of. The m value represents the maximum amount of memory taken during the evaluation
of e, whereas δ represents the difference of memory amount between the initial and final heaps. Notice,
however, that the δ contains this difference for every region in the heap. What is represented in Figure
2.27 is the global balance |δ| of heap cells between the final and initial heaps, which will be formally
defined below. Also notice that both values m and δ are relative to the memory consumption level at
the beginning of the evaluation of e (dashed line in Figure 2.27).

If we represented the stack consumption in the style of Figure 2.27, the s component of the resource
vector would take the role of the m component in the heap consumption. There is no component for
denoting the difference in stack words between the final and initial heaps, because the final stack con-
tains the same elements of the initial stack with an additional element at the top, which is the result of
evaluating the expression, so this difference is always 1.

The domain of δ is the set {0..k}, where k is the number of regions in the heap to which the δ refers.
The notation []k stands for the function [i 7→ 0 | i ∈ {0..k}], whereas [i 7→ n]k abbreviates the function

54

(1) evaluation
of eg

(2)

s

v

n+l

td

Figure 2.28: Stack consumption while evaluating a function application: we have to take the maximum
between the number of arguments pushed onto the stack (1) and the maximum stack level reached
during evaluation of the function’s body, assuming that the arguments are already in the stack and the
previous environment has been discarded (2).

[i 7→ n]] [j 7→ 0 | j ∈ {0..k}\{i}]. The total balance of cells (denoted by |δ|) is the sum of the balances
obtained in each region:

|δ| def
= ∑

i∈dom δ

δ(i)

The notation δ1 + δ2 represents the component-wise addition of δ1 and δ2, provided these have the
same domain:

δ1 + δ2
def
= [δ1(i) + δ2(i) | i ∈ dom δ1 ∩ dom δ2]

The enriched semantic rules are shown in Figure 2.26. In addition to the resource vector (δ, m, s),
we need a new component td in order to simulate the topDepth function of compile time environments.
This component represents the number of stack words inserted after the topmost continuation, and it
influences the s, since an amount td of words are removed from the stack before function calls.

The evaluation of atom (rules [Lit] and [Var]) does not require memory consumption, and it requires
a stack word space to push the result into. The evaluation of a primitive operator application requires
two stack words, since the operands have to be pushed into the stack before computing the result. The
evaluation of a copy expression [Copy] requires as many heap cells as the size of the recursive spine of
the structure being copied. The size function defines this notion of size:

size(h[p 7→ (j, C vi
n)], p) def

= 1 + ∑
i∈RecPos(C)

size(h, vi)

In rule [App], by δ|k we mean a function like δ but restricted to the domain {0..k}. The computation
max{n + l, s + n + l − td} of fresh stack words takes into account that the first n + l words are needed
to store the actual arguments, then the current environment of length td is discarded, and then the
function body is evaluated (Figure 2.28).

In rule [Let], a continuation (2 words) is stacked before evaluating e1, and this a leaves a value in the
stack before evaluating e2. That is why we obtain max{2 + s1, 1 + s2} as stack consumption (see Figure
2.29). With regard to the heap consumption, we take the maximum between the memory needs of e1

and those of e2, but taking the balance |δ1| into account (Figure 2.30).

Example 2.18. In Figure 2.31 we show the resource vector corresponding to the execution of most of
the examples in this chapter. The concrete input DSs are shown above the table. We assume that these
DSs have been created before evaluating each function call, so their building costs are not reflected in

55

x1

x1 x1

(1) evaluation
of e1

(2)

v

evaluation
of e2

s1 s2

Figure 2.29: Stack consumption while evaluating a let expression: we have to take the maximum be-
tween the execution of e1 assuming that a continuation has been pushed before into the stack (1), and
the execution of e2 assuming that the value of x1 has been pushed after discarding the continuation (2).

time

y

|δ1|

m2

m1

evaluation of e
1

evaluation of e
2

Figure 2.30: Heap consumption of two expressions executed in sequence (let). The execution of the first
expression leaves |δ1| cells in the heap. We take this point as the reference level on which we measure
the memory needs of the second expression m2. Hence, the memory needs of the whole sequence is
given by t{m1, |δ1|+ m2}.

56

xs = [1, 2, 3] (4 cells) ys = [4, 5] (3 cells) zs = [5, 4, 3, 2, 1] (6 cells)

t = Node (Node Empty 2 Empty) 4 (Node Empty 7 Empty) (7 cells)

Expression δ m s
append xs ys @ r [E(r) 7→ 3]k 3 23

appendC xs ys @ r [E(r) 7→ 6]k 6 24
appendD xs ys @ r [E(r) 7→ −1]k 0 23

insert 10 xs @ r [E(r) 7→ 5]k 5 32
insertD 10 xs @ r [E(r) 7→ 1]k 1 32

inssort zs @ r [E(r) 7→ 21]k 21 41
inssortD zs @ r [E(r) 7→ 0]k 0 41
mkTree zs @ r [E(r) 7→ 11]k 11 50
inorder t @ r [E(r) 7→ 4]k 5 29

treesort zs @ r [E(r) 7→ 6]k 18 62
sumAc xs 0 []k 0 6
sumAc zs 0 []k 0 6

Figure 2.31: Memory consumption results. The table shows, for each expression, the resource vector
(δ, m, s) resulting from its evaluation.

the table.
Function append creates as many cells in the output region as the number of cons cells in the list

passed as first parameter. In appendC we need three additional cells for copying the list passed as
second parameter. Function appendD destroys four cells of the input list and builds three in the output
region. Its execution needs no additional heap space. The heap cost of insert and inssort is proportional
to the length of the input list, whereas in insertD and inssortD this cost is constant. In the case of insertD
we need an additional cell for storing the new element. Function treesort leaves in the output region
as many cells as the input list. However, more cells are needed in order to build the intermediate tree.
Finally, the calls to sumAc produce no heap costs and a constant stack cost.

2.8 Correctness of the translation into SVM

Now we show that the pair translation-abstract machine is sound and complete with respect the se-
mantics defined in last section. The correctness of the translation involves the proof of the following
facts:

1. Both big-step semantics and SVM lead to the same result and final heap, whenever their initial
configurations are equivalent.

2. The (δ, m, s) vector of the semantics models the actual memory needs of an expression when being
evaluated in the SVM.

The first fact proves that the translation from Core-Safe to SVM preserves the semantics of a given pro-
gram, whereas the second one shows the preservation of its memory needs. In order to prove these
results, we must, on the one hand, make precise the idea of a semantic configuration being equivalent
to a SVM configuration. On the other hand, we have to determine the memory costs of a program when
being run in the SVM. First, we note that both the semantics and the SVM machine rules are syntax
driven, and that their computations are deterministic (up to fresh names generation).

57

Lemma 2.19. Given a value environment E, an initial heap h with k regions, a natural number td, and a
Core-Safe expression e, if E ` h, k, td, e ⇓ h, k, v, (δ, m, s) and E ` h, k, td, e ⇓ h′, k, v′, (δ′, m′, s), then h = h′

(up to pointer renaming), v = v′, and (δ, m, s) = (δ′, m′, s′)

Proof. By induction on the ⇓- derivation. All cases are straightforward.

Lemma 2.20. Given an initial configuration cinit such that cinit → c1 and cinit → c′1. Then c1 = c′1 (modulo
pointer renaming).

Proof. By case distinction on the rule being applied. All cases are straightforward.

The main difference between the big-step operational semantics of Section 2.4.1 and the SVM ma-
chine is the way in which value environments are represented. In the big-step semantics we have a
mapping E from variables to values, whereas in the SVM we have a stack. The correspondence be-
tween variables and positions of the stack is given by the ρ environment used in the translation (see
Section 2.6).

Obviously, we cannot ensure the equivalence of big-step semantics and SVM if their starting point
(i.e. mapping E in big-step semantics, stack S in the SVM) denote different value environments. This is
the motivation for the following:

Definition 2.21. We say that the environment E and the pair (ρ, S) are equivalent, denoted E ≡ (ρ, S),
if dom E = dom ρ, and ∀x ∈ dom ρ\{self} . E(x) = S!(ρ(x)).

A stack S′ is said to be a suffix of S if there exists a number n ≥ 0 of stack elements bi such that
S = bi

n
: S′. Given a SVM configuration c0 = (is, h, k0, k, S, cs) and S′ a suffix of S, we denote by

c0 →∗S′ cn a derivation in which all the stacks in intermediate configurations have S′ as a suffix. Should
the topmost instruction of a configuration create a stack smaller than S′, then the machine would stop
at that configuration.

Now we follow with some definitions regarding the maximum memory consumption produced by
a SVM program.

Definition 2.22. The function sizeST, which returns the size (in words) of a stack, is defined as follows:

sizeST([]) = 0
sizeST(v : S) = 1 + sizeST(S) if v is not a continuation.
sizeST((k0, p) : S) = 2 + sizeST(S)

Analogously, the size (in cells) of a heap is given by the function sizeH:

sizeH(h) = |dom h|

The reason for having 2 + sizeST(S) in the case where a continuation is at the top of the stack is that
any sensible implementation of the SVM would need two words for storing the pair (k0, p).

We shall extend the notation of these functions to configurations, so sizeST(c) (resp. sizeH(c)) will
be used to denote the size of the stack (resp. heap) of the given configuration c.

Given c0 = (is, h, k0, k, S, cs) and c0 →S′ · · · →S′ cn a SVM derivation, the maximum number of fresh
cells of the derivation (denoted maxFreshCells(c0 →∗S′ cn)) is the highest difference in cells between the

58

heaps of the configurations c0, . . . cn and the initial heap h. Likewise, we define the maximum number of
fresh words created in the stack S, denoted maxFreshWords(c0 →∗S′ cn). Finally, by diff (k, h, h′) we denote
a function giving for each region in {0, . . . , k} the signed difference in cells between h′ and h.

Definition 2.23. Given a derivation c0 →S′ . . . ci . . .→S′ cn, we define:

maxFreshCells(c0 →∗S′ cn) = max {sizeH(ci)− sizeH(c0) | 0 ≤ i ≤ n}
maxFreshWords(c0 →∗S′ cn) = max {sizeST(ci)− sizeST(c0) | 0 ≤ i ≤ n}

From these definitions the following properties can be easily obtained:

maxFreshCells(c0 →∗S′ ci →∗S′ cn) = max{ maxFreshCells(c0 →∗S′ ci),
maxFreshCells(ci →∗S′ cn)

+ sizeH(ci)− sizeH(c0) }

maxFreshWords(c0 →∗S′ ci →∗S′ cn) = max{ maxFreshWords(c0 →∗S′ ci),
maxFreshWords(ci →∗S′ cn)

+ sizeST(ci)− sizeST(c0) }

Definition 2.24. Given two heaps h and h′ and a number k of regions, we denote by diff (k, h, h′) a
function δ such that dom δ = {0..k} and:

∀i ∈ {0..k} . δ(i) =
∣∣{p ∈ dom h′ | region(h′(p)) = i}

∣∣− |{p ∈ dom h | region(h(p)) = i}|

The definitions of diff and sizeH are related by the following property, which is easy to establish from
the corresponding definitions. Let h and h′ be two heaps with k regions. Then:

sizeH(h′)− sizeH(h) =
k

∑
i=0

diff (i, h, h′)

The next Lemma shows some properties of the copy function. In particular, that the size of the copy
and the DS being copied are the same.

Lemma 2.25. If (h′, p′) = copy(h, p, j) then:

1. h ⊆ h′

2. size(h′, p′) = size(h, p)

3. sizeH(h′)− sizeH(h) = size(h′, p′)

4. ∀k ≥ j, diff (k, h, h′) = [j 7→ size(h′, p′)]k

Proof. Straightforward induction on the size of the DS pointed to by p.

Now we prove that, if we translate an expression e into a sequence is of SVM instructions and the
SVM executes this sequence, then the number of regions in the heap of the final configuration is equal
to the k0 component of the initial configuration.

Lemma 2.26. For all S, S′, h, h′, td, k0, k, e, v, ρ, cs, cs′ of their respective types, such that

td = topDepth(ρ) (is, cs) = trE e ρ

S′ = drop td S cs′ ⊇ cs
k0 ≤ k

59

If (is, h, k0, k, S, cs′)︸ ︷︷ ︸
cinit

→∗S′ ([POPCONT], h′, k′, k′, v : S′, cs′)︸ ︷︷ ︸
cfinal

then k′ = k0.

Proof. This can be trivially proved by induction on the length of→∗S′ and by cases over the expression e
whose translation is executed.

The following theorem establishes the correctness of the translation, showing that the computed
value and the resource consumption of a given expression e in the big-step semantics are the same as
those obtained by executing in the SVM the translation of e (see Appendix C).

We denote by drop n S the stack resulting from removing the n topmost elements of S. That is,
drop n (bi

n
: S) = S and undefined in case the number of elements in the input stack is less than n.

Theorem 2.27. For all S, S′, E, h, h′, td, k0, k, e, v, δ, m, s, ρ, cs, cs′ of their respective types, if

E ≡ (ρ, S) (is, cs) = trE e ρ td = topDepth(ρ) E admissible w.r.t. k
S′ = drop td S cs′ ⊇ cs k0 ≤ k

then E ` h, k, td, e ⇓ h′, k, v, (δ, m, s) if and only if

1. (is, h, k0, k, S, cs′)︸ ︷︷ ︸
cinit

→∗S′ ([POPCONT], h′ |k0 , k0, k0, v : S′, cs′)︸ ︷︷ ︸
cfinal

2. δ = diff (k, h, h′)

3. m = maxFreshCells(cinit →∗S′ cfinal)

4. s = maxFreshWords(cinit →∗S′ cfinal)

Proof. The (⇒) direction is shown by induction on the ⇓-derivation. The (⇐) direction of the theorem
can be proved by induction on the length of the→∗S′ derivation. In booth proofs we distinguish cases
depending on the expression being translated.

• Case [Lit]: e ≡ c

Let (is, cs) = trE e ρ be the SVM code generated, where cs = [] and:

is = BUILDENV [c] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

In addition, by the rule [Lit] we have E ` h, k, td, c ⇓ h, k, c, ([]k, 0, 1). For all cs′ we get the
following derivation:

cinit︷ ︸︸ ︷
(BUILDENV [c] : is1, h, k0, k, S, cs′)

→S′

(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, c : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is3, h, k0, k, c : drop td S, cs′)
→S′

60

([POPCONT], h|k0 , k0, k0, c : drop td S, cs′)︸ ︷︷ ︸
cfinal

Because of the assumption S′ = drop td S the property (1) holds. Moreover, we get diff (k, h, h) =
[i 7→ 0 | 0 ≤ i ≤ k] = δ, so property (2) holds. Finally, both properties (3) and (4) hold because
maxFreshCells(cinit →∗S′ cfinal) = 0 and maxFreshWords(cinit →∗S′ cfinal) = 1.

• Case [Var]: e ≡ x

The proof is similar to the case e ≡ c. Now E[x 7→ v] ` h, k, td, x ⇓ h, k, v, ([]k, 0, 1) holds and the
code generated is as follows:

is = BUILDENV [ρ(x)] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

From which the following derivation is obtained:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(x)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(x)) = E(x) = v}
(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, v : S, cs′)

→S′ {since td = topDepth(ρ)}
(DECREGION : is3, h, k0, k, v : drop td S, cs′)

→S′

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

Hence property (1) holds. The proof of (2), (3) and (4) is analogous to the case e ≡ c.

• Case [Copy]: e ≡ x @ r

On the one hand, by using the [Copy] rule we know that:

E ` h, k, td, x @ r ⇓ h′, k, p′, ([j 7→ size(h, p)]k , size(h, p), 2)

where E(x) = p, E(r) = j ≤ k and (h′, p′) = copy(h, p, j). On the other hand, we obtain (is, []) =
trE e ρ where:

is = BUILDENV [ρ(x), ρ(r)] :

is1︷ ︸︸ ︷
COPY :

is2︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is4︸ ︷︷ ︸
is3

For any cs′, the first step of the→∗S′ derivation is as follows:

61

cinit︷ ︸︸ ︷
(BUILDENV [ρ(x), ρ(r)] : is1, h, k0, k, S, cs′)

→S′ { since E(x) = p = S!(ρ(x)) }
(COPY : is2, h, k0, k, p : Itemk(ρ(r)) : S, cs′)

Let us proceed by case distinction: on one hand, if r 6= self then Itemk(ρ(r)) = S!(ρ(r)) = E(r) = j.
On the other hand, if r = self then we have Itemk(ρ(r)) = Itemk(self) = k, but since E(self) = k (by
Proposition 2.15) and E(self) = j (by rule [Copy]), we have that Itemk(ρ(r)) = j. Hence the current
machine configuration can be rewritten as (COPY : is2, h, k0, k, p : j : S, cs′).

We shall now resume the→∗S′ derivation:

(COPY : is2, h, k0, k, p : j : S, cs′)
→S′ { since (h′, p′) = copy(h, p, j) and j ≤ k}

(SLIDE 1 (topDepth(ρ)) : is3, h′, k0, k, p′ : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is4, h′, k0, k, p′ : drop td S, cs′)
→S′

([POPCONT], h′|k0 , k0, k0, p′ : drop td S, cs′)︸ ︷︷ ︸
cfinal

Therefore (1) holds, because of the assumption S′ = drop td S. Properties (2) and (3) follow from
Lemma 2.25. With respect to (4), from the resulting →∗S′ derivation it can be easily shown that
maxFreshWords(cinit →∗S′ cfinal) = 2.

• Case [PrimOp]: e ≡ a1 ⊕ a2

The translation yields the following instruction sequence:

is = BUILDENV [ρ(a1), ρ(a2)] :

is1︷ ︸︸ ︷
PRIMOP ⊕ :

is2︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is4︸ ︷︷ ︸
is3

By executing it, we obtain the following derivation:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(a1), ρ(a2)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(ai)) = E(ai) for every i ∈ {1..2}, see below }
(PRIMOP ⊕ : is2, h, k0, k, E(a1) : E(a2) : S, cs′)

→S′

(SLIDE 1 (topDepth(ρ)) : is3, h, k0, k, (E(a1)⊕ E(a2)) : S, cs′)
→S′

(DECREGION : is4, h, k0, k, (E(a1)⊕ E(a2)) : drop td S, cs′)
→S′

62

([POPCONT], h|k0 , k0, k0, (E(a1)⊕ E(a2)) : drop td S, cs′) ≡ cfinal

Hence, property 1 holds. From the initial and final configurations we obtain diff (k, h, h) = [i 7→ 0 | 0 ≤ i ≤ k] =
δ, so property (2) holds. Properties (3) and (4) hold because maxFreshCells(cinit →∗S′ cfinal) = 0 and
maxFreshWords(cinit →∗S′ cfinal) = 2.

• Case [Cons]: e ≡ C ai
n @ r

In the big-step semantics we get E ` h, k, e ⇓ h] [p 7→ (E(r), C E(ai)
n
)], k, p, ([E(r) 7→ 1]k, 1, 1)

where p is a fresh pointer. The translation yields the following instruction sequence:

is = BUILDCLS C [ρ(ai)
n
] ρ(r) :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

By executing this, we obtain the following derivation:

cinit︷ ︸︸ ︷
(BUILDCLS C [ρ(ai)

n
] ρ(r) : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(ai)) = E(ai) for every i ∈ {1..n}, see below }
(SLIDE 1 (topDepth(ρ)) : is2, h] [p 7→ (E(r), C E(ai)

n
)], k0, k, p : S, cs′)

→S′ {since td = topDepth(ρ)}
(DECREGION : is3, h] [p 7→ (E(r), C E(ai)

n
)], k0, k, p : drop td S, cs′)

→S′

([POPCONT], (h] [p 7→ (E(r), C E(ai)
n
)])|k0 , k0, k0, p : drop td S, cs′)︸ ︷︷ ︸

cfinal

In the first step we have assumed that Itemk(ρ(r)) = E(r). The proof of this is similar to that seen
in the [Copy] rule. Thus (1) holds. From the initial and final configurations we obtain:

diff (k, h, h] [p 7→ (E(r), C E(ai)
n
)]) = [E(r) 7→ 1]k

maxFreshCells(cinit →∗S′ cfinal) = 1

maxStackWords(cinit →∗S′ cfinal) = 1

from which (2), (3) and (4) follow trivially.

• Case [App]: e ≡ g ai
n @ rj

l

We assume, by rule [App] that Eg ` h, k + 1, n + l, eg ⇓ h′, k + 1, v, (δ, m, s), where Eg is defined as
follows:

Eg = [yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1]

and (g yi
n @ r′j

l
= eg) ∈ Σ. Furthermore, let (isg, csg) be the result of trE eg ρg, where eg is the

body of the function to be called and ρg is defined as follows:

ρg = [([r′j 7→ (l − j) + 1
l
, yi 7→ (n− i) + (l + 1)

n
], n + l, 0)]

63

Assume that cs(p) = isg. We obtain (is, cs) = trE e ρ, where:

is = BUILDENV [ρ(ai)
n
, ρ(rj)

l
] :

is1︷ ︸︸ ︷
SLIDE (n + l) (topDepth(ρ)) : [CALL p]︸ ︷︷ ︸

is2

For any cs′ such that cs′ ⊇ cs, the code generated leads to the following SVM derivation:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(ai)

n
, ρ(rj)

l
] : is1, h, k0, k, S, cs′)

→S′

(SLIDE (n + l) (topDepth(ρ)) : is2, h, k0, k, S!(ρ(ai))
n

: S!(ρ(rj))
l

: S, cs′)
→S′ { since td = topDepth(ρ) }

([CALL p], h, k0, k, S!(ρ ai)
n

: S!(ρ r′j)
l

: drop td S, cs′)

→S′ { since cs′(p) = cs(p) = isg }

(isg, h, k0, k + 1, S!(ρ ai)
n

: S!(ρ r′j)
l

: drop td S, cs′) ≡ c f

→∗S′ { by i.h. (see below) and k0 ≤ k }
([POPCONT], h′|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸

cfinal

where S′ = drop td S. In order to apply the induction hypothesis in the last step, we prove
that every assumption of the theorem holds for the ⇓ derivation corresponding to e f . The only
nontrivial assumption to prove is that Eg ≡ (ρg, Sg), denoting by Sg the result from pushing the

actual parameters S!(ρ ai)
n

and S!(ρ r′j)
l
into S. Firstly, let x ∈ dom ρg. We prove that Sg!(ρg(x)) =

Eg(x). On the one hand, if x = yi for some i ∈ {1..n}, we get ρg(x) = n + l − [(n− i) + (l + 1)] =
i− 1. Hence:

Sg!(ρg(x)) = Sg!(i− 1) = S!(ρ(ai)) = E(ai) = Eg(yi)

On the other hand, if x = r′j for some j ∈ {1..l} then we get ρg(x) = n+ l− [(l− j)+ 1] = n+ j− 1
and:

Sg!(ρg(x)) = Sg!(n + j− 1) = S!(ρ(rj)) = E(rj) = Eg(r′j)

So Eg ≡ (ρg, Sg), and the induction hypothesis can be applied on the derivation of eg, which
proves property (1), as we have shown above. The proof for (2) can be easily established from the
fact that diff (k, h, h′) = diff (k + 1, h, h′)|k and that δ = diff (k + 1, h, h′) by induction hypothesis.
Property (3) also follows trivially from the induction hypothesis. With respect to (4), let us denote:

S1 = S!(ρ(ai))
n

: S!(ρ(rj))
l

: S

S2 = S!(ρ(ai))
n

: S!(ρ(rj))
l

: drop td S
S3 = v : drop td S

maxFreshWords(cinit →∗S′ cf) = max{sizeST(S1)− sizeST(S),
sizeST(S2)− sizeST(S)}

= {n + l, n + l − td}

64

= n + l

On the other hand, maxFreshWords(cf →∗S′ cfinal) = s by induction hypothesis. Therefore:

maxFreshWords(cinit →∗S′ c f →∗S′ cfinal) = max{maxFreshWords(cinit →∗S′ c f),
maxFreshWords(c f →∗S′ cfinal)

+sizeST(S2)− sizeST(S)}
= max{n + l, s + n + l − td}

• Case [Let]: e ≡ let x1 = e1 in e2

By rule [Let] we get:

E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1, m1, s1)

E1 ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2, m2, s2)

Where we define E1 = E] [x1 7→ v1]. In addition, we assume (is1, cs1) = trE e1 ρ++ and (is2, cs2) =

trE e2 ρ1 where ρ1 = ρ + [x1 7→ 1]. On the other hand, we get cs ⊇ cs1, cs ⊇ cs2 and is =

PUSHCONT p : is1, in which cs1(p) = is2. Given cs′ ⊇ cs, the trace corresponding to the execution
of e starts as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0, p) : S, cs′) ≡ c1

In order to apply induction hypothesis on e1 we have to check that E ≡ (ρ++, (k0, p) : S), which
trivially holds from the hypothesis E ≡ (ρ, S) and because dom ρ = dom ρ++. The rest of the
assumptions hold trivially.

In this case td = 0, so by applying i.h. we obtain:

c1

→∗(k0,p):S

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0, p) : S), cs′[p 7→ is2]) ≡ c2

which trivially implies c1 →∗S′ c2.

Consequently:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0, p) : S, cs′)
→∗S′

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0, p) : S), cs′[p 7→ is2]) ≡ c2

→S′

(is2, h′|k, k0, k, v1 : S, cs′) ≡ c3

65

→∗S′ { by i.h. (see below) }
([POPCONT], h′′|k0 , k0, k0, v : drop (td + 1) (v1 : S), cs′)

≡
([POPCONT], h′′|k0 , k0, k0, v : S′, cs′)︸ ︷︷ ︸

cfinal

In order to apply the induction hypothesis on e2 in the last step we have to check that E1 ≡
(ρ1, v1 : S). Let x ∈ dom(E1): if x = x1 then (v1 : S)!(ρ1(x)) = (v1 : S)!0 = v1 = E1(x). If
x 6= x1 then (v1 : S)!(ρ1(x)) = (v1 : S)!(ρ(x) + 1) = S!(ρ(x)) = E(x) = E1(x). Additionally
drop (td + 1) (v1 : S) = drop td S = S′. The rest of the assumptions hold trivially.

Hence (1) holds. With respect to (2), let i ∈ {1..k}

(diff (k, h, h′′))(i) = |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h′ | region(h′(p)) = i}|

+ |{p ∈ h′ | region(h′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= (diff (k, h, h′))(i) + (diff (k, h′, h′′))(i)
= δ1(i) + δ2(i)

Therefore diff (k, h, h′′) = δ1 + δ2. Properties (3) and (4) are proven as follows:

maxFreshCells(cinit →∗S′ c2) = m1

maxFreshCells(c2 →∗S′ cfinal) = m2

maxFreshCells(cinit →∗S′ cfinal) = max {m1, m2 + sizeH(c2)− sizeH(cinit)}
= max {m1, m2 + ∑k

i=0(diff (k, h, h′))(i)}
= max {m1, m2 + |δ1|}

maxFreshWords(cinit →∗S′ c1) = 2
maxFreshWords(cinit →∗S′ c2) = max {2, 2 + s1} = 2 + s1

maxFreshWords(cinit →∗S′ c2 →∗S′ c3) = max {2 + s1, 1} = 2 + s1

maxFreshWords(cinit →∗S′ c3 →∗S′ cfinal) = max {2 + s1, 1 + s2}

• Case [Case]: e ≡ case x of Ci xij
ni → ei

n

We assume that the r-th case alternative is executed under an environment Er
def
= E] [xri 7→ vi

nr],
where the values vi are the parameters of the data construction pointed to by E(x).

Er ` h, k, td + nr, er ⇓ h′, k, v, (δ, m, s)

In addition, let us denote ρr
def
= ρ + [xri 7→ nr − i− 1

nr]. If (isr, csr) = trE er ρr then it holds that
cs ⊇ csr. Moreover, we get is = MATCH (ρ(x)) pj

m with cs(pr) = isr for each r ∈ {1..n}. The SVM
derivation corresponding to is results as follows:

66

cinit︷ ︸︸ ︷
(MATCH (ρ(x)) pj

m, h[p 7→ (j, Cr vi
nr)], k0, k, S, cs′[pr 7→ isr])

→S′ { since S!(ρ(x)) = E(x) = p }
(isr, h, k0, k, vi

nr : S, cs′) ≡ c1

→∗S′ { by i.h. (see below) }
([POPCONT], h|k0 , k0, k0, v : drop (td + nr) (vi

nr : S), cs′)
≡

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

In the same way as in the previous cases, we have to ensure that Er ≡ (ρr, vi
nr : S). Let z ∈ dom ρr.

We make the following case distinction: on one hand, if z = xri for some i ∈ {1..nr} then ρr(z) =
i− 1 and hence:

(vi
n
r : S)!(ρr(z)) = (vi

n
r : S)!(i− 1) = vi = Er(xri) = Er(z)

On the other hand, if z 6= xri for all i ∈ {1..nr} then ρr(z) = ρ(x) + nr. Therefore:

(vi
n
r : S)!(ρr(z)) = (vi

n
r : S)!(ρ(x) + nr) = S!(ρ(x)) = E(z) = Er(z)

Hence we get Er ≡ (ρr, vi
nr : S) and (1) holds by applying i.h. since drop (td + nr) Sg = drop td S.

Properties (2) and (3) follow trivially from the induction hypothesis. With respect to (4) we get:

maxFreshWords(cinit →∗S′ c1) = nr

maxFreshWords(c1 →∗S′ cfinal) = s
maxFreshWords(cinit →∗S′ cfinal) = max {nr, s + nr} = s + nr

• Case [Case!]: e ≡ case! x of Ci xij
ni → ei

n

The proofs of (1) and (4) are similar to those seen for the nondestructive case. Property (2) follows
trivially from the induction hypothesis and the definition of diff . With respect to (3), let c1 denote
the SVM state prior to the execution of the branch er. Then:

maxFreshCells(cinit →∗S′ c1) = 0
maxFreshCells(c1 →∗S′ cfinal) = m
maxFreshCells(cinit →∗S′ cfinal) = max {0, m− 1}

which proves the desired result.

The (⇐) direction of the theorem can be proved by induction on the length of the →∗S′ derivation.
Since this proof is mostly standard, we only describe it briefly: since it is known that the SVM is de-
terministic, we prove that, given a Safe program, if the SVM eventually halts then a corresponding
⇓-derivation can be built. We distinguish cases depending on the expression e being evaluated. The
base cases e ≡ c, e ≡ x, e ≡ x @ r, e ≡ a1 ⊕ a2, and e ≡ C ai

n @ r are straightforward: if the SVM

67

machine halts with the corresponding result on the top of stack, this result can be used with rules [Lit],
[Var], [Copy] and [Cons].

As an example, let us consider e ≡ x. Let (is, cs) = trE e ρ be the SVM code generated, where cs = []

and:

is = BUILDENV [ρ(x)] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

Given any cs′, the only possible derivation is the following one:
cinit︷ ︸︸ ︷

(BUILDENV [ρ(x)] : is1, h, k0, k, S, cs′)
→S′ {since S!(ρ(x)) = E(x) = v}

(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, v : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is3, h, k0, k, v : drop td S, cs′)
→S′

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

Trivially, by rule [Var], E[x 7→ v] ` h, k, td, x ⇓ h, k, v, ([]k, 0, 1). Property (2) holds because diff (k, h, h) =
[i 7→ 0 | 0 ≤ i ≤ k] = δ. Property (3) and (4) hold because maxFreshCells(cinit →∗S′ cfinal) = 0 and
maxFreshWords (cinit →∗S′ cfinal) = 1.

With respect to the remaining cases, the →∗S′ execution sequence is made up of a set of prelim-
inary actions (building the variable environment in the case of function application, pushing a con-
tinuation in the case of let expression or executing a MATCH/MATCH! at the beginning of a case/case!)
followed by the evaluation of the corresponding subexpressions (i.e, either the function being called
or the main/auxiliary expressions of a let or the case/case! branch). The induction hypothesis can be
applied to these (→∗)-subderivations in order to get the required assumptions of the corresponding ⇓
rule.

As an example, consider e ≡ let x1 = e1 in e2. Assume (is1, cs1) = trE e1 ρ++ and (is2, cs2) = trE e2 ρ1

where ρ1 = ρ + [x1 7→ 1]. Then is = PUSHCONT p : is1, in which cs1(p) = is2. Given cs′ ⊇ cs, the trace
corresponding to the execution of e must be as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0, p) : S, cs′) ≡ c1

→∗S′ {by Lemma 2.26}
([POPCONT], h′, k, k, v1 : (k0, p) : S), cs′[p 7→ is2]) ≡ c2

→S′

(is2, h′, k0, k, v1 : S, cs′) ≡ c3

→∗S′
([POPCONT], h′′, k0, k0, v : S′, cs′)︸ ︷︷ ︸

cfinal

68

Notice that c1 contains a continuation (k0, p) on top of the stack. The only machine instruction
which removes such continuation from the stack is POPCONT. So, in order to reach cf inal an intermediate
configuration c2 ≡ ([POPCONT], h′, k′, k′, v1 : (k0, p) : S), cs′[p 7→ is2]) must be reached so that the
execution can proceed. By Lemma 2.26, k′ = k.

In fact, it holds that c1 →∗(k0,p):S c2, so we can apply i.h. to obtain E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1, m1, s1),
as (k0, p) : S = drop 0 ((k0, p) : S).

Notice also that E] [x1 7→ v1] ≡ ρ + [x1 7→ 1] and that drop (td + 1) (v1 : S) = drop td S = S′, so
we can also apply i.h. to c3 →∗S′ cf inal to obtain E] [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2, m2, s2). The
reasoning about resources consumption is the same as the opposite implication.

2.9 A global overview of the Safe certifying compiler

The Safe compiler is mostly implemented in Haskell, and it runs in several phases. These are shown
in Figure 2.32. First, the input is scanned and parsed in order to obtain an abstract syntax tree (AST),
which is represented as a Haskell term. For the implementation of this phase we have used standard
tools [42, 77]. Then, the compiler’s front-end performs the following phases:

• Renamer/Contextual constraints checker [31]: The analyses implemented in the subsequent phases
assume that all bound variables have different names. Thus all variables are renamed in this
phase. Additionally, the contextual constraints of the language are checked, e.g. that every occur-
rence of a variable is in scope, functions and data constructors are called with the right number of
arguments, etc.

• Hindley-Milner type and region inference [85]: This phase decorates every expression, data
constructor and function definition with its corresponding type, after inferring it. The AST is also
decorated with information about the regions in which each data structure lives. In particular, it
determines whether a given data structure is local or not to the current function call. Chapter 4
deals extensively with this phase.

• Core-Safe transformation [31]: The original Safe program is translated into a desugared and se-
mantically equivalent Core-Safe version. The previously inferred type decorations are preserved.

• Sharing analysis [98]: Given two variables belonging to the same function definition, it computes
whether the respective data structures pointed to by them may share memory locations at run-
time. The program is decorated with the sharing information that is needed by the following
phase.

• Destruction analysis [84, 81]: It infers a typing for the source program w.r.t. the type system
given in Chapter 3, guaranteeing that dangling pointers are not generated as a consequence of
destructive pattern matching. The design of this phase is dealt with in Chapter 5.

• Memory Consumption Analysis [83]: It computes an upper-bound to the memory requirements
of a Safe program. Chapter 7 explains the way in which these bounds are obtained.

The compiler can produce several kinds of outputs. So far we have implemented the following back-
ends:

69

Lexer / Preprocessor / Parser

Renamer / contextual constraints check

HindleyMilner and region inference

CoreSafe transformation

Sharing analysis

Destruction analysis

FullSafe
C

oreSafe

Security
Certifier

SVM
transformer

JVM
transformer

TRS
transformer

Jasmin

Isabelle/
HOL

JVM AProVE,
μ-Term,...

Bounded
memory
Certifier

QEPCAD

Memory consumption analysis

Figure 2.32: Front-end and back-ends of Safe’s compiler.

70

• Java bytecode generation [39, 38]: The SVM translation process explained in Section 2.6 is used
as an intermediate step for obtaining Java bytecode, which can be run under the Java Virtual
Machine (JVM).

• Certification of security properties [36]: By using the information given by the destruction analy-
sis phase, this back-end generates an Isabelle/HOL script proving the absence of dangling point-
ers in the compiled program. In a PCC scenario, the code consumer would receive this formal
proof attached to the Java bytecode, in order to verify these safety properties. Chapter 6 describes
the process of generating the certificates.

• Certification of memory bounds [40]: Given the results of the memory consumption analysis, this
back-end certifies that the computed memory bounds are correct for the program being analysed.
This phase generates first-order formulas in Tarski’s theory of closed fields. These formulas are
proven valid with the QEPCAD system [23].

• TRS transformer [73]: It translates the Core-Safe definitions into Term Rewriting Systems (TRS),
so that their termination can be checked by existing tools, like AProVE [47] or MU-TERM [72].

• Other back-ends: For instance, translation of Safe programs into C.

This work concerns mainly the design and correctness properties of some of these phases, but hardly
any implementation detail. These can be found in [80], or in [79] (the latter in Spanish). The Safe
compiler is available for download at http://dalila.sip.ucm.es/safe/. There also exists a web-based
interface at http://dalila.sip.ucm.es/~safe/.

2.10 Conclusions and related work

In this chapter we have applied a semi-systematic method for refining operational semantics and ab-
stract machines in order to find the way from an abstract view of the language to an efficient imple-
mentation. Other contributions include a semantics enriched with memory costs, and the proof of
correctness of these costs when translating Safe to imperative code. This resource-aware semantics is
the basis for proving correct the memory consumption static analysis presented in Chapter 7, and for
certifying these bounds, done in [40].

The use of regions in functional languages to avoid garbage collection is not new, as it was explained
in Section 1.1.1. Tofte and Talpin [116] introduced in MLKit (a variant of ML) the use of nested regions
by means of a letregion construct. A lot of work has been done on this system [2, 19, 113]. Their
main contribution is a region inference algorithm adding region annotations at the intermediate language
level. A small difference with these approaches is that, in Safe, region allocation and deallocation are
synchronized with function calls instead of being introduced by a special language construct. This
simplifies the process of inferring regions, as we shall explain in Chapter 4. However, this comes at the
cost of granularity for determining the region scopes: MLKit allows several lexically-scoped regions in
the same function. A more relevant difference is that Safe has an additional mechanism allowing the
programmer to selectively destroy data structures inside a region.

A difficulty with the original Tofte and Talpin’s system is the fact that regions have nested lifetimes.
There exist a few programs (such as the inssort function shown in Example 2.11) that may result in
memory leaks due to this restriction. In [45] this problem is alleviated by defining a variant of λ-calculus
with type-safe primitives for creating, accessing and destroying regions, which are not restricted to

71

have nested lifetimes. Programs are written in a C-like language called Cyclone having explicit memory
management primitives, then they are translated into this variant of λ-calculus, and then type checked.
So, the price of this flexibility is explicit region control. In our language Safe, regions also suffer from
the nested lifetimes constraint, since both region allocation and deallocation are bound to function calls,
which are necessarily nested. However, the destructive pattern matching facility compensates for this,
since it is possible to dispose of a data structure without deallocating the whole region in which it
resides. Allocation and destruction of distinct data structures are not necessarily nested, and the type
system presented here protects the programmer against missuses of this feature. Again, the price of this
flexibility is explicit deallocation of cells. Allocation is implicit in constructions and the target region of
the allocation is inferred by the compiler. It is arguable whether it is better to explicitly manage regions
or cells. In [98] a more detailed comparison with all these works can be found.

The destructive pattern matching features of the language have been inspired by Hofmann and Jost’s
match construct [58], whose operational behaviour is similar to that of Safe’s case!. The main difference
is that they lack a compile time analysis guaranteeing the safe use of this dangerous feature, since it is
beyond the scope of their work.

There have been other successful derivations of abstract machines starting from high level descrip-
tions of the semantics. For instance, in [52] and [1] a number of such derivations are done. Well known
abstract machines for the λ-calculus such as SECD, Krivine’s, CLS and CAM are derived and proved
correct. These papers propose general schemes for achieving this kind of derivations. The differences
with the present work are the following:

• They concentrate on the pure λ-calculus and they consider neither sharing nor heaps. Algebraic
types, case and let expressions are not considered either.

• In the second paper, the starting point is a denotational meaning of the source language, while
here we start from an operational semantics.

• In order to refine their machines they use predefined correct transformations such as closure con-
version, transformation into continuation passing style, defunctionalization and inlining.

• They ignore the compilation issues from the source language to machine instructions, and also
resource consumption.

In [65] a broad survey of both abstract and virtual machines for the λ-calculus and for practical func-
tional languages is done. The author presents in detail some well-known and other less known abstract
machines. When the machines execute compiled code, also the translation schemes are provided. The
aim of the book is to serve as a text for a graduate course and no attempt is done to provide proofs of
correctness either of the machines or of the compilation schemes.

For the first abstract machine M2 we have found inspiration in Sestoft’s derivation of abstract ma-
chines for a lazy λ-calculus [104]. For the rest of the derivation, Peña (supervisor of this thesis) has
reported some previous experience in [41], but, in that occasion, the destination machine was known in
advance. The present work represents a ‘real’ derivation in the sense that the destination machine has
been invented from scratch.

Compared to other eager machines such as Landin’s SECD machine [70], it is an added value of our
abstract machine that the standard translation yields constant stack space for tail recursion, as we have
shown in Example 2.17. For instance, in the G-machine the compiler needs to explicitly identify tail
recursion and to do a special translation in this case, i.e. it is considered as an optimization of the code

72

generation phase. The same happens in other compiled virtual machines such as π-RED+ [46]. Addi-
tionally, our SVM machine does not need a garbage collector and all memory allocation/deallocation
actions have been implemented in constant time.

For the semantics enriched with a resource vector, we have found inspiration in [9]. Some other
resource-enriched semantics have been proposed. See for example [58, 56] for a big-step semantics of a
simple functional language with some information about the number of cells needed by an expression,
while [64] extends the same idea to a higher-order language. In [51] Hammond and Michaelson define
a model for computing heap and stack costs for a subset of the Hume language [50].

The translation shown in this chapter has been formally verified by de Dios and Peña with the help
of the Isabelle/HOL proof assistant. They address the translation from Core-Safe to SVM in [39] , and
the translation from SVM instructions to Java bytecode in [38].

73

74

Chapter 3

Type system

3.1 Introduction

The destruction features provided by Safe allow a memory efficient implementation of several data
structures and algorithms. However, there exists a risk at runtime: the execution may access some
parts of the memory that have been disposed of previously. A program is said to be pointer-safe if this
eventuality never arises at runtime for any input given to the program.

In this chapter we devise a typed-based approach to prove that a given program is pointer-safe.
This problem is, in general, undecidable: the type system developed in this chapter can prove a pro-
gram pointer-safe, but it cannot prove the absence of this property. As a consequence, the type system
may reject some pointer-safe programs. It is desirable to get as few rejected pointer-safe programs as
possible. In Section 3.5 we show some examples of successfully typed programs, which should give an
idea about the power of the type system.

The main result of this chapter is the proof of the following fact: the existence of a typing derivation
for a program guarantees its pointer-safety. However, in this chapter we do not explain how to get this
typing derivation. This question is postponed to the next two chapters. The contents of this chapter
are based on the work described in [84]. However, the type system of this chapter contains significant
improvements with respect to that of [84]. In particular, it accepts more pointer-safe programs, and
admits an inference algorithm (Chapter 5) which is more efficient than that of [84].

3.2 Type system concepts

Since the Safe language is largely based on Haskell, it inherits many of the ideas in Haskell’s type
system, which is based, in turn, on Hindley-Milner type system. In particular, it supports polymorphic
algebraic data types and inherits the list data type (denoted by [α], being α the type of the elements of
the list) with its standard constructors [] and (:), as well as the tuple data type, denoted by (α1, . . . , αn).

When extending the Hindley-Milner type system to Core-Safe, one must assign a type to region
variables. For this purpose we define a new category of types: region type variables. The type of a region
variable is a region type variable (abbreviated as RTV in the following). These RTVs, which will be
denoted by ρ, ρ1, . . ., act as ordinary polymorphic variables in Haskell. However, only region variables
are allowed to have a RTV as its type.

Algebraic data types are annotated with RTVs, which always coincide with the types of the region

75

1: 2: []

3: 4: []

1: 2: []

3: 4: []1: 2:

xs

ys

xs

ysresult

append xs ys

Figure 3.1: Representation of the input lists in the heap before (left-hand side) and after (right-hand
side) a call to the append function. The input lists can be located in different regions, but the result have
to be constructed in the same region as the second list, since the latter is reused in the base case.

variables used in the creation of the corresponding DS. For example, if r has type ρ, the expression
[] @ r has type [α]@ρ. We have these kind of annotations with the aim of stating a connection between
data structures and region variables, and connections among different data structures. For example,
if two variables have [α]@ρ and [β]@ρ as their respective types, their corresponding lists must live in
the same region at runtime. Moreover, if there exists another region variable r′ with type ρ, every DS
being constructed with this variable at runtime will also live in the same region as these two lists. It is
important to have a way to determine these connections at compile time, because it allows us to know,
in particular, whether a given data structure resides in the temporary region self , which is the only
region variable of type ρself .

Example 3.1. Recall from Example 2.5 the following function for appending two lists:

append xs ys @ r = case xs of
[] → ys
(x : xx)→ let x1 = append xx ys @ r

in (x : x1)@r

Let us assume that the r variable has type ρ. Without considering region annotations in data types,
we would obtain this type for append.

append :: ∀α ρ . [α]→ [α]→ ρ→ [α]

Now let us determine the RTVs that would be attached to each [α]. The branch guarded by (x : xx)
returns the result of the construction (x : x1)@r, which has type [α]@ρ. Notice, however, that the branch
guarded by [] returns the list passed as second parameter. As we will see below, the typing rules
demand that the result of all branches in a case expression must have the same type. Therefore, the
type of the second parameter must be [α]@ρ, which results in the following type for append:

append :: ∀α ρ ρ1. [α]@ρ1 → [α]@ρ→ ρ→ [α]@ρ

The ρ1 annotation in the first parameter means that the region of the corresponding list may be
different from that of the second parameter and from the result (Figure 3.1)

Assume the variation of the append function given in Example 2.7 that, in the base case, returns a

76

1: 2: []

3: 4: []

1: 2: []

xs

ys

xsappendC xs ys

3: 4: []1: 2:

ys @ rresult

3: 4: []

ys

Figure 3.2: Representation of the input lists in the heap before (left-hand side) and after (right-hand side)
a call to the appendC function. Now the result can be constructed from scratch in a different region.

copy of the second parameter instead of the original:

appendC xs ys @ r = case xs of
[] → ys @ r
(x : xx)→ let x1 = appendC xx ys @ r

in (x : x1)@r

In this case, the result of the expression ys @ r has type [α]@ρ, whose RTV need not be the same as
that of ys. Thus we obtain the following type for appendC:

appendC :: ∀α ρ ρ1 ρ2. [α]@ρ1 → [α]@ρ2 → ρ→ [α]@ρ

The function appendC does not require that the list passed as second parameter lives in the same
region as the result (Figure 3.2)

Algebraic data types can be associated with more than one RTV. For example, the following defini-
tion:

data TBL α β @ ρ1 ρ2 ρ3 = TBL [(α, β)@ρ1]@ρ2 @ ρ3

defines a concrete implementation of the table abstract data type, represented as a list of (key, value)
pairs. Data structures of this type may spread up to three different regions: one for the TBL constructor,
another for the spine of the list containing the pairs, and another one for the pairs themselves (Figure
3.3).

In general, our algebraic types take the form T si @ ρj, where T is a type constructor (TBL in our
example), and si, ρj are the type arguments and RTVs that are applied to this constructor. The last RTV
of the list ρj is the type of the region where the data structures of this type are built. This RTV is called
the outermost region. In our example, the outermost region of the TBL data type is ρ3. When the compiler
decorates recursive data declarations with RTVs (see Section 4.3), the recursive occurrences of the type
being defined must have the same RTVs as in the type definition. As a consequence, data types are not
polymorphic recursive, unlike function definitions, in which region-polymorphic recursion is allowed.

77

:TBL : []

(,) (,)

Figure 3.3: The TBL datatype can be distributed over three different regions. The outermost region
contains the constructor TBL.

The following example shows the RTV-annotated definition of a binary search tree data type:

data BSTree α @ ρ = Empty @ ρ | Node (BSTree α @ ρ) α (BSTree α @ ρ) @ ρ

In the following we will write T @ ρj instead of T si @ ρj when the si are not relevant. We shall even
use the notation T @ ρ to highlight only the outermost region.

The type of a variable also reflects whether it is destroyed by means of a case! expression. This is
represented by a (!) symbol in the corresponding types. For example, in the following expression, the
variable xs gets [α]!@ρ as its type:

case! xs of []→ . . .
(x : xx)→ . . .

Types with a (!) mark are called condemned. Variables with condemned types can occur in the dis-
criminant of a destructive case!, as well as in the destructive arguments of a function call. In our
example, the variable xx also gets a condemned type [α]!@ρ. On the contrary, if a variable is not affected
(even indirectly1) by a case!, we say that it has a safe type. We use the term underlying type to refer to the
Hindley-Milner component of a type with its RTVs, without regard to whether this type is condemned
or safe.

In a standard Hindley-Milner type system, a variable always has the same type along its scope. This
does not always hold in our type system: the underlying types are preserved along the scope, but some
of them may have a condemned mark (!) only in a few of its occurrences. Let us consider the following
example:

let x1 = (case xs of []→ . . .) in (case! xs of []→ . . .)

The variable xs has type [α]@ρ in the auxiliary expression of the let, and type [α]!@ρ in the main
expression. Each subexpression will be typed under a different typing environment: let us denote by
Γ1 the typing environment for the auxiliary expression, and by Γ2 the typing environment for the main
expression. The variable xs is bound to a safe type in Γ1 and to a condemned type in Γ2. For typing
the whole let expression, both environments are merged into a single environment Γ which assigns
a condemned type to xs, meaning that at some point of the execution of the let, the DS pointed to
by this variable will be destroyed. However, not every combination is possible. If we swapped the
subexpressions of our let as follows:

1Even if a DS is not directly involved in a case!, it may point to a cell being destroyed. We shall explain this in more detail in
Section 3.3.

78

Type 3 τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region type, being ρ ∈ RegType}

t → s {safe}
| d {condemned}

SafeType 3 s → T s @ ρm {algebraic, with m ≥ 1}
| α {variable, being α ∈ TypeVar}
| B {basic, being B ∈ {Int, Bool}}

CdmType 3 d → T s !@ ρm {condemned algebraic, with m ≥ 1}

DgrType 3 r → T s #@ ρm {in-danger algebraic, with m ≥ 1}

FunType 3 tf → ti → ρ→ s {function}

SafeFunType 3 sf → si → ρ→ s {safe function}

σ → ∀α ρ.tf {type scheme}

Figure 3.4: Syntax of type expressions

let x1 = (case! xs of []→ . . .) in (case xs of []→ . . .)

the outermost let would be ill-typed. In Section 3.4 we will describe precisely which combinations of
safe and condemned marks are allowed.

Example 3.2. Revisiting our append example, let us consider its destructive variant (Example 2.10):

appendD xs ys @ r = case! xs of
[] → ys
(x : xx)→ let x1 = appendD xx ys @ r

in (x : x1)@r

The function appendD gets the following type:

appendD :: ∀α ρ ρ1. [α]!@ρ1 → [α]@ρ→ ρ→ [α]@ρ

3.3 Type expressions and environments

The syntax of type expressions is shown in Figure 3.4. Since our language is first-order, we distinguish
between functional types σ and non-functional types, which can be RTVs ρ or algebraic data types t, r.

Algebraic types may be safe types s, in-danger types r or condemned types d. In-danger types arise
as an intermediate step during typing and are useful to control the side-effects of the destructions. But
notice that the types of functions only include either safe or condemned types; that is why there is

79

a separate syntactical category t of external types which rules out the possibility of having in-danger
types in function signatures.

The intended semantics of each category of algebraic types is the following:

• Safe types (s): The DSs of this type cannot be directly or indirectly destroyed, so they are kept
intact during the evaluation of the expression being typed. Basic types Int and Bool and type
variables are also included in this category.

– Capabilities: DSs of safe types can be read, copied and used to build other DSs.

– Prohibitions: DSs of safe types can neither be used in the discriminant of a case! expression,
nor point to a cell that is being destroyed by a case!. Variables with safe types cannot appear
in destructive positions of function applications.

– Guarantees: All the cells pointed to by a DS of a safe type are guaranteed to remain intact
during the evaluation of the expression being typed.

• Condemned types (d): The DSs of this type can receive the action of a destructive case!, but this
destructive action is limited to the recursive spine of the DS.

– Capabilities: A DS of this type can be read, copied and used to build other DSs before being
destroyed. It can be part in the discriminant of a case!. In this case, its recursive spine can
also be destroyed through its recursive pattern variables.

– Prohibitions: The non-recursive part of a DS of a condemned type cannot point to a cell being
destroyed.

– Guarantees: The non-recursive descendants of a condemned DS are ensured to remain intact
during the evaluation of the expression being typed, but the recursive spine of a condemned
DS may get totally or partially corrupted during this evaluation.

• In-danger types (r): The DSs of this type can point to a recursive descendant of a condemned DS,
so they contain potentially dangling pointers.

– Capabilities: A DS of this type can be read, copied and used to build other DSs before be-
ing corrupted. It can also occur in the discriminant of a case!. Its recursive spine can be
destroyed, as well as its non-recursive descendants.

– Prohibitions: None.

– Guarantees: None. Both recursive and non-recursive descendants of an in-danger DS can be
destroyed.

From these informal descriptions, we can easily see that safe types are the “strongest” ones, in the sense
that they are the most restrictive (e.g. they cannot point to anything being destroyed), but they offer
more guarantees with respect to the integrity of their corresponding DSs. On the other hand, in-danger
types are the most permissive, but they cannot ensure nothing about which part of the corresponding
DS is kept intact. This motivates the following order on these categories: s ≤ d ≤ r. Before present-
ing this order relation in a formal way, let us introduce some notation: we use the names SafeType,
CdmType and DgrType to denote the set of all safe, condemned and in-danger types, respectively. We
also define the sets ExpType and UnsafeType as follows:

ExpType def
= SafeType ∪ CdmType ∪DgrType

UnsafeType def
= CdmType ∪DgrType

80

 : :

1:

xs

zs

ys

... :

Figure 3.5: Situation described in Example 3.3: the recursive spine of xs is condemned (gray cells). Since
zs points to it, it gets an in-danger type.

The predicate utype?(τ, τ′), where τ, τ′ ∈ ExpType, tells whether two types have the same underly-
ing type (i.e. without regard to ! or # marks). By abuse of notation, we extend this predicate to function
schemes as follows: utype?(σ, σ′)⇔ σ = σ′.

Given these notational conventions, the ≤ partial order on types is defined as follows:

τ1 ≤ τ2
def⇐⇒ utype?(τ1, τ2) ∧ (τ1 = τ2 ∨ τ1 ∈ SafeType ∨ τ2 ∈ DgrType) (3.1)

T @ ρ

T !@ ρ

T #@ ρ

Example 3.3. In order to illustrate the meanings of these types, let us consider the following Core-Safe
definition:

f xs @ r = let ys = (case xs of (x : xx)→ xx) in
let zs = (1 : ys)@r in case! xs of . . .

The variable ys refers to the tail of the list pointed to by xs, which is used in the definition of zs to
build another list (Figure 3.5). After that, the first cons cell of the list pointed to by xs is disposed by
means of a case!. In order to type the case! xs . . . expression under an environment Γ, the variable xs
must appear in this environment with a condemned type [Int]!@ρ. Moreover, since both ys and zs are
sharing a recursive descendant of xs, they must occur in Γ with an unsafe type. Notice that the variable
xs may appear in the typing environment of the non-destructive case with a safe type [Int]@ρ, since it
is not being destroyed in that expression.

A functional type tf has the form ti
n → ρj

m → s, where ti
n and ρj

m are the types of the data
and region parameters, and s is the type of the result. Notice that function parameters are restricted
by syntax to be safe types, condemned types or RTVs. The motivation for not allowing in-danger
types in function signatures is the following: when a parameter is condemned we know clearly that

81

only the recursive substructure of the corresponding DS may be condemned. When the function is
applied to an argument we know that the recursive substructure of such argument may be partially or
totally destroyed. However, when a parameter is in-danger, the only thing we know is that some part
(recursive or not) of the whole DS may be dangling, but we do not know which part. This is a very
imprecise information to put in the type of a function. In spite of this restriction, in-danger types are
still useful for controlling and propagating the side effects of explicit destruction through a function’s
body.

We distinguish a special category of functional types, SafeFunType, which contains the types of
those functions whose parameters have safe types. We use the notation sf for denoting an element of
this set. Constructor types are a particular instance of these types. They have a single region argument
ρ which coincides with the outermost region variable of the resulting algebraic type T si @ ρj

m. Con-
structors are given types indicating that the recursive substructure and the structure itself must live in
the same region, as we have pointed out before. For example, in the case of lists and trees:

[] :: ∀α ρ . ρ→ [α]@ρ

(:) :: ∀α ρ . α→ [α]@ρ→ ρ→ [α]@ρ

Empty :: ∀α ρ . ρ→ BSTree α @ ρ

Node :: ∀α ρ . BSTree α @ ρ→ α→ BSTree α @ ρ→ ρ→ BSTree α @ ρ

By abuse of notation, we shall also consider type schemes σ to belong to FunType or SafeFunType,
depending on the functional type after the ∀ quantifiers.

Expressions are typed in the context of type environments, which contain the type of variables, and
function/constructor names in scope. A type environment Γ contains region type bindings [r : ρ],
variable type bindings [x : t], [x : r] and polymorphic scheme assignments to functions [f : σ] and
constructor symbols [C : σ]. Formally, a type environment is a triple of mappings in this set:

Γ : (Var→ ExpType)× (RegVar→ RegType)× (Fun ∪ Cons→ FunType)

However, by abuse of notation, we consider Γ as a single function. It will be clear which specific
component is meant, when applying this function to a variable x, region variable r, function symbol
f , or constructor symbol C. We also define several operators (summarized in Table 3.1) for composing
two type environments:

• The usual + operator demands disjoint domains. Its result is the union of the bindings of the
environments to which it is applied.

Γ1 + Γ2 defined⇔ dom Γ1 ∩ dom Γ2 = ∅

dom (Γ1 + Γ2) = dom Γ1 ∪ dom Γ2

(Γ1 + Γ2)(x) =

Γ1(x) if x ∈ dom Γ1

Γ2(x) otherwise

• The ⊕ operator allows a variable to occur in several environments, but only if it has the same safe
type in all of them.

Γ1 ⊕ Γ2 defined⇔ ∀x ∈ dom Γ1 ∩ dom Γ2. Γ1(x) = Γ2(x) ∈ SafeType

82

• Γ1 • Γ2 defined if: Result of Γ1 • Γ2:
+ Γ1 and Γ2 have disjoint domains Union of Γ1 and Γ2 bindings⊕ Common variables in Γ1 and Γ2 have the same safe type

t Common variables in Γ1 and Γ2 have the same underlying type Union of Γ1 and Γ2 bindings
(highest types take precedence)

Table 3.1: Informal descriptions of the operators on type environments.

dom (Γ1 ⊕ Γ2) = dom Γ1 ∪ dom Γ2

(Γ1 ⊕ Γ2)(x) =

Γ1(x) if x ∈ dom Γ1

Γ2(x) otherwise

• The t operator, when applied to the environments Γ1 and Γ2, allows a variable to occur with a
different type in each environment, provided that the underlying type in each of the occurrences
is the same. The result of Γ1 t Γ2 contains all the bindings from Γ1 and Γ2. If the same variable
occurs in both environments with a different type, the higher (weaker) version takes priority over
the lower one.

Γ1 t Γ2 defined ⇔ ∀x ∈ dom Γ1 ∩ dom Γ2.utype?(Γ1(x), Γ2(x))

It is easy to see that, if τ1 and τ2 have the same underlying type, then either τ1 ≤ τ2 or τ2 ≤ τ1

w.r.t. the order relation given in 3.1. In these cases we use the notation τ1 t τ2 to denote the
maximal type between both.

dom (Γ1 t Γ2) = dom Γ1 ∪ dom Γ2

(Γ1 t Γ2)(x) =

Γ1(x) if x /∈ dom Γ2

Γ2(x) if x /∈ dom Γ1

Γ1(x) t Γ2(x) if x ∈ dom Γ1 ∩ dom Γ2

It is easy to see that these three operators are commutative and associative.

Example 3.4. Given the following type environments:

Γ1 = [x : [α]@ρ2]

Γ2 = [x : [α]!@ρ2, y : Int]
Γ3 = [x : [α]!@ρ2, z : Bool]
Γ4 = [x : [α]#@ρ2, y : Bool]

• None of the Γ1 + Γ2, Γ2 + Γ3, Γ1 + Γ3, Γ1 + Γ4, Γ2 + Γ4,Γ3 + Γ4 is defined.

• Γ2 ⊕ Γ3 is undefined, since x has an unsafe type in both environments.

• Γ2 t Γ4 is undefined, since the underlying types of Γ2(y) and Γ4(y) are not equal. However,
Γ2 t Γ3, Γ3 t Γ4 as well as Γ1 t Γ3 t Γ4 are defined as follows:

Γ2 t Γ3 = [x : [α]!@ρ2, y : Int, z : Bool]

Γ3 t Γ4 = [x : [α]#@ρ2, y : Bool, z : Bool]

Γ1 t Γ3 t Γ4 = [x : [α]#@ρ2, y : Bool, z : Bool]

83

Γ′ ` e : s Γ ⊇ Γ′

Γ ` e : s
[EXT]

Γ + [x : τ1] ` e : s τ1 ≤ τ2

Γ + [x : τ2] ` e : s
[WEAK]

∅ ` c : B
[LIT]

[x : s] ` x : s
[VAR]

[x : T @ ρ′, r : ρ] ` x @ r : T @ ρ
[COPY]

Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s utype?(τ1, s1)
∀x ∈ dom Γ1.Γ1(x) ∈ UnsafeType⇒ x /∈ fv(e2)

Γ1 t Γ2 ` let x1 = e1 in e2 : s
[LET]

ti
n → ρj

m → s E σ Γ = ΓR + [f : σ] +
⊕n

i=1[ai : ti] + [rj : ρj
m]

ΓR =
⊔

ai∈CdmType SHR(ai, f ai
n @ rj

m)
∧

ti∈CdmType isTree(ai)

Γ ` f ai
n @ rj

m : s
[APP]

si
n → ρ→ s � σ Γ = [C : σ] +

⊕n
i=1[ai : si] + [r : ρ]

Γ ` C ai
n @ r : s

[CONS]

∀i ∈ {1..n}.Γ(Ci) = σi utype?(Γ(x), T @ ρ) ∀i ∈ {1..n}.sij
ni → ρ→ T @ ρ � σi

∀i ∈ {1..n}.Γ + [xij : τij
ni] ` ei : s ∀i ∈ {1..n}.∀j ∈ {1..ni}.utype?(sij, τij)

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

∀i ∈ {1..n}. Γ(Ci) = σi ∀i ∈ {1..n}. sij
ni → ρ→ T @ ρ � σi

ΓR = SHR(x, case! x of Ci xij
ni → ei

n
) ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh(tij, sij, T !@ ρ)

∀i ∈ {1..n}.∀z ∈ dom ΓR ∪ {x}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [xij : tij
ni] ` ei : s

ΓR t (Γ\x) + [x : T !@ ρ] ` case! x of Ci xij
ni → ei

n
: s

[CASE!]

Figure 3.6: Typing rules for expressions.

The ≤ order relation defined on types can be extended to typing environments as follows:

Γ1 ≤ Γ2
def⇐⇒ dom Γ1 ⊆ dom Γ2 ∧ ∀x ∈ (dom Γ1) ∩Var.Γ1(x) ≤ Γ2(x)

This relation is motivated by the fact that, if an expression is typeable under an environment Γ0, it
should be typeable under every environment Γ such that Γ ≥ Γ0 (i.e. Γ is less restrictive than Γ0). In the
following section we describe in detail the typing relation.

3.4 Typing rules

Figure 3.6 shows the rules for typing expressions. These rules define the derivation of judgements of
the form Γ ` e : s, meaning that the expression e has a safe type s under an environment Γ. Some of
these rules use the operators on type environments explained previously, and they implicitly assume
that the application of each of these operators results in a well-defined environment. If it does not, the
corresponding rule cannot be applied.

There are rules for typing literals [LIT] and variables [VAR]. Notice that these expressions are typed

84

only under the minimal typing environment w.r.t. the ≤ relation on environments. If we want to type
these expressions under a weaker environment, we can do it by means of the [EXT] and [WEAK] rules.
The first one is useful for extending the environment with fresh bindings, whereas the second one
allows us to downgrade the type category of a given variable to a weaker one. That is, safe variables
can be demoted to unsafe, whereas condemned variables can be demoted to in-danger. Both [EXT] and
[WEAK] rules are useful in the context of case and case! expressions, since their corresponding typing
rules (which we shall explain later) demands all the case(!) branches to be typeable under the same
environment (excluding pattern variables, which may differ between branches).

Example 3.5. Given the following expression:

case b of
True → e1

False → e2

Assume we have derived the following typing judgements for each branch

[x : [α]!@ρ] ` e1 [x : [α]@ρ, z : Int] ` e2

We can apply the [EXT] rule to the first judgement, and the [WEAK] rule to the second one, so both
expressions are typable under the same environment:

[x : [α]!@ρ] ` e1

[x : [α]!@ρ, z : Int] ` e1
[EXT]

[x : [α]@ρ, z : Int] ` e2

[x : [α]!@ρ, z : Int] ` e2
[WEAK]

The [COPY] rule allows any variable of an algebraic type to be copied. The outermost region variable
ρ′ in the type of the DS being copied is replaced by the type ρ of the destination region.

Rule [LET] allows the bound variable to get a safe, condemned or in-danger type in the main expres-
sion e2, provided it has the same underlying type as the expression e1. The side condition in this rule
demands that any variable with an unsafe type in e1 cannot be mentioned (i.e. occur free) in e2, since
it may contain dangling references. Lastly, if the DS pointed by a variable is not guaranteed to remain
intact during the evaluation of one of the sub-expressions of the let, it cannot be guaranteed to have a
safe type when typing the whole let expression. That is why we take the least upper bound Γ1 t Γ2 of
the environments typing each sub-expression.

Rule [APP] deals with function application. The operator E denotes the instantiation of a type
scheme, in which the bound variables of that scheme can be replaced by safe types. The use of the
⊕ operator avoids a variable to be used in two or more different positions unless they are all safe
parameters. Otherwise undesired side-effects could happen, such as trying to destroy the same cell
twice in the function being called. The notation ΓR = SHR(x, e) is defined as follows:

ΓR = SHR(x, e)
def⇐⇒ dom ΓR = sharerec(x, e)\{x}

∧∀y ∈ dom ΓR. ΓR(y) ∈ DgrType

The sharerec(x, e) notation denotes the set of variables in the scope of e that may point to a recursive
descendant of the DS pointed to by x at runtime. This set is computed by an abstract interpretation-
based sharing analysis, which is described in [98]. This analysis approximates the sharing relations

85

between the different variables occurring in the body of a function, but it shall not be detailed here. In
Section 3.6.3 we state its correctness properties, since they are essential for proving the correctness of
the type system.

The SHR notation specifies that ΓR contain every variable in the scope of e that may point to a
recursive descendant of x, and these variables are mapped by ΓR to an in-danger type. This notation
can be extended to join the sharing information of several variables as follows:

ΓR =
⊔
i∈I

SHR(xi, e)
def⇐⇒ ∀i ∈ I. ∃Γi. (Γi = SHR(xi, e) ∧ Γi ≤ ΓR)

In our particular [APP] rule, the ΓR environment contains all those variables that may point to an ar-
gument being passed as a condemned parameter of f . The disjoint union of ΓR with the rest of the
arguments ensure that there are no arguments with an in-danger type in the context of the function
application, in the same way as there are no in-danger parameters in the function definition. It also
propagates the information about possibly damaged pointers downwards in the derivation tree.

Example 3.6. Given a function g with the following type:

g :: [Int]!@ρ1 → [Int]!@ρ1 → [Int]@ρ1 → [Int]@ρ1 → Int

The function call g xs ys xs zs is ill-typed, because the following environment is undefined:

[xs : [Int]!@ρ1]⊕ [ys : [Int]!@ρ1]⊕ [xs : [Int]@ρ1]⊕ [zs : [Int]@ρ1]

If we swap the second and third arguments, the result g xs xs ys zs is also ill-typed for the same reasons:

[xs : [Int]!@ρ1]⊕ [xs : [Int]!@ρ1]⊕ [ys : [Int]@ρ1]⊕ [zs : [Int]@ρ1]

However, we can provide the same argument twice in two safe positions. For example, in g xs ys zs zs
we would obtain the following environment:

[xs : [Int]!@ρ1]⊕ [ys : [Int]!@ρ1]⊕ [zs : [Int]@ρ1]⊕ [zs : [Int]@ρ1]

which is well-defined and equivalent to [xs : [Int]!@ρ1, ys : [Int]!@ρ1, zs : [Int]@ρ1]. Notice that we can-
not provide arguments with an in-danger type. For example, in the following code fragment:

case xs of
(x : xx)→ f xs ys xx zs

the function call cannot be typed, since xx is a recursive descendant of a variable in a condemned
position (xs). Therefore, it occurs in the ΓR environment with an in-danger type, and the following is
undefined:

[xx : r]︸ ︷︷ ︸
ΓR

+ ([xs : [Int]!@ρ1]⊕ [ys : [Int]!@ρ1]⊕ [xx : [Int]@ρ1]⊕ [zs : [Int]@ρ1])

The isTree predicate is given by an auxiliary analysis, which is run jointly with the sharing analysis of
[98]. An intuition on this predicate can be given by considering the recursive spine of a DS as a directed

86

Node 7

Node 2

EmptyEmpty

Node 10

Empty

Node 7

Node 2

EmptyEmpty

Node 10

EmptyEmpty

Figure 3.7: Internal sharing in binary search trees (BSTs). The graph of the BST at the left-hand side is
not a tree, but a directed acyclic graph. If such a BST is pointed to by a variable, the predicate isTree will
never hold at compile-time for that variable. On the contrary, the graph of the BST at the right-hand
side is a tree.

graph, in which the vertices are the cells of its spine and the edges represent the connections between
cells: there is an edge from w1 to w2 iff w1 contains a pointer to w2. The predicate isTree(x) holds if the
graph associated to the DS pointed to by x is guaranteed to be a tree at runtime or, in other words, if we
cannot reach a recursive descendant of that DS via two different paths (see Figure 3.7). Otherwise, the
graph associated to that DS is not a tree, but a directed acyclic graph (DAG). The

∧
ai∈CdmType isTree(ai)

condition in the [APP] rule demands that there should not be internal sharing between the cells pointed
to by the variables occurring in condemned positions of the function. Otherwise the function being
called might attempt to destroy a child of a condemned DS twice.

Example 3.7. Consider the following function for destroying a binary search tree:

destroyBST :: BSTree α!→ Int
destroyBST Empty = 0
destroyBST (Node l x r) = let x1 = destroyBST l in

let x2 = destroyBST r in 0

If we execute the following expression:

let x1 = Empty in destroyBST (Node x1 0 x2)

there would be an attempt to destroy the DS pointed to by x1 twice.

For the purposes of the type system, a constructor application C ai
n @ r can be considered as a

function application in which all the parameters have a safe type. Hence the [CONS] rule is a particular
instance of [APP].

Rule [CASE] allows its discriminant variable to be safe, in-danger, or condemned, since it only reads
that variable. We demand the Hindley-Milner types of the discriminant and the pattern variables to be
instances of the types of the corresponding constructors, but pattern variables may also occur with a
(!) mark or a (#) mark in the environments. This provides more flexibility in comparison with the type
system of [84], in which the marks of the pattern variables can be restricting, depending on the mark of
the discriminant.

In rule [CASE!] the discriminant is destroyed and consequently the text should not try to reference
it in the alternatives. The same happens to those variables sharing a recursive substructure of x, as they
may be corrupted. These substructures can only be accessed through the pattern variables occurring in
recursive positions of the constructor. The corrupted variables are added to the environment ΓR with

87

inh(s, s, d) ⇔ ¬utype?(s, d)
inh(d, s, d) ⇔ utype?(s, d)

Figure 3.8: Definitions of inheritance compatibility.

ρself 6∈ rtv(s) ∪ (
⋃n

i=1 rtv(ti)) ∪ {ρj
l}

Γ + [xi : ti
n
] + [rj : ρj

l] + [self : ρself] + [f : ∀ρ.ti
n → ρj

l → s] ` e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : ∀α ρ . ti
n → ρj

l → s]}
[FUN]

Figure 3.9: Typing rule for function definitions.

in-danger types. Relation inh, defined in Figure 3.8, determines the types inherited by pattern variables:
recursive ones are condemned while non-recursive ones must be safe. This reflects the intended mean-
ing of safe and condemned types: since the discriminant is condemned, only the recursive part of the
DSs pointed to the pattern variables in recursive positions may be destroyed, whereas those variables
in non-recursive positions must be left intact.

In Figure 3.9 we show the [FUN] rule for typing function definitions. The informal meaning of a
judgement {Γ} def {Γ′} is that, assuming that the type of every function called in the body of def is
contained in Γ, the definition def is well-typed and Γ′ is the extension of Γ with the type of the function
being defined. We use ∀α ρ to denote the standard generalization of a functional type with respect
all its type variables, and ∀ρ to denote the generalization of the region variables of a functional type.
The function’s body is typed under an environment which contains the types of the data and region
parameters. The self region is assigned a special type ρself which must be distinct from the region types
of the rj, the region types occurring in the result, and the region types of the input parameters. With this
constraint we ensure that the deallocation of the self region when the function finishes does not cause
dangling pointers, since the result of the function does not reside there.

Notice that the ∀ρ notation allows us to have region-polymorphic recursion: inside the body e, dif-
ferent applications may use different regions. This kind of polymorphism cannot be applied to ordinary
type variables, since the type reconstruction problem would be undecidable, as shown by Henglein [53].
However, if we restrict ourselves to recursion over RTVs, this problem becomes decidable. In Chapter
4 we explain the advantages of allowing this kind of recursion.

Example 3.8. The following function is ill-typed:

f xs = case xs of (x : xx)→ xx @ self

The type of its body is [α]@ρself , so the condition ρself /∈ rtv(s) does not hold. Operationally, this
function would build a copy of the tail of the input list into the working region and return a reference to
the result. However, the result is lost after the function finishes because of the self deallocation. Hence,
this function always returns a dangling pointer.

The following property of the type system will be useful in its correctness proof.

Lemma 3.9 (Substitution lemma). If Γ ` e : s and θ is a substitution that maps type variables α to safe types
and region types ρ to region types, then θ(Γ) ` e : θ(s).

Proof. Since θ maps type variables only to safe types, and RTVs to RTVs, the application of θ to a type τ

does not change its category. Formally:

τ ∈ X ⇒ θ(τ) ∈ X where X ∈ {SafeType, DgrType, CdmType, RegType, FunType} (3.2)

88

This implies, in particular:

1. utype?(τ, τ′) ⇔ utype?(θ(τ), θ(τ′)) for all τ, τ′ ∈ ExpType, which can be proven by induction on
the structure of τ.

2. inh(τ1, τ2, τ3) ⇔ inh(θ(τ1), θ(τ2), θ(τ3)) for any τ1,τ2, τ3 ∈ ExpType, which follows from (1) and
(3.2).

3. Γ1 � Γ2 is defined iff θ(Γ1) � θ(Γ2) is defined, for � ∈ {+,⊕,t} and any Γ1,Γ2. This follows from
(1) and (3.2).

4. θ(Γ1 � Γ2) = θ(Γ1) � θ(Γ2) for � ∈ {+,⊕,t} and any Γ1, Γ2. This follows from (3) and (3.2).

Therefore, the premises in the derivation θ(Γ) ` e : θ(s) follow from their counterparts in Γ ` e : s,
and the lemma can be easily proved by induction on the latter derivation.

3.5 Case studies

In this section we show some examples of successfully typed programs. The first two examples show
the typing derivations of two simple functions.

Example 3.10. Given the appendD function of Example 2.12, it gets the following type: [α]!@ρ1 →
[α]@ρ → ρ → [α]@ρ. We denote by σappendD its region-polymorphic variant ∀ρ1 ρ.[α]!@ρ1 → [α]@ρ →
ρ → [α]@ρ. Let us start typing the recursive application appendD xx ys @ r. The sharing analysis gives
the following information:

sharerec(xx, appendD xx ys @ r) = {xs} isTree(xx)

Hence the following relation holds,

[xs : [α]#@ρ1] = SHR(xx, appendD xx ys @ r)

and the following typing environment is well-defined:

[xs : [α]#@ρ1] + [f : σappendD] + ([xx : [α]!@ρ1]⊕ [ys : [α]@ρ]) + [r : ρ]

Hence, we can use the [APP] rule for deriving the following judgement:

[xs : [α]#@ρ1, f : σappendD, xx : [α]!@ρ1, ys : [α]@ρ, r : ρ]︸ ︷︷ ︸
Γ1

` appendD xx ys @ r : [α]@ρ (3.3)

We can apply the [CONS] rule in a similar way to obtain:

[x : α, r : ρ]︸ ︷︷ ︸
Γ2

+[x1 : [α]@ρ] ` (x : x1)@r : [α]@ρ (3.4)

The result of Γ1 t Γ2 is well-defined and equal to [xs : [α]#@ρ1, f : σappendD, xx : [α]!@ρ1, ys : [α]@ρ, r :
ρ, x : α]. Besides this, neither xs nor xx occur free in (x : x1)@r, so we can apply the [LET] rule with

89

(3.3) and (3.4) in order to type the recursive case of the function:

[f : σappendD, xs : [α]#@ρ1, ys : [α]@ρ, r : ρ] + [x : α, xx : [α]!@ρ1] ` let x1 = . . . in . . . : [α]@ρ (3.5)

Now we move on to the base case. By applying the [VAR] rule we get,

[ys : [α]@ρ] ` ys : [α]@ρ

and, by the [EXT] rule,

[f : σappendD, xs : [α]#@ρ1, ys : [α]@ρ, r : ρ] ` ys : [α]@ρ (3.6)

Now we use (3.5) and (3.6) in order to apply the [CASE!] rule. It is worth noting that in this case the
environment ΓR is empty, and that the rest of side conditions in that rule hold. Hence we get:

[f : σappendD, xs : [α]!@ρ1, ys : [α]@ρ, r : ρ] ` case xs of . . . : [α]@ρ

Lastly, we apply the [EXT] rule in order to add the binding of the working region variable self :

[f : σappendD, xs : [α]!@ρ1, ys : [α]@ρ, r : ρ, self : ρself] ` case xs of . . . : [α]@ρ

Therefore, the body of the expression is well-typed. This judgement also serves as a base for applying
the [FUN] rule, so the function definition is also well-typed.

Example 3.11. We consider the following variant of the treesort function (Example 2.6 on page 26):

treesortD xs @ r =
let x1 = mkTreeD xs @ self
in inorder x1 @ r

where the function mkTreeD builds a binary search tree from a list, while destroying the latter.

We assume that mkTreeD and inorder have already been typed, obtaining their respective type schemes
σmkTree and σ′inorder:

σmkTreeD = ∀ρ1 ρ2.[Int]!@ρ1 → ρ2 → BSTree Int @ ρ2

σ′inorder = ∀α .σinorder

σinorder = ∀ρ1 ρ2.BSTree α @ ρ1 → ρ2 → [α]@ρ2

Firstly we apply the mkTreeD application with the [APP] rule:

[mkTreeD : σmkTreeD, xs : [Int]!@ρ1, self : ρself]︸ ︷︷ ︸
Γ1

` mkTreeD xs @ self : BSTree Int @ ρself

We proceed similarly with the inorder application:

[inorder : σinorder, r : ρ]︸ ︷︷ ︸
Γ2

+[x1 : BSTree Int @ ρself] ` inorder x1 @ r : [Int]@ρ

With these two judgements, and because the only variable with an unsafe type in Γ1 does not occur free

90

in the main expression of the let, we can apply the [LET] rule so as to get:

[mkTreeD : σmkTreeD, inorder : σinorder]︸ ︷︷ ︸
Γ

+[xs : [Int]!@ρ1, r : ρ, self : ρself] ` let x1 = . . . in . . . : [Int]@ρ

and, by the [EXT] rule:

Γ + [xs : [Int]!@ρ1, r : ρ, self : ρself] + [treesortD : σ] ` let x1 = . . . in . . . : [Int]@ρ

assuming σ = ∀ρ1 ρ.[Int]!@ρ1 → ρ → [Int]@ρ. We can use this judgement for applying [FUN] and
obtain:

{Γ}treesortD xs @ r = . . . {Γ + [treesort : σ]}

Therefore, the function is well-typed.
We can build a non-destructive version of treesortD by creating a copy of the original list and passing

this copy to the treesortD function:

treesort xs @ r = let xs′ = xs @ self in treesortD xs′ @ r

We get the following type scheme: ∀ρ1 ρ.[Int]@ρ1 → ρ → [Int]@ρ. To type the function’s body, we
apply the [LET] rule in a similar way as in the destructive version.

The following examples are more involved. By the sake of clarity we just show the Full-Safe code
(annotated with regions in the following example) and give an intuition of the typing derivation, with-
out representing it in detail. All these examples have been accepted by the Safe compiler.

Example 3.12. In this example we provide an implementation of the insertion sort algorithm, which
does not require additional heap memory. We start with the insertD function, which destructively in-
serts an element into an sorted list, such that the result is also a sorted list.

insertD x []! @ r = (x : [] @ r) @ r
insertD x (y : ys)! @ r

| x ≤ y = (x : (y : ys)@r)@r
| x > y = (y : insertD x ys @ r)@r

This function destroys the list passed as second parameter as it is traversed. In the recursive case,
the cell being destroyed (y : ys) can be reused by the result of the function. However, in the base cases,
the function needs two available cells to build the result, whereas only one is destroyed in the pattern
matching. Thus, in global terms, this function needs a free cell available in the heap in order to insert
the element into the list.

The type scheme for this function is ∀ρ . Int → [Int]!@ρ → ρ → [Int]@ρ. The variable ys gets
a condemned type [Int]!@ρ after the pattern matching, since it is the recursive child of the list being
destroyed. However, this variable is used to build the (y : ys) list in the expression guarded by x ≤ y.
Since the [CONS] rule demands a safe type for every variable passed to the (:) constructor we have to
apply the [WEAK] rule so the (y : ys)@r expression can be typed under an environment in which ys is
condemned. With respect to the recursive call, its second parameter must be of a condemned type, and
so is ys, so the [APP] rule can be applied.

We continue with the inssortD function, which repeatedly inserts each element of the input list into
the result,which is initially an empty list.

91

data Leftist α = LTEmpty | LTNode Int (Leftist α) α (Leftist α)

cons (LTEmpty)! a r = LTNode 1 r a (LTEmpty)
cons (LTNode n ll la lr)! a r =

| n ≥ m = LTNode (m + 1) (LTNode n ll la lr) a r
| n < m = LTNode (n + 1) r a (LTNode n ll la lr)

where (LTNode m _ _ _) = r

join LTEmpty! r! = r
join (LTNode n ll a lr)! LTEmpty! = LTNode n ll a lr
join (LTNode n ll a lr)! (LTNode m rl b rr)!

| a < b = cons ll a (join lr (LTNode m rl b rr)
| a ≥ b = cons rl b (join rr (LTNode n ll b lr)

emptyPQueue = LTEmpty

addPQueue q a = join q (LTNode 1 LTEmpty a LTEmpty)

minPQueue (LTNode _ _ a _) = a

delMinPQueue (LTNode _ l _ r) = join l r

Figure 3.10: Priority queue data type implemented as a leftist tree.

inssortD []! @ r = [] @ r
inssortD (x : xs)! @ r = insertD x (inssortD xs @ r) @ r

In each recursive call, the first cell of the input list is destroyed. This cell can be reused for building
the empty list in the base case, or for calling the insertD function, which needs a free cell available as it
has been explained above.

The type of this function is ∀ρ . [Int]!@ρ→ ρ→ [Int]@ρ. The xs variable is condemned, since it is the
recursive child of the cell being destroyed. Hence it can be used in the recursive call to inssortD. The
result of this call is used destructively in the insertD function.

Example 3.13. The destructive features of Safe can be used to implement data structures whose updat-
ing needs no additional heap space. For instance, let us consider an implementation of priority queues
based on leftist trees. The source code, taken from [94], is shown in Figure 3.10. The main difference
with respect to the version given in [94] is the use of destructive pattern matching in some functions for
the sake of constant heap space consumption.

First we define the data type of leftist trees (Leftist α). A leftist tree is a binary tree in which the
shortest path from any node to any of its leafs is always the rightmost one. The first argument of the
LTNode constructor contains the length of this path. Leftist trees are maintained in such a way that
this length is kept as low as possible. This results in a well-balanced tree. The function cons acts as a
wrapper of the LTNode constructor in order to preserve this invariant. This function is destructive on
its first parameter, which is reconstructed in the function’s body. This is done in order to optimize the
memory usage, since otherwise we would need two additional memory cells for executing the base case.
By applying destructive pattern matching we can reuse the cell corresponding to the input parameter,
so we would only need one memory cell to build the tree. We could have also done without destructive

92

pattern matching with the following definition:

cons l a r = case l of

LTEmpty→ LTNode 1 r a l

LTNode n _ _ _→ case n ≥ m of

True→ LTNode (m + 1) l a r

False→ LTNode (n + 1) r a l

where (LTNode m _ _ _) = r

With this definition we would still need a single cell, while preserving the tree given as first param-
eter. This comes at the cost of readability: now the pattern matching is made explicit via case. We could
avoid this by incorporating the as-patterns facility of Haskell [76]:

cons l@(LTEmpty) a r = LTNode 1 r a (LTEmpty)
cons l@(LTNode n _ _ _) a r =

| n ≥ m = LTNode (m + 1) l a r
| n < m = LTNode (n + 1) r a l

where (LTNode m _ _ _) = r

Since the current version of Safe does not support this kind of as-patterns, we keep the destructive
version shown in Figure 3.10.

The join function returns the union of two priority queues. Both parameters of this function are
condemned, so this operation can be implemented in constant heap space. The fact that both parameters
are condemned implies that, in the case in which the tree passed as first parameter is empty, we have
to reuse the tree passed as second parameter, since the destruction of the latter does not begin until the
second equation of join. However, we cannot do the same for the case in which the second parameter is
empty, since by the time the execution reaches this equation the destructive pattern matching on the first
parameter has already taken place. We are no longer able to reuse a cell that has been destroyed. That
is why we have to rebuild the first parameter in the second equation of join. The Core-Safe translation
(without regions) of this function may shed a light on the order in which these destructions are done:

join l r = case! l of

LTEmpty→ r

LTNode→ case! r of

LTEmpty→ l {error: l has been destroyed}

· · ·

The remaining four functions make up the interface of priority queues: creation of an empty queue
(emptyPQueue), insertion (addPQueue), access to the minimal element (minPQueue), and removal of the
minimal element (delMinPQueue). All these functions need constant additional heap space. They are
well-typed with respect to the type system explained in this chapter, and they get the following types:

93

cons :: Leftist α !@ ρ→ α→ Leftist α !@ ρ→ ρ→ Leftist α @ ρ

join :: Leftist Int !@ ρ→ Leftist Int !@ ρ→ ρ→ Leftist Int @ ρ

emptyPQueue :: ρ→ Leftist α @ ρ

addPQueue :: Leftist Int !@ ρ→ Int→ ρ→ Leftist Int @ ρ

minPQueue :: Leftist α @ ρ→ α

delMinPQueue :: Leftist Int !@ ρ→ ρ→ Leftist Int @ ρ

All type variables and RTVs in each type are assumed to be universally quantified. The join function
performs a comparison of the elements of the priority queue with the≤ operator. Safe does not support
type classes in this moment (in particular the Ord class), so this operator has type Int→ Int→ Int. As
a consequence, the join function must be applied to priority queues of integers. The same happens
with addPQueue and delMinPQueue, because of their respective calls to join. The cons and join functions
forces the input data structures to live in the same region, since they are coalesced in a single data
structure. The corresponding RTV ρ has to be inserted into the signatures of those functions that directly
or indirectly build a priority queue. The minPQueue function does not build anything, and it does not
require this parameter.

Example 3.14. As another example of a data structure with efficient memory usage, let us consider the
following implementation of AVL Trees. Again, the definitions shown here are destructive variants of
those appearing in [94]. The AVL tree data type is defined as follows:

data AVLTree α = AVLEmpty | AVLNode Int (AVLTree α) α (AVLTree α)

The AVLNode constructor takes an integer standing for the depth of the tree. This is necessary in
order to keep the invariant that the balance factor of each node (that is, the difference between the
depths of the left and right subtrees) must be −1, 0 or +1. Any tree whose nodes satisfy this property is
well-balanced. The function sJoinAVL is a wrapper of the AVLTree constructor and maintains the depth
information. It is defined as follows:

sJoinAVL l a r = AVLNode (1 + max (depth l) (depth r)) l a r

The insertion function in an AVL tree is similar to the insertion in a binary search tree. However,
we have to ensure that the invariant of the data structure still holds. If, after insertion, the right subtree
of a node outweighs its left subtree (that is, we have a balance factor greater or equal than +2) a left
rotation or a double left rotation may be needed. This case is handled by the rJoinAVL function, which
is destructive on its third parameter:

rJoinAVL l a (AVLNode _ rl ra rr)!
| rrd ≥ rld = sJoinAVL (sJoinAVL l a rl) ra rr
| rrd < rld = case! rl of

(AVLNode rll rla rlr)→ sJoinAVL (sJoinAVL l a rll) rla (sJoinAVL rlr ra rr)
where rld = depth rl

rrd = depth rr

94

Variables rl, rr, rll and rlr get a condemned type, since they are recursive children of data structures
being destroyed. As a consequence, rl can be used in the destructive case!.

Similarly, if the left subtree of a node outweights its right subtree after an insertion, a right rotation
or a double right rotation would be necessary. The function lJoinAVL handles these cases. Its code is
similar to that of rJoinAVL and it will not be shown here. So far, we get the following type signatures:

sJoinAVL :: AVLTree α @ ρ→ α→ AVLTree α @ ρ→ ρ→ AVLTree α @ ρ

rJoinAVL :: AVLTree α @ ρ→ α→ AVLTree α !@ ρ→ ρ→ AVLTree α @ ρ

lJoinAVL :: AVLTree α !@ ρ→ α→ AVLTree α @ ρ→ ρ→ AVLTree α @ ρ

All these functions need constant heap space (one cell) to run. The joinAVL function is another
wrapper for AVLNode, but, unlike sJoinAVL, this one ensures that the resulting tree is well-balanced. It
is defined as follows:

joinAVL l! a r!
| abs (ld− rd) ≤ 1 = sJoinAVL l a r
| ld == rd + 2 = lJoinAVL l a r
| ld + 2 == rd = rJoinAVL l a r
| ld > rd + 2 = case! l of (AVLNode ll la lr)→ joinAVL ll la (joinAVL lr a r)
| ld + 2 < rd = case! r of (AVLNode rl ra rr)→ joinAVL (joinAVL l a rl) ra rr

where ld = depth l
rd = depth r

The Core-Safe code corresponding to this function is a sequence of case expressions whose branches
are the right hand sides of each guard in joinAVL. The DS pointed to by r is destroyed in the call to
rJoinAVL. Similarly, the DS corresponding to l is destroyed in the call to lJoinAVL. We get the following
type for joinAVL:

joinAVL :: AVLTree α !@ ρ→ α→ AVLTree α !@ ρ→ ρ→ AVLTree α @ ρ

Given the auxiliary functions above, the implementation of the usual insertion and deletion opera-
tions is straightforward. Their corresponding functions are accepted by the type system:

insertAVL :: Int→ AVLTree Int !@ ρ→ ρ→ AVLTree Int @ ρ

deleteAVL :: Int→ AVLTree Int !@ ρ→ ρ→ AVLTree Int @ ρ

3.6 Correctness of the type system

The correctness proof of the type system is rather involved. In a first step (Section 3.6.1) we will set up
a connection between region type variables and runtime region numbers, and we will show that this
connection remains constant during the evaluation of an expression. In Section 3.6.2 we will introduce
some notation and definitions in order to formalize the notion of sharing between data structures.

95

Some of the rules of the type system contain appearances of a sharerec function and an isTree pred-
icate, which are determined by a set of external static analyses. Although these analyses are not de-
scribed in this thesis, we have to impose some requirements on them in order to prove the correctness
of the type system. Hence, Section 3.6.3 deals with the notion of a correct sharing analysis. Finally,
in Section 3.6.4 we put all these results together in order to show that the evaluation of a well-typed
program does not fail as a consequence of accessing dangling pointers.

3.6.1 Preservation of region consistency

A key point in the correctness proof of the type system involves finding a correspondence between
static region types and runtime region identifiers. For instance, assume a Safe program in which a
variable x has type [Int]@ρ at a given point. When executing that program, x must point to a list of
integers. Assume that list is located in a region whose identifier is 7. At this point of execution, there
is a correspondence between the outermost RTV in the type of x and the actual region in which the DS
pointed to by x lives. This correspondence is given by the binding [ρ 7→ 7]. More generally, we can
define this correspondence by means of a region instantiation, defined as follows:

Definition 3.15. A region instantiation η : RegType → N is a function from RTVs to natural numbers
(interpreted as region identifiers).

An important concept regarding RTVs and region identifiers is the notion of consistency. Roughly
speaking, the consistency property demands that the region instantiations determined by the types and
actual regions of the different variables in scope do not contradict each other. In the example above, if
there exists another variable y of type BSTree α @ ρ, the DS pointed to by this variable must be located,
at runtime, in the same region as x. Moreover, every DS being constructed with a region variable of
type ρ will also live in that region. Otherwise we would reach an inconsistent configuration.

Definition 3.16. Two region instantiations η and η′ are said to be consistent if they bind common RTVs
to the same number, that is: ∀ρ ∈ dom η ∩ dom η′. η(ρ) = η′(ρ).

The union of two region instantiations η and η′ (denoted by η] η′) is defined only if η and η′ are
consistent and its result is the union of the corresponding bindings. The following definition specifies
how to build a region instantiation.

Definition 3.17. Given a heap h, a pointer p, and a safe type s, the function build is defined as follows:

build(h, c, s) = ∅ if s ∈ {α, B}
build(h, p, T @ ρ) = ∅ if p /∈ dom h
build(h, p, T @ ρ) = [ρ 7→ j]]⊎n

i=1 build(h, vi, si) if p ∈ dom h
where h(p) = (j, C vi

n)

si
n → ρ→ T @ ρ E Γ(C)

provided the resulting region instantiation is well-defined. This means that the] operator is only
applied to consistent region instantiations.

Example 3.18. Given the heap in the left-hand side of Figure 3.11, in which the x variable points to a
list of lists, assume x has type [[Int]@ρ2]@ρ1. Every variable pointing directly to one of the cells of the
outermost list must have ρ1 as the outermost RTV in its type. On the contrary, if a variable points to one

96

 : : : [] #3x

1:

4:

[]

7:

[]

1:

[]

#5

@ρ
1

@ρ
2

 : : : []

1:

4:

[]

7:

[]

1:

[]

Figure 3.11: Correspondence between the runtime regions in which a DS lives (left) and the RTVs in its
type (right).

of the innermost lists, that variable must be of type [Int]@ρ2. In this case, the build function returns the
following region instantiation, which is well-defined:

η = [ρ1 7→ 3, ρ2 7→ 5]

Example 3.19. Assume the following heap:

h =

[
p1 7→ (2, (:) 0 p2)

p2 7→ (3, [])

]

The result of build(h, p1, s) is not well-defined for any algebraic type s. Assume s = T @ ρ. By applying
the definition of build we get build(h, p1, T @ ρ) = [ρ 7→ 2]] [ρ 7→ 3], which is not well-defined. The
reason behind this is that the list pointed to by p1 is distributed between two different regions (2 and 3),
and a DS must live in a single region.

Besides the triple (h, p, s), the result of build also depends on a type environment Γ containing the
type of the constructors that can be reached by following the pointers that stem from p. By abuse of
notation, we consider this typing environment implicit, as the build function only needs the types of the
constructors, which are defined globally in the program.

We can extend the build function to deal with condemned and in-danger types:

build(h, p, T !@ ρ) = build(h, p, T @ ρ)

build(h, p, T #@ ρ) = build(h, p, T @ ρ)

So far we have determined the region instantiation determined by a single variable. We can extend
the build function in order to group the region instantiations of all the variables in a runtime environ-
ment E, and whose types can be found in a type environment Γ.

Definition 3.20. Given a heap h, a value environment E, and a type environment Γ, we define the
function build∗ as follows:

build∗(h, E, Γ) =
⊎

x∈X
build(h, E(x), Γ(x))]

⊎
r∈X

[Γ(r) 7→ E(r)] where X = dom E ∩ dom Γ

97

provided the resulting region instantiation is well-defined.

Notice that the result of build∗ is well-defined only if the region instantiations of the different vari-
ables in X do not contradict each other.

Example 3.21. Assume the following heap h:

4: 1: 6: [] #1x #2Node 7

EmptyEmpty

y

Assume a runtime environment E mapping x and y to the cells of the figure above. If we define
Γ = [x : [Int]@ρ, y : BSTree Int @ ρ′], then build∗(h, E, Γ) results in the following well-defined region
instantiation:

build∗(h, E, Γ) = [ρ 7→ 1, ρ′ 7→ 2]

On the contrary, if we consider the type environment Γ′ = [x : [Int]@ρ, y : BSTree Int @ ρ], then
build∗(h, E, Γ) is not well-defined, since the tree pointed to by y does not live in the same region as the
list pointed to by x.

Assume a heap h such that build(h, p, τ) is well-defined for some pointer p and type τ. If h′ is a heap
that results from removing some pointers from h, it is easy to see that build(h′, p, τ) is also well-defined,
although it could contain less bindings than the original build. However, if we extend h with new
bindings we cannot ensure that the corresponding build is well-defined. For instance, in Example 3.19,
build(h|{p1}, p1, [α]@ρ) is well-defined, but build(h, p1, [α]@ρ) is not. When extending a heap, we can
ensure the preservation of consistency only if the newly added cells are not reachable from the already
existing ones. A heap h′ is said to strictly extend a heap h if h ⊆ h′ and no pointer in dom h′\dom h is
reachable from any pointer in h. That is, if the pointers we add in h′ are fresh. We denote this by h ⊆s h′.
The following lemma formalises all these results.

Lemma 3.22. Let h and h′ be two heaps. The following two properties hold for each pointer p ∈ dom(h) and
region instantiation η:

1. If h ⊆ h′, then build(h′, p, t) ⊇ build(h, p, t), provided build(h′, p, t) is well-defined

2. If h ⊆s h′, then build(h′, p, t) = build(h, p, t)

Proof. By induction on the size of the structure pointed to by p.

During the evaluation of an expression some cells can be removed from the heap, or new cells can be
created, but the contents of a cell are never updated. The following lemma follows from this fact.

Lemma 3.23. Let E ` h, k, e ⇓ h′, k, v be an execution of an expression. For all Γ, if build∗(h, E, Γ) is well-
defined, then so is build∗(h′, E, Γ). Moreover, it holds that build∗(h′, E, Γ) ⊆build∗(h, E, Γ).

Proof. This holds because the closure of the variables in E can only decrease as e is evaluated (because
of destruction), but the contents of the cells in the heap are never updated (see Lemma 3.29 below).

The following auxiliary lemma shows that consistency is preserved when copying a data structure
to a different region (see Definition 2.13).

98

Lemma 3.24. Let us assume that (h′, p′) = copy(h, p, j). If η is consistent with build(h, p, T @ ρ) and with
[ρ′ 7→ j], then build(h′, p′, T @ ρ′), is well-defined and consistent with η.

Proof. By induction on the size of the structure pointed to by p. Let us assume that h(p) = (k, C vi
n)

and that si
n → ρ → T @ ρ E Γ(C) and s′i

n → ρ′ → T @ ρ′ E Γ(C). From the way in which the types of
the constructors are inferred, it follows that si = s′i if i /∈ RecPos(C). We get:

build(h, p, T @ ρ) = [ρ 7→ k]] build(h, v1, s1)] · · ·] build(h, vn, sn)

By the definition of copy, there is a chain of heaps h = h0 ⊆s h1 ⊆s . . . ⊆s hn ⊆s h′ such that for
every i ∈ {1 . . . n}, there exists a value v′i such that either (hi, v′i) = copy(hi−1, vi, j) or (hi, v′i) = (hi−1, vi).
Since η is consistent with each build(h, vi, si), it is also consistent with each build(hi−1, vi, si) by Lemma
3.22 (2). We have to prove that η is also consistent with build(hi, v′i, s′i). We distinguish cases for each
i ∈ {1 . . . n} :

• i /∈ RecPos(C)

Then hi = hi−1, s′i = si and v′i = vi. Then the consistency of η with build(hi, v′i, s′i) follows trivially
from the consistency of η with build(hi−1, vi, si).

• i ∈ RecPos(C)

Then (hi, v′i) = copy(hi−1, vi, j), si = T @ ρ and s′i = T @ ρ′. We apply the induction hypothesis in
order to obtain that build(hi, v′i, s′i) is well-defined and consistent with η.

Since h′ is a strict extension of every hi, we can apply Lemma 3.22 (2) again in order to establish the
consistency of η with respect to each build(h′, v′i, s′i). By the definition of build we get:

build(h, p′, T @ ρ′) = [ρ′ 7→ j]] build(h′, v′1, s′1)] · · ·] build(h′, v′n, s′n)

which proves the lemma, since η is consistent with each component in the right-hand side.

We can prove now that consistency is preserved during the evaluation of an expression e. As usual,
this is proved by induction on the corresponding ⇓-derivation. Nevertheless, we have to be careful
when handling the case of function applications. In principle, we can safely assume that the type
schemes of the functions being referenced in e are present in the type environment, but we have no clue
on how these type schemes have been obtained. We say that these types schemes are correct if they have
been obtained via the [FUN] rule of Figure 3.9.

Definition 3.25. A typing environment Γ is said to be correct with respect to a function signature Σ if for
every function symbol f ∈ dom Γ it holds that f xi @ rj = e f ∈ Σ for some xi, rj, e f , and the following
judgement is derivable by using the [FUN] rule:

{Γ′\ f } f xi @ rj = e f {Γ′}

for some Γ′ ⊆ Γ such that f ∈ dom Γ′.
The function signature Σ is usually clear from the context, so let us say in the following that a given Γ

is correct without making any mention to Σ. Now we are able to establish that consistency is preserved
during the evaluation of an expression.

99

Theorem 3.26. Let us assume the execution of an expression:

E ` h, k, e ⇓ h′, k, v (3.7)

Then, for every Γ, s, η such that Γ ` e : s holds and Γ is a correct environment, if build∗(h, E, Γ) is well-defined
and consistent with η, then build(h′, v, s) is well-defined and consistent with η, and for every sub-expression ei

such that the judgement Ei ` hi, k, ei ⇓ h′i, k, vi belongs to the derivation of (3.7) and Γi ` ei : si for some Ei, hi,
ei, h′i, vi, Γi, the result of build∗(hi, Ei, Γi) is well-defined and consistent with η.

Proof. Let us focus on the last rule applied in the derivation of Γ ` e : s. If this rule is [EXT] or [WEAK]

we obtain Γ1 ` e : s for some Γ1 ⊂ Γ. By repeating this process we can prove the existence of Γ′ and Γ′′

such that Γ′ ≤ Γ′′ ⊆ Γ, Γ′ ` e : s, and the last rule applied in this latter derivation is neither [EXT] nor
[WEAK]. It is easy to see that build∗(E, h, Γ′) is well-defined and consistent with η, since the marks do
not play any rule in the definition of build.

Given these considerations, we proceed by induction on the depth of the ⇓-derivation, We distin-
guish cases on the expression being evaluated:

• Case e ≡ c

We get Γ′ ` c : B, and build(h, c, B) = ∅, which is trivially well-defined and consistent with η.

• Case e ≡ x

Since x ∈ dom E, build(h, E(x), Γ′(x)) is well-defined and consistent with η, and hence build(h, v, s)
is also well-defined and consistent with η.

• Case e ≡ x @ r

We get Γ′ = [x : T @ ρ′, r : ρ] ` x @ r : T @ ρ. Let us assume that [r 7→ j, x 7→ p] ⊆ E. Then η

is consistent with [ρ 7→ j]. Therefore, by using Lemma 3.24, we prove that η is consistent with
build(h′, p′, T @ ρ), where (h′, p′) = copy(h′, p, j).

• Case e ≡ C ai
n @ r

We assume that Γ′ ` C ai
n @ r : T @ ρ with Γ′(r) = ρ and E(r) = j. We get:

build∗(h, E, Γ) ⊇ [ρ 7→ j]] build(h, E(a1), Γ′(a1))] . . .] build(h, E(an), Γ′(an))

= [ρ 7→ j]] build(h′, E(a1), Γ′(a1))] . . .] build(h′, E(an), Γ′(an))

The last equality is due to h′ being a strict extension of h, and Lemma 3.22 (2). All the compo-
nents of the right-hand side of this equality are pairwise consistent, and also consistent with η.
Therefore, the lemma holds, as the result of build(h, v, s) is just this right-hand side.

• Case e ≡ g ai
n @ rj

m

We assume that Γ′(g) = ∀α ρ.tg,i
n → ρg,j

m → sg and that g xi
n @ r′j

m
= eg ∈ Σ. Since Γ is correct

with respect to Σ (and hence Γ′ also is) we can apply the [FUN] rule, so that {Γ0\g}g xi
n @ r′j

m
=

eg{Γ0} for some environment Γ0 containing the type of g. Thus we get:

Γ0 ` eg : sg where Γ0 ⊇ [xi : tg,i
n, r′j : ρg,j

m
, self : ρ

g
sel f] (3.8)

The region type ρ
g
self is a fresh variable, so we can ensure that is different from the ρg,j

m, from the

Γ′(rj)
m

, and from any variable appearing in the domain of η. From one of the premises of the

100

[APP] rule we can assume the existence of a type substitution θ such that θ(tg,i
n → ρg,j

m → sg) =

Γ′(ai)
n → Γ′(rj)

m → s and that ρ
g
self /∈ dom θ. We apply Lemma 3.9 to (3.8) so as to obtain:

Γg ` eg : s where Γg = θ(Γ0) ⊇ [xi : Γ′(ai)
n
, r′j : Γ′(rj)

m
, self : ρ

g
sel f]

Assume the following execution of the function’s body:

Eg ` h, k + 1, eg ⇓ h+, k + 1, v

where h′ = h+|k and Eg
def
= [xi 7→ E(ai)

n
, r′j 7→ E(rj)

m
, self 7→ k + 1]. In order to apply the induc-

tion hypothesis, we have to prove that build∗(h, Eg, Γg) is well-defined and consistent with η. This
is a consequence of build∗(h, E, Γ) having these properties and ρ

g
self being a fresh variable:

build∗(h, Eg, Γg) =
n⊎

i=1

build(h, Eg(xi), Γg(xi))]
m⊎

j=1

build(h, Eg(r′j), Γg(r′j))] [ρ
g
self 7→ k + 1]

=
n⊎

i=1

build(h, E(ai), Γ′(rj))]
m⊎

j=1

build(h, E(rj), Γ′(rj))] [ρ
g
self 7→ k + 1]

Therefore we obtain, by induction hypothesis, a region instantiation build(h+, v, s) which is well-
defined and consistent with η. The result of build(h′, v, s) also has these properties, by Lemma 3.22
(1).

• Case e ≡ let x1 = e1 in e2

We assume that Γ′ = Γ1 t Γ2, Γ1 ` e1 : s1, Γ2 + [x1 : τ1] ` e2 : s2 and the following executions:

E ` h, k, e1 ⇓ h1, k, v1

E] [x1 7→ v1] ` h1, k, e2 ⇓ h′, k, v

From the assumptions on build∗(h, E, Γ) we can prove that both build∗(h, E, Γ1) and build∗(h, E, Γ2)

are well-defined and consistent with η, and so is build∗(h1, E, Γ2), because of Lemma 3.23. By the
induction hypothesis, build(h1, v1, s1) is well-defined and consistent with η and hence the same
applies to build∗(h1, E] [x1 7→ v1], Γ2 + [x1 : τ1]). Again, the induction hypothesis on the deriva-
tion of e2 gives the required result.

• Case e ≡ case x of Ci xij
ni → ei

n

Let us assume that E(x) = p and that h(p) = (j, Cr vj
nr). That is, the r-th branch is executed:

E] [xrj 7→ vj
nr] ` h, k, er ⇓ h′, k, v

By the typing rule for case expressions, we obtain Γ′ + [xrj : τrj
nr] ` er : s where sj

nr → ρ →
T @ ρ E Γ(Cr) and utype?(τri, sj) for every j ∈ {1 . . . nr}. If Γ(x) = T @ ρ, the region instantiation
build(h, p, T @ ρ) is contained within build∗(h, E, Γ) and hence is consistent with η. Let us unfold

101

its definition:

build(h, p, T @ ρ) = [ρ 7→ j]] build(h, v1, s1)] . . .] build(h, vnr , snr)

= [ρ 7→ j]] build(h, v1, τr1)] . . .] build(h, vnr , τr,nr)

Each one of the region instantiations of the right-hand side is well-defined and consistent with η.
Therefore the result of build∗(h, E] [xrj 7→ vj

nr], Γ′ + [xrj : τrj
nr]) is also well-defined and consis-

tent with η, and we can apply the induction hypothesis on the derivation of the evaluation of er,
which leads to the desired result.

• Case e ≡ case! x of Ci xij
ni → ei

n

The proof is very similar to that of the non-destructive case. The only difference is the fact that p
is now a dangling pointer, but we still can prove that build∗(h\p, E] [xrj 7→ vj

nr], Γ′ + [xrj : trj
nr]),

because of Lemma 3.22 (1).

To sum up, we have set up a correspondence between the actual regions where a DSs resides and the
RTVs assigned by the type system: if two variables have the same outer region ρ at runtime, the cells
bound to them at runtime will live in the same actual region. Since the type system (see rule [FUN] in
Figure 3.9) demands the ρself variable not to occur in the type of the function’s result, every DS returned
by the function call does not have cells in its working region (assuming self is the only variable pointing
to the topmost region, and the only variable of type ρself). This implies that the deallocation of the k + 1-
th region at the end of a function call does not generate dangling pointers. This will be detailed in the
correctness proof of Section 3.6.4.

3.6.2 Reachability and harmless semantics

The concepts introduced so far are related to region-based memory management. The next sections on
the type system’s correctness are devoted to the safety of explicit deallocation via case! expressions. A
crucial aspect in this part of the proof is the notion of sharing between DSs. Two DSs are said to share if
there exists a cell in the heap that is reachable from both. Therefore, in order to formally define sharing
we have to specify a notion of reachability in the heap. It was already pointed out in Section 3.4 that the
connections between the cells in a heap can be represented by means of a directed acyclic graph. Thus,
our notion of cell reachability is directly related to the notion of reachability in DAGs. However, for
the purposes of the type system it is necessary to distinguish the cells that are reachable from a given
one by following those pointers occurring in the recursive positions of the constructors being traversed
(which we shall call their recursive descendants). This motivates the following definition:

Definition 3.27. Given a heap h, we define the child (→h) and recursive child (�h) relations on heap
pointers as follows:

p→h q def
= h(p) = (j, C vi

n) ∧ q ∈ vi
n

p�h q def
= h(p) = (j, C vi

n) ∧ q = vi

for some i ∈ RecPos(C)

The reflexive transitive closure of these relations is respectively denoted by→∗h and�∗h. If p →∗h q
we say that q is reachable from p in h. If p �∗h q we say that q is a recursive descendant of p in h. These
definitions serve as a basis for specifying the following notions of reachability:

102

Definition 3.28.

closure(h, p) def
= {q | p→∗h q} Set of locations reachable in h by location p.

live(h, E, L) def
=

⋃
x∈L closure(h, E(x)) Live part of h, i.e. reachable from any free variable.

recReach(h, p) def
= {q | p�∗h q} Set of recursive descendants of E(x) including itself.

closed(h, p) def
= closure(h, p) ⊆ dom h If there are no dangling pointers in closure(h, p).

closed(h, E, L) def
= ∀x ∈ L. closed(h, E(x)) If there are no dangling pointers in live(h, E, L).

As a convention, we define closure(h, c) = ∅ for any heap h and literal c. There are several general
properties of the language regarding closures. The first one specifies that the closure of a given pointer
can decrease during the execution of a program as a consequence of destruction, but it never increases.

Lemma 3.29. Let E ` h, k, e ⇓ h′, k, v be an execution of an expression. Then, for every pointer in dom h,
closure(h, p) ⊇ closure(h′, p).

Proof. By induction on the ⇓-derivation. If p does not belong to the domain of h′, then closure(h′, p) = ∅
and the lemma holds trivially, so let us assume p ∈ dom h′. All cases are straightforward: In rules [Lit],
[Var] and [PrimOp] we get h = h′. In [Copy] and [Cons] only fresh cells are created, and these cells cannot
be reachable from those already existing in h. In [App], [Let], [Case], [Case!] the result follows directly
from the induction hypothesis. The only case in which the closure strictly decreases is when removing
the location pointed to by the discriminant of a case! in [Case!] rule.

The second property shows that, if the evaluation of an expression returns a pointer belonging to
the initial heap, this pointer must have been accessed through (at least) one of the free variables in that
expression. The same applies to the pointers being removed from the initial heap.

Lemma 3.30. Let us assume that E ` h, k, e ⇓ h′, k, v.

1. If v is a pointer in dom h, then v ∈ live(h, E, fv(e)).

2. For every p ∈ dom h\dom h′, p ∈ live(h, E, fv(e)).

Proof. By induction on the size of the ⇓-derivation. The only base case applicable to (1) is the [Var]
rule, in which the result follows trivially. In the recursive cases (1) follows trivially from the induction
hypothesis. With regard to (2) the only relevant case is that of [Case!] rule, since none of the pointers
removed in the [App] rule as a consequence of deallocating the topmost region, belong to the initial
heap. However, the case of the [Case!] rule is also trivial, as the discriminant is a free variable referring
to the pointer being removed.

Finally, the next property shows that only the live part of the heap is relevant when evaluating an
expression. The rest of the heap can be safely discarded from the ⇓-judgements.

Lemma 3.31. Let us assume an execution E ` h, k, e ⇓ h′, k, v and p a pointer in dom h. If p /∈ live(h, E, fv(e)),
then we can discard the binding of p in h so as to obtain E ` h\p, k, e ⇓ h′\p, k, v, and this derivation has the
same size as the original one.

Proof. By induction on the size of the ⇓-derivation. All cases are straightforward, except in the case
in which the last rule applied is [Let]. In this case the first property of Lemma 3.30 is necessary after
applying the induction hypothesis to the bound expression. After this, the result holds trivially.

103

In Figure 2.14 we showed the big-step operational semantic rules of Core-Safe and we identified the
cases in which none of the rules could be applicable for some initial heap h, expression e and runtime
environment E. One of these situations is produced when accessing a location p that does not belong
to the domain of the heap (that is, a dangling pointer). We want to show that this situation never takes
place when the expression is well-typed w.r.t. the type system shown in this chapter, but we are not
concerned about the rest of the pathological cases explained in Section 2.4.1 (pattern-matching errors,
non-termination, etc.). For this reason we assume the execution of an expression under a harmless big-
step operational semantics that does not remove pointers from the heap, thus avoiding the possibility
of having dangling pointers. We use the ⇓∗ notation to refer to the judgements of this semantics. In this
way, given E, h, k, e of their respective types, if there does not exist a final heap h′ and a value v such
that the judgement E ` h, k, e ⇓∗ h′, k, v is not derivable, we can ensure that this is not due to an access
to a dangling pointer, but to another of the reasons explained in Section 2.4.1. On the contrary, in the
following sections we will show that ⇓∗-judgements imply ⇓-judgements in the context of well-typed
programs (see Appendix C).

The rules of the harmless semantics are shown in Figure 3.12. Notice the similarity with those of
Figure 2.14. The only difference is that the topmost region is not removed after executing the function’s
body in the [App] rule, and that the binding pointed to by the discriminant of a destructive case! is not
removed from the heap. Thus, a destructive case! behaves just like its non-destructive counterpart.

It is easy to see that whenever we have a judgement E ` h, k, e ⇓∗ h′, k, v, we get h′ ⊇ h, since
nothing is destroyed during ⇓∗-evaluations. Moreover, Lemmas 3.29, 3.30 and 3.31 also hold for ⇓∗-
judgements. In particular, we get equality in Lemma 3.29: closure(h, p) = closure(h′, p), and Lemma
3.30(2) holds vacuously.

3.6.3 Correctness of the sharing analysis

Recall that our type system depends on some functions and predicates (namely, sharerec and isTree)
which are defined by some auxiliary analyses whose definition are beyond the scope of this thesis. In
particular:

sharerec(x, e) Approximates the sharing relations between DSs. It contains all the variables in the scope
of e that, at runtime, may point to a recursive descendant of x.

isTree(x) Approximates the internal sharing property of a DS. This predicate holds for all the variables
that, at runtime, point to a DS whose associated graph is a tree.

Although we do not explain the analyses themselves (see [98] for more details) we need to formalize
their safety properties in order to prove the correctness of the type system. In other words, we have
to determine which properties must satisfy a sharing analysis and an internal sharing analysis so that,
when connecting their results to our system, the correctness of the latter is not compromised.

Let us start with the isTree predicate. Firstly we have to precise the notion of a DS having internal
sharing at runtime. The following definition allows us to describe the path of pointers in the heap that
must be taken if we start in a pointer p and we end in a recursive descendant q of p.

Definition 3.32. Given two pointers p and q in a heap h, a sequence of natural numbers [i1, . . . , im] is
said to describe the relation p �∗h q iff there exists a sequence of pointers [p1, . . . , pm, pm+1] ⊆ dom h
and a C ∈ Cons such that:

1. p = p1 and q = pm+1.

104

E ` h, k, c ⇓∗ h, k, c
[Lit*]

E[x 7→ v] ` h, k, x ⇓∗ h, k, v
[Var*]

E ` h, k, a1 ⊕ a2 ⇓∗ h, k, E(a1)⊕ E(a2)
[PrimOp*]

j ≤ k (h′, p′) = copy(h, p, j)
E[x 7→ p, r 7→ j] ` h, k, x @ r ⇓∗ h′, k, p′

[Copy*]

E(r) ≤ k freshh(p)

E ` h, k, C ai
n @ r ⇓∗ h] [p 7→ (E(r), C E(ai)

n
)], k, p

[Cons*]

(g yi
n @ r′j

m
= eg) ∈ Σ [yi 7→ E(ai)

n
, r′j 7→ E(rj)

m
, self 7→ k + 1] ` h, k + 1, eg ⇓∗ h′, k + 1, v

E ` h, k, g ai
n @ rj

m ⇓∗ h′, k, v
[App*]

E ` h, k, e1 ⇓∗ h1, k, v1 E] [x1 7→ v1] ` h1, k, e2 ⇓∗ h′, k, v
E ` h, k, let x1 = e1 in e2 ⇓∗ h′, k, v

[Let*]

E] [xrj 7→ vj
nr] ` h, k, er ⇓∗ h′, k, v

E[x 7→ p] ` h[p 7→ (j, Cr vi
nr)], k, case x of Ci xij

ni → ei
n ⇓∗ h′, k, v

[Case*]

E] [xrj 7→ vj
nr] ` h, k, er ⇓∗ h′, k, v

E[x 7→ p] ` h[p 7→ (j, Cr vi
nr)], k, case! x of Ci xij

ni → ei
n ⇓∗ h′, k, v

[Case!*]

Figure 3.12: Harmless operational semantics of Core-Safe expressions. The only difference with respect
to the standard big-step semantics of Figure 2.14 is the absence of destruction in the cases of function
application and destructive case!.

105

Node 7

Node 2

EmptyEmpty

Node 10

Empty

p

q

1

1

3

3

Figure 3.13: DS with internal sharing: there are two paths from p to q.

2. For every j ∈ {1..m}, ij ∈ RecPos(C).

3. For every j ∈ {1..m}, h(pj) = (l, C vk
n) for some l ∈N, vk

n ⊆ Val, and vij = pj+1.

Example 3.33. Given heap h of the Figure 3.13, the relation p �∗h q is described by the sequence [1, 3],
but also by the sequence [3, 1].

If a recursive descendant of p can be reached from that pointer by following two different paths,
there is internal sharing (confluence) in the DS pointed to by p.

Definition 3.34. Given two pointers p and p′ in a heap h, we say that there is a confluence from p to p′

(denoted p ⇒∗h p′) iff p �∗h p′ and this relation can be described by two distinct sequences of natural
numbers.

Definition 3.35. A pointer in a heap p is said to be a tree in h if, for every p′ ∈ recReach(h, p): p 6⇒∗h p′.

Example 3.36. The DS pointed to by p in Figure 3.13 is not a tree, as there is a confluence from p to q.

Once we have made the notion of internal sharing precise, we can define the correctness of an inter-
nal sharing analysis. A sensible correctness statement for such an analysis would be the following:

Given an execution of an expression E ` h, k, e ⇓ h′, k, v, for every variable x ∈ dom E such that
E(x) is not a tree in h, the internal sharing analysis determines that the predicate isTree(x) does not
hold.

This definition, although reasonable, is too strong for what the type system demands. One can develop
an analysis carried out at a function definition level that assumes that the DSs pointed to by its formal
parameters are trees, and its results of would be suitable for the type system. The rationale behind this
is the fact that the type system only needs the isTree predicate for checking that destructive pattern
matching is done to DSs without internal sharing (otherwise the program might destroy a recursive
descendant of a DS twice). So, assume a given variable occurs in the discriminant of a case!:

1. If that variable is not a formal parameter of the function, the internal sharing analysis will de-
termine whether that variable is a tree or not, and update the sharing information of the pattern
variables of the corresponding branches accordingly.

2. If that variable is a formal parameter of the function, the DS to which it points might not be a tree,
but the internal sharing analysis would not warn the type system about this, since the analysis
assumes the formal parameters to be trees. However, a parameter appearing in a case! would

106

have a condemned type, and the rule for typing function applications [APP] ensures that the
arguments of condemned positions are trees, so the assumption of the internal sharing analysis is
correct.

Given the above, the correctness of an internal sharing analysis that only approximates the internal
sharing property when the type system needs it, would be defined as follows.

Assumption 3.37. Given an expression e being executed in the context of a function f .

E ` h, k, e ⇓∗ h′, k, v

Let P be the set of formal parameters of this function. For every x ∈ dom E and pointer p such that E(x)⇒∗h p,
at least one of the following properties hold:

(TREE) ¬isTree(x)
(CONF) ∃y0 ∈ P.y0 ⇒∗h p

In other words, if there is internal sharing at runtime, either the analysis warns the type system
about it, or this internal sharing occurs in a DS pointed to by a function parameter.

We follow a similar pattern with the sharerec function defined by the sharing analysis. One would
expect the following correctness property:

Given an execution of an expression E ` h, k, e ⇓ h′, k, v, for every pair of variables x, y ∈ dom E
such that recReach(h, E(x)) ∩ closure(h, E(y)) 6= ∅ the sharing analysis determines that y ∈
sharerec(x, e).

But, again, the type system does not need such a strong property. A sharing analysis that approximates
this information while assuming that the parameters of the function to which e belongs do not share
with each other would be suitable. The sharing analysis is only needed to determine the variables
pointing to a recursive descendant of something being destroyed. So, whenever we have two variables
x and y such that recReach(h, E(x)) ∩ closure(h, E(y)) 6= ∅ and x is being destroyed, there are three
possibilities:

1. This sharing relation is captured by the sharing analysis, so we get y ∈ sharerec(x, e).

2. The sharing analysis does not warn the type system about this sharing relation, because the latter
is due to the sharing between different parameters which the analysis assumed to be disjoint, but
actually they are not (Figure 3.14). This case does not compromise the safety of the type system,
since the function application rule [APP] checks that the DSs pointed to by the arguments occur-
ring in condemned positions do not share between them, or with the remaining parameters. Since
x is being destroyed, at least one of these parameters to which the sharing is due is condemned.

3. The sharing analysis does not warn the type system about this sharing relation, since it is due to
a parameter from which x and y are recursive descendants (Figure 3.15). As a consequence, this
parameter would have internal sharing, which the internal sharing analysis does not report, as it
was explained above. Again, this does not compromise the safety of the type system, since that
parameter would be condemned.

These three possibilities are formalized as follows.

107

x y

x y

y
0

y
1

Figure 3.14: If y points to a recursive descendant of x, but this relation is not reported by the sharing
analysis, it may be due to sharing between some parameters y0, y1 in the context function.

x y

x y

y
0

Figure 3.15: If y points to a recursive descendant of x, but this relation is not reported by the sharing
analysis, it may be due to a parameter y0 with internal sharing.

Assumption 3.38. Given an expression e being executed in the context of a function f .

E ` h, k, e ⇓∗ h′, k, v

Let P be the set of formal parameters of this function. For every x, z ∈ dom E and pointer p such that p ∈
closure(h, E(x)) ∩ recReach(h, E(z)), at least one of the following properties hold:

(SHR) x ∈ sharerec(z, e)
(SHP) ∃y0, y1 ∈ P.y0 6= y1 ∧ E(y0)�∗h p ∧ E(y1)→∗h p
(CONF) ∃y0 ∈ P.y0 ⇒∗h p

The sharing relations that take place between parameters deserve special attention. Assume that a
parameter y0 points to a recursive descendant of a local variable x in the context of an expression e.
As it was explained before, the sharing analysis might not reflect this sharing relation, because the DS
pointed to by this parameter y0 is the same as the DS pointed to by another hypothetical parameter y1,
both of which are assumed to be disjoint by the sharing analysis. However, and since x is a local variable
which has been defined within the context function definition, the sharing analysis should have enough
information to determine that at least one of these parameters belongs to sharerec(x, e). That is why the
following assumption.

Assumption 3.39. Assume the execution of an expression in the context of f :

E ` h, k, e ⇓∗ h′, k, v

Let P be the set of formal parameters of f . For every x ∈ dom E and pointer p ∈ recReach(h, E(x)) ∩
closure(h, E(y0)) for some y0 ∈ P, then there exists a parameter y1 ∈ P such that p ∈ recReach(h, E(x)) ∩

108

closure(h, E(y1)) and y1 ∈ sharerec(x, e).

Notice that, in the case in which x is not a local variable, but a formal parameter of f , this assumption
holds trivially (we would get y1 = x). The sharing analysis currently implemented in the compiler (and
described in [98]) satisfies all these assumptions.

3.6.4 Preservation of closedness

The last step is to put together the definitions and results presented in last sections in order to prove the
correctness of the type system. The essential fact we aim to prove is the following:

If we can derive E ` h, k, e ⇓∗ h′, k, v and e is well-typed, then we can derive E ` h, k, e ⇓ h′′, k, v
for some h′′ ⊆ h′.

In operational terms, this means that the execution of the program cannot fail because of cell destruc-
tion. However, we have to impose some constraints on our initial environment E and heap h under
which the ⇓∗-evaluation is done. Otherwise the claim above might not hold, for instance, when some of
the variables occurring free in e contains a dangling pointer in our initial state. In particular, we demand
that the the live part of the heap at the beginning of the evaluation is closed, that is, closed(h, E, fv(e)).

Besides this, some additional constraints are needed on the parameters of the function to which the
expression e belongs. As it was explained in last section, the sharing analysis is not required to capture
all the sharing that takes place at runtime, but only the sharing that takes place under certain circum-
stances (namely, when a variable points to a recursive descendant of a condemned one). The same
happens with the internal sharing analysis: it is not required to report the internal sharing occurring in
function parameters. The disjointness property shown below specifies these conditions.

Definition 3.40 (Disjointness property). A value environment E, a heap h, and a typing environment
Γ0 satisfy the disjointness property (written Pdisj(E, h, Γ0)) iff

1. Γ0 does not contain variables mapped to in-danger types.

2. For every pair of distinct variables y0, y1 ∈ dom Γ0 such that Γ0(y0) ∈ CdmType, it holds that
recReach(h, E(y0)) ∩ closure(h, E(y1)) = ∅.

3. For every variable y0 ∈ dom Γ0 such that Γ0(y0) ∈ CdmType, E(y0) is a tree.

Assume Γ0 contains the types of the parameters of a function, whose body is typeable under this
environment. The first condition follows trivially from the [FUN] rule of the type system, which does
not allow parameters having in-danger types. The second condition specifies that the recursive spine of
condemned parameters cannot share with any other parameter. The last one prevents the DSs pointed
to by condemned parameters from having internal sharing. In the correctness proof below we have to
prove that the disjointness property is an invariant which is propagated along the execution.

Example 3.41. Assume a function definition with three parameters y0, y1 and y2. The first two param-
eters have a safe type, whereas y2 has a condemned type. Consider the three configurations shown
in Figure 3.16. The first configuration does not satisfy the disjointness property, since y1 points to the
recursive closure of a condemned parameter (y2). The second configuration does not satisfy the disjoint-
ness property, as y2 is a condemned parameter with internal sharing. Finally, the third configuration
does satisfy the disjointness property.

109

y
0
:s y

2
:dy

1
:s

y
0
:s y

2
:dy

1
:s

y
0
:s y

2
:dy

1
:s

Figure 3.16: Sharing between the parameters of a function. The first two parameters y0 and y1 are safe,
whereas y2 is condemned. Gray cells represent the recursive spine of each parameter.

Our next step is to define the invariants that are propagated at the level of expressions, i.e. from a
⇓∗-judgement to the ⇓∗-judgements in its derivation.

Definition 3.42. A initial configuration (Γ, E, h, k, L, Γ0) is said to be good whenever:

1. closed(h, E, L).

2. The heap h is acyclic. That is, there is no pointer p in h such that p→+
h p.

3. Pdisj(E, h, Γ0) holds.

4. build∗(h, E, Γ) is well-defined.

5. E(self) = k, and for every other region variable r ∈ dom E, E(r) < k.

6. If self ∈ dom Γ, then Γ(self) = ρself . For every other RTV r ∈ dom Γ, Γ(r) 6= ρself .

In the context of the proof, the Γ denotes an environment typing the expression being evaluated,
and Γ0 an environment typing the body of the function to which the expression being evaluated be-
longs. The first condition has been introduced above. It is easy to see that the second condition is an
invariant, since new cells are constructed only in fresh locations of the heap, and the language does not
allow in-place update (Lemma 3.29). The disjointness property (third condition) is propagated between
function calls, but it is also preserved during the execution of a given function call, since it refers to the
parameters of the context function, which remain constant as this call is evaluated. The fourth condition
refers to the consistency of the initial configuration. The fact that consistency is an invariant preserved
during evaluation has already been proved in Theorem 3.26. The last two conditions state that self is
the only region variable of type ρself , and the only region variable pointing to the topmost region of the
heap. These conditions are aimed at proving that the topmost region deallocation does not generate
dangling pointers. The propagation of the latter property is a consequence of Proposition 2.15.

110

The following definition states some properties that hold if the evaluation starts from a good con-
figuration.

Definition 3.43. A final configuration (s, v, h) is said to be good whenever build(h, v, s) is well-defined
and closed(h, v) holds.

The correctness theorem of the type system shows that the evaluation of an expression transforms
good initial configurations into good final configurations. It also proves that ⇓∗-evaluation of well-
typed expressions implies ⇓-evaluation. Before proving that theorem, we need the following technical
result:

Lemma 3.44. Assume a judgement Γ0 + [x : τ] ` e0 : s0. For every judgement Γ ` e : s occurring in its
derivation, if x ∈ dom Γ then Γ(x) ≤ τ.

Proof. By induction on the depth of the Γ ` e : s w.r.t. the judgement Γ0 + [x : τ] ` e0 : s0. All cases are
straightforward.

Basically, this result states that when we move from the leafs of the typing derivation to its root,
the variables in the typing environment can become weaker, but not stronger. Now we can prove the
correctness theorem.

Theorem 3.45 (Correctness of type system). For every E, h, h′, k, e, v, Γ0, Γ, s0, s, L of their respective types,
and every function definition f xi @ rj = e f , if Γ0 ` e f : s0 and e is a sub-expression of e f such that:

1. E ` h, k, e ⇓∗ h′, k, v.

2. Γ ` e : s belongs to the derivation of Γ0 ` e f : s0.

3. (Γ, E, h, k, L, Γ0) is good, being L = fv(e).

it holds that:

1. There exists a heap h′′ ⊆ h′ such that E ` h, k, e ⇓ h′′, k, v.

2. For every pointer p ∈ dom h\dom h′′, and every variable z ∈ dom E such that E(z) →∗h p we obtain
Γ(z) ∈ UnsafeType.

3. For every pointer p ∈ dom h\dom h′′, and every variable z ∈ dom E such that E(z)→∗h p, but E(z) 6�∗h p
we get Γ(z) ∈ DgrType.

4. (s, v, h′′) is good.

Remark. Before getting into the details of the proof, let us briefly explain the meaning of the second
and third conclusions of the theorem. Both are related with the intended semantics of safe, condemned,
and in-danger types that was explained in Section 3.3. The second condition states that, if part of the
closure of a variable disappears from the heap during the evaluation of e, that variable must appear in
Γ with an unsafe type. The third condition is more specific: if part of the closure of a variable beyond its
recursive spine is destroyed during the evaluation of e, that variable must appear in the environment Γ
with an in-danger type.

Proof. By induction on the size of the ⇓∗ derivation. We distinguish cases on the structure of expression
e. In each subcase, we can assume the existence of a Γ′ with dom Γ′ ⊆ dom Γ, such that Γ′ ` e : s and
the last rule applied in this derivation is neither [EXT] nor [WEAK]. We can easily prove that, for every
x ∈ dom Γ′, if Γ′(x) is unsafe, so is Γ(x). Moreover, if Γ′(x) is in-danger, so is Γ(x).

111

One of the key points of the proof is the fact that the goodness property is propagated through the
evaluation tree. When proving this we shall leave out the proof of h being acyclic during the evaluation
of e. This is a general property of the language. The judgement Pdisj(E, h, Γ0) also propagates through
the evaluation in the current context function, since the closure of the parameters remains unchanged
(see Lemma 3.29). Hence we omit the proof of the Pdisj propagation, except in the case of function
application, where a change of context takes place. The propagation of consistency is also a consequence
of Theorem 3.26, and we shall not reproduce its proof again. The fact that self is the only region pointing
to topmost region in the heap is propagated by Proposition 2.15. The last condition on the definition
of good configuration is propagated because the type of region variables remain constant through the
typing derivation.

To sum up, for proving the propagation of the goodness property we shall concentrate on the closed-
ness property (and the disjointness property, when calling a function) since the remaining ones either
are trivial, or have been proved before. Let us distinguish cases on the expression being evaluated:

• Case e ≡ c

Trivial, since a literal is closed by convention and dom h\dom h′ = ∅.

• Case e ≡ x

We get L = {x} and, by hypothesis, closed(h, E(x)), which is equivalent to closed(h′, v). In this
case we also obtain dom h\dom h′ = ∅.

• Case e ≡ x @ r

From the definition of copy function it follows that whenever (h′, p) = copy(h, E(x), j), p is closed
in h′ if and only if E(x) is closed in h. But closed(h, E(x)) holds by hypothesis, so closed(h′, v) also
does. We obtain, in this case, dom h\dom h′ = ∅.

• Case e ≡ C ai
n @ r

Each ai is closed in h by hypothesis. Since the result v is built from closed components, it is also
closed. Hence closed(h′, v) holds. Again, dom h\dom h′ is empty.

• Case e ≡ g ai
n @ rj

m

Let us assume that g yi
n @ r′j

m
= eg ∈ Σ. By the [App∗] rule we get:

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

m
, self 7→ k + 1]︸ ︷︷ ︸

Eg

` h, k + 1, eg ⇓∗f h′, k + 1, v

Moreover, if Γ(g) = ∀αρ.ti,g
n → ρj,g

m → sg, the following derivation follows from the fact that Γ
is correct w.r.t. Σ:

Γω + [yi : ti,g
n
] + [r′j : ρj,g

m
] + [self : ρself]︸ ︷︷ ︸

Γg

` eg : sg for some Γω⊆ Γ (3.9)

By the [APP] rule we know that the type of the application is a concrete instance of Γ(g) and there
exists a type substitution θ such that:

θ(ti,g)
n → θ(ρj,g)

m → θ(sg) = Γ(ai)
n → Γ(ρj)

m → s

112

Since ρself does not occur in Γ(g), we can safely assume that θ(ρself) = ρself . By applying the
substitution lemma (Lemma 3.9) to (3.9) we obtain:

θ(Γω) + [yi : Γ(ai)
n
] + [r′j : Γ(ρj)

m
] + [self : ρself]︸ ︷︷ ︸

θ(Γg)

` eg : s (3.10)

From the induction hypothesis we obtain the following implication:

Eg ` h, k + 1, eg ⇓∗ h′, k + 1, v
θ(Γg) ` eg : s
(θ(Γg), Eg, h, k + 1, fv(eg), θ(Γg)) good

⇒

Eg ` h, k + 1, eg ⇓ h′′, k + 1, v for some h′′ ⊆ h′

∀p ∈ dom h\dom h′′.∀z ∈ dom Eg.Eg(z)→∗h p
⇒ θ(Γg)(z) ∈ UnsafeType

∀p ∈ dom h\dom h′′.∀z ∈ dom Eg.Eg(z)→∗h p
∧ Eg(z) 6�∗h p

⇒ θ(Γg)(z) ∈ DgrType
(v, h′′) good

(3.11)
Let us prove the antecedent of this implication. The first fact follows from the assumption.
The second one follows from (3.10). This derivation takes part in a different context defini-
tion g yi @ r′j = eg. Now we prove that the configuration (θ(Γg), Eg, h, k + 1, fv(eg), θ(Γg)) is
good. The fact closed(h, Eg, fv(eg)) follows from closed(h, E, {ai

n}), which holds by assumption.
The fact Pdisj(Eg, h, θ(Γg)) can be proven by contradiction. It is trivial that the first property of
Pdisj(Eg, h, θ(Γg)) holds, so let us firstly assume that the second one does not. That is, there exist
distinct parameters yi, yj ∈ dom θ(Γg) such that θ(Γg)(yi) ∈ CdmType and a pointer p such that
Eg(yi)�∗h p and Eg(yj)→∗h p. We unfold the definitions of θ(Γg) and Eg in order to obtain:

Γ(ai) ∈ CdmType E(ai)�
∗
h p E(aj)→∗h p

If ai = aj then aj has also a condemned type in Γ, and the result of the operator
⊕

is not defined,
contradicting the fact that the expression is well-typed. If ai 6= aj then, by Assumption 3.38, we
have three possibilities: (SHR), (SHP), or (CONF). If we are able to prove neither (SHP) nor
(CONF) are possible, we will get aj ∈ sharerec(ai, e), which implies aj ∈ dom ΓR and the disjoint
sum of ΓR with

⊕n
i=1[ai : ti] in the [APP] rule would be undefined. So let us prove that assuming

(SHP) or (CONF) leads to a contradiction: in any of these cases, there exists a parameter y0 of the
caller function f such that E(y0) �∗h p. By Assumption 3.39, there exists another parameter y2

such that E(y2)→∗h p and y2 ∈ sharerec(ai, e).

– If y2 = ai then Γ(y2) = Γ(ai) ∈ CdmType, which implies, by Lemma 3.44, that Γ0(y2) can
be condemned or in-danger. If the latter is in-danger we obtain a contradiction, since Γ0

does not have in-danger parameters. If it is condemned, we distinguish cases depending on
whether (SHP) or (CONF) holds:

(SHP) In this case there exists a parameter y1, different from y0 (but not necessarily different
from y2) such that E(y1)→∗h p. This contradicts property (2) of Pdisj(E, h, Γ0), as E(y2) =

E(ai) �∗h p, and either y1 or y0 is a parameter different from y2 pointing to its recursive
closure.

(CONF) If y2 = y0 then Γ(y0) = Γ(y2) ∈ CdmType, which contradicts property (3) of
Pdisj(E, h, Γ0). If y2 6= y0, then we get two different parameters such that E(y0) �∗h p,

113

E(y2)�∗h p, and Γ(y2) is condemned. This contradicts Pdisj(E, h, Γ0) (property (2)).

– If y2 6= ai then Γ(y2) ∈ DgrType, as y2 belongs to the ΓR environment of the [APP] rule. This
implies that Γ0(y2) ∈ DgrType as well, which, again, leads to a contradiction.

Now we assume that property (3) of Pdisj(Eg, h, θ(Γg)) does not hold. That is, there exists some
parameter yi ∈ dom θ(Γg) with a condemned type and a pointer p in its recursive closure such
that Eg(yi) ⇒∗h p. Equivalently, there exists some argument ai ∈ dom Γ with a condemned type
and a pointer p in its recursive closure such that E(ai)⇒∗h p. By Assumption 3.37, we get:

(TREE) ¬isTree(ai), or
(CONF) ∃y0.E(y0)⇒∗h p, where y0 is a parameter of f

(TREE) clearly contradicts the [APP] rule, so let us assume (CONF). Again, by Assumption 3.39,
there exists a parameter y2 of f such that E(y2)→∗h p and y2 ∈ sharerec(ai, e). We distinguish cases
as above:

– If y2 = ai, then Γ(y2) = Γ(ai) ∈ CdmType, which implies that Γ0(y2) is condemned or in-
danger. The latter case leads to a contradiction with property 1 of Pdisj(E, h, Γ0). If Γ0(y2) is
condemned and y2 6= y0 we get a contradiction with property 2 of Pdisj(E, h, Γ0) as E(y2) =

E(ai) �∗h p and E(y0) �∗h p, where y2 has a condemned type. If Γ0(y2) is condemned and
y2 = y0, then E(y2) = E(y0)⇒∗h p, which contradicts (3).

– If y2 6= ai, then Γ(y2) is in-danger (since y2 occurs within ΓR of the [APP] rule), and so is
Γ0(y2). This contradicts (1) of Pdisj(E, h, Γ0).

Since we have proven the left-hand side of the implication in (3.11) we get the facts of the right-
hand side. The first conclusion of the theorem follow trivially the first fact:

E ` h, k, g ai
n @ rj

m ⇓ h′′|k, k, v

For proving the second and third conclusions, let us assume a variable z ∈ dom E such that
E(z) →∗h p and p ∈ dom h\dom h′′|k. Since none of the cells in h belongs to the k + 1-th region,
p ∈ dom h\dom h′′. By Lemma 3.30 p belongs to live(h, E, {ai}), so there exists an argument ai

such that E(ai) = Eg(yi) →∗h p. Since yi has an unsafe type in θ(Γg) (by (3.11)), ai has an unsafe
type in Γ. But, since ai is an argument of the function, that type cannot be in-danger, so it is
condemned. Let us distinguish cases:

– If p is a recursive descendant of ai we have the same situation as before: z points to a recursive
child of a condemned argument. This implies (SHR), (SHP) or (CONF). Again, the only
possibility that does not lead to a contradiction is the first one, so we can safely assume it to
hold. Since z ∈ sharerec(ai, e) holds, z belongs to the ΓR environment in the [APP] rule, so
Γ(z) ∈ DgrType, and we are done.

– The case in which p is not a recursive descendant of ai leads to a contradiction: it would
imply that Eg(yi) →∗h p, but Eg(yi) 6�∗h p, from which it follows that θ(Γg)(yi) ∈ DgrType
by (3.11), but θ(Γg) cannot have parameters with an in-danger type.

For proving the fourth conclusion we have to prove that closed(h′′, v) implies closed(h′′|k, v). That
is, closure(h′′, v) does not contain cells in the k + 1-th region of the heap. By Theorem 3.26,

114

h'1 h1

v1
p

Figure 3.17: If p is reachable from v1 and p /∈ dom h′1, then v1 is not closed in h′1.

build(h′′, v, θ(s)) is well-defined and consistent with build∗(h, Eg, θ(Γg)). If there existed a cell
in closure(h′′, v) in the topmost region of the heap, we would obtain the binding [ρself 7→ k + 1] ∈
build(h′′, v, θ(s)), since self is the only region variable such that Eg(self) = k + 1 and θ(Γg)(self) =
ρself . But this contradicts the fact that θ(s) does not contain the ρself RTV, a constraint imposed by
the [FUN] rule when applied to the definition of g. Hence, closed(h′′|k, v) holds.

• Case e ≡ let x1 = e1 in e2

Assume the following execution for e1

E ` h, k, e1 ⇓∗f h1, k, v1

and that Γ′ = Γ1 t Γ2 where Γ1 and Γ2 + [x1 : τ1] are typing environments of the corresponding ex-
pressions e1 and e2. The facts closed(h, E, fv(e1)) and Pdisj(E, h, Γ0) follow from the assumptions of
the theorem. So, the initial configuration of e1 is good, and we can apply the induction hypothesis
in order to get:

E ` h, k, e1 ⇓ h′1, k, v1 for some h′1 ⊆ h1 (3.12)

closed(h′1, v1)

∀p ∈ dom h\dom h′1.∀z ∈ dom E.E(z)→∗h p⇒ Γ1(z) ∈ UnsafeType (3.13)

∀p ∈ dom h\dom h′1.∀z ∈ dom E.E(z)→∗h p ∧ E(z) 6�∗h p⇒ Γ1(z) ∈ DgrType (3.14)

With regard to the main expression e2, we assume the following ⇓∗-execution:

E] [x1 7→ v1]︸ ︷︷ ︸
E1

` h1, k, e2 ⇓∗f h′, k, v (3.15)

Firstly we should prove that we can safely substitute h′1 for h1 in this judgement. However, this
task becomes easier if we prove closed(h′1, E1, fv(e2)) first. Let z ∈ fv(e2). We already know that
closed(h′1, E1(x1)), so let us assume that z 6= x1. If E1(z) is not closed in h′1, there must exist a
pointer p such that E1(z) →∗h′1 p, but p /∈ dom h′1. Notice that we get E1(z) →∗h1

p as well, since
h′1 ⊆ h1 and, by Lemma 3.29, E1(z)→∗h p. Let us distinguish cases:

– p /∈ dom h

Since z ∈ fv(e2) and is distinct from x1, we obtain z ∈ fv(e). This case leads to a contradiction
because of the assumption closed(h, E, fv(e)).

– p ∈ dom h

By (3.13) the z variable gets an unsafe type in Γ1, so it cannot occur free in e2 by the side
condition of [LET]. This case also leads to a contradiction.

115

Thus closed(h′1, E1, fv(e2)) holds. Now we prove that p /∈ live(h1, E1, fv(e2)) for every pointer p ∈
dom h1\dom h′1. Again, we prove this by contradiction: if p /∈ dom h′1 but p ∈ live(h1, E1, fv(e2)),
then closed(h′1, E1, fv(e2)) would not hold, but we just have proved that it does hold, so p /∈
live(h1, E1, fv(e2)). Thus we can substitute h′1 for h1 in (3.15) (by Lemma 3.31), and we get:

E1 ` h′1, k, e2 ⇓∗f h′2, k, v for some h′2 ⊆ h′ (3.16)

It is easy to prove that the configuration (Γ2, E1, h′1, k, fv(e2), Γ0) is good, as we already know that
closed(h′1, E1, fv(e2)) holds. Thus we can apply the induction hypothesis to (3.16) in order to obtain,

E1 ` h′1, k, e2 ⇓ h′′, k, v for some h′′ ⊆ h′2 ⊆ h′ (3.17)

closed(h′′, v)

It is straightforward to see that (Γ2, E1, h1, k, fv(e2), Γ0) is good, so the following can be obtained
by instantiating the induction hypothesis and by taking h1 as the initial heap, instead of h′1:

∀p ∈ dom h1\dom h′′.∀z ∈ dom E1.E1(z)→∗h1
p⇒ Γ2(z) ∈ UnsafeType (3.18)

∀p ∈ dom h1\dom h′′.∀z ∈ dom E1.E1(z)→∗h1
p ∧ E1(z) 6�∗h1

p⇒ Γ2(z) ∈ DgrType (3.19)

Thus we can derive, from (3.12) and (3.17), E ` h, k, e ⇓ h′′, k, v. The final step is to prove that
for every pointer p ∈ dom h\dom h′′ and every variable z ∈ dom E such that E(z) →∗h p has an
unsafe type in Γ1 t Γ2. Moreover, if E(z) 6�∗h p, then z has an in-danger type in that environment.

– p /∈ dom h′1
Then p has been removed from the heap during the evaluation of e1. By (3.13) we get Γ1(z) ∈
UnsafeType and hence (Γ1 t Γ2)(z) ∈ UnsafeType. In the case that E(z) 6�∗h p we get, more
specifically, Γ1(z) ∈ DgrType by (3.14) and, hence, (Γ1 t Γ2)(z) ∈ DgrType.

– p ∈ dom h′1
In this case p has been removed from the heap during the evaluation of e2. Since h′1 ⊆ h1,
we know that p ∈ dom h1. Besides this, the ⇓∗-derivation does not remove pointers from
the heap, so h ⊆ h1. This means that E(z) →∗h p implies E(z) →∗h1

p. We can apply (3.18)
and obtain Γ2(z) ∈ UnsafeType, which implies (Γ1 t Γ2)(z) ∈ UnsafeType. Similarly,
E(z) 6�∗h p implies E(z) 6�∗h1

p, so by applying (3.19) we get Γ2 ∈ DgrType, from which it
follows that (Γ1 t Γ2)(z) ∈ DgrType.

• Case e ≡ case x of Ci xij
ni → ei

n

We assume the execution of the r-th branch:

E] [xrj 7→ vj
nr]︸ ︷︷ ︸

Er

` h, k, er ⇓∗f h′, k, v

From the assumption closed(h, E, fv(e)) it follows that closed(h, Er, fv(er)). If we denote by Γr the
typing environment of er, the configuration (Γr, Er, h, k, fv(er), Γ0) is good. By induction hypothe-
sis we get:

E] [xrj 7→ vj
nr] ` h, k, er ⇓ h′′, k, v for some h′′ ⊆ h′

116

closed(h′′, v)

∀p ∈ dom h\dom h′′, ∀z ∈ dom Er.Er(z)→∗h p⇒ Γr(z) ∈ UnsafeType (3.20)

∀p ∈ dom h\dom h′′, ∀z ∈ dom Er.Er(z)→∗h p ∧ Er(z) 6�∗h⇒ Γr(z) ∈ DgrType (3.21)

From the first fact we can derive E ` h, k, e ⇓ h′′, k, v. Now we prove that for every variable
z ∈ dom E pointing to a location p ∈ dom h\dom h′′ has an unsafe type. Since E(z) = Er(z)→∗h p,
by (3.20) we get Γr(z) ∈ UnsafeType. Since z cannot be any of the pattern variables, we get
z ∈ dom Γ and the required result follows trivially. In a similar way we can apply (3.21) in order
to obtain Γ(z) ∈ DgrType in the case where E(z) 6�∗h p.

• Case e ≡ case! x of Ci xij
ni → ei

n

Assume the r-th branch is executed:

E] [xrj 7→ vj
nr]︸ ︷︷ ︸

Er

` h] [p 7→ w]︸ ︷︷ ︸
h+

, k, er ⇓∗f h′, k, v

By the [CASE!] rule, x has an condemned type in Γ′, and hence an unsafe type in Γ.

Let us prove that E(x) = p /∈ live(h+, Er, fv(er)) by contradiction: if p ∈ live(h+, Er, fv(er)), there
exists a variable z ∈ fv(er) such that Er(z) →∗h+ p. The z variable cannot be one of the pattern
variables xrj

nr , since otherwise we would have E(x) = p→h+ Er(z)→∗h+ p, contradicting the fact
that the initial heap is acyclic. Therefore, z is not a pattern variable, so Er(z) = E(z). Obviously,
E(x) �∗h+ p. By Assumption 3.38 we have three possibilities: (SHR), (SHP), or (CONF). We can
prove that neither (SHP) nor (CONF) are possible by following a similar reasoning as in the end
of the case e ≡ f ai

n @ rj
m (we only have to substitute x for ai). Thus, the only possibility is (SHR),

that is, z ∈ sharerec(x, e). Then z belongs to the ΓR environment of the [CASE!] rule, and z /∈ fv(er),
leading to a contradiction.

Since p /∈ live(h+, Er, fv(er)), by Lemma 3.31 we can safely discard the binding in the evaluation
of er in order to get a ⇓∗-derivation of the same size as the previous one:

Er ` h, k, er ⇓∗f h′\p, k, v

Moreover, since the initial configuration is good and p /∈ live(h+, Er, fv(er)), closed(h, Er, fv(er))

holds and hence the configuration (Γr, Er, h, k, fv(er), Γ0) is good, being Γr the typing environment
of the er. We can apply the induction hypothesis in order to get:

Er ` h, k, er ⇓ h′′, k, v for some h′′ ⊆ h′\p ⊆ h′

closed(h′′, v)

∀q ∈ dom h\dom h′′.∀z ∈ dom Er. Er(z)→∗h q⇒ Γr(z) ∈ UnsafeType (3.22)

∀q ∈ dom h\dom h′′.∀z ∈ dom Er. Er(z)→∗h 1∧ Er(z) 6�∗h q⇒ Γr(z) ∈ DgrType (3.23)

Thus (v, h′′) is good. Now we prove that for every pointer q ∈ dom h+\dom h′′ and every variable
z ∈ dom E such that E(z)→∗h+ q, then z occurs in Γ with an unsafe type. If q 6= p (i.e., q is not the
pointer being destroyed by this case!) we further distinguish cases:

117

– If E(z) →∗h+ p, we have already proved that z ∈ sharerec(x, e), so z must occur in ΓR with an
in-danger type.

– If E(z) 6→∗h+ p, then p cannot be in the middle of the path between E(z) and q in h+, so
E(z)→∗h q, and we proceed as in the non-destructive case.

If q = p, let z such that E(z) →∗h+ p. If z is the discriminant of the case!, then it has a condemned
type. If z 6= x then we have already shown that z ∈ sharerec(x, e). Hence z gets an in-danger
type, as it belongs to the ΓR environment. Finally we prove, under the same conditions, that
Γ(z) ∈ DgrType whenever E(z)→∗h+ q, but E(z) 6�∗h+ q. We distinguish cases:

q = p The z variable cannot be the case! discriminant, since E(x)�h+ p and we are assuming that
E(z) 6�h+ p. So, we safely assume that z 6= x. We have already shown that z ∈ sharerec(x, e),
which forces z to appear with an in-danger type in the ΓR environment of [CASE!]. Hence
Γ(z) ∈ DgrType.

q 6= p

– If z is not the case! discriminant x, then Γr(z) ≤ Γ(z), since z cannot be a pattern variable.
Again, we have to distinguish cases depending on whether E(z) points to p in h+. If it
does, then z ∈ sharerec(x, e), as we have proved before, and belongs to ΓR, so it has
an in-danger type. If it does not, we get E(z) →∗h q, and we just apply (3.23) to get
Γr(z) ∈ DgrType, which implies Γ(z) ∈ DgrType.

– If z is the case! discriminant x, we cannot ensure that Γr(x) ≤ Γ(x), since the [CASE!]
rule replaces the binding of the x variable in Γr with the binding [x : T !@ ρ]. However,
we shall see that this case leads to a contradiction. Since q 6= p, we know that E(x)
reaches q through some of its pattern variables, that is, E(x) →h+ Er(xri) →∗h+ q for
some i ∈ {1..nr}. Since q 6= p, this is equivalent to E(x)→h Er(xri)→∗h q. We distinguish
cases:

* If i ∈ RecPos(C) we get E(x) �h+ Er(xri) →∗h q. Since we are assuming that
E(z) 6�∗h+ q we know that Er(xri) 6�∗h+ q. By (3.23), Γr(xri) ∈ DgrType, which
contradicts the inh predicate in [CASE!].

* If i /∈ RecPos(C) we get Er(xri)→∗h q, which implies, by (3.22), Γr(xri) ∈ UnsafeType
which, again, contradicts the inh assumptions in [CASE!].

This theorem can be instantiated to show that well-typed programs do not access dangling pointers.

Corollary 3.46. Assume a Core-Safe program prog. Let Σ be an environment containing its function definitions
and e the main expression of the program. If the following judgement is derivable:

[self 7→ 0] ` [], 0, e ⇓∗ h′, k, v

and Γ + [self : ρself] ` e : s holds for some type s and some type environment Γ which only contains functional
type schemes and is correct w.r.t. Σ, then we obtain:

[self 7→ 0] ` [], 0, e ⇓ h′′, k, v

for some h′′ ⊆ h.

118

Proof. If we denote by Γ0 the environment Γ+ [self : ρself], we have to show that the initial configuration

(Γ0, [self 7→ 0], [], 0, fv(e), Γ0)

is good. Obviously, the empty heap is closed and acyclic. The disjointness property holds vacuously,
since there are not function parameters in the main expression. Moreover, build∗([], [self 7→ 0], Γ0) =

[ρself 7→ 0], which is well-defined. Finally, the only region variable in the runtime environment pointing
to the topmost region (0) is self , and this is the only region variable of type ρself in Γ0, since Γ only contain
functional type schemes. Therefore, the initial configuration is good, and we can apply Theorem 3.45 to
get the desired result.

3.7 Towards the type inference of function definitions

The type system shown in this chapter provides us a way to establish the correctness of a Core-Safe
program, subject to the existence of a typing derivation for it. However, it does not give any clue on
how to build these typing derivations. Moreover, it assumes that the program to be typed is annotated
with region variables, even when these variables are not specified by the programmer.

The aim of the next two chapters is to devise a mechanical way to annotate a Core-Safe program
with region variables, and to construct its corresponding typing derivation. This is achieved by two
algorithms:

• A region inference algorithm which, given a region-free Core-Safe program, annotates its abstract
syntax tree with region variables. This algorithm is only concerned with Hindley-Milner types
and region type variables, regardless of whether these types are safe, in-danger or condemned.

• A destruction safety inference algorithm, relying on an ancillary sharing analysis and concerning
exclusively the destructive pattern matching feature of the language, without regard to regions. It
determines whether the type of a given variable should be safe, in-danger or condemned.

None of these algorithms can, on its own, guarantee the existence of a typing derivation. We can only
build a correct typing derivation from the results of both algorithms. In order to prove the correctness
of these algorithms we would need to consider them jointly, as a single algorithm. But, in this case, the
correctness proof and the algorithm itself would become unwieldy.

Instead of putting the two algorithms together, we split the type system in two simpler type systems
in such a way that, if a program is typable according to these two simpler systems, then so it is according
to the initial one. As a consequence, we obtain:

• A type system dealing exclusively with regions, and leaving out the in-danger or condemned
nature of types. It is defined as a set of judgements ΓR `Reg e : s.

• A type system dealing exclusively with safe, in-danger or condemned marks, without regard to
regions. It is defined as a set of judgements ΓD `Dst e : s.

The environments occurring in the `Reg derivations are called region environments. They map variables
and function and constructor symbols to safe types and safe type signatures respectively. On the other
hand, the environments in the `Dst derivations are called mark environments. A mark environment
maps type variables to marks in the set Mark = {s, r, d} and function and constructor names to mark
signatures. A mark signature is an expression of the form mi

n → s, in which each mi stand for the

119

Γ `Reg c : B
[LITReg]

Γ + [x : s] `Reg x : s
[VARReg]

Γ + [x : T@ρ′, r : ρ] `Reg x@r : T@ρ
[COPYReg]

Γ `Reg e1 : s1 Γ + [x1 : s1] `Reg e : s

Γ `Reg let x1 = e1 in e2 : s
[LETReg]

si
n → ρj

m → s E σ Γ `Reg ai : si

Γ + [f : σ] + [rj : ρj
m] `Reg f ai

n @ rj
m : s

[APPReg]

Γ(C) = σ si
n → ρ→ s E σ ∀i ∈ {1..n}. Γ `Reg ai : si

Γ + [r : ρ] `Reg C ai
n @ r : s

[CONSReg]

∀i ∈ {1..n}. sij
ni → ρ→ sx E Γ(Ci)

Γ(x) = sx ∀i ∈ {1 . . . n}.Γ + [xij : sij
ni] `Reg ei : s

Γ `Reg case(!) x of Ci xij
ni → ei

n
: s

[CASE(!)Reg]

Figure 3.18: Typing rules for deriving `Reg judgements.

mark of the corresponding function parameter, whereas the s mark at the end stands for the result of
the function (which is always safe).

Formally, we have two kinds of judgements:

ΓR `Reg e : s where ΓR : (Var→ SafeType)× (RegVar→ RegType)× (Fun ∪ Cons→ SafeFunType)
ΓD `Dst e : s where ΓD : (Var→ Mark)× (Fun→ MarkSig)

Figures 3.18 and 3.19 contain the typing rules for the `Reg and `Dst type systems respectively. All
these rules are simplified versions of those occurring in Figure 3.6 and hence they will not be explained
here again. The inhi,C predicate appearing in [CASE!Dst] rule is defined in Figure 3.20. Again, this
predicate is a simplified version of its counterpart in Figure 3.8. The operators defined in Section 3.3
also apply to region and type environments: + forbids disjoint domains, whereas ⊕ allows them if
they bound common variables to a safe mark. The result of ΓD,1 t ΓD,2 maps common variables in ΓD,1

and ΓD,2 to the maximal mark, assuming the following order between marks: s ≤ d ≤ r. This operator
demands the functions belonging to the domain of ΓD,1 and ΓD,2 to be bound to the same mark signature
in both of them.

For proving that the union of the `Reg and `Dst type systems are equivalent to the original ` type
system, we have to specify how to combine the region environments with the mark environments. This
is done by means of an operator ◦ defined in Figure 3.21. By abuse of notation, we extend the domain
of this operator to safe type schemes and mark signatures as follows:

(si
n → ρj

m → s) ◦ (mi
n → s)

def
= (si ◦mi

n → ρj
m → s)

If the number of si is different from the number of mi, the result is undefined.

In the following, ΓR always denotes a region environment and ΓD denotes a mark environment.

120

Γ′ `Dst e : s Γ ⊇ Γ′

Γ `Dst e : s
[EXTDst]

Γ + [x : m1] `Dst e : s m1 ≤ m2

Γ + [x : m2] `Dst e : s
[WEAKDst]

∅ `Dst c : s
[LITDst] [x : s] `Dst x : s

[VARDst]
[x : s] ` x @ r : s

[COPYDst]

Γ1 `Dst e1 : s Γ2 + [x1 : m] `Dst e2 : s
∀x ∈ dom Γ1.Γ1(x) ∈ {r, d} ⇒ x /∈ fv(e2)

Γ1 t Γ2 `Dst let x1 = e1 in e2 : s
[LETDst]

R =
⋃n

i=1{sharerec(ai, f ai
n @ rj

m)\{ai} |mi = d} ∧
mi=d isTree(ai)

Γ = ΓR + [f : mi
n → s] +

⊕n
i=1[ai : mi] ΓR = [y : r | y ∈ R]

Γ `Dst f ai
n @ rj

m : s
[APPDst]

Γ =
⊕n

i=1[ai : s]
Γ `Dst C ai

n @ r : s
[CONSDst]

∀i ∈ {1..n}. Γ + [xij : mij
ni] `Dst ei : s

Γ t [x : s] `Dst case x of Ci xij
ni → ei

n
: s

[CASEDst]

R = sharerec(x, case x of Ci xij
ni → ei

n
)\{x} ∀i ∈ {1..n}. ∀j ∈ {1..ni}. inhi,Ci (mij)

∀z ∈ R ∪ {x}, ∀i ∈ {1..n}. z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [xij : mij
ni] `Dst ei : s

ΓR = [y : r | y ∈ R]

ΓR t (Γ\x) + [x : d] `Dst case! x of Ci xij
ni → ei

n
: s

[CASE!Dst]

Figure 3.19: Typing rules for deriving `Dst judgements.

inhi,C(s) if i /∈ RecPos(C)
inhi,C(d) if i ∈ RecPos(C)

Figure 3.20: Inheritance compatibility definitions for the `Dst rules.

◦ : SafeType×Mark→ ExpType

B ◦m = B
α ◦m = α

T si
n @ ρj

m ◦ s = T si
n @ ρj

m

T si
n @ ρj

m ◦ r = T si
n #@ ρj

m

T si
n @ ρj

m ◦ d = T si
n !@ ρj

m

Figure 3.21: Compositionality of types.

121

Definition 3.47. Two environments ΓR and ΓD are composable if the following conditions hold:

1. dom ΓD = dom ΓR\(RegType ∪ Cons)

2. For every variable x ∈ dom ΓD, ΓR(x) ◦ ΓD(x) is well-defined.

3. For every function symbol f ∈ dom ΓD, ΓR(f) ◦ ΓD(f) is well-defined.

In this case, we define the composition of two typing environments ΓR ◦ ΓD as follows:

ΓR ◦ ΓD
def
= [x 7→ ΓR(x) ◦ ΓD(x) | x ∈ dom ΓD]

+ [f 7→ ΓR(f) ◦ ΓD(f) | f ∈ dom ΓD]

+ [r 7→ ΓR(r) | r ∈ dom ΓR]

+ [C 7→ ΓR(C) | C ∈ dom ΓR]

Now we can state formally the equivalence between the two smaller type systems and the original
one. Before this, we need two auxiliary lemmas, whose proof is straightforward and will be omitted
here.

Lemma 3.48 (Environment reduction). If x (resp. r, f) does not occur in e, and it does belong to the domain of
Γ, then for any s′ ∈ SafeType:

Γ +
[
x : s′

]
`Reg e : s⇔ Γ `Reg e : s

and respectively with [r : ρ] and [f : sf] for any ρ ∈ RegType and sf ∈ SafeFunType.

Proof. By induction on the size of the corresponding `Reg derivation.

Lemma 3.49. Given a region environment Γ (resp. mark environment) such that Γ `Reg e : s (resp. Γ `Dst e : s).
If x ∈ fv(e), then x ∈ dom Γ. Similarly for the function and constructor symbols being applied in e.

Proof. By induction on the size of the `Reg (resp. `Dst) derivation.

Theorem 3.50. For any two composable environments ΓR and ΓD, any expression e and any safe type s:

ΓR ◦ ΓD ` e : s ⇐⇒ ΓR `Reg e : s ∧ ΓD `Dst e : s

Proof. Let us denote by Γ the result of ΓR ◦ ΓD, which exists because ΓR and ΓD are composable. First
we prove the (⇒) implication by induction on the ` derivation. We distinguish cases on the last rule
applied:

• Case [EXT]

From one of the premises of this rule we get Γ′ ` e : s, where Γ′ ⊆ Γ. We can break down Γ′

as follows Γ′ = Γ′R ◦ Γ′D. By induction hypothesis we obtain Γ′R `Reg e : s and Γ′D `Dst e : s.
From the latter judgement we can derive ΓD `Dst e : s by applying [EXTDst], if necessary. The
variables occurring in the domain of Γ, but not in the domain of Γ′ do not appear free in e. Hence,
by applying Lemmas 3.49 and 3.48 we obtain ΓR `Reg e : s.

• Case [WEAK]

In this case we get Γ′ ` e : s for some Γ′ ≤ Γ. If we split Γ′ into Γ′R ◦ Γ′D it holds that Γ′R = ΓR,
since Γ and Γ′ only differ in their marks. Hence, by induction hypothesis we get Γ′R `Reg e : s and
Γ′D `Dst e : s. From the first fact we get ΓR `Reg e : s, whereas in the second we can apply the
[WEAKDst] rule.

122

• Cases [LIT], [VAR], and [COPY]

All these cases are trivial.

• Case [LET]

We get, for some Γ1 and Γ2 such that Γ = Γ1 t Γ2, the following judgements:

Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s

Each typing environment can be separated as follows:

Γ1 = Γ1,R ◦ Γ1,D Γ2 = Γ2,R ◦ Γ2,D

By applying the induction hypothesis to each we obtain:

Γ1,R `Reg e1 : s1 Γ1,D `Dst e1 : s
Γ2,R + [x1 : s1] `Reg e2 : s Γ2,D + [x1 : m] `Dst e2 : s

where s1 ◦ m = τ1. It is easy to show that Γ1,D t Γ2,D is equivalent to ΓD. Moreover, the side
condition of [LET] implies its counterpart in [LETDst], as, for every x, Γ1,D(x) ∈ {d, r} implies
Γ1(x) ∈ UnsafeType. Hence, by applying the [LETDst] rule to the judgements on the right-hand
side, we get ΓD `Dst e : s. Moreover, we know that the variables occurring in both Γ1,R and Γ2,R get
the same type in both environments, because of the utype? constraint imposed by the t operator.
Hence we can extend both environments by using Lemma 3.48 in order to get ΓR `Reg e1 : s1 and
ΓR + [x1 : s1] `Reg e2 : s. Now we can apply the [LETReg] rule and obtain ΓR `Reg e : s.

• Case [APP]

We get Γ = Γ0 + [f : ∀α ρ.tf] + [rj : ρj
m] +

⊕n
i=1[ai : ti

n
], where the ΓR of the [APP] rule has been

substituted by Γ0 to avoid confusion with the region environment ΓR. The Γ environment is split
into:

ΓR = Γ0,R + [f : ∀α ρ.sf] + [rj : ρj
m] +

n⊕
i=1

[ai : si
n]

ΓR = Γ0,D + [f : mi → m] +
n⊕

i=1

[ai : mi
n]

where ti = si ◦mi for all i ∈ {1..n}. From the premises of the [APP] rule it follows ΓD `Dst e : s.
For applying the [APPReg] rule we have to show that Γ0,R +

⊕n
i=1[ai : si

n] `Reg ai : si for each
i ∈ {1..n}, but we can prove this easily by case distinction on whether each ai is a literal or a
variable.

• Case [CONS]

Similar to the [APP] case.

• Cases [CASE] and [CASE!]

Again let us rename the ΓR environment of [CASE!] by a less confusing name Γ0. The premises
of both judgements ΓR `Reg e : s and ΓD `Dst e : s follow trivially from their counterparts in
the ` derivation. Before applying the [CASE!Reg] rule, we may need to apply Lemma 3.48 to the

123

`Reg typing of each case branch, in order to append the Γ0 environment and be able to derive
ΓR `Reg e : s.

Now we prove the (⇐) implication by induction on the `Dst derivation. In some cases we will prove
that Γ′R ◦ ΓD ` e : s holds for some subset Γ′R of ΓR such that dom ΓR\dom Γ′R ⊆ RegVar ∪ Cons. From
this judgement we can apply the [EXT] rule of the type system in order to obtain the desired result:
ΓR ◦ ΓD ` e : s. Again, we distinguish cases on the last rule applied in the `Dst derivation:

• Case [EXTDst]

From this rule we get Γ′D `Dst e : s for some Γ′D ⊆ ΓD. Since every variable x occurring in
dom ΓD\dom Γ′D does not occur free in e, we can remove the bindings of those variables in
dom ΓD\dom Γ′D from ΓR by applying Lemma 3.49 in order to obtain an environment Γ′R com-
posable with Γ′D such that Γ′R `Reg e : s. By induction hypothesis, Γ′R ◦ Γ′D ` e : s. Moreover,
Γ′R ◦ Γ′D ⊆ Γ. Hence we can apply [EXT] so as to get Γ ` e : s.

• Case [WEAKDst]

Assume ΓD + [x : m2] ` e : s for some x and m2. By the [WEAKDst] rule there exists another mark
m1 ≤ m2 such that ΓD + [x : m1] ` e : s. If ΓD + [x : m2] is composable with ΓR, so is ΓD + [x : m1],
since they only differ in their marks. By induction hypothesis we get (ΓD + [x : m1]) ◦ ΓR ` e : s,
in which ΓR(x) ◦m1 ≤ ΓR(x) ◦m2. We can apply the [WEAK] rule of the type system so as to get
the desired result.

• Cases [LITDst], [VARDst], and [COPYDst]

The theorem holds trivially in all these cases. It is possible that the environment ΓR contains more
bindings than ΓD, but these extra bindings must be of the form [r : ρ] or [C : σ], since ΓR and
ΓD are composable. We can discard these bindings (Lemma 3.48) from ΓR before applying the
corresponding ` rule ([LIT], [VAR], [COPY]) so as to get Γ′R ◦ ΓD ` e : s for some Γ′R ⊆ ΓR. After
this, we apply the [EXT] rule to recover these bindings and get ΓR ◦ ΓD ` e : s.

• Case [LETDst]

In this case ΓD = Γ1,D t Γ2,D for some Γ1,D,Γ2,D. With the first environment we can type the
auxiliary expression: Γ1,D `Dst e1 : s, whereas we get ΓR `Reg e1 : s1. However, since dom Γ1,D ⊆
dom ΓD ⊆ dom ΓR, we can remove bindings from ΓR (by using Lemma 3.48) in order to get a
typing environment Γ1,R composable with Γ1,D, since every variable not occurring in Γ1,D is not
free in e1 (as Lemma 3.49 states).

On the other hand, we have Γ2,D + [x1 : m] `Dst e2 : s for some mark m and we can also remove
bindings from ΓR in order to obtain a Γ2,R composable with Γ2,D in which Γ2,R + [x1 : s] `Reg e2 : s.

By applying the induction hypothesis on the two `Dst judgements, we get Γ1,R ◦ Γ1,D ` e1 : s1 and
Γ2,R ◦ Γ2,D + [x1 : τ1] ` e2 : s, where τ1 = s1 ◦m. Moreover, if x has an unsafe type in Γ1,R ◦ Γ1,D,
then Γ1,D(x) ∈ {d, r}, so the side condition of [LET] follows from its counterpart in [LETDst]. It is
obvious that utype?(s1, τ1), so let us apply the [LET] rule in order to obtain:

(Γ1,R ◦ Γ1,D) t (Γ2,R ◦ Γ2,D) ` e : s

Now we have to prove that (Γ1,R ◦ Γ1,D) t (Γ2,R ◦ Γ2,D) is well-defined and equal to ΓR ◦ ΓD. The
well-definedness follows from Γ1,R and Γ2,R mapping common variables to the same safe type

124

(because both environments are subsets of a same ΓR). For the inclusion (Γ1,R ◦ Γ1,D) t (Γ2,R ◦
Γ2,D) ⊆ ΓR ◦ ΓD, we distinguish cases on whether a given variable belongs to the domain of
(Γ1,R ◦ Γ1,D), or the domain of (Γ2,R ◦ Γ2,D), or both. In any case the inclusion holds. The ⊇
inclusion is a direct consequence of the fact that dom ΓD = dom Γ1,D ∪ dom Γ2,D, so each variable
in the domain of ΓR ◦ ΓD must also appear in the domain of (Γ1,R ◦ Γ1,D) t (Γ2,R ◦ Γ2,D), and also
associated to the same type, because of the ⊆ inclusion.

• Case [APPDst]

By the rule [APPReg] we get ΓR `Reg ai : si, so the binding [ai : si] is contained within ΓR for those
ai that are not literals. However, because our convention of allowing literals in an environment
with their respective type, we shall consider that

⊕n
i=1[ai : si] ⊆ ΓR. By Lemma 3.48, we can

discard bindings from ΓR until we obtain:

Γ′R = Γ0,R +
n⊕

i=1

[ai : si] + [rj : ρj
m] + [f : ∀α ρ.si

n → ρj
m → s]

whereas:

ΓD = Γ0,D +
n⊕

i=1

[ai : mi] + [f : mi
n → s]

and Γ0,R is composable with Γ0,D. Therefore:

Γ′R ◦ ΓD = (Γ0,R ◦ Γ0,D) +
n⊕

i=1

[ai : si ◦mi] + [rj : ρj
m] + [f : ∀α ρ.si ◦mi

n → ρj
m → s]

A given variable has a d mark in ΓD if and only if it has a condemned type in Γ′R ◦ ΓD. So, the
set domain of the ΓR environment in the [APP] rule (which we have denoted Γ0 in this proof, to
avoid confusion) is the same as that its counterpart in the [APPDst] rule. Thus we can apply [APP]
in order to get Γ′R ◦ ΓD ` e : s. Since Γ′R ⊆ ΓR and ΓR is composable with ΓD, the only bindings
that can appear in ΓR but not in Γ′R are those of the form [r : ρ] and [C : σ]. We can extend the
environment Γ′R ◦ ΓD with the help of the [EXT] rule in order to get ΓR ◦ ΓD ` e : s.

• Case [CONSDst]

The proof is very similar to that of [APPDst] rule.

• Case [CASEDst]

Let n be the number of case branches. From the premises in the [CASEDst] and [CASEReg] rules we
obtain, for each i ∈ {1..n}:

ΓR + [xij : sij] `Reg ei : s

ΓD + [xij : mij] `Dst ei : s

Both typing environments are composable, and hence we can apply the induction hypothesis
in order to infer, for each i ∈ {1..n}: ΓR ◦ ΓD + [xij : sij ◦ mij] ` e : s. The utype? predicates
in the [CASE] rule hold because the sij in those judgements match the types of their respective
constructors, as the [CASEReg] rule demands. The rest of the premises of the rule [CASE] are direct
consequences of their counterparts in [CASEReg] and [CASEDst], so the theorem holds by applying
[CASE].

125

• Case [CASE!Dst]

Let n be the number of case branches. We obtain ΓD = Γ0,D t (Γ′D\x) + [x : d] for some Γ′D. We
can also split ΓR in the same way so that ΓR = Γ0,R t (Γ′R\x) + [x : T @ ρ] such that Γ′R and Γ′D are
composable. From the premises of each respective rules we obtain:

Γ′D\x + [x : mi] + [xij : mij
ni] `Dst ei : s

Γ0,R t (Γ′R\x) + [x : T @ ρ] + [xij : sij
ni] `Reg ei : s

for each i ∈ {1..n}. In case mi does not occur in the `Dst judgement we can add it via the [EXTDst]

rule. We can also remove the Γ0,R from the `Reg judgements by using Lemma 3.48 (since the
corresponding variables do not appear in the environment of the `Dst derivations, they do not
occur free in the ei). For each branch, the resulting region environments are composable with the
mark environments, so we can apply the induction hypothesis and obtain, for each i ∈ {1..n}

(Γ′R ◦ Γ′D)\x + [x : τ] + [xij : sij ◦mij
ni] ` ei : s

for some τ. The inh predicates in rule [CASE!], as well as the rest of the premises in this rule can
be easily derived from their counterparts in [CASE!Dst] and [CASE(!)Reg].

3.8 Conclusions and related work

In this chapter we have introduced a destruction-aware type system for Safe and proved it correct,
in the sense that the live part of the heap will never contain dangling pointers. We have shown the
expressiveness of the type system by means of several examples. Finally, we have defined two auxiliary
systems which allow us to consider regions and explicit destruction separately, and will serve as a basis
for the correctness results of the inference algorithms explained in the next two chapters.

Regarding regions, our type system presents obvious similarities with that of Tofte and Talpin [116],
since our region model is inspired by the latter. Their correctness proof uses an involved coinductive
approach for showing the preservation of consistency under evaluation. Most of the technical difficulty
lies in the presence of arrow effects to reflect which regions are being read and written in each sub-
expression. These effects are not necessary in Safe’s type system, since there is a single local RTV in
every function (ρself). When considering this function from outside, the read and write effects on this
RTV are hidden (i.e. are not reflected in the function’s type). This considerably simplifies the consistency
preservation proof (Theorem 3.26) and the region inference algorithm.

There has been research work aimed at providing a more intuitive understanding of the proofs in
[116]. In particular, Boudol [21] extends Tofte and Talpin’s calculus with a region deallocation construct
which, on the one hand, allows the programmer to break the nested nature of regions, and, on the other
hand, allows to simplify the original proof of [116]. A difference with respect our system is the presence
of effects (Boudol introduces a new kind of negative effects), and the lack of an inference algorithm.

With regard to explicit destruction, our safety type system has some characteristics of linear types
(see [118] as a basic reference). A number of variants of linear types have been developed for years
for coping with the related problems of achieving safe in-place updates in functional languages [95] or
detecting program sites where values could be safely deallocated [66]. The work closest to our system

126

is that of Aspinall and Hofmann [10], which proposes a type system for a language explicitly reusing
heap cells. They prove that well-typed programs can be safely translated into an imperative language
with an explicit deallocation/reusing mechanism. Their typing scheme includes three usage aspects for
the variables occurring in the type environment. These are: (1) variable used destructively, (2) variable
used read-only, but shares a component with the result, and (3) variable used read-only, and not shared
with the result. We summarise here the differences and similarities with our work.

There are non-essential differences such as: (1) they only admit algorithms running in constant heap
space, i.e. for each allocation there must exist a previous deallocation; (2) they use at the source level an
explicit parameter d representing a pointer to the cell being reused; and (3) they distinguish two differ-
ent Cartesian products depending on whether there is sharing or not between the tuple components. A
major difference with respect to our initial type system of [84] is the use of a total order in their usage
aspects, whereas we had defined a partial order in our marks. In this thesis we have improved the
work in [84] in order to incorporate a total order in this analysis. In fact, the [WEAK] rule of Figure 3.6
has been inspired by the [DROP] rule of [10]. This change has had a positive impact in our system: on
the one hand, it allows the type system to accept more pointer-safe functions, and, on the other hand,
it considerably simplifies the inference algorithm (see Section 5.5). Besides this, there are some other
essential differences with respect to [10]:

1. Their aspects 2 and 3 (read-only and shared, or just read-only) could be roughly assimilated to
our use s (read-only), and their aspect 1 (destructive), to our use d (condemned), both defined
in Section 3.3. We add a third use r (in-danger) arising from a sharing analysis based on abstract
interpretation [98]. This use allows us to know more precisely which variables are in danger when
a DS is destroyed.

2. We make a distinction between the recursive spine of a data structure, and the cells beyond that
recursive spine. As a consequence, variables pointing to a non-recursive sub-structure of a de-
stroyed cell can be safely accessed. Konečný introduces in [69] a set of separation assertions for
distinguishing between the data and the spine in a DS. However, it is unclear how this system
interacts with the different usage aspects of [10].

3. We use a separate analysis [98] for approximating the sharing relations, whereas in [10] sharing is
tracked by means of the usage aspect 2.

4. Our typing rule for let x1 = e1 in e2 allows more usage aspects combinations than theirs. Let
i ∈ {1, 2, 3} the aspect assigned to x1, j the aspect of a variable z in e1, and k the aspect of the
variable z in e2. We allow the following combinations (i, j, k) that they forbid: (1, 2, 2), (1, 2, 3),
(2, 2, 2), (2, 2, 3). The deep reason is our more precise sharing information and the new in-danger
type. In a more recent version of this system [11] combination (2, 2, 3) is allowed.

An example of a Safe program using the combination (1, 2, 3) is the following:

let x = z : [] in case! x of . . . case z of . . .

Variable x is destroyed, but a sharing variable z can be read both in the auxiliary and in the main
expression. An example of Safe program using the combination (1, 2, 2) is the following:

let x = z : [] in case! x of . . . z

Here, the result z shares the destroyed variable x. Both programs take profit from the fact that the

127

sharing variable z is not a recursive descendant of x. Our type system assigns an s-type to these
variables.

128

Chapter 4

Region Inference

4.1 Introduction

The type system of Chapter 3 establishes the safety of region-annotated Core-Safe programs. Given
a Safe program without regions, our aim in this chapter is to annotate this program with region vari-
ables, so that the result is typable by using the `Reg rules of Figure 3.18. We define a region inference
algorithm that decorates data types and function definitions by maximizing the number of cells built in
the working region self . Regarding this, the inference algorithm yields optimal programs with respect
to the type system. This means that, if the programmer were allowed to annotate Safe programs by
himself, he would not achieve a better result than the inference algorithm. Any attempt to improve the
results of the inference algorithm (for example, by placing data structures in the self region, whereas
the algorithm places them in an output region) leads to an ill-typed program.

Example 4.1. Let us consider the following function definition implementing the Quicksort algorithm.
We show here the Full-Safe code, rather than its desugared version, for the sake of clarity:

qsort [] = []

qsort (x : xs) = append ls′ (x : gs′)
where (ls, gs) = partition x xs

ls′ = qsort ls
gs′ = qsort gs

Let us assume that the region inference algorithm has already been applied to the partition and
append functions, obtaining the following type schemes:

partition :: Int→ [Int]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int]@ρ2, [Int]@ρ3)@ρ4

append :: [α]@ρ1 → [α]@ρ2 → ρ2 → [α]@ρ2

The partition function receives three region arguments: the first and second one are the regions where
the resulting lists containing the elements that are lower or greater than the pivot (first parameter) will
be allocated. The last region argument specify the region in which the tuple grouping these results is
stored. The append function receives a parameter indicating where to build the result, which has to be
placed in the same region as the second parameter.

There are several ways in which a given function can be region-annotated. In particular, the follow-

129

ing region-annotated version of qsort would be accepted by the type system:

qsort :: [Int]@ρ0 → ρ1 → ρ2 → ρ3 → [Int]@ρ2

qsort [] @ r1 r2 r3 = [] @ r2

qsort (x : xs) @ r1 r2 r3 = append ls′ (x : gs′)@r2 @ r2

where (ls, gs) = partition x xs @ r1 r2 r3

ls′ = qsort ls @ r1 r2 r3

gs′ = qsort gs @ r1 r2 r3

The elements of the input list being lower than the pivot are stored in the region corresponding
to r1, whereas r3 contains the region in which the tuples returned by the partition function are built.
However, these DS are intermediate results that are not part of the sorted list returned by the qsort
function. Consequently, the following choice of region annotations is better from the point of view of
memory consumption, while still being accepted by the type system:

qsort [] @ r2 = [] @ r2

qsort (x : xs) @ r2 = append ls′ (x : gs′)@r2 @ r2

where (ls, gs) = partition x xs @ self self self
ls′ = qsort ls @ self
gs′ = qsort gs @ r2

Since r1 and r3 are not used anymore in the function’s body, we can remove them from the list of
parameters. Now the result of partition resides completely in the working region. This is the version
inferred by the algorithm subject of this chapter. If we tried to improve the results by placing the gs′ list
in the self region, then the (x : gs′) list would also be foreced to reside in this region. The same would
happen with the result of append and the empty list being built in the base case. The region r1 would
not be used anymore, so we would get the following region-annotated program:

qsort [] = [] @ self
qsort (x : xs) = append ls′ ((x : gs′)@self) @ self

where (ls, gs) = partition x xs @ self self self
ls′ = qsort ls
gs′ = qsort gs

which is ill-typed, since the type of the result is [Int]@ρself , and the [FUNB] rule of the type system (Fig-
ure 3.9) could not be applied, because ρself occurs in the type of the result. This means that, at runtime,
the resulting sorted list would be built in the working region and would be disposed of immediately
after the call to qsort.

As it was explained in Section 3.4, Safe supports polymorphic recursion on RTVs. This implies that,
given a recursive function, the RTVs in the type of the recursive calls need not be the same as the RTVs
in the type of the function. This can significantly decrease the memory needs of some functions, as the
following example (taken from [116]) shows:

Example 4.2. Assume the following data type for heap integers consisting of a single constructor HInt
taking an integer as a parameter:

data HInt @ ρ = HInt Int @ ρ

130

The addition function on heap integers is defined as follows:

add (HInt n) (HInt m) = HInt (n + m)

Our aim is to annotate the following function for computing Fibonacci numbers:

fib (HInt 0) = HInt 0
fib (HInt 1) = HInt 1
fib (HInt n) = add (fib (HInt (n− 1))) (fib (HInt (n− 2)))

Without allowing polymorphic recursion, the input given to the recursive calls to fib would be forced
to live in the same region as the input given to the root call. Similarly, the partial results returned by
the recursive calls would have to live in the same region as the global result given by the root call. As a
consequence, we would obtain the following region-annotated definition:

fib :: HInt @ ρ1 → ρ1 → ρ2 → HInt @ ρ2

fib (HInt 0) @ r1 r2 = HInt 0 @ r2

fib (HInt 1) @ r1 r2 = HInt 1 @ r2

fib (HInt n) @ r1 r2 = add (fib (HInt (n− 1) @ r1) @ r2) (fib (HInt (n− 2) @ r1) @ r2) @ r2

Although the algorithm produces a great amount of intermediate results (namely, the heap integers
passed to the recursive calls and the integers returned by those calls), none of these results is stored
in the working region. As a consequence, the number of memory cells needed for evaluating the call
fib (HInt n) is proportional to 2n. If we allow polymorphic recursion, we get the following region-
annotated version:

fib :: HInt @ ρ1 → ρ2 → HInt @ ρ2

fib (HInt 0) @ r2 = HInt 0 @ r2

fib (HInt 1) @ r2 = HInt 1 @ r2

fib (HInt n) @ r2 = add (fib (HInt (n− 1) @ self) @ self) (fib (HInt (n− 2) @ self) @ self) @ r2

In this case, the RTVs in the type of the recursive occurrences of fib are region instances of the general
type scheme inferred for this function:

fib function : ∀ρ1 ρ2 . HInt @ ρ1 → ρ2 → HInt @ ρ2

Recursive calls : HInt @ ρself → ρself → HInt @ ρself

The intermediate heap integers generated by fib are stored in the working region. This results in an
algorithm of linear memory complexity, instead of exponential. As an additional advantage, the latter
version does not need the region parameter r1.

The region inference problem was already addressed by Tofte and Talpin in the context of the MLKit
language [116, 113]. Their inference algorithm, described in [112], deals with higher-order programs
written in Standard ML. Since (at this moment) Safe is a first-order language, region inference can be
expected to be simpler and more efficient than that of MLKit. Their algorithm runs in time O(n4) in
the worst case, where n is the size of the term, including in it the Hindley-Milner type annotations. The
explanation of the algorithm and of its correctness arguments [112] needed around 40 pages of dense
writing. So, it is not an easy task to incorporate the MLKit ideas into a new language.

131

Prog0 3 prog0 → data0,i; def0,i ; ε0

DecData0 3 data0 → data T αi = Ci tij
ni

DecFun0 3 def 0 → f xi = ε0
Exp0 3 ε0 → a {literal c or variable x}

| x@ {copy}
| C ai {constructor}
| f ai {function application}
| let x1 = ε0,1 in ε0,2 {let declaration}
| case x of Ci xij

ni → ε0,i {read only pattern matching}
| case! x of Ci xij

ni → ε0,i {destructive pattern matching}

Figure 4.1: Input language definition: Core-Safe without regions.

inferProgram :: SafeTypeEnv→ Prog0 → (SafeTypeEnv, Prog)
inferProgram Γ (data0,i; def0,i; ε0) = (Γ′, datai; defi; e)

where (Γd, datai) = mapAccumL inferDecData Γ data0,i
(Γ′, defi) = mapAccumL inferDef Γd def0,i
e = inferMainExpression Γ′ ε0

Figure 4.2: A high-level view of the Hindley-Milner and region inference algorithm.

This chapter is an extended version of [85], whose contribution is a simple region inference algo-
rithm for Safe. If polymorphic recursion is not inferred, it runs in time O(n) in the worst case, being
n as above, while if polymorphic recursion appears, it needs time O(n2) in the worst case. Moreover,
the first phase of the algorithm can be directly integrated in the usual Hindley-Milner type inference al-
gorithm, just by considering RTVs as ordinary polymorphic type variables. The second phase involves
very simple set operations and the computation of a fixed point. Unlike [112], termination is always
guaranteed without special provisions. There, they had to sacrifice principal types in order to ensure
termination. Due to its simplicity, we believe that our algorithm can be easily reused in a different
first-order functional language featuring Hindley-Milner types.

The algorithm described in this chapter has been implemented as a part of the Safe compiler. Al-
though the implementation works at the Full-Safe level, the description given here applies only to
Core-Safe. Its extension to Full-Safe is straightforward. In Section 4.2 we give an overview of the infer-
ence algorithm. Sections 4.3 and 4.4 deal with the different phases of the algorithm, whereas in Section
4.5 we prove its correctness. Finally, we give some examples in Section 4.6.

4.2 A high level view of the algorithm

The algorithm receives a region-free Core-Safe program prog0 ∈ Prog0 and produces a region-annotated
Core-Safe program prog ∈ Prog as a result. The syntax of region-annotated programs has already been
described in Section 2.3, whereas the syntax of the region-free programs is shown in Figure 4.1. The only
difference between the two syntaxes is the absence of region types and region variables in the latter. We
use data0, def 0 and ε0 to denote respectively data definitions, function definitions and expressions in
this region-free language.

In Figure 4.2 we show, in a Haskell-like pseudo-code, the definition of the whole process. The func-
tion inferProgram receives, besides the region-free input program, a typing environment containing the
types of every builtin constructor and function (e.g. arithmetic/logic operations and list constructors).

132

x

y

acc
g

x
1

y
1

g

x
2

y
2

g

x
n

y
n

mapAccumL g acc [x1,...,xn] = (acc',[y1,...,yn])

...
acc'

Figure 4.3: Visual description of the mapAccumL function, which behaves like map, but propagating an
accumulator. It returns the transformed list and the final accumulator.

In addition to the final region-annotated program, this function returns the extension of the initial Γ
with the types of each constructor or function being defined in the program. The function mapAccumL,
described in [76], applies a function to each element of a list while passing an accumulator parameter
from left to right (see Figure 4.3). Firstly, each data declaration is processed by inferDecData, which also
extends the input environment Γ with the types of the constructors being defined in each data type.
After this, the function definitions are processed by the function inferDef , which also augments the typ-
ing environment resulting from the previous phase with the inferred types for each function definition.
Finally, the region annotations of the main expression are inferred.

4.3 Region inference of data declarations

In this phase the algorithm decorates the type and data constructors with region type variables. Each
data declaration is processed individually. Our aim is to generate as many distinct RTVs as possible
for each data constructor, since this implies that, at runtime, the data structures of this type can be
distributed among several regions. In this way, we achieve more granularity for deciding which part of
a data structure should be place in the self region in order to be disposed of as soon as possible.

This phase also generates a typing environment Γ that maps every constructor name being defined
to its type signature. We start from an initial environment containing the type of the following built-in
constructors:

[] :: ∀α ρ : ρ→ [α]@ρ {empty list constructor}
(:) :: ∀α ρ : α→ [α]@ρ→ ρ→ [α]@ρ {list constructor (head:tail)}
(,) :: ∀α β ρ : α→ β→ ρ→ (α, β)@ρ {pair constructor}

In this section we give an informal description of the region inference algorithm for the data decla-
rations, together with a running example. Let us consider the following declaration:

data T α β = C (α, α) [β] | D α (T α β)

The steps of the algorithm are as follows:

1. Decorate each non-recursive nested data type with fresh RTVs. All these data types are assumed to
have been inferred previously, so we know the exact number of RTVs needed in each occurrence.
Basic types Int and Bool do not require a RTV, as their values do not reside by themselves in the
heap. Built-in data types (tuples and lists) require one RTV.

133

In our example, we obtain:

data T α β = C (α, α)@ρ1 [β]@ρ2 | D α (T α β)

2. Generate an additional fresh RTV and decorate each constructor with it. This is the outermost RTV
of the type being defined.

data T α β = C (α, α)@ρ1 [β]@ρ2 @ ρ3| D α (T α β) @ ρ3

3. Add the RTVs generated in the two previous steps as extra region type parameters for the type
constructor being defined. The last parameter must correspond to the outermost RTV obtained in
step 2.

data T α β @ ρ1 ρ2 ρ3 = C (α, α)@ρ1 [β]@ρ2 @ ρ3| D α (T α β) @ ρ3

4. Now that we know which RTVs are associated with the current data type, we can annotate the re-
cursive occurrences of the latter. Polymorphic recursion over region types is supported in function
signatures, but not in data type definitions. Therefore the list of RTVs in the recursive occurrences
must be the same as in the left-hand side of the definition.

In our example we get the following result:

data T α β @ ρ1 ρ2 ρ3 = C (α, α)@ρ1 [β]@ρ2 @ ρ3| D α (T α β @ ρ1 ρ2 ρ3) @ ρ3

5. Finally, we compute the type signature for the data constructors from the types of their arguments.

C :: ∀α β ρ1 ρ2 ρ3 : (α, α)@ρ1 → [β]@ρ2 → ρ3 → T α β @ ρ1 ρ2 ρ3

D :: ∀α β ρ1 ρ2 ρ3 : α→ (T α β @ ρ1 ρ2 ρ3)→ ρ3 → T α β @ ρ1 ρ2 ρ3

This phase extends the typing environment Γ with the types of these constructors.

Example 4.3. Consider the following data type declarations without regions:

data HInt = HInt Int
data Table = TBL [(Int, HInt)]

In the first declaration we have to add a RTV for the data constructor HInt:

data HInt @ ρ = HInt Int @ ρ

In the second declaration we need four RTVs: one for each nested data type and another one for the
data being defined:

data Table @ ρ1 ρ2 ρ3 ρ4 = TBL [(Int, HInt @ ρ1)@ρ2]@ρ3 @ ρ4

134

inferDef :: SafeTypeEnv→ DecFun0 → (SafeTypeEnv, DecFun)
inferDef Γ (f xi

n = ε0) = (Γ + [f : si
n → ρj

m → s], f xi
n @ rj

m = e)
where fresh(α0, αi

n, ri
m)

Γ + [f : α0] + [xi : αi
n] ` f ε0 −→ ε : α | E (A)

〈θ, ϕi
p〉 = solveEqs E

si
n → s = θ(α0)

(Rarg, Rself , _) = inferRegions (si
n → s) θ(ε) ϕi

p

{ρj
m} = Rarg

R = [ρi 7→ ri
m] + [ρ 7→ self | ρ ∈ Rself]

e = annotateExp R ε

(B)
(C)
(D)
(E)

(F)
(G)

Figure 4.4: Region inference algorithm for function definitions.

4.4 Region inference of function definitions

Our region inference algorithm for function definitions is implemented as an extension of Hindley-
Milner inference (HM in the following). In Figure 4.4 we give its definition. The first two steps (A) and
(B) deal with HM inference. As usual in many of its presentations [99], we consider two sub-phases:
generation of a system of equations between types and its later resolution via unification. This phase
produces two results:

1. An intermediate expression ε decorated with type information, which will be used in the subse-
quent phases.

2. A solution 〈θ, ϕi
p〉 to the system of equations, whose meaning will be made precise later.

Section 4.4.1 describes this phase in detail. With the resulting substitution θ we can obtain (step (C)) a
preliminary type si

n → s (without regions) for the function. The next step (D), which is explained in
Section 4.4.2, determines which RTVs have to appear as additional parameters in the function’s signa-
ture (Rarg) and which ones must be unified with ρself (Rself). Once we have computed the corresponding
Rarg and Rself , we build in (F) a correspondence R between region types and freshly generated region
variables. We apply this correspondence to the annotations of the intermediate expression ε in order to
obtain the final Core-Safe expression (step (G)). Besides this, the type of the function is augmented with
the variables occuring in Rarg and included into the resulting typing environment.

4.4.1 HM Inference

Our implementation of this phase extends the usual HM inference in the following ways:

• Generation of equations between region types: Algebraic data types have already been anno-
tated with RTVs by means of the algorithm explained in Section 4.3. The equations being gener-
ated in this phase include these region types, which are treated like ordinary polymorphic vari-
ables. In particular, some of them may be unified as a consequence of solving the system of
equations.

• Weak forms of unification equations: In absence of polymorphic recursion, the type of the func-
tion being defined must be equal to the type of the function in each call. Since we allow polymor-
phic recursion over regions, we can relax this requirement, so the type of the function in each call
site may be a region type instance of the function’s type. This means that both types need not be syn-
tactically equal after unification, but there must exist a list ϕi of substitutions mapping the RTVs

135

Exp1 3 ε → a {literal c or variable x}
| x@[ρ] {copy}
| C ai [ρ] {constructor}
| f ai[ρj]

{nonrecursive function application}
| f ai[k,ti→t] {recursive function application}
| let x1 = ε1 in ε2 {let declaration}
| case x of Ci xij → εi {read only pattern matching}
| case! x of Ci xij → εi {destructive pattern matching}

Figure 4.5: Intermediate language for expressions.

of the function’s type into RTVs of the type of each recursive application. Besides polymorphic
recursion, the Safe language has a copy expression, in which the types of source and destination
DS may differ in the outermost region. For handling these cases, we introduce different kinds of
constraints which impose fewer restrictions than unification equations.

• Decoration of the source expression: The abstract syntax tree of the input definition has to be
decorated with typing information, which will be used in subsequent phases of the algorithm.
For this purpose we define the set Exp1 of intermediate expressions by the grammar in Figure 4.5
and we use ε, ε1, . . . to denote such expressions.

– Copy expressions x@ are attached a region type variable ρ, which is the type of the region in
which the destination DS will reside at runtime.

– Constructor applications C ai
n are decorated with another variable ρ, which is the outermost

region type of the DS being created.

– Function calls g ai
n that are different from the function being defined (i.e. nonrecursive calls)

receive a sequence of RTVs ρj
m as decoration. These types correspond to the region variables

that will be added as additional arguments in this function call. Since the regions of these
functions have already been inferred, the number of needed RTVs is known by the compiler.

– Recursive function calls f ai
n are decorated with an identifier k ∈ N and the concrete in-

stantiation of f ’s type that is used in this recursive call. If the function being inferred has p
recursive calls, we assume that each call has a unique number ranging from 1 to p.

The generation of unification equations is defined by a set of rules with operate on judgements of
this form:

Γ ` f ε0 −→ ε : α | E (4.1)

where Γ is a pair of functions in (Fun ∪ Cons → SafeFunType) × (Var → TypeVar) that map, re-
spectively, function and constructor symbols to safe type schemes σ and program variables x to type
variables α. Again, by abuse of notation, we will not make an explicit distinction between these map-
pings, and both of them will be denoted by Γ. It will be clear from the context which mapping we are
referring to, depending on whether we write Γ(f), Γ(C) or Γ(x). The intuitive meaning of (4.1) is that,
under the environment Γ, the region-free expression ε0 ∈ Exp0 is transformed into the intermediate
expression ε ∈ Exp1 of type α. As a side effect, the set E of constraints between types is generated. Each
constraint may be of one of these types:

s1 = s2

136

c ∈ Int
Γ ` f c −→ c : α | {α = Int}

[LITIGen]
c ∈ Bool

Γ ` f c −→ c : α | {α = Bool}
[LITBGen]

Γ ` f x −→ x : α | {Γ(x) = α}
[VARGen]

fresh(ρ)
Γ ` f x@ −→ x@[ρ] : α | {α = isData(Γ(x), ρ)}

[COPYGen]

fresh(ρ) ∀i ∈ {1 . . . n} : Γ ` f ai −→ ai : αi | Ei si
n → ρ′ → s E Γ(C)

Γ ` f C ai
n −→ C ai

n
[ρ] : α | {si

n → ρ′ → s = αi
n → ρ→ α} ∪⋃n

i=1 Ei
[CONSGen]

fresh(k) ∀i ∈ {1 . . . n} : Γ ` f ai −→ ai : αi | Ei

Γ ` f f ai
n −→ f ai

n
[k,αi

n→α] : α | {Γ(f) ≈k αi
n → α} ∪⋃n

i=1 Ei
[APP-RGen]

g 6= f ∀i ∈ {1 . . . n} : Γ ` f ai −→ ai : αi | Ei si
n → ρj

m → s E Γ(g)

Γ ` f g ai
n −→ g ai

n
[ρj

m]
: α | {si

n → ρj
m → s = αi

n → ρj
m → α} ∪⋃n

i=1 Ei
[APP-NRGen]

Γ ` f ε0
1 −→ ε1 : α1 | E1 Γ\x1 + [x1 : α1] ` f ε0

2 −→ ε2 : α2 | E2

Γ ` f let x1 = ε0
1 in ε0

2 −→ let x1 = ε1 in ε2 : α | E1 ∪ E2 ∪ {α = α2}
[LETGen]

Γ(x) = αx ∀i ∈ {1 . . . n}.

fresh(αij

ni) ∧ sij
ni → ρ→ si E Γ(Ci)

Γ\xij
ni +

[
xij : αij

ni
]
` f ε0

i −→ εi : αi | E′i
Ei = E′i ∪ {sij

ni → si = αij
ni → αx} ∪ {αi = α}

Γ ` f case(!) x of Ci xij
ni → ε0

i
n
−→ case(!) x of Ci xij

ni → εi
n

: α | ⋃n
i=1 Ei

[CASEGen]

Figure 4.6: Rules for generating equations.

It specifies that the types at both sides of the = must be equal after unification.

s1 = isData(s2, ρ)

This means that the types of s1 and s2 may only differ in the outermost region, which must be ρ

in the type s1.

s1 ≈k s2

It specifies that s2 must be a region instance of s1, but the HM types (i.e. those without considering
regions) must be equal. This allows us to have polymorphic recursion over regions. We annotate
each constraint of this form with a number k which is the identifier of the recursive call from
which this constraint is generated (see below).

The rules that define the equation generation can be found in Figure 4.6. Although not stated ex-
plicitly, we assume that α denotes a fresh type variable in every rule. Moreover, we assume that each
occurrence of E in the rules means that the type on the left-hand side is a fresh instance of the type
scheme on the right-hand side. Most of the rules are the usual ones in HM inference, with some minor
differences. Rule [COPYGen] generates an isData constraint, in order to specify that the outermost region
type of the DS being copied may differ from ρ, which is the outermost region type of the result. We make
distinction between recursive and non-recursive function applications. In the latter case, the function

137

being called has been already inferred, so we have to generate as many fresh RTVs as in the function’s
signature. In recursive function applications we generate an ≈ equation and a fresh identifier.

Example 4.4. Given the following function for appending two lists:

append xs ys = case xs of

[]→ ys @

(x : xx)→ let x1 = append xx ys in (x : x1)

We start with an environment Γ ⊇ [append : α0, xs : α1, ys : α2]. The rules of Figure 4.6 generate the
following constraints:

[α3]@ρ1 = α1 {[] pattern}
α6 → [α6]@ρ2 → [α6]@ρ2 = α4 → α5 → α1 {(x : xx) pattern}

α7 = isData(α2, ρ3) {ys @}
α0 ≈1 α5 → α2 → α8 {call to append}

α9 → [α9]@ρ4 → ρ4 → [α9]@ρ4 = α4 → α8 → ρ5 → α10 {(x : x1)}
α11 = α7 {case branch}
α11 = α10 {case branch}
α0 = α1 → α2 → α11 {type of append}

We obtain the following intermediate expression with decorations:

εappend = case xs of

[]→ ys @[ρ3]

(x : xx)→ let x1 = append xx ys[1,α5→α2→α8]
in (x : x1)[ρ5]

The copy expression and the application of the constructor are annotated with the region type vari-
ables corresponding to their respective results, whereas the call to append is annotated with its concrete
type.

Once we have generated a set E of constraints, we can solve them by unification. The technique
we use is a slight variation of original method defined by Robinson [101] with some extensions for
handling isData constraints and ≈-equations, which are treated in this context like latent unifications.
These extensions are straightforward to define and implement, and they are shown in Appendix A.

The unification algorithm returns a substitution θ mapping type variables α (resp. RTVs ρ) to types
or type signatures (resp. to RTVs). It also yields, for each equation of the form s1 ≈k s2, a substitution ϕk

between region types which maps the region type variables of the left-hand side to the ones in the right-
hand side. If the input function definition has p recursive calls (and hence it involves the generation
of p equations of this kind) then the unification method yields a list of p substitutions ϕi

p. In our
implementation, both θ and the ϕi

p are computed simultaneously, but the computation of the ϕi
p can

also be deferred after the unification.

Although we do not explain in this chapter how to obtain a solution via unification, we must specify
the meaning of a solution in order to prove the correctness of the algorithm. In the following definition
we use the notation s1 ≡ s2 to denote syntactic equality of types. We also assume that the application
of substitutions θ and ϕi to type expressions is defined in the usual way.

138

Definition 4.5. A pair 〈θ, ϕi
p〉 is a solution to a set of constraints E if and only if the following conditions

hold:

1. For each s1 = s2 ∈ E, then θ(s1) ≡ θ(s2). The same applies to equations of the form sf1 = sf2.

2. For each s = isData(s′, ρ) ∈ E then θ(s) ≡ T si
n @ ρj

m(θ(ρ)) and θ(s′) ≡ T si
n @ ρj

mρ′ for some
si

n, ρj
m and ρ′.

3. For each s1 ≈k s2 then ϕk(θ(s1)) ≡ θ(s2). The same applies to equations of the form sf1 ≈k sf2.

Example 4.6. The unification method yields the following substitution for the Example 4.4 above:

θ =

α1 7→ [α3]@ρ1 α2 7→ [α3]@ρ6 α4 7→ α3

α5 7→ [α3]@ρ1 α6 7→ α3 α7 7→ [α3]@ρ4

α8 7→ [α3]@ρ4 α9 7→ α3 α10 7→ [α3]@ρ4

α11 7→ [α3]@ρ4

ρ2 7→ ρ1 ρ3 7→ ρ4 ρ5 7→ ρ4

α0 7→ [α3]@ρ1 → [α3]@ρ8 → [α3]@ρ6

We compare the type of the function with the type of the recursive application:

Function: append :: [a3]@ρ1 → [a3]@ρ6 → [a3]@ρ4

Recursive application: append :: [a3]@ρ1 → [a3]@ρ6 → [a3]@ρ4

Both types are equal, and hence there is no polymorphic recursion in this example. Therefore, we
get the identity region mapping for this recursive call:

ϕ1 = [ρ1 7→ ρ1, ρ6 7→ ρ6, ρ4 7→ ρ4]

By applying θ to the intermediate expression we obtain:

θ(εappend) = case xs of

[]→ ys @[ρ4]

(x : xx)→ let x1 = append xx ys[1,[α3]@ρ1→[a3]@ρ6→[a3]@ρ4]
in (x : x1)[ρ4]

4.4.2 Kernel of the algorithm

Once we have obtained a decorated expression and a solution 〈θ, ϕi
p〉 for the type equations, we apply

the substitution θ to the type decorations of the expression, obtaining another decorated expression
ε ∈ Exp1 as a result. We also apply this substitution to the fresh type variable α0 assigned to the
function being inferred in order to obtain its type θ(α0) ≡ si

n → s with RTVs. Let us denote by Rin

the region type variables occurring in the type of the input arguments (i.e. the si
n), and by Rout those

occurring in the result of the function (i.e. the s). Our next step is to classify these RTVs, along with
those that have appeared in the decorations of ε. Some of these RTVs must be added to the type of the
function as extra parameters; some others will be unified with the region type variable ρself . Once we
have done this classification, the generation of region variables in order to produce the final Core-Safe
expression is straightforward.

139

inferRegions (si
n → s) ε ϕj

p = (Rarg, Rself , Rexpl)
where Rout = regions(s)

Rin = regions(si
n)

R0 = regions(ε)
(Rarg, Rexpl) = computeRargFP Rin Rout ∅ R0 ϕj

p

Rself = Rexpl\(Rin ∪ Rout)

computeRargFP Rin Rout Rarg R0 ϕj
p

| Rarg == R′arg = (R′arg, R′expl)

| otherwise = computeRargFP Rin Rout R′arg R0 ϕj
p

where R′expl = R0 ∪
⋃p

j=1 {ϕ+
j (ρ) | ρ ∈ Rarg}

R′arg = R′expl ∩ (Rin ∪ Rout)

Figure 4.7: Second phase of the region inference algorithm.

The main phase of the region inference algorithm computes three sets of RTVs:

Rarg It contains the types of the region variables that will eventually be added as extra parameters of
the function definition. In other words, if si

n → s is the type we have obtained for the function
in the previous phase, and Rarg = {ρj

m}, then the function’s signature will be extended as si
n →

ρj
m → s.

Rself It contains the RTVs that will be unified with the ρself region. This implies that the corresponding
region variable in the Core-Safe program will be self .

Rexpl It is the set of explicit RTVs. A region type variable ρ is considered to be explicit if there exists a
region variable r in the resulting Core-Safe program with type ρ.

These definitions are far from being constructive, since they all refer to the resulting region-annotated
program, which is exactly what we aim for. However, they provide enough intuition in order to char-
acterize some properties of these sets. We have to find Rarg, Rself and Rexpl subject to the following
restrictions:

1. Rexpl ⊆ Rself ∪ Rarg

2. Rself ∩ Rarg = ∅

3. Rself ∩ (Rin ∪ Rout) = ∅

4. Rexpl = regions(ε) ∪ ⋃p
j=1 ϕ+

j (Rarg), where regions(ε) is the set of RTVs appearing in the annota-
tions of those subexpressions of ε of the form C ai [ρ] and g ai [ρj]

, and ϕ+
j (ρ) is defined for every

j ∈ {1..p} as follows:

ϕ+
j (ρ) =

ϕj(ρ) if ρ ∈ dom ϕj

ρ if ρ /∈ dom ϕj

We use the notation ϕ+
j (Rarg) to denote the set {ϕj(ρ) | ρ ∈ Rarg}.

The first one expresses that the region variables occurring in the final Core-Safe program (and hence
belonging to Rexpl) must be variables in scope. The types of region variables in scope belong either to
Rarg or Rself , depending on whether they are additional parameters of the function definition, or the
identifier self . The second and third restrictions are forced by the fact that ρself cannot appear in the

140

resulting type signature of the function, as the rule [FUNB] in Figure 3.9 demands. The last restriction
specifies that the RTVs appearing in the annotations of ε are considered explicit. Moreover, if f is
the function being inferred, this restriction also requires that the type of f extended with the region
arguments in Rarg can produce type instances for typing all the recursive applications of f , each one
extended with as many region arguments as the number of elements in Rarg.

In Section 4.5 we show that any sets Rexpl, Rarg and Rself satisfying these restrictions lead to a region-
annotated Core-Safe expression which is well-typed according to `Reg rules. Notice that, provided the
restriction (4) holds, an algorithm choosing any Rarg ⊇ Rexpl and Rself = ∅ would be correct with respect
to this specification, but this solution would be very poor as, on the one hand, no construction would
ever be done in the self region and, on the other hand, there might be region arguments never used. We
look for an optimal solution in two senses: we want Rarg to be as small as possible, so that only those
regions where data are built are given as arguments, but we also want Rself to be as big as possible, so
that the maximum amount of memory is deallocated at function termination.

Our algorithm initially computes Rarg = R0 ∩ (Rin ∪ Rout), by using the set R0 of initial explicit

RTVs, that is, R0
def
= regions(ε). Then, it starts a fixpoint algorithm computeRargFP (Figure 4.7) trying to

get the type of f ’s recursive applications as instances of the type of f extended with the current set Rarg

of arguments. It may happen that the set Rexpl may grow when considering different applications (see
the Example 4.17). Adding more explicit RTVs to one recursive application will influence the type of
the rest. As Rarg depends on Rexpl, it may also grow. So, a fixpoint is used in order to obtain the final
Rarg and Rexpl from the initial ones. Due to our solution above, Rarg cannot grow greater than Rin ∪ Rout,
so termination of the fixpoint is guaranteed. We have the following invariant in the algorithm:

Rarg = Rexpl ∩ (Rin ∪ Rout) (4.2)

Once obtained the final Rarg and Rexpl, the set Rself is computed as follows:

Rself = Rexpl\(Rin ∪ Rout) (4.3)

We show in Section 4.5 that these choices maximise the data allocated to the self region, which in turn
maximises the amount of memory reclaimed at runtime when the corresponding function call finishes.
With respect to the remaining DSs not being inferred to live in self , they will be allocated to the regions
which are parameters to the function being called. It is the caller function’s responsibility to determine
where to put these DSs by passing the suitable arguments. Since the caller function is also inferred by
the algorithm, the parameter assignment is done in such a way that the data allocated in the caller’s
self region is also maximized. From a global point of view, every cell not being created in the current
topmost region (i.e. the region bound to the self identifier) will be created in the highest possible region
and hence, will be deallocated at the earliest time allowed by the type system.

Example 4.7. Continuing with the Example 4.6 above, we start iterating with the following sets:

Rin = {ρ1, ρ6} Rout = {ρ4} Rarg = ∅ R0 = {ρ4}

After the first iteration, we get Rexpl = {ρ4} and Rarg = {ρ4}. A further iteration leads to the same
solution, which is hence the fixpoint. Finally, we compute Rself = ∅ by using (4.3). This implies that
nothing is going to be built in the self region during the evaluation of this function. From the RTVs in

141

Rarg we can extend the type signature of append as follows:

append :: [α3]@ρ1 → [α3]@ρ6 → ρ4 → [α3]@ρ4

Example 4.8. Given the following definition:

f xs ys = let zs = (1 : xs) in f ys zs

After the HM inference phase, we obtain the preliminary type [Int]@ρ1 → [Int]@ρ2 for f , the re-
gion substitution ϕ1 = [ρ1 7→ ρ2, ρ2 7→ ρ1] corresponding to the first recursive call, and the following
intermediate definition:

f xs ys = let zs = (1 : xs)[ρ1]
in f ys zs[1,[Int]@ρ2→[Int]@ρ1]

The initial call to computeRargFP is done with the following sets:

Rin = {ρ1} Rout = {ρ2} Rarg = ∅ R0 = {ρ1}

After the first iteration, Rexpl and Rarg are both equal to {ρ1}. However, since ϕ1(ρ1) = ρ2, the RTV ρ2

is added to both sets in the second iteration. By iterating a third time we obtain the same result, so we
have the following fixed point:

Rarg = {ρ1, ρ2} Rexpl = {ρ1, ρ2}

4.4.3 Annotating function definitions with region variables

Once we know the exact number of RTVs in Rarg, we create a fresh region parameter for each RTV in
this set. Let us assume that Rarg = {ρj

m} and that rj
m are the newly created region parameters. We

define a mappingR : Rarg ∪ Rself → RegVar as follows:

R def
= [ρj 7→ rj

m]] [ρ 7→ self | ρ ∈ Rself]

The last step is to traverse the expression ε in order to transform its decorations into region vari-
ables, so that we get a Core-Safe expression as a result. This transformation is done by the annotateExp
function, defined in Figure 4.8. Although not explicitly shown, we assume two extra parameters in this
function that are propagated downwards to each recursive call: the Rarg and ϕj

p computed in the previ-
ous phases. Most cases in the definition of annotateExp are straightforward, since we only have to apply
the R mapping to the decorations in ε in order to get the actual region annotations in the program. In
the case of expressions of the form f ai

n
[k,si

n→s], which correspond to recursive calls, the types of the
region variables to be inserted may be distinct from the variables in Rarg, since we allow polymorphic
recursion. Hence we proceed in two phases: firstly we obtain the concrete region instance correspoding
to this call site (this is given by the ϕ+

k), and then, we apply the R mapping which translates each RTV
of this instance into a region variable.

142

annotateExp R (c) = c
annotateExp R (x) = x
annotateExp R (x@[ρ]) = x @ R(ρ)
annotateExp R (C ai

n
[ρ]) = C ai

n @ R(ρ)
annotateExp R (g ai

n
[ρj

m]) = g ai
n @ R(ρj)

m

annotateExp R (f ai
n
[k,si

n→s]) = annotateExp R (f ai
n
[ϕ+

k (ρj)
m
]
)

where {ρj
m} = Rarg

annotateExp R (let x1 = ε1 in ε2) = let x1 = e1 in e2
where e1 = annotateExp R ε1

e2 = annotateExp R ε2

annotateExp R (case(!) x of Ci xij
ni → εi

n
) = case(!) x of Ci xij

ni → ei
n

where ∀i : ei = annotateExp R εi

Figure 4.8: Definition of annotateExp.

Example 4.9. From the results of the Example 4.7 we build the mapping R = [ρ4 7→ r] and obtain the
following Core-Safe definition for append:

append xs ys @ r = case xs of

[]→ ys @ r

(x : xx)→ let x1 = append xx ys in (x : x1)@r

Example 4.10. Given the definition of f in Example 4.8, we apply annotateExp with the mapping R =

[ρ1 7→ r1, ρ2 7→ r2], with Rarg = {ρ1, ρ2} and ϕ1 = [ρ1 7→ ρ2, ρ2 7→ ρ1]:

annotateExp R
(

let zs = (1 : xs)[ρ1]
in f ys zs[1,[Int]@ρ2→[Int]@ρ1]

)
= let zs = annotateExp R

(
(1 : xs)[ρ1]

)
in annotateExp R

(
f ys zs[1,[Int]@ρ2→[Int]@ρ1]

)
= let zs = (1 : xs)@r1 in annotateExp R

(
f ys zs[ρ2,ρ1]

)
= let zs = (1 : xs)@r1 in f ys zs @ r2 r1

We obtain the following region-annotated definition:

f xs ys @ r1 r2 = let zs = (1 : xs)@r1 in f ys zs @ r2 r1

4.5 Correctness and optimality

The aim of this section is to prove that the final Core-Safe program resulting from the algorithm is
typable with respect to the `Reg rules in Figure 3.18. This fact can be established in three steps:

1. The HM inference algorithm described in Section 4.4.1 returns a well-formed intermediate expres-
sion ε ∈ Exp1, provided the unification algorithm returns a correct solution to the generated
constraints.

143

Γ `̀ ϕ c : B
[LITHM]

Γ + [x : s] `̀ ϕ x : s
[VARHM]

Γ(x) = T si
n@ρj

mρ′

Γ `̀ ϕ x@[ρ] : T si
n@ρj

mρ
[COPYHM]

si
n → ρ→ s E Γ(C) ∀i ∈ {1 . . . n}.Γ `̀ ϕ ai : si

Γ `̀ ϕ C ai
n
[ρ] : s

[CONSHM]

ϕk(Γ(f)) = si
n → s ∀i ∈ {1 . . . n}.Γ `̀ ϕ ai : si

Γ `̀ ϕ f ai
n
[k,si

n→s] : s
[APP-RHM]

si
n → ρj

m → s E σ ∀i ∈ {1 . . . n}.Γ `̀ ϕ ai : si

Γ + [g : σ] `̀ ϕ g ai
n
[ρj

m] : s
[APP-NRHM]

Γ `̀ ϕ ε1 : s1 Γ\x1 + [x1 : s1] `̀ ϕ ε2 : s
Γ `̀ ϕ let x1 = ε1 in ε2 : s

[LETHM]

Γ(x) = sx ∀i ∈ {1..n} :
{

sij
ni → ρ→ sx � Γ(Ci)

Γ\xij
ni +

[
xij : sij

ni
]
`̀ ϕ εi : s

Γ `̀ ϕ case(!) x of Ci xij
ni → εi

n
: s

[CASE(!)HM]

Figure 4.9: Rules for `̀ .

2. Given a well-formed intermediate expression ε ∈ Exp1 and three sets (Rarg, Rself , Rexpl) such that
the four conditions (1), (2), (3) and (4) of Section 4.4.2 hold, the result of annotateExp (as described
in Section 4.4.3) is a well-typed Core-Safe expression.

3. The solution of (Rarg, Rself , Rexpl) returned by the function inferRegions satisfies the above men-
tioned four conditions.

The link between these steps is not only the intermediate expression ε, but also the fact that it is well-
formed. We define this notion by means of an intermediate type system, defined by the rules in Figure
4.9. This type system enforces that the annotations in ε do not contradict its type. Most rules are similar
to those in Section 3.18 and hence they will not be explained here. The only detail worth noting is that
there are two different `̀ ϕ rules for dealing with function applications, [APP-RHM] and [APP-NRHM],
since recursive and nonrecursive function applications are decorated in different ways. In the case of
recursive function applications, the functional type in the decoration is a region instance of the type
bound to f within the environment Γ. The concrete instantiation is given by the corresponding ϕk

substitution. The list of region substitutions ϕi
p (abbreviated in the rules as ϕ) is propagated through

the whole derivation.

Given these considerations, we are ready to prove the first step. The proof of the following Lemma
is similar to that of Hindley-Milner inference. The main difference is that the `̀ ϕ typing rules involve
types with regions.

Lemma 4.11. For every Γ, ε0, ε, α, f and E of their respective types, if Γ ` f ε0 −→ ε : α | E and 〈θ, ϕi
p〉 is a

144

solution to E, we can derive the following judgement:

θ(Γ) `̀ ϕi
p θ(ε) : θ(α)

where θ(Γ) denotes the application of θ to every type in the range of Γ.

Proof. By induction on the structure of ε0. We distinguish cases:

• Case ε0 ≡ c

We get trivially θ(Γ) `̀ ϕ c : Int or θ(Γ) `̀ ϕ c : Bool depending on whether c ∈ Int or c ∈ Bool.

• Case ε0 ≡ x

We have to prove θ(Γ) `̀ ϕ x : s where s = θ(α). Since θ is a solution for the equation Γ(x) = α we
get s = θ(α) = θ(Γ(x)). In order to apply the rule [VARHM] we have to show that x ∈ dom(θ(Γ)),
but this follows trivially from the fact that x ∈ dom(Γ).

• Case ε0 ≡ x @

The resulting decorated expression is ε ≡ x@[ρ], where ρ is a fresh region type variable. Since
θ is the solution of the generated equation, we get θ(α) ≡ T si

n @ ρj
mθ(ρ). Besides this, since

x ∈ dom(Γ), we get x ∈ dom(θ(Γ)) and hence θ(Γ(x)) ≡ T si
n @ ρj

mρ′ which is exactly the
premise of the rule [COPYHM]. We can apply this rule in order to obtain θ(Γ) `̀ ϕ x@[θ(ρ)] : θ(α).

• Case ε0 ≡ C ai
n

In order to apply the rule [CONSHM] so as to obtain θ(Γ) `̀ ϕ C ai
n
[θ(ρ)] : θ(α) we need to prove

its premises: θ(αi)
n → θ(ρ) → θ(α) E θ(Γ(C)) and ∀i ∈ {1 . . . n} : θ(Γ) `̀ ai : θ(αi). The

former follows from the definition of θ being a solution, since θ(s f0) = θ(αi)
n → θ(ρ)→ θ(α) and

θ(sf 0) E Γ(C). In fact, if sf 0 is an instance of Γ(C), so it is θ(sf 0). Moreover, Γ(C) does not contain
any free variables, so θ(Γ(C)) = Γ(C). The latter premise is a direct consequence of applying the
induction hypothesis to each ai.

• Case ε0 ≡ f ai
n

We have to find a `̀ ϕ typing for the decorated expression f ai
n
[k,θ(αi

n→α)]. Firstly, we can apply
the induction hypothesis to each argument in order to get, for all i ∈ {1 . . . n}, θ(Γ) `̀ ϕ ai : θ(αi).
Moreover, and because of 〈θ, ϕi

p〉 being a solution to E, we get:

ϕk(θ(Γ(f))) = θ(αi
n → α)

which is the remaining premise that we need for applying the rule [APP-RHM].

• Case ε0 ≡ g ai
n, with g 6= f

The proof is similar to that of case ε0 ≡ C ai
n.

• Case ε0 ≡ let x1 = ε0,1 in ε0,2

Since θ is a solution of E, it is also a solution of its components, namely E1 and E2. This allows us
to apply the induction hypothesis on each subexpression with θ so that we get:

θ(Γ) `̀ f θ(ε1) : θ(α1) θ(Γ)\x1 + [x1 : θ(α1)] `̀ ϕ θ(ε2) : θ(α2)

145

Now we can apply the rule [LETHM] by using these two judgements and the fact that θ(α2) = θ(α),
since θ is a solution of {α2 = α}.

• Case ε0 ≡ case(!) x of Ci xij
ni → ε0,i

n

Again, the general solution θ is also a solution for each particular Ei, so we apply the induction
hypothesis to each ε0,i in order to get θ(Γ)\xij

ni + [xij : θ(αij)
ni
] `̀ ϕ θ(εi) : θ(αi), which is equiv-

alent to θ(Γ)\xij
ni + [xij : θ(αij)

ni
] `̀ ϕ θ(εi) : θ(α) because of θ being a solution to {αi = α}.

Now we have to prove θ(αij)
ni → ρ → θ(αx) E θ(Γ(Ci)) for some ρ and for each i ∈ {1 . . . n}.

One of the premises of the rule [CASEGen] tell us that there exist some sij
n, ρ′ and si such that

sij
n → ρ′ → si E Γ(Ci). We take advantage of the equation

{
sij

ni → si = αij
ni → αx

}
, so that

we get θ(sij)
ni

= θ(αij)
ni for each j ∈ {1 . . . ni} and θ(si) = θ(αx). Moreover, we know that ρ′

belongs to the domain of θ, since the latter is defined for θ(si) and the outermost region of si is ρ′.
Therefore, we get the required result as follows:

θ(αij)
ni → θ(ρ′)→ θ(αx) = θ(sij)

ni → θ(ρ′)→ θ(si) E sij
ni → ρ′ → si E Γ(Ci) = θ(Γ(Ci))

Before embarking on the proof of the second step, we need an auxiliary definition which allows us
to change the decorations of ε of the form [k, si

n → s] by decorations of the form [ρj
m], appearing in non-

recursive function applications. Of course, we can only do this when the set of additional region type
parameters (Rarg) is known, since otherwise we could not build the type signature σ of the function. By
substituting [ϕk(Rarg)] for each decoration [k, si

n → s] in ε (as it is done indirectly in annotateExp), we
obtain a expression ε′ which is also typable via the `̀ ϕ rules.

Example 4.12. If ε is the expression at the end of Example 4.6, we substitute [ϕ1(ρ4)] = [ρ4] for the
decoration [1, [α3]@ρ1 → [a3]@ρ6 → [a3]@ρ4] in order to obtain:

ε′ = case xs of

[]→ ys @[ρ4]

(x : xx)→ let x1 = append xx ys[ρ4]
in (x : x1)[ρ4]

Example 4.13. If ε is the intermediate expression obtained in Example 4.8:

ε = let zs = (1 : xs)[ρ1]
in f ys zs[1,[Int]@ρ2→[Int]@ρ1]

we get Rarg = {ρ1, ρ2}, so ϕ1(Rarg) = [ρ2, ρ1] and we transform ε as follows:

ε′ = let zs = (1 : xs)[ρ1]
in f ys zs[ρ2,ρ1]

Now we can prove the correctness of the second part of the algorithm, provided that the choice of
Rarg, Rself and Rexpl satisfies the conditions enumerated in Section 4.4.2:

146

Theorem 4.14. Let us assume Γ + [f : si
n → s] `̀ ϕ ε : s′ where every annotation in ε of the form [k, sf] occur

in a call to f . Let Rarg, Rself and Rexpl sets of RTVs such that the conditions (1), (2) and (4) hold, where:

Rin = {regions(si) | i ∈ {1 . . . n}}
Rout = {regions(s)}
Rarg = {ρ1, . . . , ρm}, for some ρ1, . . . , ρm

and the ε, ϕi
p occurring in condition (4) are those of the `̀ derivation above. If we defineR as follows:

R = [ρi 7→ ri
m]] [ρ 7→ self | ρ ∈ Rself]

Then:

(a) R is well-defined, i.e. the] operator is applied to region mappings with disjoint definition domains.

(b) There exists an ε′ ∈ Exp1 not containing annotations of the form [k, sf], such that:

1. Γ + [f : ∀ρ.si
n → ρj

m → s] `̀ ϕ ε′ : s′

2. Rexpl = regions(ε′)

3. annotateExp R ε′ ϕi
p {ρj

m} = annotateExp R ε ϕi
p {ρj

m}

(c) If e = annotateExp R ε ϕi
p {ρj

m}, then e is well-defined and the following judgment can be derived by
using the `Reg rules:

Γ + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg e : s′ (4.4)

Proof. (a) follows trivially from condition (2). Now we prove that the expression ε′ that results from
replacing every annotation of the form [k, sf] by [ϕ+

k (ρj)
m
] satisfies the conditions stated in (b):

1. The first condition can be proven by induction on the `̀ ϕ derivation applied to ε. Most cases
follow trivially from the induction hypothesis, except when the rule [APP-RHM] is applied. In this
case ε has an annotation of the form [k, sf]. This implies, by hypothesis, that ε is a call to f , and
that sf has the form s′i

n → s′. Our aim is to apply the [APP-NRHM] rule to its counterpart in ε′,

which is a call to f decorated with [ϕ+
k (ρj)

m
]. We have to ensure that s′i

n → ϕk(ρj)
m → s′ is an

instance of ∀ρ.si
n → ρj

m → s, but this follows from the premises of the [APP-RHM] rule:

s′i
n → ϕk(ρj)

m → s′ = ϕk(si)
n → ϕ+

k (ρj)
m
→ ϕk(s) = ϕ+

k (si
n → ρj

m → s) E si
n → ρj

m → s

2. We know that regions(ε) ⊆ regions(ε′), since the annotations in ε of the form [ρ] and [ρj] are left
untouched in ε′. The only new RTVs in regions(ε′) are those that arise from replacing the [k, sf]
annotations (which are not taken into account in the regions function) with their counterparts in
ε’. Therefore, we get:

regions(ε′) = regions(ε) ∪
p⋃

j=1

{ϕ+
j (ρi) | 1 ≤ i ≤ m} = regions(ε) ∪

p⋃
j=1

ϕ+
j (Rarg)

which is, by condition (4), equal to Rexpl.

3. The last condition follows trivially from the definition of annotateExp.

147

Lastly we prove (c). From the results given in (b) we can prove the existence of an ε′ for which (b).1
can be derived without using the [APP-RHM] rule, since ε′ does not contain annotations of the form
[k, sf]. Hence we prove the following: given Γ + [f : ∀ρ.si

n → ρj
m → s] `̀ ϕ ε′ : s and the sets Rarg,

Rself and Rexpl such that the conditions (1), (2) and (4) hold, where Rin and Rout are defined as above,
then we can derive (4.4) being e = annotateExp R ε′ ϕi

p {ρj
m}, which we know that is equivalent to

annotateExp R ε ϕi
p {ρj

m}.We apply structural induction on ε′. Let us distinguish cases according to
the structure of ε′:

• Cases ε′ ≡ c, x

Let us compare the HM-rules that have been applied in the `̀ f derivation with the rules we want
to apply in order to derive (4.4):

Γ `̀ ϕ c : B
[LITHM]

Γ `Reg c : B
[LITReg]

Γ + [x : s′] `̀ ϕ x : s′
[VARHM]

Γ + [x : s′] `Reg x : s′
[VARReg]

We can trivially obtain the judgements on the right-hand side from those on the left-hand side.
We can extend the environment by applying Lemma 3.48 in order to get (4.4).

• Case ε′ ≡ x@[ρ]

Γ(x) = T@ρ′

Γ `̀ ϕ x@[ρ] : T@ρ
[COPYHM]

Γ + [x : T@ρ′, r : ρ] `Reg x@r : T@ρ
[COPYReg]

Since ρ ∈ Rexpl, by condition (1) we get ρ ∈ Rarg ∪ Rself . We distinguish cases:

ρ ∈ Rarg Then ρ is one of the ρi (i ∈ {1 . . . m}), so that e ≡ x @ ri and we can derive Γ + [x :
T@ρ, ri : ρi] `Reg x @ ri.

ρ ∈ Rself We obtain e ≡ x @ self and hence Γ + [x : T@ρ, self : ρself] `Reg x @ self .

In both cases we can extend the environment until we obtain (4.4).

• Case ε′ ≡ C ai
q
[ρ]

The following rule has been applied in the `̀ ϕ derivation:

si
q → ρ→ s′ E Γ(C) ∀i ∈ {1 . . . q} : Γ `̀ ϕ ai : si

Γ `̀ ϕ C ai
q
[ρ]

: s′
[CONSHM]

We need to apply this rule to get the desired result:

si
q → ρ→ s′ E Γ(C) ∀i ∈ {1 . . . q} : Γ `Reg ai : si

Γ + [r : ρ] `Reg C ai
q @ r : s′

[CONSReg]

We know that annotateExpR ai = ai for every ai, so we can apply the induction hypothesis on
each aiin order to get:

Γ + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg ai : si for i ∈ {1 . . . n}

148

Now we have to prove that the addition of [r : ρ] to this environment (as required by rule
[CONSReg]) results in a well-defined environment. Since ρ ∈ Rexpl, we get ρ ∈ Rarg ∪ Rself by
condition (1). Again, we distinguish cases:

ρ ∈ Rarg Then ρ = ρi for some i ∈ {1 . . . m}, so we get e ≡ C ai
n @ ri as our final expression. Rule

[CONSReg] would require us to add the binding [ri : ρi].

ρ ∈ Rself This case leads to e ≡ C ai
n @ self , so we would have to add [self : ρself].

In both cases the resulting environment is well-defined and we can apply [CONSReg] in order to
derive (4.4).

• Case ε′ ≡ g ai
p[
ρ′j

q]
si

p → ρ′j
q → s′ E σ ∀i ∈ {1 . . . p} : Γ `̀ ϕ ai : si

Γ + [g : σ] `̀ ϕ g ai
p

[ρ′j
q
]

: s′
[APP-NRHM]

si
p → ρ′j

q → s′ E σ ∀i ∈ {1 . . . p} : Γ `Reg ai : si

Γ + [g : σ] + [r′j : ρ′j
q
] `Reg g ai

p @ r′j
q

: s′
[APPReg]

By applying the induction hypothesis in every subexpression we get, for every i ∈ {1 . . . p}:

Γ + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg ai : si (4.5)

If g is distinct from f , since g does not occur in any of the ai, we can apply Lemma 3.48:

Γ + [g : σ] + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg ai : si (4.6)

The resulting Core-Safe expression is g ai
p @ R(ρ′j)

q
. We denote by r′j the result of each R(ρ′j), as

shown in the rule [APPReg] above. Now we have to show, for each j ∈ {1 . . . q}, that the addition
of the bindings [r′j : ρ′j] does not contradict with the bindings [ri : ρi

m]. This is very similar to the
cases for copy and constructor application: we have ρ′j ∈ Rexpl ⊆ Rarg ∪ Rself . On the one hand,
if ρ′j ∈ Rarg then ρ′j is one of the ρi for i ∈ {1 . . . m} and hence r′j = ri, so the binding [r′j : ρ′j] is
equivalent to [ri : ρi]. On the other hand, if ρ′j ∈ Rself then r′j = self and we have the binding
[self : ρself] as a result. In any case, the binding [r′j : ρ′j] is compatible with the typing environment
above. So, we can apply rule [APPReg] by using the judgments (4.5) or (4.6) as premises (depending
on whether g is equal to f or not) so as to get:

Γ + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg g ai

p @ r′j
q

: s′

• Case ε′ ≡ let x1 = ε1 in ε2

Γ `̀ ϕ ε1 : s1 Γ\x1 + [x1 : s1] `̀ ϕ ε2 : s′

Γ `̀ ϕ let x1 = ε1 in ε2 : s′
[LETHM]

Γ `Reg e1 : s1 Γ\x1 + [x1 : s1] `Reg e2 : s′

Γ `Reg let x1 = e1 in e2 : s′
[LETReg]

149

We apply the induction hypothesis to each subexpression ε1, ε2 in order to obtain:

Γ + [f : ∀ρ.ti
n → ρj

m → t] + [ri : ρi
m] + [self : ρself] `Reg e1 : s1

Γ\x1 + [f : ∀ρ.ti
n → ρj

m → t] + [ri : ρi
m] + [self : ρself] + [x1 : s1] `Reg e2 : s′

where e1 = annotateExp R ε1 and e2 = annotateExp R ε2. We can apply the rule [LETReg] in order
to prove (4.4).

• Case ε′ ≡ case(!) x of Ci xij
ni → εi

n

From the premises of the rule [CASE(!)HM], the judgment Γ +
[
xij : sij

ni
]
`̀ ϕ εi : s′ holds.

Γ(x) = sx ∀i ∈ {1..n} :

{
sij

ni → ρ→ sx � Γ(Ci)

Γ\xij
ni +

[
xij : sij

ni
]
`̀ ϕ εi : s′

Γ `̀ ϕ case(!) x of Ci xij
ni → εi

n
: s′

[CASE(!)HM]

∀i ∈ {1 . . . r} : Γ(Ci) = σi ∀i ∈ {1 . . . r} : sij
ni → ρ→ sx E σi

Γ(x) = sx ∀i ∈ {1 . . . r} : Γ\xij
ni + [xij : sij

ni] `Reg ei : s′

Γ `Reg case(!) x of Ci xij
ni → ei

r
: s′

[CASE(!)Reg]

By applying the induction hypothesis to each εi, we get:

Γ\xij
ni + [f : ∀ρ.ti

n → ρj
m → t] + [ri : ρi

m] + [self : ρself] + [xij : sij
ni] `Reg ei : s′

for each i ∈ {1 . . . r}, with ei = annotateExp R εi. Therefore, by rule [CASE(!)Reg] we can prove
(4.4), since the rest of the premises of this rule are the same as their counterparts in [CASE(!)HM].

Notice that the premises of this theorem do not include condition (3), since it is not necessary in
the proof. This theorem guarantees the existence of a `Reg typing for the function’s body. In Chapter 5
we put forward an algorithm for dealing with explicit destruction via case(!), whose correctness proof
guarantees the existence of a `Dst typing. Both `Reg and `Dst typings lead to a ` typing for the body
of the function, as proven in Section 3.7. However, we need to satisfy an additional constraint in order
to type the whole function definition by applying the rule [FUN] of Figure 3.9. This rule specifies that
the region type ρself must not occur in the resulting type signature. However, we can achieve this by
assuming the condition (3):

Corollary 4.15. Under the same conditions of Theorem 4.14 and assuming that (3) in Section 4.4.2 holds, we
can derive the following judgement:

Γ + [f : ∀ρ.si
n → ρj

m → s] + [ri : ρi
m] + [self : ρself] `Reg e : s′

where ρself /∈ regions(si
n → ρj

m → s).

Proof. It follows trivially from Theorem 4.14 and condition (3).

Our last step in the correctness proof establishes that the inferRegions algorithm returns a solution
which satisfies the conditions (1) to (4). The main part of this algorithm is the fixpoint iteration per-
formed by computeRargFP. The following invariant determines the origin of every variable occurring in

150

Rarg: either it belongs to the initial set of explicit regions, or it is the image of another variable already
present in Rarg w.r.t some region mapping ϕi.

Lemma 4.16. Given the call computeRargFP Rin Rout Rarg R0 ϕi
p, where Rarg = ∅, the following invariant

holds in every subsequent iteration: for every ρ ∈ Rarg there exists a sequence of RTVs [ρ0, . . . , ρn] ⊆ Rarg with
n ≥ 0 and ρ = ρn such that:

1. ρ0 ∈ R0

2. For all ρi (with i ∈ {1 . . . n}) there exists some ϕk such that ϕk(ρi−1) = ρi

Proof. The invariant holds trivially in the root call, since Rarg = ∅. Now let us assume that it holds for
the input argument Rarg. We have to prove the invariant for the R′arg appearing in the recursive call. Let
ρ ∈ R′arg. By inspecting the definition in Figure 4.7 we know that ρ ∈ R′expl. So, either ρ ∈ R0 (and the
invariant holds considering the sequence [ρ]) or ρ = ϕk(ρ

′) for some k ∈ {1 . . . p} and ρ′ ∈ Rarg. In the
latter case there exists a sequence [ρ0, . . . ρn = ρ′] which satisfies that required condition, and which we
can extend as follows [ρ0, . . . , ρn = ρ′, ρ].

Example 4.17. Given the following function fragment with a single recursive call:

f x1 x2 x3 = . . . f x2 x3 x1 . . .

Let us assume that x1 has type [α]@ρ1, x2 has type [α]@ρ2 and x3 has type [α]@ρ3. Therefore Rin =

{ρ1, ρ2, ρ3}. We compare the types of the function and its recursive call:

Function: f :: [α]@ρ1 → [α]@ρ2 → [α]@ρ3

Recursive application: f :: [α]@ρ2 → [α]@ρ3 → [α]@ρ1

Hence we get ϕ1 = [ρ1 7→ ρ2, ρ2 7→ ρ3, ρ3 7→ ρ1]. If R0 = {ρ1} the fixpoint iteration takes the
following steps:

Initial call 1st iteration 2nd iteration 3rd iteration

Rarg ∅ {ρ1} {ρ1, ρ2} {ρ1, ρ2, ρ3}
Rexpl {ρ1} {ρ1} {ρ1, ρ2} {ρ1, ρ2, ρ3}

The variable ρ1 belongs to Rarg because it appears initially in R0. Variable ρ2 is added to Rarg because
ϕ(ρ1) = ρ2 and ρ1 was already in Rarg. Variable ρ3 is added to Rarg because ϕ(ρ2) = ρ3 and ρ2 was
already in Rarg. We have the following sequences for each variable:

ρ1 : [ρ1] ρ2 : [ρ1, ρ2] ρ3 : [ρ1, ρ2, ρ3]

This invariant is useful for proving that the solution given by inferRegions is optimal with respect to
the conditions (1) to (4) of Section 4.4.2. Any other solution satisfying these conditions may only lead to
equal or worse results, i.e. a bigger Rarg, and hence a smaller Rself .

Theorem 4.18. The algorithm inferRegions in Figure 4.7 returns three sets (Rarg, Rself , Rexpl) which satisfy
the four conditions described in Section 4.4.2. Moreover, for every solution (R′arg, R′self , R′expl) satisfying these
conditions it holds that Rarg ⊆ R′arg and Rexpl ⊆ R′expl.

151

Proof. The condition (4) follows trivially from the definition of computeRargFP. We can rewrite the
remaining conditions by using (4.2) and (4.3):

1. Rexpl ⊆ (Rexpl\(Rin ∪ Rout)) ∪ (Rexpl ∩ (Rin ∪ Rout)

2. (Rexpl\(Rin ∪ Rout)) ∩ (Rexpl ∩ (Rin ∪ Rout) = ∅

3. (Rexpl\(Rin ∪ Rout)) ∩ (Rin ∪ Rout) = ∅

The three immediately follow from set algebra. Now we prove optimality: let us assume that the
four conditions hold for (R′arg, R′self , R′expl). First we prove that Rarg ⊆ R′arg. If ρ ∈ Rarg then there exists
(by Lemma 4.16) a sequence [ρ0, . . . , ρn = ρ] ⊆ Rarg with ρ0 ∈ regions(ε). Notice that, by the invariant
(4.2), all these RTVs must belong to Rin ∪ Rout. We show that every ρi belongs to R′arg by induction on i.

• Case i = 0. In this case ρ0 ∈ regions(ε) ⊆ R′expl. Since ρ0 ∈ Rin ∪ Rout, then ρ0 /∈ R′self because of
condition (3). Hence, by condition (1), we get ρ0 ∈ R′arg.

• Case i > 0. In this case ρi = ϕk(ρi−1) for some k. By induction hypothesis ρi−1 ∈ R′arg and hence
ρi ∈ R′expl by condition (4). Again, ρi cannot belong to R′self because it belongs to Rin ∪ Rout and
condition (3) forces them to be disjoint. Hence, by condition (1), ρi ∈ R′arg.

Therefore, ρ = ρn ∈ R′arg and Rarg ⊆ R′arg. From this inclusion and the condition (4) it follows that
Rexpl ⊆ R′expl.

This theorem proves that the resulting Rarg is the minimum solution for the conditions (1) to (4). Given
a fixed set Rexpl of explicit variables, it follows from conditions (1) and (2) of Section 4.4.2 that Rself is
the maximum solution.

4.6 Case studies

In this section we study the results of the region inference algorithm applied to several examples, rang-
ing from simple functions on lists to a compiler running in several phases. Although the algorithm is
defined at Core-Safe level, all the examples in this section, as well as their region-annotated versions,
are written in Full-Safe for conciseness.

Example 4.19 (List partition). As a first example, consider the following function definition:

partition y [] = ([], [])
partition y (x : xs)

| x ≤ y = (x : ls, gs)
| x > y = (ls, x : gs)
where (ls, gs) = partition y xs

The HM inference phase yields the following decorated program:

partition y [] = ([][ρ2]
, [][ρ3]

)[ρ4]

partition y (x : xs)
| x ≤ y = ((x : ls)[ρ2]

, gs)[ρ4]

| x > y = (ls, (x : gs)[ρ3]
)[ρ4]

where (ls, gs) = partition y xs[1,Int→[Int]@ρ1→([Int]@ρ2,[Int]@ρ3)@ρ9]

152

and the type partition :: Int→ [Int]@ρ1 → ([Int]@ρ2, [Int]@ρ3)@ρ4. By comparing this type with the type
of the recursive call we get the following mapping:

ϕ1 = [ρ1 7→ ρ1, ρ2 7→ ρ2, ρ3 7→ ρ3, ρ4 7→ ρ9]

Notice that, in this case, we have polymorphic recusion over the RTV of the pair which is given as a
result. We start the fixpoint iteration with these sets:

Rin = {ρ1} Rout = {ρ2, ρ3, ρ4} Rarg = ∅ R0 = {ρ2, ρ3, ρ4}

After the first iteration, we get:

Rexpl = {ρ2, ρ3, ρ4} Rarg = {ρ2, ρ3, ρ4}

In the next iteration the set Rexpl grows, since ϕ1(ρ4) = ρ9:

Rexpl = {ρ2, ρ3, ρ4, ρ9} Rarg = {ρ2, ρ3, ρ4}

However, since Rarg does not change, we stop the fixpoint iteration and compute Rself = {ρ9} by
applying (4.3). Finally, we generate fresh region variables r2, r3 and r4 corresponding to the RTVs in
Rarg and build the following mapping:

R = [ρ2 7→ r2, ρ3 7→ r3, ρ4 7→ r4, ρ9 7→ self]

which leads to the following annotated function definition:

partition :: Int→ [Int]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int]@ρ2, [Int]@ρ3)@ρ4

partition y [] @ r2 r3 r4 = ([]@r2, []@r3)@r4

partition y (x : xs) @ r2 r3 r4

| x ≤ y = ((x : ls) @ r2, gs) @ r4

| x > y = (ls, (x : gs) @ r3) @ r4

where (ls, gs) = partition y xs @ r2 r3 self

In absence of polymorphic recursion, the recursive call would be partition y xs @ r2 r3 r4, which implies
that all the tuples returned from the internal calls to partition are built in the output region, even when
these tuples are temporary and not part of the function’s result.

Example 4.20 (Pascal’s triangle). Let us consider the dynamic approach for computing binomial coef-
ficients by using Pascal’s triangle. We start from the unit list [1], which is the 0-th row of the triangle.
If [x0, x1, . . . xi−1] are the elements of the i-th row, the elements of the i + 1-th row are given by the list
[1, x0 + x1, x1 + x2, . . . , xi−1 + xi, xi]. This is shown in Figure 4.10. The binomial coefficient (n

m) can be
obtained from the m-th element in the n-th row of the triangle.

The function sumList computes the i + 1-th row of the triangle from its i-th row. We show directly
the intermediate definition:

sumList (x : []) = (x : [][ρ2]
)[ρ2]

sumList (x : xs) = ((x + y) : sumList xs[1,[Int]@ρ1→[Int]@ρ2]
)[ρ2]

where (y : _) = xs

The fixpoint iteration produces Rexpl = Rarg = {ρ2} and Rself = ∅, which leads to the following

153

1

1

1

1

1

2

3

1

31

+

++

Figure 4.10: Pascal’s triangle computation.

definition:

sumList (x : []) @ r = (x : []) @ r
sumList (x : xs) @ r = ((x + y) : sumList xs @ r) @ r where (y : _) = xs

Function pascal iterates over the initial list in order to get the row, whose number is given as param-
eter. Below we show the decorated definition:

pascal 0 = (1 : [][ρ1]
)[ρ1]

pascal n = (1 : (sumList (pascal (n− 1))[1,Int→[Int]@ρ2]
)[ρ1]

)[ρ1]

The type inferred for pascal after the HM phase is Int → [Int]@ρ1. By comparing this type with that
of the recursive call we get ϕ1 = [ρ1 7→ ρ2]. Hence Rin = ∅, Rout = {ρ1} and R0 = {ρ1}, which gives us
an initial Rexpl = Rarg = {ρ1}. After the second iteration ρ2 is now made explicit and it is added to Rexpl,
which now contains the region variables {ρ1, ρ2}. However, Rarg stays the same and hence the fixpoint
has been reached. Finally, we get Rself = {ρ2} and the program is annotated as follows:

pascal :: Int→ ρ1 → [Int]@ρ1

pascal 0 @ r = (1 : [] @ r)@ r
pascal n @ r = (1 : sumList (pascal (n− 1) @ self) @ r) @ r

The resulting list from the recursive call to pascal will be destroyed once the calling function finishes.
Hence a function call pascal n has a cost of O(n) in space. Without polymorphic recursion the result of
every recursive call would be built in the output region r, which would imply a cost of O(n2) in space
(Figure 4.11).

The function definition in charge of computing the binomial coefficient (n
m) is defined as follows:

combNumber n m = pascal n !! m

The !! operator returns the m-th element of the list returned by pascal, which is inferred as residing
in self , since is not part of the function’s result. Hence the annotated program is:

combNumber n m = (pascal n @ self) !! m

154

1 1

11

1

1

1

1

21

+

1

1

1

1

1

2

3

1

31

+

++

1 1

11

1

1

1

1

21

+

1

1

1

1

1

2

3

1

31

+

++

Without polymorphic recursion:

With polymorphic recursion:

Figure 4.11: Lists being created by the function pascal with and without polymorphic recursion. Each
column corresponds to the end of a recursive call. White cells are destroyed.

155

data BSTree α @ ρ = Empty @ ρ | Node (BSTree α @ ρ) α (BSTree α @ ρ) @ ρ

insertT :: Int→ BSTree Int @ ρ1 → ρ1 → BSTree Int @ ρ1
insertT y Empty @ r1 = Node (Empty @ r1) y (Empty @ r1) @ r1
insertT y (Node l x r) @ r1

| x == y = Node l x r @ r1
| y < x = Node (insertT y l @ r1) x r @ r1
| y > x = Node l x (insertT y r @ r1) @ r1

mkTree :: [Int]@ρ1 → ρ2 → BSTree Int @ ρ2
mkTree [] @ r2 = Empty @ r2
mkTree (x : xs) @ r2 = insertT x (mkTree xs @ r2) @ r2

inorder :: BSTree α @ ρ1 → ρ2 → [α]@ρ2
inorder Empty @ r2 = [] @ r2
inorder (Node l x r) @ r2

= append (inorder l @ self) (append ((x : []@self)@self) (inorder r @ r2) @ r2) @ r2

treeSort :: [Int]@ρ1 → ρ2 → [Int]@ρ2
treeSort xs @ r2 = inorder (mkTree xs @ self) @ r2

Figure 4.12: Region inference for the treesort algorithm.

Example 4.21 (Treesort). Let us consider an implementation of the treesort algorithm. Figure 4.12
shows the resulting region-annotated program. Firstly, we define a data type BSTree for binary search
trees and define a function insertT implementing the usual insertion in an ordered tree. From the type
signature of insertT we deduce that both input and output trees must live in the same region at runtime,
since we reuse children of the input tree when constructing the output. The function mkTree builds a
binary search tree by successive insertions of the elements of a list, whereas inorder transforms a tree
into an ordered list by means of an inorder traversal. Notice that, in the latter, we use the definition of
append in which the list passed as second parameter is shared with the result, unlike the definition in
Example 4.4. That is why the second recursive call to inorder is called with the output region parameter;
its result will be shared with the output. The result of the first recursive call is done with the working
region, because its result will be copied when being concatenated with the global result. Finally, the
function treeSort calls these two functions above. The intermediate tree is not needed in the result, so it
is built in the working region.

Region-based memory management is a powerful approach when dealing with programs that work
in several phases and produce intermediate data structures between them. Compilers are a typical
example of these kind of programs.

Example 4.22. Given a simple imperative while language, we want to translate it into bytecode for a
P-machine. Both source and target languages are defined in Figure 4.13. Notice that some data types
are polymorphic on a type variable α. This variable is used as a placeholder for decorations, as we will
see below. The translation performs in four phases:

• Type checking: In this language we have two types, integers and booleans. This process decorates
the AST with type information and checks whether the arguments given to the operators are of a
suitable type.

typeCheck :: Stm α→ Stm (Maybe Type)

156

data BinArithOp = Add | Sub |Mul |Div – binary arithmetic operators
data UnArithOp = Neg – unary arithmetic operators
data RelOp = Less | Eq – relational operators
data BinBoolOp = And |Or – binary logical operators
data UnBoolOp = Not – unary logical operators

data Exp α = Const Int α – constant
| Var Int α – variable
| AppBinArithOp BinArithOp (Exp α) (Exp α) α – operator application
| AppUnArithOp UnArithOp (Exp α) α
| AppRelOp RelOp (Exp α) (Exp α) α
| AppBinBoolOp BinBoolOp (Exp α) (Exp α) α
| AppUnBoolOp UnBoolOp (Exp α) α

data Stm α = Skip α – does nothing
| Assign Int (Exp α) α – variable assignment
| Seq (Stm α) (Stm α) α – sequentiation
| If (Exp α) (Stm α) (Stm α) α – conditional
| While (Exp α) (Stm α) α – loop

data PInst α = Ldc Int | Load | Store | Jmp α | JFalse α – bytecode instructions
| AddP | SubP | MulP | DivP | NegP
| LtP | GtP | EqP | AndP | OrP | NotP

Figure 4.13: Source and target language definitions for Example 4.22.

• Constant folding: It computes at compile time those operations which involve only constants.

constantFold :: Stm α→ Stm α

• Translation into bytecode: This phase generates the bytecode with symbolic labels. Branching
instructions refer to these labels.

translate :: Stm α→ [PInst Label]

• Patching: It translates symbolic labels into natural numbers, as well as the arguments of the
branching instructions.

patch :: [PInst Label]→ [PInst Int]

For the sake of simplicity we do not show the code of these functions here. In order to take advantage
of regions, we need some functions runToZ, which executes the phase Z and the preceeding ones.

runToConstantFold stm = let stm′ = typeCheck stm in constantFold stm′

runToTranslate stm = let stm′ = runToConstantFold stm in translate stm′

runToPatch stm = let insts = runToTranslate stm in patch insts

We show in Figure 4.14 the number of extra region parameters inferred for data types and function
definitions. A more qualitative analysis of the results is depicted in Figure 4.15. Rows represent the
working regions corresponding to each phase, while the columns stand for the execution of each phase.
The pictograms represent data structures being built in a given region during the execution of a phase.

157

Data type Region types
BinArithOp 1
UnArithOp 1
RelOp 1
BinBoolOp 1
UnBoolOp 1
Exp 6
Stm 19
PInst 1

Function Region parameters
typeCheck 10
constantFold 4
translate 8
patch 2

Figure 4.14: Quantitative results for the compiler example.

typeCheck

runToConstantFold

runToTranslate

runToPatch

AST

AST

AST

AST

F: LDC 3
LDC 5
ADD

JMP F
...

F: LDC 3
LDC 5
ADD

JMP F
...

F: LDC 3
LDC 5
ADD

JMP F
...

F: LDC 3
LDC 5
ADD

JMP F
...

1: LDC 3
2: LDC 5
3: ADD
4: JMP 1

...

1: LDC 3
2: LDC 5
3: ADD
4: JMP 1

...

Type
checking

Constant
folding

Translation Patching

Time

Working
regions

Constant
folding

TranslationPatching

(before calling
runToTranslate)

(before calling
runToCostantFold)

(before calling
typeCheck)

(before returning
from

runToConstantFold)

(before returning
from

runToTranslate)

(before returning
from

runToPatch)

Figure 4.15: Evolution of the heap in each phase. Each gray rectangle represents the working region of
a phase, its lifetime and the data structures that are stored into it. Each column stands for the state of
the heap at a given time.

158

The type checking phase creates an AST with typing information. The result is distributed between
the working regions of constantFold and translate, so that those in the latter region can be shared in
subsequent phases. The constant folding phase generates another AST which reuses those parts lying
in the translate working region. The initial AST with types is disposed after the execution of constantFold.
The next phase creates the list of bytecode instructions in the patch working region. After this, the AST
is no longer needed and hence its memory is reclaimed. Finally, the patching phase creates the final list
of bytecode instructions without symbolic labels. The caller function decides where to locate this list
by passing the suitable arguments to patch. Notice that, during the whole process, we only have two
intermediate data structures simultaneously in the heap: the input and the output of each phase.

4.7 Conclusions and related work

We have introduced an algorithm for annotating expressions with region variables. The algorithm
is correct and optimal with respect the `Reg typing rules. It has a time cost in O(n2) in the worst
case, and O(n) in the average case. The completeness of the algorithm can only be guaranteed when
the function being analysed has a most general type, according to the `Reg type system. If such a
type does not exist, the algorithm fails. The lack of principal types is due to copy expressions. For
instance, the function definition f xs @ r = xs @ r accepts the types [Int]@ρ1 → ρ2 → [Int]@ρ2 and
BSTree α @ ρ1 → ρ2 → BSTree α @ ρ2, but both of them are instances of the type α→ ρ2 → α, which is not
accepted by the `Reg type system, since the [COPYReg] rule demands an algebraic type in the DS being
copied. This lack of principal types can be solved by incorporating a restricted form of polymorphic
variable in which the outermost RTV is fixed. For instance, the type α @ ρ stands for an algebraic type
whose outermost region is ρ. In this case, the f function would have α @ ρ1 → ρ2 → α @ ρ2 as its most
general type. As a short-term future work we plan to study the integration of this extension.

The pioneer work on region inference is that of Tofte, Talpin, and their colleagues on the MLKit com-
piler [112] (in what follows, TT). They address a more general problem than we do, since their language
is higher-order. The TT algorithm has two phases, respectively called S and R. The S algorithm just
generates fresh region variables for values and introduces the lexical scope of the regions by using a
letregion construct. The R algorithm is responsible for assigning types to recursive functions. It deals
with region-polymorphic recursion, and computes a fixed point. Both algorithms use higher-order uni-
fication based on directed graphs and on a UNION-FIND data structure. If n is the size of the HM-typed
term being inferred, the S algorithm runs inO(n3) time, and theR algorithm inO(n4) time in the worst
case. The total cost is in O(n4). The meaning of a typed expression letregion ρ in e : µ is that region ρ

does not occur free in type µ, so it can be deallocated upon the evaluation of e. Our algorithm has some
resemblances with this part of the inference, in the sense that we decide to unify with ρself all the region
variables not occurring in the result type of a function. They do not claim their algorithm to be optimal,
but, in fact, they create as many regions as possible, trying to make local all the regions not needed in
the final value. Incompleteness in TT comes as a consequence of polymorphic recursion. In our case, it
is a consequence of the copy expressions.

The implementation of MLKit in 1998 added a third phase, called storage mode analysis, which intro-
duced a region resetting action previously to some allocations. In order to take profit of this analysis, the
programmer has to introduce copy expressions in specific parts of the text. A further work [2] added a
constraint and control flow-based analysis after the TT inference. These resulted in modifying the text
by delaying as much as possible some region allocations, and by bringing forward some deallocations,
without compromising pointer safety. Again, the programmer needs to introduce the copy function in

159

appropriate places, in order to avoid memory leaks. From the programmer’s point-of-view, it is far
from trivial there to place these copy functions. In Safe, the programmer can avoid such leaks via ex-
plicit deallocation, or by augmenting the number of nested calls in order to make the program more
“region-friendly”, as it was done in the compiler of Example 4.22.

One problem reported in [114] is that most of the regions inferred in the first versions of the algo-
rithm contained a single value, so region management produced a big overhead at runtime. Later, they
added a new analysis to collapse all these regions into a single one local to the invocation (allocated in
the stack). In our case, having a single local region self per function invocation does not seem to us to
be a big drawback if function bodies are small enough. We believe that region-polymorphic recursion
has a much bigger impact in avoiding memory leaks than multiplicity of local regions. So, we claim
that the results of our algorithm are comparable to those of TT for first-order programs.

A radical deviation from these approaches is [54], which introduces a type system in which region
life-times are not necessarily nested. The compiler annotates the program with region variables and
supports operations for allocation, releasing, aliasing and renaming. A reference-counting analysis is
used in order to decide when a released region should be deallocated. The language is first-order. The
inference algorithm [75] can be defined as a global abstract interpretation of the program by following
the control flow of the functions in a backwards direction. Although the authors do not give either
asymptotic costs or actual benchmarks, it can be deduced that this cost could grow more than quadrati-
cally with the program text size in the worst case, as a global fixed point must be computed and a region
variable may disappear at each iteration. This lack of modularity could make the approach impractical
for large programs.

The main virtue of our design is its simplicity. This comes at the cost of obtaining less granularity,
since the above mentioned systems allow to create several nested regions in the same function call.
Also, in the case of TT and its derivatives, they support higher-order functions. As a consequence,
the inference algorithms are more complex and costly. The techniques shown in this chapter could
also be applied to any first-order functional language featuring Hindley-Milner types, since it can be
implemented as a slight extension of Hindley-Milner inference. In the near future we plan to extend Safe
to support higher-order functions and mutually recursive data structures (see Chapter 8). We expect
high difficulties in other aspects of the language such as extending dangling pointers safety analyses or
memory bounds inference, but not so many to extend the region inference algorithm presented here.
However, it is still open whether a higher-order variant of this algorithm could achieve a cost better
than the O(n4) got by Tofte and Talpin.

160

Chapter 5

Safe types inference

5.1 Introduction

In this chapter we continue addressing the problem of type reconstruction for the type system of Chap-
ter 3. While the algorithm of the last chapter computes a `Reg derivation for a given program, in this
chapter we aim to design an algorithm for finding `Dst derivations. We are no longer concerned about
the regions in which a DS lives, but only about whether this DS is safe, condemned, or in-danger.
Unlike the region inference algorithm, which annotates the source program with region variables, the
algorithm of this chapter leaves the source program untouched: it only checks whether the destructive
pattern matching, specified by the programmer, is done in a safe way. A program being accepted by
both algorithms is guaranteed to be pointer safe, as explained in Chapter 3.

The inference of safe, condemned, and in-danger marks (mark inference, in the following) for finding
a `Dst typing derivation is not a trivial task: the `Dst rules are not syntax-directed, and there may be
several ways in which a rule can be applied. For instance, in a let expression, there are many ways
to split the typing environment into the two environments typing its corresponding sub-expressions.
The idea of the mark inference algorithm is to do a bottom-up traversal of the abstract syntax tree of
the expression being analysed. As this traversal is done, those variables in the scope of the expression
being analysed are classified into the set of safe, condemned, and in-danger variables. If more than one
mark is applicable to a given variable, the algorithm gives precedence to safe types.

This paper extends the work of [81], whose contribution is a mark inference algorithm for the type
system of [84]. Since in Chapter 3 we have introduced an improved version of the latter, in this Chapter
we improve the mark inference algorithm of [81] in order to deal with the type system of this thesis.
The main advantages of the algorithm of this chapter with respect to that of [81] are the following:

• It is more efficient. Given a function definition of n parameters, if s denotes the size of its abstract
syntax tree, the worst-case time complexity of the algorithm in this chapter isO(ns2), whereas the
algorithm of [81] runs in O(ns3) time.

• It is complete. The `Dst rules admit minimal mark signatures for function definitions, and the
algorithm is able to find these minimal signatures.

• It is simpler. It consists in a single bottom-up traversal of the abstract syntax tree, whereas the
algorithm of [81] combines bottom-up and top-down traversals, which makes its correctness proof
considerably more difficult.

161

In Section 5.2 we explain the inference algorithm in detail. We start from the mark inference of isolated
expressions. Then we continue with the inference of function definitions, and, finally, we describe the
inference of Core-Safe programs. Section 5.3 applies the algorithm to several case studies. In Section
5.4 we prove the algorithm correct and complete with respect to the `Dst rules. Finally, Section 5.5
concludes.

5.2 Mark inference algorithm

The inference algorithm is modular; each function definition is inferred separately. For each function
of n parameters a mark signature mi

n → s is inferred. Since the body of a function definition may
also contain function applications, there exists an environment Σ containing the mark signatures of the
already inferred functions. The inference of a program starts with an empty environment, and adds the
mark signature of the function definitions as they are processed by the algorithm.

The inference of a function definition consists in a bottom-up traversal of its abstract syntax tree. For
each sub-expression e, the algorithm tries to find an environment Γ such that the judgement Γ `Dst e : s
is derivable. The Γ environment must contain the marks of every free variable of e, so the algorithm
assigns a mark to the variables it comes across and stores that mark in the mark environment of the
sub-expression being processed. There are several situations in which more than one mark may be
applicable. For instance, if the expression being inferred is a variable x, the environment could contain
the binding [x : s], [x : d], or [x : r], since x is typable under all of these environments. In a similar way,
the discriminant of a case! may get a d or an r mark in the context of that expression. In these cases, the
algorithm assigns the lowest mark with respect the following order: s ≤ d ≤ r. Thus, in the case of the
variable x, it would get a safe mark, whereas in the case of the destructive case!, the discriminant would
get a condemned mark. The rationale behind this decision is that the lowest mark is the less restrictive
when considering the expression e as a sub-expression in a higher context. Let us explain this with an
example:

Example 5.1. Given the following Core-Safe fragment:

let y = x in case x of . . .

The x variable in the bound expression may get a safe, condemned, or in-danger mark. However, if
it got a condemned or in-danger mark, the let expression would not be typeable with the [LETDst] rule,
since there would be a variable with an unsafe mark in the bound expression of a let occurring free in
its main expression.

An additional advantage of assigning the lowest possible mark at a given context, is the fact that the
[WEAKDst] rule allows the algorithm to rise that mark in a higher context, when necessary, but there is
no rule in the type system for lowering marks.

5.2.1 Inference rules for expressions

The main part of the algorithm is a set of syntax-directed rules that allows us to derive judgements of the
form e ` (R, D, S), where R, D and S are sets of variables. These sets specify which variables get an in-
danger (r), condemned (d) and safe (s) mark in the minimal Γ environment typing (w.r.t. the `Dst rules)
the expression e. Every free variable in e occurs in one of these three sets, and their union is a subset of
the variables in scope(e). The inference rules define the (R, D, S) sets associated with an expression in

162

c ` (∅, ∅, ∅)
[LITI] x ` (∅, ∅, {x})

[VARI] x @ r ` (∅, ∅, {x})
[COPYI]

C ai
n @ r ` (∅, ∅, {ai

n})
[CONSI]

Σ(f) = mi
n → s R ∩ S = ∅

S = {ai |mi = s} R ∩ D = ∅
R =

⋃
mi=d sharerec(ai, f ai

n @ rj
m)\{ai} S ∩ D = ∅

∀i ∈ {1..n}.Di =

{
{ai} if mi = d

∅ otherwise
∀i, j ∈ {1..n}.i 6= j⇒ Di ∩ Dj = ∅

D =
⋃n

i=1 Di ∀x ∈ D.isTree(x)

f ai
n @ rj

m ` (R, D, S)
[APPI]

e1 ` (R1, D1, S1) (R, D, S) = (R1, D1, S1) t ((R2, D2, S2)\{x1})
e2 ` (R2, D2, S2) (R1 ∪ D1) ∩ fv(e2) = ∅

let x1 = e1 in e2 ` (R, D, S)
[LETI]

∀i ∈ {1..n}.Pi = {xij
n} ∀i ∈ {1..n}.ei ` (Ri, Di, Si)

(R, D, S) = (
⊔n

i=1((Ri, Di, Si)\Pi)) t (∅, ∅, {x})

case x of Ci xij
ni → ei

n ` (R, D, S)
[CASEI]

∀i ∈ {1..n}.ei ` (Ri, Di, Si)
∀i ∈ {1..n}.Pi = {xij

n} (R, D, S) =
⊔n

i=1((Ri, Di, Si)\Pi)
∀i ∈ {1..n}.Reci = {xij | j ∈ RecPos(Ci)} (R′, D′, S′) = ((R, D, S)\{x}) t (RSHR, ∅, ∅)

∀i ∈ {1..n}.(Pi\Reci) ∩ (Di ∪ Ri) = ∅ RSHR = sharerec(x, case! x of Ci xij
ni → ei

n
)\{x}

∀i ∈ {1..n}.Reci ∩ Ri = ∅ ∀i ∈ {1..n}.(RSHR ∪ {x}) ∩ fv(ei) = ∅

case! x of Ci xij
ni → ei

n ` (R′, D′ ∪ {x}, S′)
[CASE!I]

Figure 5.1: Inference rules for expressions.

163

terms of the triples obtained for each sub-expression. Thus these rules can be implemented by means of
a bottom-up traversal of the abstract syntax tree of the expression. We assume the existence of a mark
environment Σ : Fun→ MarkSig that it is implicitly propagated through the ` rules, and contains the
mark signatures of the functions being called from the corresponding expression. In case of ambiguity,
we shall make this signature explicit with the notation e `Σ (R, D, S).

Figure 5.1 shows the inference rules. Rules [VARI], [COPYI], and [CONSI] assign an s mark to the
variables in the corresponding expression. By abuse of notation, we assume that the set {ai

n} only
contains the atoms ai that are not literals. In the [APPI] rule, the mark signature of the function being
called determines the marks of the arguments. Those occurring in safe positions get a safe mark, and
those occurring in condemned positions get a condemned mark. The disjointness condition between
the different Di sets, together with the condition S∩D = ∅ mimic the well-definedness property of the
⊕ operator in the typing rules: the same variable can occur in two positions only if both are safe. The
conditions R ∩ D = ∅ and R ∩ S = ∅ correspond to the disjoint union of the ΓR environment with the⊕n

i=1[ai : mi] environment.

In the [LETI], the triples of both auxiliary and main expressions e1 and e2 are inferred. The notation
(R, D, S)\M abbreviates the triple (R\M, D\M, S\M). The t operator, which is analogous to the t
operator on typing environments, is defined as follows:

(R1, D1, S1) t (R2, D2, S2) = (R1 ∪ R2, (D1 ∪ D2)\(R1 ∪ R2), (S1 ∪ S2)\(D1 ∪ D2 ∪ R1 ∪ R2))

It is easy to prove that the t operator is commutative and associative. The generalization of this opera-
tor to n triples can be expressed as follows:

n⊔
i=1

(Ri, Di, Si) = (
n⋃

i=1

Ri,
n⋃

i=1

Di\(
n⋃

i=1

Ri),
n⋃

i=1

Si\(
n⋃

i=1

Ri ∪
n⋃

i=1

Di)) (5.1)

The side condition (R1 ∪D1)∩ fv(e2) = ∅ is equivalent to the side condition of [LETDst]. It ensures that
no variable is mentioned in the main expression if a part of it has been destroyed previously.

In the [CASEI] and [CASE!I] rules we infer the triple of each alternative separately. This implies
that the same variable may get different marks in different case branches. The t operator ensures that
this variable gets in the whole case(!) expression the lowest (most general) mark common to all the
ei. In terms of typing rules, it represents the least common environment (excluding pattern variables)
typing every branch. The least upper bound with (∅, ∅, {x}) obeys the fact that every free variable
must belong to one of the sets of condemned, in-danger and safe marks. Thus it is assigned a safe (s)
mark if it does not occur in any triple (Ri, Di, Si). The definition of RSHR in [CASE!I], and its associated
side condition, are analogous to the R set occurring in [CASE!Dst]. The remaining side conditions in
[CASE!I] mimic the inh predicate. On the one hand, (Pi\Reci) ∩ (Di ∪ Ri) = ∅ demands those pattern
variables occurring in non-recursive positions to have a safe mark, or no mark at all, in every branch.
On the other hand, Reci ∩ Ri = ∅ specifies that, in every branch, recursive pattern variables must have
a safe or condemned mark, or remain unmarked in every branch.

5.2.2 Inference of function definitions

When inferring non-recursive function definitions we only have to apply the rules of Figure 5.1 to the
body of the function once. We assume that functions being called from the current one have already
been inferred, and their mark signatures are already available in Σ. Once we obtain the triple (R, D, S)

164

inferMarksDef Σ (f xi
n @ rj

m = e f) = inferMarksFP (Σ] [f 7→ (sn → s)]) (f xi
n @ rj

m = e f)

inferMarksFP Σ (f xi
n @ rj

m = e f)
| R 6= ∅ = error
| R = ∅ ∧ Σ(f) = mi

n → s = Σ
| R = ∅ ∧ Σ(f) 6= mi

n → s = inferMarksFP ((Σ\ f)] [f 7→ (mi
n → s)]) (f xi

n @ rj
m = e f)

where e f `Σ (R, D, S)

∀i ∈ {1..n}.mi =

{
d if xi ∈ D
s if xi /∈ D

Figure 5.2: Inference algorithm applied to function definitions.

for the function, we can reconstruct easily the mark signature of the function as follows: if there is a
parameter in the R set, the function is not typeable. If a parameter belongs to the D set (resp. the S
set) , it gets a condemned mark d (resp. safe mark s). If it does not belong to any of the three sets, the
parameter may have a safe or a condemned mark. Since our goal is to get the lowest type, it is sensible
to assign a safe mark s to these parameters.

The inference of recursive function definitions is slightly more involved, because we do not know in
advance which mark signature should be assigned to the function being inferred. Since we aim for the
most general mark signature, we start assuming that every parameter of the function has a safe mark
and apply the rules of Figure 5.1. If every parameter turns out to be safe, our assumption was correct
and we return the corresponding updated signature. If some parameter gets a condemned mark, our
assumption was wrong and we have to update the signature Σ according to the triple (R, D, S) obtained
for the function’s body. Parameters belonging to D now get a condemned mark, and those in S (or not
occurring in any of the sets) get a safe mark. With these new assumptions (reflected in the updated
signature Σ) we apply the inference rules again. We iterate this process until a fixpoint is reached, that
is, the obtained triple (R, D, S) corresponds to the assumption under which it is inferred.

These ideas are formalized in the algorithm of Figure 5.2. The inferMarks function is given a function
definition f xi

n @ rj
m = e f and a signature environment Σ containing the mark signatures of all the

functions being called from f (except f itself). This function does the first call to inferMarksFP with the
initial assumption, in which every parameter has a safe mark. The inferMarksFP function does the fixed
point iteration. In every iteration, it applies the ` rules of Figure 5.1 and obtains a triple (R, D, S). If
there is an element in R, then it is one of the parameters, since R only contains variables in scope. In
this case, the inference algorithm returns an error, since only safe and condemned types are allowed in
function signatures (see Section 3.3 for a discussion on this). If R is empty, we build a mark signature
mi

n → s which assigns a d mark to those parameters in D and an s mark to those parameters not
occurring in D. If the new mark signature matches the one already existing in Σ, a fixed point has
been reached and we return Σ. If it does not match, the function updates the signature with the new
information and starts another iteration.

Example 5.2. Let us consider the reverseD function that reverses the list given as input. It uses an
auxiliary function revAuxD that destroys its first parameter, while accumulating the result in its second

165

Σ = [revAuxD 7→ (s→ s→ s)]

case! xs of

ys let x1=

(x:ys)@r revAuxD xx x1 @ r

[] (x:xx)

(, ,{x, ys})∅ ∅ (, ,{xx, x∅ ∅ 1})

(, ,{x, ys, xx})∅ ∅(, ,{ys})∅ ∅

(,{xs},{ys})∅

Figure 5.3: Sets inferred after the first iteration of revAuxD. The (R, D, S) triple computed for each
subexpression is shown to the right of its gray box.

Σ = [revAuxD 7→ (d→ s→ s)]

case! xs of

ys let x1=

(x:ys)@r revAuxD xx x1 @ r

[] (x:xx)

(, ,{x, ys})∅ ∅ ({xs},{xx},{x1})

({xs},{xx},{x, ys})(, ,{ys})∅ ∅

(,{xs},{ys})∅

Figure 5.4: Sets inferred after the second iteration of revAuxD.

parameter.
revAuxD xs ys @ r

= case! xs of
[]→ ys
(x : xx)→ let x1 = (x : ys)@r in revAuxD xx x1 @ r

reverseD xs @ r = let x1 = []@ r in revAuxD xs x1 @ r

We start applying the inference rules to the body of revAuxD. We assume that the mark environment
Σ contains the following signature for revAuxD: s→ s→ s. The results inferred for each sub-expression
are shown in Figure 5.3. Notice that xx and x1 are assigned safe marks, as a consequence of the initial
environment Σ assigning a safe type to every parameter. At the end of the iteration we obtain the triple
(∅, {xs}, {ys}) for the whole body of revAuxD, which corresponds to the signature d → s → s. Since
this signature is different from the one initially assumed, we update the signature environment with
the new signature, and apply again the inference rules. The result is shown in Figure 5.4. A difference
with respect to the first iteration is the triple of sets inferred in the recursive call: ({xs}, {xx}, {x1}).
The xx variable is condemned, since it occurs in a condemned position. Since xs always points to this

166

Σ =

[
revAuxD 7→ (d→ s→ s)
reverse 7→ (s→ s)

]

let x1=

[]@r revAuxD xs x1 @ r(, ,∅ ∅ ∅) (∅,{xs},{x1})

(∅,{xs},∅)

Figure 5.5: Sets inferred after the first iteration of reverse.

inferMarksProg (datai; def i; e) = if e `Σ′ (∅, ∅, ∅) then OK else error
where Σ′ = foldl inferMarksDef [] def i

Figure 5.6: Inference algorithm applied to Core-Safe programs.

variable, it must occur in sharerec(xx, revAuxD xx x1 @ r), and is assigned an in-danger mark. However,
this mark is turned into a condemned mark as a consequence of the case! in the outermost expression.
As a result we obtain, again, the mark signature d → s → s, so we have reached a fixed point. The
algorithm stores the binding [revAuxD 7→ (d → s → s)] in the signature environment Σ and proceeds
with the following definition in the program.

Figure 5.5 shows the (R, D, S) tuples inferred by the algorithm for each sub-expression of reverse,
assuming (s → s) as its mark signature. From the inference rules we get that xs gets a condemned
mark, which results in the signature (d → s). In the second iteration it turns out we have reached a
fixed point. The last iteration is unnecessary, as, in this case, the signature of Σ(reverse) is not relevant
to the resulting (R, D, S) tuples. This happens, in general, when inferring the mark signatures of non-
recursive function definitions.

5.2.3 Inference of a Core-Safe program

The inferMarksProg function shown in Figure 5.6 receives a Core-Safe program, and determines whether
it is well-typed with respect to the `Dst rules. Firstly, it builds a signature environment Σ′ in an incre-
mental way, as function definitions are analysed by the inferMarksDef function. After this, it checks
whether the judgement e ` (∅, ∅, ∅) is derivable under this environment Σ′. The three components of
the resulting triple must be empty sets, since in the context of the main expression of a program there
are no variables in scope.

5.3 Case studies

In this section we show how the inference algorithm behaves with several case studies. For the sake
of simplicity, we show only the Full-Safe code of the programs being analysed, and we show only the
results of the algorithm, without any mention to the derivation of the ` judgements.

Example 5.3. A quadtree is a tree data structure in which each node has four children. It has two different

167

NW NE

SW SE
NW NE SW SE

Figure 5.7: Quadtree representation of a bitmap. The whole area is divided into for quadrants. Each
quadrant is represented by its own quadtree.

Figure 5.8: Bitmap and its representation as a quadtree.

kinds of leaves: black leaves and white leaves. It is defined as follows:

data QuadTree = Black | White | Node QuadTree QuadTree QuadTree QuadTree

In some situations, quadtrees provide an efficient representation of bitmaps by following a divide-
and-conquer strategy. If the bitmap contains only black pixels, it is represented by Black. If it contains
only white pixels, it is represented by White. Otherwise, we divide the bitmap into four quadrants,
each of which is represented by its corresponding quadtree. The bitmap is then represented by the Node
constructor applied to the bitmaps of these quadrants (Figure 5.7). Figure 5.8 shows an example of a
bitmap and its quadtree representation.

The rotateD function performs a ninety-degree counterclockwise rotation of the bitmap given as
parameter (see Figure 5.9). The original bitmap is destroyed, so this function does not need additional
heap space:

rotateD Black! = Black
rotateD White! = White
rotateD (Node nw ne sw se)! =

Node (rotateD ne) (rotateD se) (rotateD nw) (rotateD sw)

This function is successfully typed by the algorithm, which infers the following mark signature for
rotateD: d → s. The flipHD function, which mirrors the input image horizontally, works in a similar

168

NW NE

SW SE

N
W N
E

SW SE N
W

N
E

SE
SW

Figure 5.9: Rotation of a bitmap. Firstly, each piece is rotated individually. Then, a global rotation of the
four pieces is done.

+

Figure 5.10: When overlying two bitmaps, a simplification of the quadtree may be needed.

fashion:
flipHD Black! = Black
flipHD White! = White
flipHD (Node nw ne sw se)! =

Node (flipHD ne) (flipHD nw) (flipHD se) (flipHD sw)

The inference algorithm infers the signature d → s for this function. Finally, we define a function
overlayD which merges the black pixels of the two bitmaps given as parameters. Both input pictures are
destroyed.

overlayD White! q! = q
overlayD Black! q! = Black
overlayD (Node nw ne sw se)! White! = Node nw ne sw se
overlayD (Node nw ne sw se)! Black! = Black
overlayD (Node nw1 ne1 sw1 se1)! (Node nw2 ne2 sw2 se2)!

= Node (overlayD nw1 nw2) (overlayD ne1 ne2) (overlayD sw1 sw2) (overlayD se1 se2)

However, this solution is not as optimal as one would expect, since it might give place to internal
nodes whose leaves are all of the same colour (see Figure 5.10). In these cases, a single node of that
colour needs less heap space. We can replace the call to the constructor by a wrapper that performs all
the necessary simplifications:

overlayD (Node nw1 ne1 sw1 se1)! (Node nw2 ne2 sw2 se2)!
= buildNode (overlayD nw1 nw2) (overlayD ne1 ne2) (overlayD sw1 sw2) (overlayD se1 se2)

169

So, let us define buildNode. A first attempt on implementing this function is as follows:

buildNode Black! Black! Black! Black! = Black
buildNode White! White! White! White! = White
buildNode nw! ne! sw! se! = Node nw ne sw se

This function is rejected by the inference algorithm, since it is not correct. When the execution reaches
the right-hand side of the third equation it accesses the nw, ne, sw, se variables, which have been already
destroyed by the pattern matching. In principle we would have to access to the children of each variable,
and rebuild the corresponding DSs in the result, as done, for example, in the third equation of overlayD.
However, that would result in a considerable number of equations, since we would have to distinguish
each possible combination of constructors for the four parameters. The following definition, though not
very elegant, circumvents this problem:

buildNode nw ne sw se
| isBlack nw ∧ isBlack ne ∧ isBlack sw ∧ isBlack se =

let x1 = destroyBlackNodes nw ne sw se in Black
| isWhite nw ∧ isWhite ne ∧ isWhite sw ∧ isWhite se

let x1 = destroyWhiteNodes nw ne sw se in White
| otherwise = Node nw ne sw se

where the isXXX and destroyXXXNodes functions are defined as follows:

isBlack Black = True
isBlack _ = False

isWhite White = True
isWhite _ = False

destroyBlackNodes Black! Black! Black! Black! = 0

destroyWhiteNodes White! White! White! White! = 0

The destroyXXXNodes functions produce only the side-effect of destroying the leaves passed as parame-
ters, but their return value is meaningless, so it is not used in buildNode. The inference algorithm accepts
all these functions, and returns the following mark signatures:

isBlack :: s→ s

isWhite :: s→ s

destroyBlackNodes :: d→ d→ d→ d→ s

destroyWhiteNodes :: d→ d→ d→ d→ s

buildNode :: d→ d→ d→ d→ s

overlayD :: d→ d→ s

Example 5.4. Let us recall the implementation of priority queues shown in Example 3.13. All functions
are accepted by the inference algorithm, which returns the following signatures:

170

cons :: d→ s→ d→ s

join :: d→ d→ s

emptyPQueue :: s

addPQueue :: d→ s→ s

minPQueue :: s→ s

delMinPQueue :: d→ s

The first two functions require two iterations of the ` rules in order to reach a fixed point. The remaining
ones are non-recursive, and hence require only one iteration.

Example 5.5. Figure 5.11 shows an implementation of the mergesort algorithm for sorting a list of in-
tegers. The splitD function is given a natural number n, and a list xs. It returns a pair with the n first
elements of the list in the first component, and the remaining ones in the second component. It also
destroys the list given as input. The mergeD function coalesces two sorted lists into a single ordered list.
It is destructive on its two parameters. As a consequence, the execution of both functions can be done in
constant space. Both functions are accepted by the algorithm, which results in the following signatures:

splitD :: s→ d→ s

mergeD :: d→ d→ s

Notice that, in the first equation of splitD, the xs parameter occurs with a (!) mark, but its destruction
does not take place until the pattern matching is done (second and third equations of splitD). That is
why xs can be safely returned in the first equation. The same applies to mergeD. The msortD function,
which sorts the input list in constant space, is not accepted by the algorithm. This is due to the infor-
mation provided by the sharing analysis, which is not accurate enough to infer that the partial sorted
lists (i.e. the results of msortD xs1 and msortD xs2) cannot share with each other. As a consequence, the
algorithm fails in the function application of mergeD, since two mutually sharing lists cannot be passed
as two different condemned parameters of mergeD. The current implementation of the algorithm al-
lows the programmer to adjust the sharing information manually, in order to deal with these situations.
Obviously, the safety of the program can no longer be guaranteed if the programmer modifies the in-
formation of the sharing analysis in a wrong way. In our case, is it easy to see that msortD builds its
result from scratch, and consequently, cannot share its recursive spine with that of the input list. If we
remove that over-approximating information, the function is accepted by the algorithm, and we get the
following signature:

msortD :: d→ s

Another possibility is to modify the definition of mergeD so that it does not destroy any of the input
lists. In this case the algorithm also results in the mark signature above. However, the memory costs of
the algorithm are no longer constant.

Figure 5.12 shows the mark signatures returned by the algorithm for some of the examples in last
chapters. Some functions have been slightly modified, in order to include destructive pattern matching,
instead of non-destructive, or to call the destructive version of a function, instead the non-destructive
one. The last column indicates whether it was necessary to modify manually the results of the shar-
ing analysis, in order to make the inference algorithm accept the function. Almost all the examples
are accepted by the inference algorithm as is, except the joinAVL function, which required a manual
refinement of the information given by the sharing analysis.

171

splitD 0 xs! = ([], xs)
splitD n []! = ([], [])
splitD n (x : xs)! = (x : xs1, xs2)

where (xs1, xs2) = splitD (n− 1) xs

mergeD []! ys! = ys
mergeD (x : xs)! []! = x : xs
mergeD (x : xs)! (y : ys)!

| x ≤ y = x : mergeD xs (y : ys)
| x > y = y : mergeD (x : xs) ys

msortD []! = []
msortD (x : xs)! = case! xs of

[]→ x : []
(y : ys)→ mergeD (msortD xs1) (msortD xs2)

where (xs1, xs2) = splitD (n ′div ′ 2) (x : (y : ys))
n = length (x : (y : ys))

Figure 5.11: Implementation of mergesort algorithm.

Function name Mark signature Adjust sharing?
appendD (Ex. 2.10, pg. 27) d→ s→ s No
insertD (Ex. 2.11, pg. 28) s→ d→ s No
inssort (Ex. 2.11, pg. 28) d→ s No
insertT (Ex. 4.21, pg. 156) s→ d→ s No
mkTree (Ex. 4.21, pg. 156) d→ s No
inorder (Ex. 4.21, pg. 156) d→ s No
treesort (Ex. 4.21, pg. 156) d→ s No
sJoinAVL (Ex. 3.14, pg. 94) s→ s→ s→ s No
lJoinAVL (Ex. 3.14, pg. 94) s→ s→ d→ s No
rJoinAVL (Ex. 3.14, pg. 94) d→ s→ s→ s No
joinAVL (Ex. 3.14, pg. 94) d→ s→ d→ s Yes
insertAVL (Ex. 3.14, pg. 94) s→ d→ s No
deleteAVL (Ex. 3.14, pg. 94) s→ d→ s No
partition (Ex. 4.19, pg. 152) s→ d→ s No
sumList (Ex. 4.20, pg. 153) d→ s No
pascal (Ex. 4.20, pg. 153) s→ s No

Figure 5.12: Results of the inference algorithm for some of the examples in this thesis.

172

5.4 Correctness, completeness, and efficiency

In this section we prove that every function accepted by the mark inference algorithm is typeable
w.r.t. the `Dst rules, and that every typeable function w.r.t. the latter rules is accepted by the mark
inference algorithm. In case there are several valid signatures for a given function, we explain which
one is returned by the algorithm.

5.4.1 Correctness

Before getting in the correctness proof of the ` rules, let us introduce some of their invariants. In
particular, we prove that a variable cannot get more than a mark in the context of a given expression.
That is, the sets returned by the ` rules are pairwise disjoint. In addition, the D and S sets may only
contain free variables in e.

Lemma 5.6. Given an expression e such that e ` (R, D, S):

1. R, D and S are pairwise disjoint.

2. D ∪ S ⊆ fv(e).

Proof. By induction on the structure of e. Cases e ≡ c, e ≡ x, e ≡ x! and e ≡ C ai
n @ rj

m are straightfor-
ward. In the case of a function application, the lemma is a direct consequence of the side conditions of
rule [APPI]. With respect to the remaining cases, from (5.1) it directly follows that the t operator always
returns mutually disjoint sets, so the first conclusion holds. With respect to the second one, we can prove
from (5.1) that, if (R, D, S) = (R1, D1, S1) t (R2, D2, S2) then D ∪ S = D1 ∪ S1 ∪ D2 ∪ S2. Together with
the fact that [LETI] removes the bound variable from (R2, D2, S2), and that [CASEI], [CASE!I] removes
the pattern variables from each (Ri, Di, Si), the second conclusion follows trivially from the induction
hypothesis applied to each sub-expression.

With regard to the correctness of the inference rules, we are interested in proving the following fact:

If an expression is accepted by the inference algorithm, it is `Dst-typeable.

However, we can take advantage of the information provided by the ` rules (namely, the (R, D, S) sets)
and be more specific on which mark environment Γ can be used to type the expression w.r.t. the `Dst

rules: the variables in the R set (resp. D, S) should occur with a r (resp. d, s) mark in that environment.
Hence, we aim to prove the following stronger property:

If e ` (R, D, S) is derived by the rules of Figure 5.1, then e is `Dst-typeable under an environment
assigning an in-danger mark to the variables in R, a condemned mark to those in D, and a safe mark
to those in S.

Before proving this, we need an auxiliary result with respect to the t operator. The definition of this
operator, when applied to type environments, has been introduced in in Section 3.3. The result of
Γ1 t Γ2, when defined, is another type environment which combines the types of Γ1 and Γ2, but giving
precedence to in-danger marks over the remaining ones, and condemned marks over safe marks. In this
chapter we have given a definition of t when applied to tuples (R, D, S) (see (5.1)). It is not surprising
that this operator behaves in a similar way to its counterpart defined on type environments: the R set
takes precedence over D and S, and the D takes precedence over S. This connection between the two
meanings of t is formalized as follows.

173

Lemma 5.7. If (R, D, S) = (R1, D1, S1) t (R2, D2, S2), and the following environments are well-defined:

Γ1 = [x : r | x ∈ R1] + [x : d | x ∈ D1] + [x : s | x ∈ S1]

Γ2 = [x : r | x ∈ R2] + [x : d | x ∈ D2] + [x : s | x ∈ S2]

Γ = [x : r | x ∈ R] + [x : d | x ∈ D] + [x : s | x ∈ S]

then Γ = Γ1 t Γ2.

Proof. First we prove that dom Γ = dom (Γ1 t Γ2). This follows from R ∪ D ∪ S being equal to R1 ∪
R2 ∪ S1 ∪ S2 ∪ D1 ∪ D2, which can be easily proven from the definition of the t operator when applied
to triples (R, D, S).

Now we prove that, for all x ∈ dom Γ, (Γ1 t Γ2)(x) = r if and only if x ∈ R.

(Γ1 t Γ2)(x) = r

⇔ Γ1(x) = r ∨ Γ2(x) = r

⇔ x ∈ R1 ∨ x ∈ R2

⇔ x ∈ R1 ∪ R2

⇔ x ∈ R

Now we prove (Γ1 t Γ2)(x) = d if and only if x ∈ D.

(Γ1 t Γ2)(x) = d

⇔ (Γ1(x) = d ∧ (Γ2(x) 6= r ∨ x /∈ dom Γ2)) ∨ (Γ2(x) = d ∧ (Γ1(x) 6= r ∨ x /∈ dom Γ1))

⇔ (x ∈ D1 ∧ (x /∈ R2 ∨ x /∈ R2 ∪ D2 ∪ S2)) ∨ (x ∈ D2 ∧ (x /∈ R1 ∨ x /∈ R1 ∪ D1 ∪ S1))

⇔ (x ∈ D1 ∧ ¬(x ∈ R2 ∧ x ∈ R2 ∪ D2 ∪ S2)) ∨ (x ∈ D2 ∧ ¬(x ∈ R1 ∧ x ∈ R1 ∪ D1 ∪ S1))

⇔ (x ∈ D1 ∧ x /∈ (R2 ∩ (R2 ∪ D2 ∪ S2)) ∨ (x ∈ D2 ∧ x /∈ (R1 ∩ (R1 ∪ D1 ∪ S1)))

⇔ (x ∈ D1 ∧ x /∈ R2) ∨ (x ∈ D2 ∧ x /∈ R1)

⇔ (x ∈ D1 ∧ x /∈ R1 ∧ x /∈ R2) ∨ (x ∈ D2 ∧ x /∈ R1 ∧ x /∈ R2)

⇔ (x ∈ D1 ∨ x ∈ D2) ∧ x /∈ R1 ∧ x /∈ R2

⇔ x ∈ D1 ∪ D2 ∧ x /∈ R1 ∪ R2

⇔ x ∈ D

Finally we prove (Γ1 t Γ2)(x) = s if and only if x ∈ S.

(Γ1 t Γ2)(x) = s

⇔ (Γ1 t Γ2)(x) 6= r ∧ (Γ1 t Γ2)(x) 6= d

⇔ Γ(x) 6= r ∧ Γ(x) 6= d

⇔ x /∈ R ∧ x /∈ D
⇔ x ∈ S

The last step follows because Γ1 t Γ2 and Γ have the same domain: since x ∈ dom (Γ1 t Γ2), we get
x ∈ dom Γ = R ∪ D ∪ S, so if a variable does not belong to R ∪ D, it must occur in S.

Now we can prove the correctness of the ` rules when applied to an expression e. Recall that,
although not explicitly indicated in most cases, these rules are parametric on an environment Σ which
contains the mark signatures of the functions being called from e. This environment is part of the mark
environment Γ, under which e is typed.

174

Theorem 5.8. Let us assume that the algorithm infers e `Σ (R, D, S) under some signature Σ. If we define Γ as
follows:

Γ = Σ + [x : r | x ∈ R] + [x : d | x ∈ D] + [x : s | x ∈ S]

then Γ is well-defined (i.e. is a function) and Γ `Dst e : s.

Proof. Well-definedness follows from the fact that the sets R, D and S are disjoint (Lemma 5.6). Now
we prove that Γ `Dst e : s by induction on the structure of e. We distinguish cases:

• Case e ≡ c

Since (R, D, S) = (∅, ∅, ∅), we get Γ = Σ. Rule [LITDst] allows us to derive ∅ `Dst c : s. By using
the [EXTDst] rule we obtain Γ `Dst e : s.

• Cases e ∈ {x, x @ r}

In these cases Γ = Σ + [x : s]. By applying the [VARDst] or [COPYDst] rules we obtain [x : s] `Dst

e : s, from which we get Σ + [x : s] `Dst e : s by using [EXTDst].

• Case e ≡ C ai
n @ r

We obtain Γ = Σ ∪ [ai : sn]. The environment
⊕n

i=1[ai : s] is well-defined, as it is the union of
bindings with s marks. So, by applying [CONSDst] and [EXTDst] we get Γ ` e : s.

• Case e ≡ f ai
n @ rj

m

Assume that Σ(f) = mi
n → s. Each mi belongs to the set {d, s}. We get, for every i ∈ {1..n}

(assuming ai ∈ Var)
Γ(ai) = s⇔ ai ∈ S⇔ mi = s

Analogously:
Γ(ai) = d⇔ ai ∈ Di ⇔ mi = d

First we prove that
⊕n

i=1[ai : mi] is well-defined. If it were not, we would get two different
i, j ∈ {1..n} such that ai = aj, and mi = d.

– If mj = d, then aj = ai ∈ Di and ai = aj ∈ Dj, so Di and Dj would not be disjoint, which
contradicts the assumptions of [APPI].

– If mj = s, then ai = aj ∈ S, but aj = ai ∈ D. This contradicts the S ∩ D = ∅ assumption of
[APPI].

If we define ΓR = [y : r | y ∈ R], the environment ΓR +
⊕n

i=1[ai : mi] is also well-defined,
because of the conditions R ∩ D = ∅ and R ∩ S = ∅. We can apply rule [APPDst] so as to get
ΓR + [f : mi → s] +

⊕n
i=1[ai : mi] `Dst e : s. Since Γ is a superset of this environment, we get

Γ `Dst e : s by [EXTDst].

• Case e ≡ let x1 = e1 in e2

From the premises in [LETI] we get e1 ` (R1, D1, S1), and e2 ` (R2, D2, S2). By induction hypoth-
esis, Γ1 `Dst e1 : s, and Γ′2 `Dst e2 : s, where Γ1 and Γ′2 are defined as follows:

Γ1 = Σ + [x : r | x ∈ R1] + [x : d | x ∈ D1] + [x : s | x ∈ S1]

Γ′2 = Σ + [x : r | x ∈ R2] + [x : d | x ∈ D2] + [x : s | x ∈ S2]

175

We define m1 and Γ2 as follows:

Γ2 =

Γ′2\x1 if x1 ∈ dom Γ′2
Γ′2 if x1 /∈ dom Γ′2

m1 =

Γ′2(x1) if x1 ∈ dom Γ′2
s if x1 /∈ dom Γ′2

In both cases we can derive Γ2 + [x1 : m1] `Dst e2 : s (we have to use [EXTDst] if x1 /∈ dom Γ′2).
From Lemma 5.7,

Γ\(dom Σ) = Γ1\(dom Σ) t Γ2\(dom Σ)

and, hence,
Γ = Γ1 t Γ2

So we can apply [LETDst] if its side condition holds. From the side condition of [LETI] we get:

(R1 ∪ D1) ∩ fv(e2) = ∅

which is equivalent to

({x ∈ dom Γ1 | Γ1(x) = r} ∪ {x ∈ dom Γ1 | Γ1(x) = d}) ∩ fv(e2) = ∅
⇔ ({x ∈ dom Γ1 | Γ1(x) ∈ {d, r}}) ∩ fv(e2) = ∅
⇔ ∀x ∈ dom Γ1.Γ1(x) /∈ {d, r} ∨ x /∈ fv(e2)

⇔ ∀x ∈ dom Γ1.Γ1(x) ∈ {d, r} ⇒ x /∈ fv(e2)

which proves the result.

• Case e ≡ case x of Ci xij
ni → ei

n

For each sub-expression ei we get ei ` (Di, Ri, Si), which implies, by induction hypothesis Γ′i `Dst

ei : s, where Γ′i is defined as follows:

Γ′i = Σ + [z : r | z ∈ Ri] + [z : d | z ∈ Di] + [z : s | z ∈ Si]

For each i we define Γi = Γ′i\{xij
ni}. From the judgement Γ′i `Dst ei : s (and by using rule

[EXTDst] if necessary) we can infer Γi + [xij : mij
ni] `Dst ei : s for some {mij

ni}. Let (R′, D′, S′) =⊔n
i=1((Ri, Di, Si)\Pi). If we define Γ′ as follows:

Γ′ = Σ + [z : r | z ∈ R′] + [z : d | z ∈ D′] + [z : s | z ∈ S′]

Then, by Lemma 5.7,

Γ′\(dom Σ) =
n⊔

i=1

Γi\(dom Σ)

which implies

Γ′ =
n⊔

i=1

Γi

Then, for every i ∈ {1..n} and z ∈ dom Γi, Γi(z) ≤ Γ′(z). This allows us to apply [WEAKDst]

and/or [EXTDst] in order to obtain Γ′ + [xij : mij
ni] `Dst ei : s for each i ∈ {1..n}. Now we

distinguish cases:

– x ∈ R′ ∪ D′ ∪ S′

176

Then R = R′, D = D′ and S = S′. Therefore Γ = Γ′ and Γ + [xij : mj
ni] `Dst ei : s for each

i ∈ {1..n}. We apply [CASEDst] in order to obtain Γ `Dst e : s.

– x /∈ R′ ∪ D′ ∪ S′

In this case R = R′, D = D′, but S = S′ ∪ {x}, so Γ = Γ′ + [x : s]. By rule [EXTDst],
Γ + [xij : mij

ni] `Dst e : s for each i ∈ {1..n}. Again, by rule [CASEDst], we obtain Γ `Dst e : s.

• Case e ≡ case! x of Ci xij
ni → ei

n

As in the previous case, we get Γ′i `Dst ei : s for each i ∈ {1..n} by induction hypothesis, where Γ′i
is defined as follows:

Γ′i = Σ + [z : r | z ∈ Ri] + [z : d | z ∈ Di] + [z : s | z ∈ Si]

Let us think about the pattern variables xij
ni . By the conditions Reci ∩ Ri = ∅ and (Pi\Reci) ∩

(Di ∪ Ri) = ∅ occurring in [CASE!I] we know that, for every j ∈ {1..ni}:

– If j ∈ RecPos(Ci), then xij ∈ Reci and xij occurs in Γ′i with an s or d mark, or does not occur
in Γ′i at all. In the latter case, we can apply rule [EXTDst] to make it occur with a d mark. If
Γ′i(xij) = s, we can apply rule [WEAKDst] to upgrade it to a d mark.

– If j /∈ RecPos(Ci), then xij ∈ Pi\Reci, and xij occurs in Γ′i with an s mark, or does not occur in
Γ′i at all. Again, in the latter case we can apply [EXTDst] and add xij to the environment with
an s mark.

Given the above, we can manage to obtain a judgement Γ′i\{xij
ni}+ [xij : m′ij

ni
] ` ei : s, where the

m′ij
ni are defined as follows:

∀i ∈ {1..n}.∀j ∈ {1..ni}.m′ij =

d if j ∈ RecPos(Ci)

s if j /∈ RecPos(Ci)
(5.2)

Let (R′, D′, S′) =
⊔n

i=1((Ri, Di, Si)\Pi). By defining Γ′ in the following way:

Γ′ = Σ + [z : r | z ∈ R′] + [z : d | z ∈ D′] + [z : s | z ∈ S′]

we can prove that Γ′ =
⊔n

i=1 Γ′i\{xij} and Γ′ + [xij : m′ij
ni
] `Dst ei : s. This is done in the same way

as in the non-destructive case.

If we define (R′′, D′′, S′′) def
= ((R′, D′, S′)\{x}) t (RSHR, ∅, ∅), where RSHR is defined as in the

[CASE!I] rule, we get, by Lemma 5.7,

Γ′′\(dom Σ) = ΓR t (Γ′\(dom Σ ∪ {x})) (5.3)

where:
Γ′′ = Σ + [z : r | z ∈ R′′] + [z : d | z ∈ D′′] + [z : s | z ∈ S′′]

ΓR = [z : r | z ∈ RSHR]

By incorporating Σ into both sides of (5.3) we obtain Γ′′ = ΓR t (Γ′\x). However, notice that

177

R′′ = R, S′′ = S and D′′ ∪ {x} = D. Therefore:

Γ′′ + [x : d] = Σ + [z : r | z ∈ R′′] + [z : d | z ∈ D′′] + [z : s | z ∈ S′′] + [x : d]

= Σ + [z : r | z ∈ R] + [z : d | z ∈ D] + [z : s | z ∈ S]

= Γ

So Γ = Γ′′ + [x : d] = ΓR t (Γ′\x) + [x : d]. We can apply [CASE!Dst] in order to get Γ `Dst e : s if
we are able to prove that the side conditions of this rule hold. The condition of ∀z ∈ R ∪ {x}.∀i ∈
{1..n}.z /∈ fv(ei) occurring in [CASE!Dst] follows from its counterpart ∀i ∈ {1..n}.(RSHR ∪ {x}) ∩
fv(ei) = ∅ in [CASE!I]. With respect to the inh conditions on the m′ij

ni , they follow immediately
from (5.2).

The correctness of the inferMarksDef function for inferring the mark signatures of function defini-
tions follows immediately from this theorem. Before proving this, we need to define what is a typeable
function, since the `Dst rules only apply to expressions. By inspecting the [FUN] rule of Figure 3.9 we
can derive the following definition:

Definition 5.9. Given a fixed signature environment Σ not containing f in its domain, a mark signature
mi

n → s is said to be correct for the function definition f xi
n′ @ rj

m = e f if and only if these three
conditions hold:

1. n = n′.

2. ∀i ∈ {1..n}.mi ∈ {s, d}.

3. Σ + [f : mi
n → s] + [xi : mi

n] `Dst e f : s.

Given a function definition f xi
n @ rj

m = e f , let us assume that inferMarksFP has reached a fixed
point. This means that, if we apply the inference rules to the body of the expression under a signature
Σ = Σ′ + [f : mi

n → s] for some mi
n, and we obtain e f ` (R f , D f , S f), the following judgement is

derivable by Theorem 5.8:

Σ′ + [f : mi
n → s] + [x : r | x ∈ R f] + [x : d | x ∈ D f] + [x : s | x ∈ S f] ` e f : s

The set R f must be empty. Otherwise inferMarksFP would have returned an error, and it would have
not reached a fixed point. Hence:

Σ′ + [f : mi
n → s] + [x : d | x ∈ D f] + [x : s | x ∈ S f] ` e f : s

We know that D f ∪ S f ⊆ fv(e f) ⊆ {xi
n}, but there could be parameters xi

n that do not appear in any of
these sets, so let us apply the [EXTDst] rule to the previous judgement in order to add those variables to
the type environment with a safe mark:

Σ′ + [f : mi
n → s] + [x : d | x ∈ D f] + [x : s | x ∈ S f] + [x : s | x ∈ {xi

n}\(D f ∪ S f)] ` e f : s

This is equivalent to the following:

Σ′ + [f : mi
n → s] + [x : d | x ∈ D f] + [x : s | x ∈ {xi

n}\D f] ` e f : s

178

For each i ∈ {1..n}, let us define:

m′i =

d if xi ∈ D f

s if xi /∈ D f

Our typing judgement can be transformed as follows:

Σ′ + [f : mi
n → s] + [xi : m′i

n
] ` e f : s

Since we have assumed a fixed point for inferMarksFP, we know that m′i = mi for each i ∈ {1..n}.
Therefore:

Σ′ + [f : mi
n → s] + [xi : mi

n] ` e f : s

Now the marks of the parameters xi
n match the marks in the signature of f . If we combine this judge-

ment with its counterpart in the `Reg rules, the rule [FUN] can be applied, and hence the function is
well-typed.

5.4.2 Termination

The discussion at the end of the last section only makes sense if the algorithm reaches a fixed point. If
it does not, it could be due to three situations:

1. The application of the inference rules results in an error, since no rule can be applied.

2. The application of the inference rules to the body of a function definition results in a triple (R, D, S)
in which R 6= ∅.

3. The inferMarksFP function does not terminate.

In this section we prove that the third situation never holds. Assume a function definition f xi
n @ rj

m =

e f . The key idea is to define an order between mark signatures, and to prove that each iteration of
the ` rules to e f under an environment Σ results in a signature which is greater or equal than Σ(f).
So, if inferMarksFP did not terminate, there would exist an infinitely strictly-increasing chain of mark
signatures. However, this cannot happen, since the set of mark signatures associated with a function of
n parameters has 2n elements, and hence is finite.

So, let us start defining an order between signatures:

Definition 5.10. Given a function of n parameters, we define the following order between signatures:

mi
n → s ≤ m′i

n → s
def⇐⇒ ∀i ∈ {1..n}.mi ≤ m′i

And we extend this order to Σ in the standard way.

From this definition if follows that the set of mark signatures for a given function with this order
has the structure of a lattice. Figure 5.13 shows the lattices corresponding to a function of two and three
parameters, respectively.

We define a similar order for (R, D, S) tuples. A tuple (R, D, S) is said to be lower than (R′, D′, S′) if
the former contains less unsafe variables (i.e. variables in R and D).

179

s → s → s

d → d → s

d → s → s s → d → s

s → s → s → s

d → s → s → s s → d → s → s s → s → d → s

d → d → s → s d → s → d → s s → d → d → s

d → d → d → s

Figure 5.13: Lattice of mark signatures for functions with two and three parameters, respectively.

Definition 5.11. We define the following pre-order between triples (R, D, S):

(R, D, S) v (R′, D′, S′)⇔ R ∪ D ⊆ R′ ∪ D′

Lemma 5.12. The t operator is v-monotonic w.r.t. all its parameters.

Proof. Let us assume that (R1, D1, S1) v (R′1, D′1, S′1) and that (R2, D2, S2) v (R′2, D′2, S′2). If we define,

(R, D, S) = (R1, D1, S1) t (R2, D2, S2)

(R′, D′, S′) = (R′1, D′1, S′1) t (R′2, D′2, S′2)

we get:

R ∪ D = (R1 ∪ R2) ∪ ((D1 ∪ D2)\(R1 ∪ R2))

= R1 ∪ R2 ∪ D1 ∪ D2

⊆ R′1 ∪ R′2 ∪ D′1 ∪ D′2
= (R′1 ∪ R′2) ∪ ((D′1 ∪ D′2)\(R′1 ∪ R′2))

= R′ ∪ D′

Hence, (R, D, S) v (R′, D′, S′).

Given a fixed expression e, we can consider the application of the ` rules as a function which, given
a signature environment Σ, returns the result of applying the ` rules on e under that environment.
The following theorem proves that this function is monotone with respect to the ≤ order defined on
signature environments.

Theorem 5.13. Let Σ and Σ′ be two signature environments without in-danger marks. If Σ ≤ Σ′, e `Σ

(R, D, S), and e `Σ′ (R′, D′, S′), then (R, D, S) v (R′, D′, S′)

Proof. By induction on the structure of e. We distinguish cases:

• Cases e ∈ {c, x, x @ r, C ai
n @ r}

180

Trivial, since R ∪ D = ∅ = R′ ∪ D′.

• Case e ≡ f ai
n @ rj

m

Let Σ(f) = mi → s and Σ′(f) = m′i → s. By assumption, mi = d implies m′i = d. Therefore:

R ∪ D
=

⋃
mi=d sharerec(ai, e)\{ai} ∪

⋃n
i=1 Di

=
⋃

mi=d sharerec(ai, e)\{ai} ∪ {ai | mi = d}
⊆ ⋃

m′i=d sharerec(ai, e)\{ai} ∪ {ai | m′i = d}
= R′ ∪ D′

• Case e ≡ let x1 = e1 in e2

Let us assume:
e1 `Σ (R1, D1, S1) e1 `Σ′ (R′1, D′1, S′1)
e2 `Σ (R2, D2, S2) e2 `Σ′ (R′2, D′2, S′2)

By induction hypothesis, (R1, D1, S1) v (R′1, D′1, S′1) and (R2, D2, S2) v (R′2, D′2, S′2). Since t is
monotonic with respect to both operands, we get:

(R, D, S) = (R1, D1, S1) t ((R2, D2, S2)\{x1}) v (R′1, D′1, S′1) t ((R′2, D′2, S′2)\{x1}) = (R′, D′, S′)

• Case e ≡ case x of Ci xij
ni → ei

n

Assume, for every i ∈ {1..n}, ei `Σ (Ri, Di, Si) and ei `Σ′ (R′i, D′i , S′i). By induction hypothesis,
(Ri, Di, Si) v (R′i, D′i , S′i) and by monotonicity of t we get:

(R, D, S) =

(
n⊔

i=1

((Ri, Di, Si)\Pi)

)
t (∅, ∅, {x}) v

(
n⊔

i=1

((R′i, D′i , S′i)\Pi)

)
t (∅, ∅, {x}) = (R′, D′, S′)

• Case e ≡ case! x of Ci xij
ni → ei

n

Again, we assume, for every i ∈ {1..n}, ei `Σ (Ri, Di, Si) and ei `Σ′ (R′i, D′i , S′i). Let us define:

(Ra, Da, Sa) =
n⊔

i=1

((Ri, Di, Si)\Pi) (R′a, D′a, S′a) =
n⊔

i=1

((R′i, D′i , S′i)\Pi)

(Rb, Db, Sb) = ((Ra, Da, Sa)\{x})t (RSHR, ∅, ∅) (R′b, D′b, S′b) = ((R′a, D′a, S′a)\{x})t (RSHR, ∅, ∅)

where RSHR is as defined in [CASE!I]. By monotonicity of t operator, we get:

∀i.(Ri, Di, Si) v (R′i, D′i , S′i)⇒ (Ra, Da, Sa) v (R′a, D′a, S′a)⇒ (Rb, Db, Sb) v (R′b, D′b, S′b)

which implies Rb ∪ Db ⊆ R′b ∪ D′b. Therefore:

R ∪ D = Rb ∪ Db ∪ {x} ⊆ R′b ∪ D′b ∪ {x} = R′ ∪ D′

181

The previous lemma is the key result to prove the termination of inferMarksDef . Assume that the
latter function is called with a signature environment Σ and a function definition f xi

n @ rj
m = e f , and

that inferMarksFP does not terminate. The first call to inferMarksFP is done with a signature Σ0 in which
Σ0(f) = sn → s. Let us assume that e f `Σ0 (D0, R0, S0) for some D0, R0, and S0. The second call is done
with a signature Σ1 such that Σ0(f) < Σ1(f), so Σ0 ≤ Σ1. The inequality is strict, since inferMarksFP
would have terminated otherwise. Let us assume that e f `Σ1 (D1, R1, S1). By Theorem 5.13 we know
that D0 ∪ R0 ⊆ D1 ∪ R1. Since both R0 and R1 are empty (otherwise the algorithm would stop with an
error), we get D0 ⊆ D1, which results in the following call to inferMarksFP under an environment Σ2

such that Σ1(f) < Σ2(f). By repeating this process, we get an infinite ascending chain:

Σ0(f) < Σ1(f) < Σ2(f) < . . .

This leads to a contradiction, since the set of possible signatures for f is finite.

5.4.3 Completeness

In this section we prove that, if a function is typeable w.r.t. the `Dst rules, the inference algorithm
is able to return a mark signature for that function. Throughout this section we will write our type
environments as Σ + Γ, where Σ only contains bindings from function and constructor names to mark
signatures, and Γ associates variables with marks. We also assume that the mark signatures in Σ do not
contain in-danger marks.

The first thing to point out is that there may be more than one correct mark signature for a given
function. In principle, we want to prove that our algorithm returns one of these correct signatures.
However, we should be more precise and specify which signature is given by the algorithm. Recall that
the set of mark signatures for a given function is a lattice with respect to the order of Definition 5.10.
The completeness proof is done in two steps:

1. Among all the correct mark signatures for a given function, there is a minimal correct mark signa-
ture.

2. Our algorithm computes this minimal correct mark signature.

The search for the minimal correct mark signature is closely related to the search of the minimal mark
environment which types a given expression, so let us prove that such a minimal mark environment
exists. Firstly we prove that the set of mark environments with the ≤ order defined in Section 3.7 has
the structure of a distributive complete lattice:

Proposition 5.14. The set of mark environments Γ such that dom Γ ⊆ Var is a distributive complete lattice with
respect to the ≤ order.

Proof. The t and u operators satisfy the following properties,

dom (Γ1 t Γ2) = dom Γ1 ∪ dom Γ2 (5.4)

dom (Γ1 u Γ2) = dom Γ1 ∩ dom Γ2 (5.5)

182

Γ1(x) Γ2(x) Γ3(x) ((Γ1 t Γ2) u Γ3)(x) ((Γ1 u Γ3) t (Γ2 u Γ3))(x)
– – s s s
– – r Γ1 t Γ2 Γ1 t Γ2
r – d d d
– r d d d
s s d s s
s d d d d
d s d d d
d d d d d

Figure 5.14: This table covers all the possibilities for the values of Γ1(x), Γ2(x) and Γ3(x). The dash
symbol (–) stands for any mark. In every case, the desired equality holds.

and they are defined as follows:

∀x ∈ dom Γ1 ∪ dom Γ2.(Γ1 t Γ2)(x) =

Γ1(x) x /∈ dom Γ2

Γ2(x) x /∈ dom Γ1

Γ1(x) t Γ2(x) otherwise

∀x ∈ dom Γ1(x) ∩ dom Γ2.(Γ1 u Γ2)(x) = Γ1(x) u Γ2(x)

Given a (possibly infinite) family G of type environments, the result of uG is defined as follows:

dom u G =
⋂

Γ∈G
dom Γ ∀x ∈ dom u G.(uG)(x) =

l

Γ∈G
Γ(x)

and similarly with tG. Since the ordered set ({r, d, s},≤) is a complete lattice, so is the set of mark
environments. Finally, we prove distributivity. Let us prove that, for every Γ1, Γ2 and Γ3:

(Γ1 t Γ2) u Γ3 = (Γ1 u Γ2) t (Γ1 u Γ3) (5.6)

The fact that both sides of the equality have the same domain follows from (5.4), (5.5), and set algebra.
Let us assume a variable x belonging to that domain. It must hold that x ∈ dom Γ3, and x ∈ dom Γ1 ∪
dom Γ2. If x /∈ dom Γ1 we get:

((Γ1 t Γ2) u Γ3)(x) = (Γ2 u Γ3)(x) = ((Γ1 u Γ2) t (Γ2 u Γ3))(x)

since x does not belong to the domain of Γ1 u Γ2. If x /∈ dom Γ2 we proceed in a similar way. Finally, if
x belongs to the domain of the three environments, we distinguish cases as in Figure 5.14. The equality
holds in all these cases, so we have proved (5.6). The fact (Γ1 u Γ2) t Γ3 = (Γ1 t Γ3) u (Γ2 t Γ3) follows
by duality.

Given a fixed Σ, the next lemma proves that, if there exists two mark environments typing a given
expression, the greatest lower bound of them (which exists, by Proposition 5.14) also types that expres-
sion.

Lemma 5.15. If Σ + Γ1 `Dst e : s and Σ + Γ2 `Dst e : s, then Σ + (Γ1 u Γ2) `Dst e : s.

Proof. By induction on the structure of e. Without loss of generality, let us assume that the last rule in
each of the `Dst derivations is neither [EXTDst] nor [WEAKDst]. Otherwise we can prove the existence of

183

some Σ′ ⊆ Σ, Γ′1 ≤ Γ1, and Γ′2 ≤ Γ2 such that Σ′ + Γ′1 `Dst e : s and Σ′ + Γ′2 `Dst e : s, and this condition
holds in both derivations. Lemma 3.49 is useful for ensuring that Σ′ is the same in both judgements.
Once we have proved that Σ′ + (Γ′1 u Γ′2) `Dst e : s we know that Γ′1 u Γ′2 = Γ1 u Γ2 and, by the [EXTDst]

rule, Σ + (Γ1 u Γ2) `Dst e : s. Therefore, we can safely rule out the possibility of having [EXTDst] or
[WEAKDst] as the last rule applied, and we distinguish between the remaining cases:

• Cases [LITDst], [VARDst], [COPYDst], and [CONSDst].

All these cases are trivial, since they imply that Σ = ∅ and Γ1 = Γ2, so Σ + (Γ1 u Γ2) = Γ1 = Γ2.

• Case [APPDst].

Let e ≡ f xi @ rj. The value of Σ(f) determines the contents of Γ1 and Γ2. Since Σ is the same in
both judgements, we get Γ1 = Γ2, and the lemma holds trivially.

• Case [LETDst].

Let e ≡ let x1 = e1 in e2, and the following derivations:

Σ11 + Γ11 `Dst e1 : s Σ12 + Γ12 + [x1 : m1] `Dst e2 : s
Σ + (Γ11 t Γ12︸ ︷︷ ︸

Γ1

) `Dst e : s

Σ21 + Γ21 `Dst e1 : s Σ22 + Γ22 + [x1 : m2] `Dst e2 : s
Σ + (Γ21 t Γ22︸ ︷︷ ︸

Γ2

) `Dst e : s

since each Σij is a subset of Σ for each i, j ∈ {1, 2}, we can apply [EXTDst] in each of the premises
so as to obtain Σ + Γij in each judgement, possibly followed by [x1 : mi] (where i, j ∈ {1, 2}). By
induction hypothesis, we get:

Σ + (Γ11 u Γ21) `Dst e1 : s Σ + (Γ12 u Γ22) + [x1 : m1 um2] `Dst e1 : s

We can apply [LETDst], since (Γ11 u Γ21)(x) ∈ {d, r} implies Γ11(x) ∈ {d, r}, or Γ21 ∈ {d, r}, which
implies x /∈ fv(e2). Hence we get,

(Σ + (Γ11 u Γ21)) t (Σ + (Γ12 u Γ22)) `Dst e : s

which is equivalent to:
Σ + ((Γ11 u Γ21) t (Γ12 u Γ22)) `Dst e : s

If we prove that (Γ11 u Γ21) t (Γ12 u Γ22) ≤ (Γ11 t Γ12) u (Γ21 u Γ22) = Γ1 u Γ2 we will be able to
apply the [WEAKDst] rule to get the desired result. Thus, we have to prove this inequality. Let us
define:

ΓA = (Γ11 u Γ21) t (Γ12 u Γ22)

ΓB = (Γ11 t Γ12) u (Γ21 t Γ22)

Firstly we prove that dom ΓA ⊆ dom ΓB. Let x ∈ dom ΓA. We distinguish cases:

– x ∈ dom Γ11 ∧ x ∈ dom Γ21. In this case we get x ∈ dom (Γ11 t Γ12), and x ∈ dom (Γ21 t
Γ22). Therefore, x ∈ dom ΓB.

184

– x ∈ dom Γ12 ∧ x ∈ dom Γ22. Again, we get x ∈ dom (Γ11 t Γ12), and x ∈ dom (Γ21 t Γ22).
Therefore, x ∈ dom ΓB.

Now we prove that, for every x ∈ dom ΓA, we get ΓA(x) ≤ ΓB(x). If ΓA(x) = s we are done. If
ΓA(x) = r there are two possibilities:

– (Γ11 u Γ21)(x) = r, which implies Γ11(x) = r, and Γ21 = r. Hence we get (Γ11 t Γ12)(x) = r,
(Γ21 u Γ22)(x) = r, and, consequently ΓB(x) = r.

– (Γ12 u Γ22)(x) = r, which implies Γ12(x) = r, and Γ22 = r. Similarly as above, ΓB(x) = r.

Exactly in the same way we can prove that ΓA(x) = d implies ΓB ∈ {d, r}. The required result
follow from this.

• Case [CASEDst]

Let e ≡ case x of Ci xij
ni → ei

n
. From the premises of the [CASEDst] rule we get,

Σ + (Γ1 + [xij : mij
ni]) `Dst ei : s∧ Σ + (Γ2 + [xij : m′ij

ni
]) `Dst ei : s for each i ∈ {1..n}

and, by induction hypothesis,

(Σ + (Γ1 + [xij : mij
ni])) u (Σ + (Γ2 + [xij : m′ij

ni
])) `Dst ei : s

which is equivalent to:

Σ + ((Γ1 u Γ2) + [xij : mij um′ij
ni
]) `Dst ei : s

for each i ∈ {1..n}. The required result follow from applying [CASEDst] to these judgements.

• Case [CASE!Dst]

Let e ≡ case(!) x of Ci xij
ni → ei

n
. From [CASE!Dst] we get,

Σ + (Γ1 + [xij : mij
ni]) `Dst ei : s∧ Σ + (Γ2 + [xij : m′ij

ni
]) `Dst ei : s for each i ∈ {1..n}

The inh predicates in each judgement force mij = m′ij for each i ∈ {1..n}, j ∈ {1..ni}. Moreover,
the R set occurring in the premises of [CASE!Dst] is the same in both judgements, and so is the ΓR

environment. The induction hypothesis gives the following judgement:

(Σ + (Γ1 + [xij : mij
ni])) u (Σ + (Γ2 + [xij : mij

ni])) `Dst ei : s

which is equivalent to:
Σ + ((Γ1 u Γ2) + [xij : mij

ni]) `Dst ei : s

The remaining conditions in [CASE!Dst] follow from their counterparts in the initial judgements.
Hence we get:

ΓR t ((Σ + (Γ1 u Γ2))\x) + [x : d] `Dst e : s

185

The type environment can be transformed as follows:

ΓR t ((Σ + (Γ1 u Γ2))\x) + [x : d] = Σ + (ΓR t ((Γ1 u Γ2))\x) + [x : d])

= Σ + (ΓR t ((Γ1\x) u (Γ2\x))) + [x : d])

= Σ + ((ΓR t (Γ1\x)) u (ΓR t (Γ2\x))) + [x : d])

= Σ + ((ΓR t (Γ1\x) + [x : d]) u (ΓR t (Γ2\x) + [x : d]))

This proves the lemma.

The following lemma allows us to strengthen the Σ signature in a typing derivation. The intuitive
idea is that, if an expression is typeable under a mark environment Σ, we can replace some of the mark
signatures in Σ by some other “less destructive” variants, and the expression is still typeable under the
modified environment.

Lemma 5.16. If Σ + Γ `Dst e : s and Σ′ is an environment which contains the mark signatures of the functions
being called in e, and Σ′ ≤ Σ, then Σ′ + Γ `Dst e : s.

Proof. By induction on the size of the typing derivation. Let us distinguish cases on the last rule applied.

• Case [EXTDst]

We can derive Σ′′ + Γ′′ `Dst e : s, for some Σ′′ ⊆ Σ and Γ′′ ⊆ Γ. Let us define Σ′1 and Σ′2 as follows:

Σ′1 = Σ′\Σ′′

Σ′2 = Σ′ u Σ′′

It is obvious that dom Σ′ = dom Σ′1] dom Σ′2. Since Σ′2 ≤ Σ′′, and both Σ′ and Σ′′ contain the
signatures of the functions being applied in e, then Σ′2 also contain those signatures. We can apply
the induction hypothesis in order to get:

Σ′2 + Γ′′ `Dst e : s

By applying [EXTDst] we get,
Σ′1] Σ′2 + Γ `Dst e : s

which proves the result.

• Case [WEAKDst]

It follows trivially from the induction hypothesis.

• Cases [LITDst], [VARDst], [COPYDst], and [CONSDst].

We get Σ = [], which implies Σ′ = [], and the result holds trivially.

• Case [APPDst]

Let e ≡ f ai
n @ rj

m. In this case, Σ = [f : mi
n → s] and Σ′ = [f : m′i

n → s] for some mi
n, m′i

n
such

that m′i ≤ mi for all i ∈ {1..n}. Let us define:

R =
n⋃

i=1

{sharerec(ai, e) | mi = d} R′ =
n⋃

i=1

{sharerec(ai, e) | m′i = d}

186

Since m′i = d implies mi = d for every i ∈ {1..n} (since the mi must belong to the set {s, d}), we
get R′ ⊆ R. For the same reason, the condition

∧
m′i=d isTree(ai) follows from

∧
mi=d isTree(ai), and

the well-definedness of
⊕n

i=1[ai : m′i] also follows from that of
⊕n

i=1[ai : mi]. We apply [APPDst]:

[f : m′i
n → s] + [y : r | y ∈ R′] +

n⊕
i=1

[ai : mi] `Dst e : s

Moreover, since R′ ⊆ R, and none of the ai variables is in R, we can apply the [EXTDst] rule:

[f : m′i
n → s]︸ ︷︷ ︸

Σ′

+ [y : r | y ∈ R] +
n⊕

i=1

[ai : mi]︸ ︷︷ ︸
Γ

`Dst e : s

and the lemma holds.

• Case [LETDst]

By the premises of that rule we get, assuming e ≡ let x1 = e1 in e2:

Σ1 + Γ1 `Dst e1 : s Σ2 + Γ2 + [x1 : m1] `Dst e2 : s

where Σ ≥ Σ1, Σ ≥ Σ2, and Γ = Γ1 t Γ2. Let us define Σ′1 = Σ1 u Σ′ and Σ′2 = Σ2 u Σ’. Hence
Σ′ = Σ′1 ∪ Σ′2. Again, Σ′ and Σ1 contain the signatures of the functions being applied in e1, and,
hence, so does Σ′1. Similarly with Σ′2. By induction hypothesis:

Σ′1 + Γ1 `Dst e1 : s Σ′2 + Γ2 + [x1 : m1] `Dst e2 : s

By applying [LETDst] we get (Σ′1 +Σ′2)+ (Γ1t Γ2) `Dst e : s, from which the desired result follows.

• Cases [CASEDst] and [CASE!Dst]

Both follow trivially from the induction hypothesis.

Finally, we use the results of these lemmas in order to show that the set of correct mark signatures
for a given function is closed w.r.t. the greatest lower bound operator:

Lemma 5.17. If Φ is the set of correct signatures for a function f , uΦ is also a correct signature for f .

Proof. Let us assume uΦ = m′i
n → s for some m′i

n
. By definition of correct signature, we get:

Σ + [f : mi
n → s] + [xi : mi

n] `Dst e f : s ∀(mi
n → s) ∈ Φ

By Lemma 5.16:
Σ + [f : m′i

n → s] + [xi : mi
n] `Dst e f : s ∀(mi

n → s) ∈ Φ

Since the set Φ is finite (because so is the set of signatures for f), we can apply Lemma 5.15 repeatedly
so as to get:

Σ + [f : m′i
n → s] + [xi : umj→s∈Φmi

n] `Dst e f : s

187

Finally, since m′i = umj→s∈Φmi, we get that m′i → s is a correct signature for f :

Σ + [f : m′i
n → s] + [xi : m′i

n
] `Dst e f : s

The uΦ of the lemma above is, in fact, the minimal correct signature for the function definition. We
have proved that, if a function is typeable, there exists a minimal mark signature for it. Our next step
is to show that the inference algorithm shown in this chapter returns that minimal mark signature. The
main part of the proof is a completeness result of the ` rules with respect to the `Dst type system. It
states that, if an expression is typeable under some environment Σ + Γ, the ` rules are able to find some
(R, D, S) sets such that the environment they define is lower than Γ.

Theorem 5.18. If Σ + Γ `Dst e : s, then we can derive e `Σ (R, D, S) for some sets R, D, and S. Moreover, it
holds that:

[x : r | x ∈ R] + [x : d | x ∈ D] + [x : s | x ∈ S] ≤ Γ

Proof. By induction on the structure of e. Let us denote by Γ[R, D, S] the environment occurring in the
left-hand side of the equation above. Without loss of generality, we assume that the last `Dst rule applied
is neither [EXTDst] nor [WEAKDst]. Otherwise, we can assume the existence of a Σ′ ⊆ Σ and a Γ′ ≤ Γ
such that Σ′ + Γ′ `Dst e : s. If we are able to derive e `Σ′ (R, D, S), it also holds that e `Σ (R, D, S), and
if Γ[R, D, S] ≤ Γ′, then Γ[R, D, S] ≤ Γ, as we want to prove. So, let us distinguish cases on the structure
of the expression e:

• Cases e ≡ c, e ≡ x, e ≡ x @ r and e ≡ C ai
n @ r.

The result holds trivially in all these cases. For instance:

C ai
n @ r ` (∅, ∅, {ai

n}) and Γ[∅, ∅, {ai
n}] = [ai : sn] = Γ

• Case e ≡ f ai
n @ rj

m.

Firstly, let us prove that the side conditions in rule [APPI] hold. Each one is proven by contradic-
tion:

R ∩ S = ∅

Assume that x ∈ R ∩ S. Since x ∈ S, there exists an i ∈ {1..n} such that x = ai and mi = s,
where Σ(f) = mi

n → s. Hence, x ∈ dom
⊕n

i=1[ai : mi]. On the other hand, and since x ∈ R,
x ∈ dom ΓR, where ΓR is defined as [y : r | y ∈ R]. This leads to a contradiction as, according
to the [APPDst] rule, ΓR and

⊕n
i=1[ai : mi] have disjoint domains.

R ∩ D = ∅

The proof is analogous to that of the previous condition.

S ∩ D = ∅

If x ∈ S and x ∈ Di for some i ∈ {1..n}, then x = ai = aj for some i, j ∈ {1..n} such
that mi = s and mj = d (hence i 6= j), but this contradicts the fact that

⊕n
i=1[ai : mi] is

well-defined, as the [APPDst] rule demands.

∀i, j.i 6= j⇒ Di ∩ Dj = ∅

Let x ∈ Di and x ∈ Dj for some i 6= j. This implies that x = ai = aj for some i, j ∈ {1..n} such
that mi = mj = d. Hence

⊕n
i=1[ai : mi] in [APPDst] is not well-defined.

188

∀x ∈ D.isTree(x)

If there is some x ∈ D such that isTree(x) does not hold, then there exists some i ∈ {1..n}
such that x = ai and mi = d, which contradicts the

∧
mi=d isTree(ai) property.

Besides this, Σ = [f : mi
n → s] and:

Γ[R, D, S] = [y : r | y ∈ R] + [ai : s | mi = s] + [ai : d | mi = d]

= ΓR +
n⊕

i=1

[ai : mi]

= Γ

• Case e ≡ let x1 = e1 in e2

Assume Σ1 + Γ1 `Dst e1 : s, Σ2 + Γ2 + [x1 : m1] `Dst e2 : s. By induction hypothesis we get
e1 `Σ1 (R1, D1, S1) and e2 `Σ2 (R2, D2, S2), which imply their corresponding `Σ judgements. We
prove by contradiction that the side condition in [LETI] holds. Assume x ∈ R1 ∪ D1 such that
x ∈ fv(e2). Since Γ[R1, D1, S1] ≤ Γ1 holds by induction hypothesis, we get that Γ1(x) ∈ {r, d},
and, by [LETDst], x /∈ fv(e2), which contradicts our assumption. We can apply the [LETI] rule, so
e ` (R, D, S).

Now we prove that Γ[R, D, S] ≤ Γ1 t Γ2. Firstly, Γ[R2, D2, S2] ≤ Γ2 + [x1 : m1] by induction
hypothesis. From this, it follows that Γ[(R2, D2, S2)\x1] ≤ Γ2. On the other hand, we get, for
every pair of triples (R, D, S), (R′, D′, S′):

Γ[R, D, S] t Γ[R′, D′, S′] = ([x : r | x ∈ R] + [x : d | x ∈ D] + [x : s | x ∈ S]) t

([x : r | x ∈ R′] + [x : d | x ∈ D′] + [x : s | x ∈ S′])

= [x : r | x ∈ R ∪ R′] + [x : d | x ∈ (D ∪ D′)\(R ∪ R′)] +

[x : s | x ∈ (S ∪ S′)\(D ∪ D′ ∪ R ∪ R′)]

= Γ[(R, D, S) t (R′, D′, S′)]

Finally, we obtain:

Γ[R, D, S] = Γ[(R1, D1, S1) t ((R2, D2, S2)\{x1})]

= Γ[R1, D1, S1] t Γ[(R2, D2, S2)\{x1}]

≤ Γ1 t Γ2

The last step justified by the fact that t is monotone w.r.t. ≤. The proof of this fact is straightfor-
ward and it shall be omitted here.

• Case e ≡ case x of Ci xij → ei
n

We know that, for each i ∈ {1..n}, Σ + Γ′ + [xij : mij] `Dst ei : s for some Γ′ and mij such that
Γ = Γ′ t [x : s]. By induction hypothesis, ei ` (Ri, Di, Si), and Γ[Ri, Di, Si] ≤ Γ′ + [xij : mij]. The
latter implies that Γ[(Ri, Di, Si)\{xij}] ≤ Γ′. Hence we can apply [CASEI] to get e ` (R, D, S),

189

where (R, D, S) = (
⊔n

i=1((Ri, Di, Si)\{xij}) t (∅, ∅, {x}), and we get:

Γ[R, D, S] = Γ

[
n⊔

i=1

((Ri, Di, Si)\{xij}) t (∅, ∅, {x})
]

=
n⊔

i=1

Γ[(Ri, Di, Si)\{xij}] t Γ[∅, ∅, {x}]

≤
n⊔

i=1

Γ′ t [x : s]

= Γ′ t [x : s]

= Γ

and the theorem holds.

• Case e ≡ case! x of Ci xij → ei
n

Again, let us assume that Σ + Γ′ + [xij : mij] `Dst ei : s, for every i ∈ {1..n}, and for some Γ′ such
that Γ = ΓR t (Γ′\x) + [x : d], where ΓR is as defined in [CASE!Dst]. By induction hypothesis, for
every i ∈ {1..n}, ei ` (Ri, Di, Si) holds for some (Ri, Di, Si) such that Γ[Ri, Di, Si] ≤ Γ′ + [xij : mij].
This implies, for every i ∈ {1..n}, Γ[(Ri, Di, Si)\{xij}] ≤ Γ′. Let us define

(R′, D′, S′) =

(
n⊔

i=1

((Ri, Di, Si)\{xij, x}))
)
t (RSHR, ∅, ∅)

where RSHR is as defined in [CASE!I]. We obtain:

Γ[R′, D′, S′] =

(
n⊔

i=1

Γ[(Ri, Di, Si)\{xij, x}]
)
t Γ[RSHR, ∅, ∅] ≤ ΓR t Γ′\{x}

If we are able to apply [CASE!I], we get e ` (R, D, S), where (R, D, S) = (R′, D′ ∪ {x}, S′), and
hence, since (R′, D′, S′) does not contain the discriminant of the case:

Γ[R, D, S] = Γ[R′, D′, S′] + [x : d] ≤ ΓR t (Γ′\{x}) + [x : d] = Γ

So, let us prove that the side conditions in [CASE!I] hold. Again, we prove each of these by
contradiction:

∀i ∈ {1..n}.(Pi\Reci) ∩ (Di ∪ Ri) = ∅

Assume that xij ∈ Pi\Reci (that is, j /∈ RecPos(Ci)) and that xij ∈ Di ∪ Ri. Since Γ[Ri, Di, Si] ≤
Γ′ + [xij : mij], we get that mij ∈ {d, r}. But the condition inhj,Ci (mij) in [CASE!Dst] demands
mij = s.

∀i ∈ {1..n}.Reci ∩ Ri = ∅

Assume that xij ∈ Reci (that is, j ∈ RecPos(Ci). Similarly as above, xij ∈ Ri implies mij = r,
which contradicts the inhj,Ci (mij) condition in [CASE!Dst], which demands mij = d.

∀i ∈ {1..n}.(RSHR ∪ {x}) ∩ fv(ei) = ∅

Assume that z ∈ RSHR ∪ {x} and z ∈ fv(ei) for some i ∈ {1..n}. This implies z ∈ R ∪ {x}
(being R as defined in [CASE!Dst]), since R = RSHR. By the latter rule, z /∈ fv(ei), which leads
to a contradiction.

190

Given a function definition f xi
n @ rj

m = e f , our algorithm performs several iterations of the ` rules
until it reaches a mark signature that coincides with the one initially assumed for f . An iteration can be
formalized as a function ϕ f which, given a mark signature mi

n → s returns the mark signature which
would be given to the next iteration.

ϕ f (mi → s) = m′i → s, where: e f `Σ][f :mi→s] (∅, D, S)

∀i ∈ {1..n}.m′i =

d xi ∈ D

s xi /∈ D

(5.7)

The inferMarksFP algorithm stops when the mark signature is given for f is a fixed point of ϕ f . A
consequence of the previous theorem is that the minimal correct signature of a function is a fixed point
of ϕ f .

Corollary 5.19. If Φ is the set of correct signatures for f xi @ rj = e f , then uΦ ∈ Fix(ϕ f).

Proof. Let uΦ = mi → s be the minimal signature. By Lemma 5.17 this signature is correct, so we get:

Σ + [f : mi → s]︸ ︷︷ ︸
Σ′

+[xi : mi] `Dst e f : s

where none of the mi is an r mark. By Theorem 5.18 there exists some (R, D, S) such that e `Σ′ (R, D, S)
and [x : r | x ∈ R] + [x : d | x ∈ D] + [x : s | x ∈ S] ≤ [xi : mi]. Since none of the mi is an in-danger
mark, R = ∅. Moreover, all the variables in the environment in the left-hand side must be one of the xi.
By Theorem 5.8:

Σ + [f : mi → s] + [xi : d | xi ∈ D] + [xi : s | xi ∈ S] `Dst e f : s

By applying [EXTDst] rule, we get:

Σ + [f : mi → s] + [xi : d | xi ∈ D] + [xi : s | xi /∈ D] `Dst e f : s (5.8)

Let us define, for each i ∈ {1..n}:

m′i =

d xi ∈ D

s xi /∈ D

so that ϕ f (mi
n → s) = mi

′ → s. We can transform (5.8) into the following:

Σ + [f : mi → s] + [xi : m′i] `Dst e f : s

Let us prove that m′i ≤ mi for each i ∈ {1..n}. If m′i = s we are done. If m′i = d, then xi ∈ D, and hence
mi = d, since [x : d | x ∈ D] + [x : s | x ∈ S] ≤ [xi : mi]. Hence, m′i → s ≤ mi → s, and we can apply
Lemma 5.16 to the previous judgement:

Σ + [f : m′i → s] + [xi : m′i] `Dst e f : s

Hence mi
′ → s is a correct signature for f that is lower than mi → s. However, recall that mi → s is the

greatest lower bound, so m′i = mi for every i ∈ {1..n}, and hence ϕ f (mi → s) = mi → s.

191

Reciprocally, every fixed point of ϕ f is a correct mark signature.

Lemma 5.20. If Φ is the set of correct signatures for f xi @ rj = e f , then Fix(ϕ f) ⊆ Φ.

Proof. If ϕ f (mi → s) = mi → s, we get e f `Σ][f :mi→s] (∅, D, S) for some D and S. By Theorem 5.8, we
get:

Σ + [f : mi → s] + [x : d | x ∈ D] + [x : s | x ∈ S] `Dst e f : s

Since D ∪ S ⊆ fv(e f) ⊆ {xi}, we can apply the [EXTDst] rule in order to get:

Σ + [f : mi → s] + [xi : d | xi ∈ D] + [xi : s | xi /∈ D] `Dst e f : s

By the definition of m′i in (5.7) we can transform the judgement above into the following:

Σ + [f : mi → s] + [xi : d | mi = d] + [xi : s | mi = s] `Dst e f : s

which is equivalent to:
Σ + [f : mi → s] + [xi : mi] `Dst e f : s

Therefore, mi → s is a correct signature for f .

From the last two results we can prove that the inference algorithm returns the minimal correct type
signature. It is straightforward to see that inferMarksDef returns the least fixed point of ϕ f , since it
performs the computation of a Kleene’s ascending chain, starting from the bottommost element s→ s.
On the one hand, the least fixed point of ϕ f (denoted lfp(ϕ f)) is a correct signature by Lemma 5.20,
so lfp(ϕ f) ≥ uΦ, where Φ denotes the set of correct signatures for f . On the other hand, uΦ is a
fixed point, so lfp(ϕ f) ≤ uΦ. As a consequence, lfp(ϕ f) = uΦ, which proves that the inferMarksDef
computes the minimal mark signature for f .

5.4.4 Efficiency

Assume we execute the inferMarksDef function on a function definition f xi
n @ rj

m = e f . If s denotes
the size of the AST corresponding to e f , a single traversal of the tree has O(s) complexity if we assume
constant-time set operations. However, the complexity of set operations ∪,∩, \ is linear with respect the
sizes of the sets to which they are applied. In our case, these sets contain variables occurring in e f . Since
the worst-case scenario assumes a number of variables in the AST proportional to s, a single traversal of
the tree has a worst-caseO(s2) time complexity. Besides this, the algorithm performs, in the worst case,
as many iterations as the number of parameters n. As a consequence, the worst-case time complexity
of the algorithm for inferring the mark signature of a function definition is in O(ns2). Nevertheless, all
the examples shown in this chapter only require two iterations: The first one computes the fixed point,
whereas the second one checks that the result is a fixed point. Thus we expect that the average-case
complexity of our algorithm is O(s2).

5.5 Conclusions and related work

The mark inference algorithm introduced in this chapter represents a notable improvement with respect
to its predecessor, described in [81]. The main reason behind this fact is the definition of a total order
on the different marks, which allows the algorithm to assign the strongest mark to a variable at a given

192

context, and to weaken that mark in a higher context, if necessary. This results in a simpler algorithm, in
which a single bottom-up traversal is done in each iteration. Previous work required some interleaving
of bottom-up and top-down traversals with two different set of rules. As a consequence, we get a
simpler correctness proof. Moreover, the distinction between strongest and weakest marks allows the
`Dst rules to have a minimal typing environment under which a given expression is typeable (Lemma
5.17). This allows us to prove the completeness of our algorithm: if an expression is typeable, the
algorithm finds the minimal environment typing that expression.

The examples shown in Section 3.5 have been typed by assuming the most precise analysis satisfying
the correctness conditions of Section 3.6.3. On the contrary, in this chapter we have used the sharing
analysis of [98]. As we have shown in Section 5.3, the sharing information has to be adjusted in some
cases. This motivates the need for a more precise analysis, whose study is subject of future work.

In Section 3.8 we showed the relation between our type system and other approaches related to
functional languages. In particular, a detailed comparison was done with Aspinall and Hofmann’s
type system [11] based on usage aspects (UAPL in the following). An usage aspect inference algorithm
for this system is due to Konečný [68]. It is worth highlighting the similarities and differences of his
inference algorithm with ours.

• The set of typing rules is, in both cases, non-deterministic. Our inference algorithm is given by
a set of syntax-directed rules, whereas UAPL features a deterministic type-checking strategy in
which some rules are given more (or less) priority than the remaining ones.

• In UAPL, the (RAISE) rule takes the highest priority. This rule upgrades the usage aspects of
the variables in the type environment from 2 (not destroyed, but shares with result) to 3 (not
destroyed, does not share with result) in those cases when the result is of a basic (i.e. heap-free)
type. This is not necessary in our type system, since the sharing analysis of Safe is aware of the
fact that values of basic types do not take space in the heap, so they cannot share anything with
the remaining variables. Moreover, all basic types have a safe mark in our system.

• The (WEAK) and (DROP) rules of UAPL, which are similar to the [EXT] and [WEAK] rules of Safe,
are given the lowest priority, and are only used to make the premises in the same rule match each
other. In Safe, the t operator on triples has a similar goal.

• The inference of the signature of recursive function definitions follows a similar pattern in both
cases. It starts by assuming the strongest signature for the function being inferred, and performs a
fixed point iteration. This is not very surprising, as this approach (known as the Kleene’s ascend-
ing chain) is commonly used when the set of function signatures has the structure of a complete
partial order. In particular, the sharing analysis of [98] also works in this way.

Although the intended semantics of safe, condemned, and in-danger types is substantially different
from the usage aspects of UAPL, the fact of defining a total order between the marks/usage aspects
makes the inference algorithms of UAPL and Safe very similar. A contribution of our algorithm with
respect to UAPL’s is the explicit formalization of the algorithm itself, together with a comprehensive
proof of its correctness and completeness.

193

194

Chapter 6

Certified absence of dangling pointers

6.1 Introduction

Let us briefly recap the results of last chapters. On the one hand, we have described in Chapter 4
an algorithm for annotating a Safe program with region variables, such that the resulting program is
well-typed w.r.t. the `Reg rules. On the other hand, we have developed in Chapter 5 an algorithm that
checks whether the destruction of cells, managed by the programmer, does not lead to an ill-checked
program regarding the `Dst rules. If a Safe program is accepted by both algorithms, we can ensure, by
the correctness proof given in Chapter 3, that this program is pointer-safe. The aim of this chapter is
to formalize this property and its corresponding proof for our specific program, so both things can be
mechanically checked. This is an example of a proof-carrying code scheme [88], in which the compiler
generates, besides the target program, a proof (certificate) of the presence of a property which the code
consumer expects to hold. Both the program and the certificate are sent to the code consumer, which
checks the proof against the program before executing the latter.

We have used the Isabelle proof assistant for encoding all these properties and their proofs. Is-
abelle provides a meta-logic in which Higher-order logic (HOL) is specified. Both things are commonly
referred to with the name Isabelle/HOL. This tool provides a framework in which we can specify defi-
nitions, theorems, and their proofs. Isabelle/HOL checks whether the theorems actually follow from
the given proofs. In this chapter we explain how to generate Isabelle/HOL scripts encoding the above
mentioned pointer-safety properties. It is not surprising that most of the proofs and definitions relevant
to this chapter are those occurring in Section 3.6, where the pointer-safety of well-typed programs was
established. However, the proof rules of this chapter are based on the original Safe’s type system de-
scribed in [84], from which the type system of this thesis stems. As a consequence, there are some slight
differences in the certificate w.r.t. the proof shown in this thesis. It is subject of future work to adapt the
proofs of this chapter so as to fit those of Section 3.6.

This chapter is based on the work described in [36]. Unlike previous chapters, it is more ori-
ented towards implementation issues. In particular we explain in detail the automatic generation of
Isabelle/HOL scripts, since this is the main contribution of the author of this thesis to [36]. More details
about the formalization itself can be found in [37], or in de Dios’ PhD thesis [35] (the latter in Spanish).
However, we briefly describe in Section 6.2 the properties to be proved, and the information that the
certificate is expected to contain for a specific program. Section 6.3 deals with the generation of the
certificate itself. In Section 6.4 we measure, by means of some case studies, the length of the obtained
proofs w.r.t. the original Core-Safe code. Finally, Section 6.5 concludes.

195

Compiler's
frontend

Compiler's
backend

&
certifier

Checker

OK

Certificate

Machine
code

Source
code

Code producer Code consumer

Figure 6.1: Standard PCC paradigm. The certificate refers to the low-level machine code, which is sent
to the consumer.

Checker

OK

Certificate

CoreSafe
code

Safe
code

Code producer Code consumer

Compiler's
frontend

&
certifier

Certified
Compiler's
backend

JVM
code

Figure 6.2: Our PCC paradigm.

6.2 Preliminaries

The standard approach to PCC is depicted in Figure 6.1. In this scenario, the compiler attaches a certifi-
cate to the resulting machine code, and the proof is performed at machine level. That is, the properties
being certified are checked against the machine code. The code consumer receives both low-level code
and certificate and checks the validity of the latter. If it is correct, it allows the execution of the code
on the target machine. A variation of this scheme advances the generation of the certificate before the
translation into machine code, but after the front-end phase, in which the properties of interest are
known to hold. In this case, the certificate refers to the intermediate representation resulting from the
front-end, and the back-end translates both this intermediate representation and the certificate into a
lower-level representation, which is sent to the code consumer. The main drawback of these approaches
is that the involved certificates are of considerable size, which results in longer checking times.

Our approach consists in postponing the machine code generation after the certificate is checked
(Figure 6.2). The compiler generates a certificate proving the pointer-safety properties of a Core-Safe
program. After the consumer has checked its validity against the latter, the program is translated into
Java bytecode and executed. Since the certificates obtained in this way refer to the properties of a higher-
level language (Core-Safe) they are smaller and easier to check than their lower-level counterparts. They
also save the effort of translating the certificate into a lower-level variant. However, this approach relies
on the correctness of the compiler’s back-end that translates Core-Safe code into Java byte-code. There
are two possibilities:

1. Assume the correctness of this translation phase. In this case, the back-end is said to be part of the
trusted code base.

196

2. Mechanically prove and certify these translation phases.

In [39] and [38] the authors prove in Isabelle/HOL, respectively, the correctness of the translation from
Core-Safe into SVM code (see Section 2.6) and its further translation into Java bytecode. The definitions
of these translations are specified in Isabelle/ML (a functional, ML-alike language), and a Haskell im-
plementation is automatically extracted from these definitions. Thus, if the Isabelle/HOL definitions
are proven correct, so is their corresponding implementation. A drawback of this approach to PCC is
that the consumer receives the Core-Safe code, which it may be easier to reverse-engineer than its byte-
code equivalent. Besides this, part of the compiling process (translation into bytecode) is delegated to
the code consumer. This is a non-standard approach in compilers.

Once we know the level at which the certificate is going to be targeted, the next step is to define the
contents of the certificate (i.e. what to prove). Given a Core-Safe program prog, the certificate is expected
to prove the following fact:

prog does not access dangling pointers (6.1)

However, it would be a very poor solution if each certificate contained the full proof of this fact, since
several parts of this proof could also be applied to every Core-Safe program. Since we have devised a
generic way (namely, a type system) to prove a program pointer-safe, it seems sensible to split the proof
of (6.1) into two different facts:

Well-typed programs do not access dangling pointers (6.2)

prog is a well-typed program (6.3)

It is trivial to see that (6.1) follows from these facts. The first one is generic, whereas the second
one is program-specific. The idea of the certificate generation is to ask the compiler to deliver the static
information inferred during the type inference phase (Chapters 4 and 5) and to use this information for
proving (6.3). This can be done with a set of proof rules. There exists a proof rule for every syntactical
construct of the language. Given an expression of the program, its certificate must ensure that the
premises of a proof rule hold before applying that rule. These premises are known as proof obligations.
The fact (6.2)is proved by relating the static information (types) with the dynamic properties a program
is expected to satisfy at runtime (absence of dangling pointers). For every proof rule there exists a
lemma establishing this relation. These lemmas are proved once for all, and can be stored in the code
consumer side, since they are common to all Core-Safe programs. The program-specific part of the
certificate consists in establishing the validity of the necessary proof obligations for the given program,
and applying the corresponding proof rules. Since there are general theorems relating these proof rules
with the safety properties of the language, the specific program can be proved pointer-safe by applying
these theorems. This strategy results in small certificates and short checking times, as the total amount
of work is linear w.r.t. the size of the program. The heaviest part of the proof (namely, the database of
proved proof rules) has been done in advance and is reused by each certified program.

Given the above, our first step is to present these proof rules with their corresponding safety proper-
ties. There is some resemblance with the typing rules of Chapter 3, but this resemblance becomes more
apparent when comparing the proof rules with those in [84]. In the same way we have considered the
inference of regions and marks separately, the certificates also distinguishes the part of pointer safety
regarding implicit region deallocation from that related to explicit destruction. Thus we have two sets
of proof rules, which are described in next sections.

197

6.2.1 Rules regarding region deallocation

The aim of this part of the certificate is to prove the preservation of the consistency property through the
execution of a program. Recall from Section 3.6.1 the existence of a region instantiation η associating
RTVs with actual runtime region numbers. If a DS is inferred to have ρ as the outermost RTV in its
type, and this DS lives in region n at runtime, then η(ρ) = n. Consistency property tells us that the
correspondence between the static region types, and the actual regions where the data structures are
stored in the heap, do not contradict η. This part of the certificate proves that, if the initial configuration
of a program is consistent, so is every intermediate configuration in its execution, and so is the final
configuration. Since the execution of a program starts with an empty heap, which is trivially consistent,
all the intermediate configurations are also consistent. This part of the certificate deals exclusively with
regions, and not with the condemned, safe or in-danger mark of a type, so the proof rules roughly
resemble the `Reg typing rules of Section 3.7. Thus we can instantiate the facts (6.2) and (6.3) as follows:

`Reg-typed programs preserve consistency along their execution (6.4)

prog is a `Reg-typed program (6.5)

This implies that the deallocation of the topmost region of the heap cannot create dangling pointers
at runtime, since η always maps the ρself region type to the topmost region, and this RTV cannot appear
in the signature of a function, so neither the input nor the output of the function will be located in that
region.

In Figure 6.3 we show the proof rules. We have typing environments ΓR mapping program variables
to safe types and region arguments to region types. When mechanically checking the certificate, it is
convenient to have the types of already certified functions into a separate environment ΣR, and a global
environment ΓC giving the polymorphic most general type of data constructors. Hence ΓR only contains
variables in scope. In the rules we have judgements of the form e, ΣR ` ΓR ; s, where e ∈ Exp and
s ∈ SafeType. They have a similar meaning to the judgement ΓR ∪ ΣR ∪ ΓC `Reg e : s.

In addition to the ΓR and s, which are provided by the compiler, the certificate needs additional in-
formation in function and constructor applications. Recall that the types occurring in these expressions
may be instances of the signature of the corresponding function/constructor, so the compiler generates
a type instantiation mapping µ in these cases. The certificate checks whether this mapping correctly as-
sociate the types of the formal parameters with the types of the corresponding actual arguments in the
function/constructor application. This motivates the following definition.

Definition 6.1. Given the instantiated types si
n, the instantiated region types ρj

m, the arguments of
the application ai

n, rj
m and a region typing environment ΓR, we say that the application is argument

preserving, denoted argP(si
n, ρj

m, ai
n, rj

m, ΓR) iff ∀i ∈ {1..n}.si = ΓR(ai) and ∀j ∈ {1..m}.ρj = ΓR(rj)

Thus, given the generic type scheme ∀αρ.si → ρj → s of a function g, and a specific application
g ai @ rj, the type instantiation mapping µ is valid provided argP(µ(si), µ(ρj), ai, rj, ΓR) holds. This is
what rules [APPRegC] and [CONSRegC] ensure.

The certificate incrementally constructs a global environment ΣR keeping the most general types of
the functions already certified. Regarding constructors, the certificate demands a well-formedness con-
dition on their types, namely, that the type of the only region argument of a constructor is the outermost
RTV of the type being constructed, and that all the RTVs occurring in the type of the arguments of a
constructor also occur in the type of its result.

198

c, ΣR ` ΓR ; B
[LITRegC]

x, ΣR ` ΓR ; ΓR(x)
[VARRegC]

ΓR(x) = T si
m@ ρ1 . . . ρl ΓR(r) = ρ′

x @ r, ΣR ` ΓR ; T si
m@ ρ1 . . . ρl−1ρ′

[COPYRegC]

ΓC(C) = si
n → ρ→ sC wellT(si

n, ρ, sC) argP(µ(si)
n
, µ(ρ), ai

n, r, ΓR) s = µ(sC)

C ai
n @ r, ΣR ` ΓR ; s

[CONSRegC]

ΣR(g) = si
n → ρj

m → sg ρ
g
self 6∈ regions(sg) argP(µ(si)

n
, µ(ρj)

m
, ai

n, rj
m, ΓR) s = µ(sg)

g ai
n @ rj

m, ΣR ` ΓR ; s
[APPRegC]

e1, ΣR ` ΓR ; s1 e2, ΣR ` ΓR] [x1 7→ s1] ; s2

let x1 = e1 in e2, ΣR ` ΓR ; s2
[LETRegC]

∀i. ΣR(Ci) = sij
ni → ρ→ s ∀i. wellT(sij

ni , ρ, s)
∀i. ei, ΣR ` ΓR] [xij → µ(sij)

ni
] ; s′ ΓR(x) = µ(s)

case x of Ci xij
ni → ei

n
, ΣR ` ΓR ; s′

[CASERegC]

∀i. ΣR(Ci) = sij
ni → ρ→ s ∀i. wellT(sij

ni , ρ, s)
∀i. ei, ΣR ` ΓR] [xij → µ(sij)

ni
] ; s′ ΓR(x) = µ(s)

case! x of Ci xij
ni → ei

n
, ΣR ` ΓR ; s′

[CASE!RegC]

f xi
n @ rj

m = e f
ΓR = [xi 7→ si

n, rj 7→ ρj
m, self 7→ ρself] e f , ΣR] { f 7→ si

n → ρj
m → s f } ` ΓR ; s f

e f , ΣR ` ΓR ; s f
[RECRegC]

Figure 6.3: Proof rules regarding regions.

199

Definition 6.2. Predicate wellT(si
n, ρ, s), read well-typed, is defined as follows:

wellT(si
n, ρ, T s′i @ ρj) ≡ ρm = ρ ∧

n⋃
i=1

regions(si) ⊆ regions(T s′i @ ρj)

The first phase of the region inference algorithm (Section 4.3) generates type schemes for construc-
tors that always satisfy this property. There is an additional rule [RECRegC] for typing the body of a
function definition, which is similar to the [FUN] rule of Figure 3.9. This rule states that whenever we
are able to prove a judgement e f , ΣR ` ΓR ; s f by assuming that ΣR contains a type scheme for f
matching the contents of ΓR, we can do the same without that assumption. The correctness proof of this
rule is technically involved and we refer to [37] for more details on it.

So far for the static concepts aimed at proving (6.5). We move now to the dynamic or runtime ones
in order to prove (6.4). First we define the notion of admissible region instantiation.

Definition 6.3. Assume k denotes the topmost region of a given heap. We say that the region instantia-
tion η is admissible, denoted admissible(η, k) iff:

ρ
f
self ∈ dom η ∧ η(ρ

f
self) = k ∧ ∀ρ ∈ dom η\{ρ f

self }.η(ρ) < k

Basically, an admissible η maps the type of the self region to the topmost region in the heap, and
the rest of the RTVs to the regions situated below it. The fact that a region instantiation connects the
static information ΓR with the dynamic one (E, h) is formalised by means of the important notion of
consistency, defined as follows:

Definition 6.4. We say that the mappings ΓR, η, the runtime environment E, and the heap h are consis-
tent, denoted consistent(ΓR, η, E, h), if:

1. ∀x ∈ dom E . consistent(ΓR(x), η, E(x), h) where:

consistent(B, η, c, h) = true
consistent(α, η, v, h) = true
consistent(s, η, p, h) ⇐ p 6∈ dom h
consistent(T s′i

m
@ ρj

l , η, p, h) ⇐ ∃j C vk
n µ skC

n ρjC
l . h(p) = (j, C vk

n)

∧ ρl ∈ dom η ∧ η(ρl) = j
∧ ΓC(C) = skC

n → ρlC → T s′iC
m

@ ρjC
l

∧ µ(T s′iC
m

@ ρjC
l) = T s′i

m
@ ρj

l

∧ ∀k ∈ {1..n} . consistent(µ(skC), η, vk, h))

2. ∀r ∈ dom E . ΓR(r) ∈ dom η ∧ E(r) = (η ◦ ΓR)(r)

3. self ∈ dom E ∧ ΓR(self) = ρ
f
self

Notice the similarity with the notion of consistency introduced in Section 3.6.1. In fact, consistent(ΓR, η, E, h)
holds if and only if η is consistent with build∗(h, E, ΓR).

We are ready to specify (6.4) by means of a static assertion relating the static and dynamic properties
referred to regions. A judgement of the form e : [[ΓR, s]] defines that, if the expression e is evaluated with
an environment E, a heap h with k regions, and an admissible mapping η consistent with ΓR, then the
final heap h′ and the final value v are consistent with η. Formally:

Definition 6.5. Let us define the following predicates:

200

PR1 ≡ E ` h, k, e ⇓ h′, k, v
PR2 ≡ dom E ⊆ dom ΓR

PR3 ≡ admissible(η, k)
PR4 ≡ consistent(ΓR, η, E, h)
PR5 ≡ consistent(s, η, v, h′)

An expression e satisfies the pair (ΓR, s), denoted e : [[ΓR, s]] iff:

∀E, h, k, h′, v, η.PR1∧ PR2∧ PR3∧ PR4→ PR5

Notice that this definition only ensures the consistency of the final configuration assuming the con-
sistency of the initial one, but it does not prevent us from having an non-consistent intermediate config-
uration. The following theorem states that this does not happen if the initial configuration is admissible
and consistent.

Theorem 6.6 (consistency). Let us assume a ⇓-judgement:

E ` h, k, e ⇓ h′, k, v (6.6)

For every ΓR and s such that e : [[ΓR, s]]: if PR2(E, ΓR), PR3(η, k), PR4(ΓR, η, E, h) hold, then for every
judgement Ei ` hi, ki, ei ⇓ h′i, ki, vi in the derivation of (6.6), it holds that PR3(ηi, ki), PR4(ΓR,i, ηi, Ei, hi) and
PR5(si, ηi, vi, h′i).

Proof. It follows from the proof of Theorem 3.26 (see [35]).

We know that PR2, PR3 and PR4 trivially hold for the initial state with the empty heap, the initial
runtime environment [self 7→ 0] and the initial region type environment [self : ρself], so PR3, PR4 and
PR5 hold across the whole program derivation.

The following theorem relates the proof rules of Figure 6.3 to the assertions defined in Definition 6.5.

Theorem 6.7 (soundness). If e, ΣR ` ΓR ; s, then e, ΣR : [[ΓR, s]].

Proof. If follows from Theorem 3.26 (see [35]).

6.2.2 Rules regarding explicit deallocation

This part of the certificate deals with the preservation of the closedness property of the heap in presence
of explicit destruction. A heap is said to be closed with respect an expression e if it is not possible to
reach a dangling pointer from the variables occurring free in e. In a similar way to the consistency
property, the certificate proves that, if the initial heap is closed, so is the final heap and the intermediate
heaps taking place in the evaluation of the expression. The initial (empty) heap is always closed w.r.t. the
main expression of the program (as the latter does not have free variables), so this fact proves the
preservation of closedness during the whole execution of the program. Again, this part of the certificate
involves proving the following facts:

The heap remains closed as `Dst-typed programs are executed (6.7)

prog is a `Dst-typed program (6.8)

The proof rules are shown in Figure 6.4. In this case, the static information consists of a mark environ-
ment ΓD assigning each variable in scope a mark in the set {d, r, s}, as in the `Dst type system. Again,

201

c, ΣD ` (∅, ∅)
[LITDstC]

x, ΣD ` ({x}, ΓD + [x : s])
[VARDstC]

x ∈ dom ΓD ΓD well formed
x @ r, ΣD ` ({x}, ΓD)

[COPYDstC]

ΓD = [ai : sn]

C ai
n @ r, ΣD ` ({ai

n}, ΓD)
[CONSDstC]

ΣD(g) = mi
n → s ΓD,0 =

⊕n
i=1[ai : mi] defined ΓD ⊇ ΓD,0 ΓD well formed

g ai
n @ rj

m, ΣD ` ({ai
n}, ΓD)

[APPDstC]

e1, ΣD ` (L1, ΓD,1) x1 6∈ L1 e2, ΣD ` (L2, ΓD,2 + [x1 : m]) def (ΓD,1 .
L2 ΓD,2) m ∈ {d, s}

let x1 = e1 in e2, ΣD ` (L1 ∪ (L2\{x1}), ΓD,1 .
L2 ΓD,2)

[LETDstC]

∀i . (ei, ΣD ` (Li, ΓD,i) ∧ ∀j.ΓD,i(xij) 6= d) ΓD well-formed
ΓD ⊇

⊗
i(ΓD,i\{xij}) x ∈ dom ΓD L = {x} ∪ (

⋃
i(Li\{xij}))

case x of Ci xij → ei, ΣD ` (L, ΓD)
[CASEDstC]

∀i . (ei, ΣD ` (Li, ΓD,i) ∀j . ΓD,i(xij) = d→ j ∈ RecPos(Ci)) ΓD well formed
L =

⋃
i(Li\{xij}) ΓD ⊇ (

⊗
i ΓD,i\({xij} ∪ {x})) + [x : d]

∀z ∈ dom ΓD . ΓD(z) 6= s→ (∀i . z 6∈ Li)

case! x of Ci xij → ei, ΣD ` (L ∪ {x}, ΓD)
[CASE!DstC]

f xi
n@ rj

m = e f L = {xi
n} ΓD = [xi 7→ mi

n] e f , ΣD] [f 7→ mi
n → s] ` (L, ΓD)

e f , ΣD ` (L, ΓD)
[RECDstC]

Figure 6.4: Proof rules for explicit deallocation.

202

we store the mark signatures of functions in a separate environment ΣD. A judgement e, ΣD ` (L, ΓD)

means that L is the set of free variables in e, and that ΣD ∪ ΓD `Dst e : s. The proof rules of Figure 6.4
slightly deviate from the `Dst rules, since the former are based on the type system of [84]. For instance,
in the [LETDstC] rule, the bound variable is not allowed to have an in-danger mark. The � operator
ensures that no variables with unsafe types in Γ1 occur free in L2. This is expressed as an additional
condition in the `Dst rules. The condition ΓD well-formed specifies that, if a variable x occurs in ΓD with
a condemned mark, all the variables in sharerec(x, e) must also occur in ΓD with an unsafe mark. The
result of the

⊗
operator occurring in [CASEDstC] and [CASE!DstC] is defined if the given environments

map common variables to the same type, and its result is the union of the bindings of the environments
to which it is applied. The [RECDstC] rule plays a similar role as in the rules for region deallocation.

Once we have defined the proof rules, we have to specify how to prove them correct. This amounts
to proving (6.7). Again, we do this by relating the static properties of the rules (mark environments) to
the dynamic properties of the language (runtime closedness). Given a Core-Safe expression, its corre-
sponding static assertion is a judgement of the form e : [[L, ΓD]], where L contains the set of free variables
in e. An expression e is said to satisfy this assertion if fv(e) ⊆ L and some others conditions shown be-
low hold. The generic part of the certificate generates a proof different from that described in Section
3.6.4. The definition shown below, which is based on [84], relies on the disjointness of the S and R sets
corresponding to a given configuration (L, ΓD, E, h). These sets are defined as follows:

SL,ΓD ,E,h
def
=

⋃
x∈L,ΓD(x)=s{closure(h, E(x))}

RL,ΓD ,E,h
def
=

⋃
x∈L,ΓD(x)=d{p ∈ live(h, E, L) | p→∗h recReach(h, E(x))}

In other words, the disjointness of S and R implies that there are no safe variables pointing to recursive
children of condemned DSs (otherwise they would be in-danger). Now we give a formal meaning of
an expression satisfying a given assertion.

Definition 6.8. Given the following properties:

PD1 ≡ E ` h, k, e ⇓ h′, k, v
PD2 ≡ dom ΓD ⊆ dom E
PD3 ≡ L ⊆ dom ΓD

PD4 ≡ fv(e) ⊆ L
PD5 ≡ ∀x ∈ dom E. ∀z ∈ L .

ΓD(z) = d ∧ recReach(h, E(z)) ∩ closure(h, E(x)) 6= ∅→ x ∈ dom ΓD ∧ ΓD(x) 6= s

PD6 ≡ ∀x ∈ dom E . closure(h, E(x)) 6= closure(h′, E(x))→ x ∈ dom ΓD ∧ ΓD(x) 6= s

PD7 ≡ SL,ΓD ,E,h ∩ RL,ΓD ,E,h = ∅
PD8 ≡ closed(h, E, L)
PD9 ≡ closed(h′, v)

we say that the expression e satisfies the static assertion [[L, ΓD]], denoted e : [[L, ΓD]], iff

PD3∧ PD4∧ (∀E, h, k, h′, v.PD1∧ PD2→ (PD5∧ PD6∧ (PD7 ∧ PD8→ PD9)))

In a similar way as before, we also define a notion of satisfaction relative to the validity of a mark
environment ΣD, denoted e, ΣD : [[L, ΓD]] (see [37] for details).

Property PD1 defines the runtime evaluation of e. Properties PD2 to PD4 just guarantee that each
free variable has a type and a value. Properties PD5 to PD7 formalise the dynamic meaning of safe and

203

condemned types: if a variable can share a recursive descendant of a condemned one, or its closure
changes during evaluation, it has to occur in the environment with an unsafe type. The key properties
are PD8 and PD9. If we prove them to hold for every judgement in the derivation of PD1, we guarantee
that the live part of the heap remains closed during the execution of e, and hence that there are not dan-
gling pointers at runtime. The following theorem shows that PD8 is an invariant which is propagated
upwards through the evaluation tree, whereas PD9 is propagated downwards.

Theorem 6.9 (closedness). Let us assume a ⇓-judgement:

E ` h, k, e ⇓ h′, k, v (6.9)

For every L and ΓD such that e : [[L, ΓD]]: if PD2(ΓD, E), PD7(L, ΓD, E, h) and PD8(E, L, h) hold, then for
every judgement Ei ` hi, ki, ei ⇓ h′i, ki, vi occurring in the derivation of (6.9) it holds that PD8(Ei, Li, hi) and
PD9(vi, h′i).

Proof. (see [37, 35]).

Since PD2, PD7 and PD8 hold trivially for the empty heap, the empty mark environment, and the
empty set of free variables, which are the ones corresponding to the initial expression, PD8 and PD9 are
guaranteed to hold across the whole derivation of the program.

Similarly as in the previous section, the last step is to prove the soundness relation between the proof
rules and these static assertions.

Theorem 6.10 (soundness). If e, ΣD ` (L, ΓD), then e, ΣD : [[L, ΓD]].

Proof. It follows from the proof described in [84] (see [35] for more details).

6.3 Certificate generation

Once we have established the correctness of the proof rules of Figures 6.3 and 6.4, this section explains
how to generate, an Isabelle/HOL script establishing that these proof rules can be applied to the pro-
gram being certified. We assume that the generic part of the certificate (given by the theorems in the last
section) has been proved in advance, and that its corresponding theorems are available in a database
of proven facts. This part of the certificate has been proved interactively with Isabelle/HOL [35]. In
this section we focus on the program-specific part. Assuming we are given a Core-Safe program with
the type information inferred in Chapters 4 and 5, the certifier generates a plain text file containing an
Isabelle/HOL script. This script contains, for every function definition of the program, the following
information:

• An Isabelle/HOL definition of the abstract syntax tree (AST) of the function’s body.

• A set of Isabelle/HOL definitions of the static objects inferred by the compiler: sets of free vari-
ables, mark environments, region typing environments, type instantiation mappings, etc.

• A set of Isabelle/HOL proof scripts proving a lemma for each expression. Each proof consists in
first checking the premises of the proof rule associated to the syntactic form of the expression, and
then applying this proof rule.

204

LExp 3 ε → a {atom: literal c or variable x}
| x @ r {copy}
| a1 ⊕ a2 {basic operator application}
| C ai @ r {constructor application}
| f ai @ rj {function application}
| let x1 = m1 in m2 {let declaration: m1, m2 ∈N}
| case x of Ci xij

ni → mi {read-only pattern matching: mi ∈N}
| case! x of Ci xij

ni → mi {destructive pattern matching: mi ∈N}

Figure 6.5: Syntax of labelled Core-Safe expressions.

With respect to the latter part, the certificate proves the lemmas of compound expressions in a bottom-
up way. For example, when proving that the judgement let x1 = e1 in e2, ΣR ` ΓR ; s holds, the
certificate must have proved the validity of the judgements corresponding to the sub-expressions e1 and
e2. For this reason, there must be a way to uniquely identify every sub-expression in a given function
definition, so each sub-expression can be referred to when proving the lemma of the parent expression.
Hence, our first goal is to split the body of the function being certified into a list of its sub-expressions.
Each of these is identified by a natural number. When dealing with compound expressions (i.e. let, case
and case!), we replace each sub-expression by the number identifying it. As a consequence, we have
to slightly adapt the syntax of our Core-Safe expressions in order to support these identifiers. The set
of labelled Core-Safe expressions is defined by the grammar of Figure 6.5. Notice the absence of nested
expressions: these have been replaced by their identifier.

Example 6.11. Consider the following function definition:

unshuffle :: [α]!→ ([α], [α])
unshuffle []! = ([], [])
unshuffle (x : xs)! = (x : ys2, ys1) where (ys1, ys2) = unshuffle xs

Its translation into Core-Safe yields the following result:

unshuffle :: [α]!@ρ→ ρ1 → ρ2 → ρ3 → ([α]@ρ1, [α]@ρ2)@ρ3

unshuffle xs @ r1 r2 r3 =

case! xs of
[] → let x1 = [] @ r1 in

let x2 = [] @ r2 in (x1, x2)@r3

(x : xx) → let x4 = unshuffle xx @ r2 r1 self in
let x5 = case x4 of (a, b)→ a in
let x6 = case x4 of (c, d)→ d in
let x7 = (x : x6)@r1 in (x7, x5)@r3

If we split the body of this function into its sub-expressions, we get the list of labelled expressions
shown in Figure 6.6. The elements of the list are arranged bottom-up (i.e. from simple to compound
expressions), because this is the order required by Isabelle/HOL for applying the proof rules.

Given the above, the first phase consists in translating the function being certified into a set of tuples
containing every sub-expression in its labelled form, together with its related static information. Each

205

Identifier (m) Expression (εm)
1 unshuffle xx @ r2 r1 self
2 a
3 case x4 of (a, b)→ 2

4 d
5 case x4 of (c, d)→ 4

6 (x7, x5) @ r3
7 (x : x6) @ r1
8 let x7 = 7 in 6

9 let x6 = 5 in 8

10 let x5 = 3 in 9

11 let x4 = 1 in 10

12 (x1, x2) @ r3
13 [] @ r2
14 [] @ r1
15 let x2 = 13 in 12

16 let x1 = 14 in 15

17 case! xs of {[]→ 16; (x : xx)→ 11}

Figure 6.6: Labelled expressions resulting from splitting the body of unshuffle. The components of let
and case expressions have been replaced by their identifiers.

tuple φm has the following components:

φm ≡ (m, εm, Lm, ΓD,m, ΓR,m, sm, µm) (6.10)

where m is the tuple identifier, εm is the corresponding sub-expression, Lm is the set of its free variables,
ΓD,m and ΓR,m denote the mark and region environments typing the sub-expression, sm is its safe type,
and µm is the type instantiation mapping needed when εm is a function or a constructor application.

Example 6.12. Given the unshuffle function of Example 6.11 above, in Figure 6.7 we show the compo-
nents of each tuple. Function and constructor applications also have the extra component µm which is
the instantiation mappings used in each case, and assuming the following generic type schemes for the
list and tuple constructors.

(:) :: α→ [α]@ρ→ ρ→ [α]@ρ

[] :: ρ→ [α]@ρ

(·, ·) :: α1 → α2 → ρ→ (α1, α2)@ρ

There is also a tuple for every function definition f xi
n @ rj

m = e f . Each one has the following
components:

Φ f ≡ (f , xi
n, rj

m, mi
n, ΣD, f , ΣR, f , e f , φi

q
) (6.11)

The first three components are self-explanatory, as well as e f . The list mi
n denotes the marks inferred

for the function parameters. The ΣD, f environment contains the mark signatures of the functions that
have been certified before f , together with the mark signature of the latter. Thus the signature of every
function being called in e f is assumed to belong to this environment. The ΣR, f component has a similar

206

m Lm ΓD,m ΓR,m sm
1 {xx} [xx : d, xs : r] ΓR,11 ([α]@ρ2, [α]@ρ1)@ρ3
2 {a} [a : s] ΓR,10 + [a : [α]@ρ2, b : [α]@ρ1] [α]@ρ2
3 {x4} [x4 : s] ΓR,10 [α]@ρ2
4 {d} [d : s] ΓR,9 + [c : [α]@ρ2, d : [α]@ρ1] [α]@ρ1
5 {x4} [x4 : s] ΓR,9 [α]@ρ1
6 {x7, x5} [x7 : s, x5 : s] ΓR,8 + [x7 : [α]@ρ1] ([α]@ρ1, [α]@ρ2)@ρ3
7 {x, x6} [x : s, x6 : s] ΓR,8 [α]@ρ1
8 {x, x6, x5} [x : s, x6 : s, x5 : s] ΓR,9 + [x6 : [α]@ρ1] ([α]@ρ1, [α]@ρ2)@ρ3
9 {x4, x, x5} [x : s, x4 : s, x5 : s] ΓR,10 + [x5 : [α]@ρ2] ([α]@ρ1, [α]@ρ2)@ρ3
10 {x4, x} [x4 : s, x : s] ΓR,11 + [x4 : ([α]@ρ2, [α]@ρ1)@ρself] ([α]@ρ1, [α]@ρ2)@ρ3
11 {xx, x} [xx : d, xs : r, x : s] ΓR,17 + [x : α, xx : [α]@ρ] ([α]@ρ1, [α]@ρ2)@ρ3
12 {x1, x2} [x1 : s, x2 : s] ΓR,15 + [x2 : [α]@ρ2] ([α]@ρ1, [α]@ρ2)@ρ3
13 ∅ [] ΓR,15 [α]@ρ2
14 ∅ [] ΓR,17 [α]@ρ1
15 {x1} [x1 : s] ΓR,17 + [x1 : [α]@ρ1] ([α]@ρ1, [α]@ρ2)@ρ3
16 ∅ [] ΓR,17 ([α]@ρ1, [α]@ρ2)@ρ3
17 {xs} [xs : d] [xs : [α]@ρ, r1 : ρ1, r2 : ρ2, r3 : ρ3, self : ρself] ([α]@ρ1, [α]@ρ2)@ρ3

Figure 6.7: Free variables and typing information attached to each labelled expression.

m µm
1 [ρ1 7→ ρ2, ρ2 7→ ρ1, ρ3 7→ ρself]
6 [α1 7→ [α]@ρ1, α2 7→ [α]@ρ2, ρ 7→ ρ3]
7 [α 7→ α, ρ 7→ ρ1]
12 [α1 7→ [α]@ρ1, α2 7→ [α]@ρ2, ρ 7→ ρ3]
13 [α 7→ α, ρ 7→ ρ2]
14 [α 7→ α, ρ 7→ ρ1]

Figure 6.8: Type instantiation mappings of the function and constructor applications occurring in
unshuffle.

207

meaning, but it contains safe type schemes, instead of mark signatures. Lastly, the φi
q component

contain the list of tuples into which the body e f is split.
There also exists a tuple for the whole program. It has the form (ΓC, Φ fi

, φj) and contains the type
schemes of the data constructors being defined in the program, the list of tuples corresponding to each
function definition, and the list of tuples into which the main expression of the program is split.

The task of generating all these tuples from the input Core-Safe program is straightforward, and
it will not be described here. These tuples provide a sequential representation of the expressions of
a program which is more amenable to the final step of the certification process: the generation of the
Isabelle/HOL script.

Even when we have separated the generic proofs of the certificate from the program-specific ones,
a considerable part of the program-specific part is still boilerplate code which can be reused in every
certificate with little alteration. In order to ease the programming of the certifier we have used a template
system to deal with this code. A template is a fragment of Isabelle/HOL code, which is parametric on
some parts. These parameters are given as placeholders. Templates have the following syntax:

%.template [TemplateName]

These are the contents of the template with ${PlaceHolders}

%.end

A placeholder is denoted with the syntax ${P}, being P its name. Templates are stored in a plain text
file which is read and processed by the compiler. The certifying phase of the compiler substitutes the
contents of the tuples φi shown above for the placeholders in the template. Usually the compiler has to
apply a given template several times and join the results. We shall explain this with an example:

Example 6.13. The generation of a mark environment is given by the following templates:

%.template EnvBindingsSet

{ ${Bindings} }

%.end

%.template EnvBinding

” ${Variable} ” \<mapsto> ${Type}

%.end

%.template Mark

${Mark} ”

%.end

208

Given the environment ΓD = [x : d, y : s, z : r], the compiler firstly applies the EnvBinding template
to the binding x : d as follows: it instantiates the Mark template with the d mark, to get the string d”,
and then puts this string into the ${Type} placeholder in EnvBinding. It also substitutes ${Variable} for
x, so as to get ”x” \<mapsto> d”. If we do the same with the bindings y : s and z : r, we obtain two
additional strings:

”y” \<mapsto> s” ”z” \<mapsto> r”

Finally, the three strings are joined with a (,) between them. The result is substituted for the ${Bindings}

placeholder in EnvBindingsSet and we obtain:

{”x” \<mapsto> d”, ”y” \<mapsto> s”, ”z” \<mapsto> r”}

The overall structure of the certificate is given by the template shown in Figure 6.9. The ${ModuleName}

placeholder contains the name of the program being certified. The ΓC environment containing the
signatures of the constructors is stored in ${CSigs}. The region and mark environments corresponding
to every function definition (components ΣR, f and ΣD, f of the tuple (6.11)) are placed in ${SigmaDefs}.
These environments are generated by the following template:

%.template SigmaEntry

constdefs \<Sigma>_ ${FuncName} _reg ::

"string \<rightharpoonup>

TypeExpression list \<times> VarType list \<times> TypeExpression"

"\<Sigma>_ ${FuncName} _reg \<equiv> [${SigmaRegEnv}]"

constdefs \<Sigma>_ ${FuncName} _mark ::

"string \<rightharpoonup> Mark list"

"\<Sigma>_ ${FuncName} _mark \<equiv> [${SigmaMarkEnv}]"

%.end

This template is filled in for every function definition appearing in the program. Region signature
environments are defined as partial mappings (\<rightharpoonup>) from function names (string) to
triples containing the type of the parameters (TypeExpression list), the types of the region parameters
(VarType list) and the type of the result (TypeExpression). The environments themselves are generated
as in Example 6.13 and placed in ${SigmaRegEnv} and ${SigmaMarkEnv} respectively.

Example 6.14. When applying these templates to our unshuffle function (Example 6.11) we get the fol-
lowing Isabelle/HOL definitions:

constdefs Σ_unshuffle_reg :: "string ⇀
TypeExpression list × VarType list × TypeExpression"

"Σ_unshuffle_reg ≡ [

209

%.template Main

(* Title: Pointer safety certificate for ${Filename}

Generated: ${Timestamp}
Copyright: 2010 Universidad Complutense de Madrid

*)
header {* Safety certificate for ${Filename} *}

theory ${ModuleName} imports THRegionsDatabase
begin

(*************** CONSTRUCTOR TYPE SIGNATURES ******************)

defs constructorSignature_def : "constructorSignature \<equiv> ${CSigs} "

(*************** SIGMA ENVIRONMENT DEFINITIONS ******************)

${SigmaDefs}

(*************** REGION ENVIRONMENT DEFINITIONS *****************)

${RegEnvDefs}

(********************* L SET DEFINITIONS ***********************)

${LDefs}

(**************** MARK ENVIRONMENT DEFINITIONS ******************)

${MarkEnvDefs}

(********************* TYPE DEFINITIONS *************************)

${TDefs}

(*********** MU INSTANTIATION MAPPING DEFINITIONS ***************)

${MuDefs}

(******************* PROGRAM EXPRESSIONS ************************)

${ExpDefs}

(******************* REGION SAFETY PROOFS ***********************)

${RegProofs}

(*********** EXPLICIT DESTRUCTION SAFETY PROOFS *****************)

${DstProofs}

end

%.end

Figure 6.9: Global structure of the program-specific part of the certificate

210

’’_MOD_’’ 7→ ([ConstrT intType [] [], ConstrT intType [] []], [],
ConstrT intType [] []),

’’_PLUS_’’ 7→ ([ConstrT intType [] [], ConstrT intType [] []], [],
ConstrT intType [] []),

...
’’unshuffle’’ 7→ ([ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho’’]],

[’’rho2’’, ’’rho3’’, ’’rho4’’],
ConstrT ’’TupleTT_2’’ [ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho2’’],

ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho3’’]]
[’’rho4’’])

]"

constdefs Σ_unshuffle_mark :: "string ⇀ Mark list"
"Σ_unshuffle_mark ≡ [

’’_MOD_’’ 7→ [s’’, s’’],
’’_PLUS_’’ 7→ [s’’, s’’],

...
’’unshuffle’’ 7→ [d’’]

]"

These initial environments contain the types of built-in operators and some basic functions. It also
contains a representation of the type of unshuffle.

The remaining definitions in the certificate are the components of the tuple (6.10). To avoid name
clashes in the certificate, the name of each Isabelle/HOL definition contains the name of the function to
which it belongs, and the identifier of the tuple. As an example, we show the template for generating
the L sets of free variables of each sub-expression.

%.template LDef

constdefs L_ ${FuncName} _ ${ExpNum} :: "string set"

"L_ ${FuncName} _ ${ExpNum} \<equiv> { ${Vars} }"

%.end

An instance of this template is generated for each expression in the program. The ${FuncName} place-
holder contains the name of the context function and ${ExpNum} contains the identifier of the corre-
sponding tuple.

Example 6.15. Back to our unshuffle function, the certifier yields1 the following definitions for the la-
belled expression ε8:

constdefs Γ_D_unshuffle_8 :: "TypeEnvironment"
"Γ_D_unshuffle_8_reg ≡ [’’x’’ 7→ s’’, ’’x6’’ 7→ s’’, ’’x5’’ 7→ s’’]"

constdefs L_unshuffle_8 :: "string set"
"L_unshuffle_8 ≡ {’’x’’, ’’x6’’, ’’x5’’}"

constdefs Γ_R_var_unshuffle_8 :: "TypeMapping"
"Γ_R_var_unshuffle_8 ≡ [

1Variables have been renamed to match those of Figure 6.7, for the sake of clarity.

211

’’x6’’ 7→ ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho1’’],
’’x5’’ 7→ ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho2’’],
’’x4’’ 7→ ConstrT ’’TupleTT_2’’ [

ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho2’’],
ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho1’’]] [’’rho_self’’],

’’xx’’ 7→ ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho’’],
’’x’’ 7→ VarT ’’a’’,
’’xs’’ 7→ ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho’’]] "

constdefs Γ_R_reg_unshuffle_8 :: "RegMapping"
"Γ_R_reg_unshuffle_8 ≡ [’’r1’’ 7→ ’’rho1’’ , ’’r2’’ 7→ ’’rho2’’ , ’’r3’’ 7→ ’’rho3’’,

’’self’’ 7→ ’’rho_self’’]"

constdefs Type_unshuffle_8 :: "TypeExpression"
"Type_unshuffle_8 ≡ ConstrT ’’TupleTT_2’’

[ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho1’’],
ConstrT ’’ListT’’ [VarT ’’a’’] [’’rho2’’]] [’’rho3’’]"

The certificate splits the environment ΓR into two: one containing the types of variables (Γ_R_var)
and another one containing the types of region variables (Γ_R_reg).

The last two placeholders of the certificate (${RegProofs} and ${DstProofs}) contain, for every ex-
pression e, the proof of the respective judgements e, ΣD ` (L, ΓD) and e, ΣR ` ΓR ; s, where L is the
set of free variables in e, s is its type, and ΓD and ΓR are their corresponding environments. Each proof
starts with the statement of the lemma to be proved.

%.template DstProof

lemma e_ ${FuncName} _ ${ExpNum} _DST:

"def_e_ ${FuncName} _ ${ExpNum} : \<lbrace> L_ ${FuncName} _ ${ExpNum} ,

\<Gamma>_D_ ${FuncName} _ ${ExpNum} \<rbrace>"

${ProofBody}

%.end

%.template RegProof

lemma e_ ${FuncName} _ ${ExpNum} _REG:

"def_e_ ${FuncName} _ ${ExpNum} \<turnstile>

(\<Gamma>_R_var_ ${FuncName} _ ${ExpNum} ,

\<Gamma>_R_reg_ ${FuncName} _ ${ExpNum})

\<leadsto> Type_ ${FuncName} _ ${ExpNum} "

${ProofBody}

%.end

The ${ProofBody} placeholder contains the script proving the corresponding lemma. This script de-
pends on the form of the expression to which the lemma refers. Regarding judgements of the form

212

%.template ProofLet1S

apply (unfold def_e_ ${FuncName} _ ${ExpNum} _def)

apply (rule_tac ?L1.0="L_ ${FuncName} _ ${ExpNum1} " and

?\<Gamma>1.0="\<Gamma>_ ${FuncName} _ ${ExpNum1} " and

?L2.0="L_ ${FuncName} _ ${ExpNum2} " and

?\<Gamma>2’.0="\<Gamma>_ ${FuncName} _ ${ExpNum2} "
in SafeDA_LET1_s)

apply (rule e_ ${FuncName} _ ${ExpNum1})

apply (rule e_ ${FuncName} _ ${ExpNum2})

apply (unfold \<Gamma>_ ${FuncName} _ ${ExpNum2} _def)
apply (simp add: disjointUnionEnv_def)?
apply (simp add: unionEnv_def)?
apply (rule ext, simp, force)?
apply (simp add: def_disjointUnionEnv_def)
apply (unfold \<Gamma>_ ${FuncName} _ ${ExpNum1} _def,

unfold L_ ${FuncName} _ ${ExpNum2} _def,
simp add: def_pp_def)

apply (unfold unsafe_def, force)?
apply (unfold L_ ${FuncName} _ ${ExpNum1} _def, force)

apply (unfold L_ ${FuncName} _ ${ExpNum} _def, force)

apply (unfold \<Gamma>_ ${FuncName} _ ${ExpNum} _def)
apply (simp add: pp_def)
apply (simp add: disjointUnionEnv_def, simp add: unionEnv_def)?
apply (rule ext,simp)
by (unfold def_e_ ${${FuncName}} _ ${ExpNum1} _def, simp)

%.end

Figure 6.10: Proof script template for let expressions (explicit deallocation).

e, ΣD : [[L, ΓD]], the proof script is generated as a sequence of Isabelle/HOL tactics and rules. For in-
stance, Figure 6.10 shows the script corresponding let expressions in which the bound variable gets an
s mark in the main expression. The second line in this script consists in applying the [LETDstC] rule.
This rule generates several proof obligations: one for each of its premises. The subsequent lines of the
script are aimed at proving these proof obligations.

With respect to the judgements of the form e, ΣR ` ΓR ; s, de Dios has defined in [35] an Is-
abelle/HOL tactic for each of the rules in Figure 6.3. So, the proof of each of the lemmas generated by
the RegProof template shown above consists in applying the corresponding tactic. Each tactic applies
a type rule and discharges its associated proof obligations in a single proof step. This reduces both the
size and checking time of the certificate. For instance, Figure 6.11 shows the template which applies the
[LETRegC] rule and discharges all its associated proof obligations. It is part of ongoing work to define
tactics for the proofs related to explicit destruction.

Example 6.16. By applying these templates to the expression ε8 above, we get the following proof:

lemma e_unshuffle_8_REG:
"def_e_unshuffle_8 `

213

%.template RegProofLet

by (tactic "SafeDARegion_LET1_tac
(@{thm def_e_ ${FuncName} _ ${ExpNum} _def},

@{thm \<Gamma>_R_var_ ${FuncName} _ ${ExpNum} _def},

@{thm \<Gamma>_R_reg_ ${FuncName} _ ${ExpNum} _def},

@{thm Type_ ${FuncName} _ ${ExpNum} _def},

@{thm def_e_ ${FuncName} _ ${ExpNum1} _def},

@{thm \<Gamma>_R_var_ ${FuncName} _ ${ExpNum1} _def},

@{thm \<Gamma>_R_reg_ ${FuncName} _ ${ExpNum1} _def},

@{thm Type_ ${FuncName} _ ${ExpNum1} _def},

@{thm e_ ${FuncName} _ ${ExpNum1} _REG},

@{thm def_e_ ${FuncName} _ ${ExpNum2} _def},

@{thm \<Gamma>_R_var_ ${FuncName} _ ${ExpNum2} _def},

@{thm \<Gamma>_R_reg_ ${FuncName} _ ${ExpNum2} _def},

@{thm Type_ ${FuncName} _ ${ExpNum2} _def},

@{thm e_ ${FuncName} _ ${ExpNum2} _REG},

"\<Gamma>_R_var_ ${FuncName} _ ${ExpNum1} ",

"\<Gamma>_R_reg_ ${FuncName} _ ${ExpNum1} ",

"Type_ ${FuncName} _ ${ExpNum1} ",

"\<Gamma>_R_var_ ${FuncName} _ ${ExpNum2} ",

"\<Gamma>_R_reg_ ${FuncName} _ ${ExpNum2} ",

"Type_ ${FuncName} _ ${ExpNum2} ")")

%.end

Figure 6.11: Proof script template for let expressions (region deallocation). There is a single step con-
sisting in applying an user-defined tactic.

214

Name Core-Safe code Size of the certificate (lines) RatioSize (lines) Definitions Proofs (regs.) Proofs (dest.) Total
basic 306 2667 1634 2218 6619 21.63

unshuffle 49 429 271 407 1107 22.59
mergesort 189 1748 1134 1753 4635 24.52
inssort 67 651 406 616 1673 24.97
pascal 106 1105 658 911 2674 25.22
compiler 2058 16131 10262 13471 39864 19.37
AVLTrees 502 4680 3008 4484 12472 24.84

Figure 6.12: Comparison of sizes between the certificates and the source Core-Safe code.

(Γ_R_var_unshuffle_8, Γ_R_reg_unshuffle_8) ; Type_unshuffle_8"
by (tactic "SafeDARegion_LET1_tac

(@{thm def_e_unshuffle_8_def},
@{thm Γ_R_var_unshuffle_8_def},
@{thm Γ_R_reg_unshuffle_8_def},
@{thm Type_unshuffle_8_def},
@{thm def_e_unshuffle_7_def},
@{thm Γ_R_var_unshuffle_7_def},
@{thm Γ_R_reg_unshuffle_7_def},
@{thm Type_unshuffle_7_def},
@{thm e_unshuffle_7_REG},
@{thm def_e_unshuffle_6_def},
@{thm Γ_R_var_unshuffle_6_def},
@{thm Γ_R_reg_unshuffle_6_def},
@{thm Type_unshuffle_6_def},
@{thm e_unshuffle_6_REG},
"Γ_R_var_unshuffle_7",
"Γ_R_reg_unshuffle_7",
"Type_unshuffle_7",
"Γ_R_var_unshuffle_7",
"Γ_R_reg_unshuffle_7",
"Type_unshuffle_7"
)

6.4 Case studies

In this section we aim to measure the sizes of the resulting certificates in comparison with the size
of their respective source code. The table in Figure 6.12 shows the results. For each certificate, we
have measured the number of lines generated for the definitions involved in the proofs (such as typing
environments, mark environments, instantiation mappings, sets of free variables, etc.) and the number
of lines of the proofs themselves. The column Proofs (regs.) refers to the part of the certificate related to
region deallocation, whereas Proofs (dest.) measures the part regarding explicit destruction. The basic

file contains several example functions on lists and binary search trees (append, appendC, insertT, etc.),
most of which were defined in Chapter 2. The pascal example was shown in Example 4.20, whereas
compiler corresponds to the small compiler developed at the end of Chapter 4 (Example 4.22). Lastly,
AVLTrees contains the code of the functions of a small library for handling AVL Trees, which was shown
in Example 3.14.

From these results we can draw the following conclusions:

215

1. The size of the certificate grows linearly with the size of the input Core-Safe program. The expan-
sion factor (last column in the table) ranges between 19 and 25.

2. A considerable part of the certificate (around 40%) is devoted to the definitions of the elements
in the tuples shown in (6.10) and (6.11). The proofs of region consistency preservation make up
approximately 25% of the certificate, whereas the remaining 35% deals with the proofs related to
explicit deallocation. We expect the latter to decrease when we replace the actual proof scripts by
the application of used-defined tactics, as it was done with the part related to region consistency.

6.5 Conclusions and related work

In this chapter we have shown how to encode, in Isabelle/HOL, the proof that a Core-Safe program
is well-typed, so that it can be mechanically checked for that program. The hardest part of the proof
(correctness of the type system) is assumed to have been done in advance, and once for all. This results
in smallest certificates, and shorter checking times. In spite of that, certificates are approximately twenty
times bigger than the program being certified. Another approach would have been to implement a
certified type checker, and that the code consumer applies this checker to the input Core-Safe program.
However, this delegates the type-checking task to the code consumer. It is necessary to find a balance
between the size of the certificates, and the amount of work to be done by the code consumer. With
regard to this balance, it is worth taking into account that the certification of a program is associated
with its deployment in the target machine, but neither with the development of that program, nor
with its execution on the target machine. Therefore, deployment is not a so frequent task in software
development, as to consider the certificate checking time to be decisive.

Introducing pointers in a Hoare-style assertion logic and using a proof assistant for proving the
correctness of programs with pointers goes back to the late seventies [74], where the Stanford Pascal
Program Verifier was used. A more recent reference is [20], using the Jape proof editor. A formalisation
of Bornat’s ideas in Isabelle/HOL was done by Mehta and Nipkow in [78], where they add a complete
soundness proof. None of these papers address the problem of automatically generating a certificate.

Connecting the results of a static analysis with the generation of certificates was done from the
beginning of the PCC paradigm (see for instance [90]). A more recent work is [15].

Our work is more closely related to [18], where a resource consumption property obtained by Hof-
mann and Jost’s type system [58] is transformed into a certificate. The compiler is able to infer a linear
upper bound on heap consumption and to certify this property by emitting an Isabelle/HOL script
proving it. Our static assertions have been inspired by their derived assertions, used also there to connect
static with dynamic properties. However, their heap is simpler to deal with than ours since it essentially
consists of a free list of cells, and the only data type available is the list. We must also deal with regions
and with any user-defined data type. This results in our complex notion of consistency. The authors
of [18] conjecture a set of proof rules and claim they could be used to prove the safety of destruction
in Hofmann and Aspinalls’s type system [11]. But in fact they do not provide an Isabelle/HOL or a
manual proof of these rules. The lessons that can be drawn from [37, 35] about proving the correctness
of proof rules of Section 6.2 in a proof assistant is that it is a rather daunting task full of unexpected
difficulties which have forced us to frequently modify the proof rules.

216

Chapter 7

Memory consumption analysis

7.1 Introduction

In this chapter we present a static analysis aimed at inferring upper bounds to the heap and stack
consumption made by a Safe program. Since the memory needs of a program usually depends on its
input, the bounds we obtain in our analysis are functions on the sizes of the inputs. The bounds given
by this memory consumption analysis are considered correct if they are equal or greater than the actual
worst-case consumptions of the program being analysed.

The inference of the space complexity of a program is a very complex task, even for a first-order
language like Safe. There are three separate aspects that can be independently studied and solved:

1. Inference of upper bounds to the size of the call-tree deployed at runtime by each recursive Safe
function.

2. Inference of the sizes of the data structures involved in a Safe function.

3. From the results of (1) and (2), inference of upper bounds to the stack and heap space costs of a
Safe function.

In this chapter we deal exclusively with the latter point. The first two points are subject of ongoing
work, and not part of this thesis. The first one is closely related to the termination of a Safe program.
Although termination is an undecidable program property (as well as the properties given in (2) and
(3)), several approaches have been proposed in the literature for approximating it. In particular, we
can infer multivariate polynomials of any degree as solutions by using the approach described in [73].
Another possibility is the translation of a Safe function into a recurrence relation modelling the size of
the call-tree, and use already existing tools (PURRS [13], PUBS [4]) for inferring closed-form expressions
to the result of these recurrence relations. This allows us to infer expressions beyond polynomial bounds
(in particular, logarithmic and exponential). With regard to (2), in [105] the authors describe how to
obtain polynomial, non-monotonic size relations between the input and the output of a function. This
approach can also be combined with the PUBS recurrence solver in order to tackle (1), as described in
[87]. Another possibility is the approach described in [97], which infers linear size relations between
the input and the output of a Safe function.

For the purposes of this chapter, we shall assume that the results of (1) and (2) are given by the
programmer, so we can concentrate on (3) instead. In principle, the analysis described here can ac-
commodate several complexity classes, as long as their functions are monotonic w.r.t. the input sizes.

217

Obviously, the complexity class of the result critically depends of the complexity class of the inputs
given to the analysis (points (1) and (2) above). In principle, we infer bounds to the costs of Core-Safe
function definitions without taking destructive pattern matching into account (case! expressions are
handled as if they were non-destructive), and assuming absence of region-polymorphic recursion. At
the end of this chapter we draft some ideas on inferring bounds for full-fledged Core-Safe programs.

This chapter is an extended and improved version of [83]. A major difference w.r.t. the latter is
that, in this chapter, we present a method for flattening an expression into sequences of basic expres-
sions. This makes the algorithm simpler when considering the base and recursive cases of a function
definition. Flattening also makes the algorithm more precise.

The techniques described in this chapter are based on abstract interpretation [33]. Given a function
definition of n parameters, the abstract domain is the set of n-ary monotonic functions from real non-
negative numbers to a real non-negative result1. This domain turns out to be a complete lattice under
the usual v relation on functions. This domain is detailed in Section 7.2. In Section 7.3 we define
an interpretation on expressions which is monotonic w.r.t. this domain, and in Section 7.4 we prove
this interpretation correct. The interpretation itself allows us to devise a space analysis aimed at non-
recursive function definitions. Recursive function definitions are dealt with in Section 7.5. After this,
we show in Section 7.6 how the algorithm behaves with several examples and case studies. Finally, in
Section 7.7 we sketch some ideas on inferring bounds in presence of destructive pattern matching and
polymorphic recursion on regions, and Section 7.8 concludes.

7.2 Function signatures

Let us recall the resource-aware semantics of Section 2.7. There we annotated the evaluation of an
expression e with a resource vector (δ, m, s), where δ gives the difference between the number of cells
in each region after and before the evaluation of e, and m and s represent the number of heap cells
(resp. stack words) needed for evaluating e. A space consumption analysis is expected to compute,
given an expression e, upper bounds to each component (δ, m, s) of the resource vector resulting from
its evaluation. However, this resource vector does not solely depend on the expression e itself, but
also on the initial value environment E and heap h, which contain the input to our expression. As a
consequence, there are two different ways in which a memory consumption analysis can be designed.

1. The memory consumption analysis is given the input as a parameter, in addition to the expression
e to be analysed. In this way, the analysis returns a resource vector (δ′, m′, s′) bounding the actual
(δ, m, s) components.

2. We do not assume a fixed input, but the analysis returns a resource vector (δ′, m′, s′) as a function
of the given input.

The second option seems more reasonable from the programmer’s point-of-view, since the input of a
program is usually only known at runtime, whereas a memory consumption analysis is done at compile
time. Nevertheless, the functions returned by the analysis would be complex and hard to interpret,
unless we devise a simpler representation of the input, rather than a pair (E, h). It is more useful, in
practice, to abstract the inputs by their sizes. For example, we usually say that the mergesort algorithm
has O(n log n) time complexity, being n the number of elements of the input list, without regard to the
elements themselves. We will apply this abstraction in our analysis.

1By allowing real-valued functions instead of integer-valued, we can accommodate size models different from the one ex-
plained in this chapter.

218

Our first step is to define a suitable notion of size, so that the memory costs of a Safe function can
be described as a function of this size. One may be tempted to define the size of a DS as the number of
cells needed for storing it. However, this definition excludes the possibility of obtaining useful results
for functions that receive an integer as an argument. An integer would always have zero size (since
integers do not take heap cells by themselves), which would result in, for instance, a constant function
giving the stack consumption of the fib function, whereas a linear function is expected. The notion of
the size of the input should give an idea on how easy or difficult is to process that input.

Definition 7.1. Given a heap h and a value v, the size function is defined as follows:

• If v is a pointer p, size returns the number of cells taken by the recursive spine of the DSs which v
points to. More formally:

size(h[p 7→ (j, C vi
n)], p) = 1 + ∑

i∈RecPos(C)
size(h, vi)

• If v is a literal c ∈ Int, then size(h, c) = c.

• If v is a literal c ∈ Bool, then size(h, c) = 0.

It is worth noting that, with this definition, the size of a list with n elements is n + 1, since it is made
of n cells with the (:) constructor plus an additional cell with the [] constructor. Analogously, the size
of a binary search tree (as defined in Section 2.2) with n elements is always 2n + 1 (n cells with the Node
constructor and n + 1 cells with the Empty constructor).

Our space consumption analysis bounds the m and s components by means of numeric functions
that depend on the size of the input. The δ component deserves special attention, since it is not a single
number, but a mapping from heap region identifiers (natural numbers) to integers. We cannot know,
at compile time, which regions are used to build DSs during the execution of an expression, since this
information is only known at runtime by means of the value environment E, which associates region
variables with actual region identifiers. As a consequence, we have to abstract the region identifiers
by the type ρ of their corresponding region variable. To compute a bound to the δ component, our
algorithm will compute a bound to the costs charged to each region type.

Recall that a Core-Safe function receives n + m variables as parameters:

f :: t1 → · · · → tn → ρ1 → · · · → ρm → t
f x1 · · · xn @ r1 · · · rm = e f

(7.1)

Upper bounds to cost and sizes are represented by numbers in R+
∞

def
= R+ ∪ {+∞}. The special

value +∞ denotes an absence of upper bounds (either because there are no such bounds, or because
the algorithm is not able to infer them). So, memory heap and stack needs are represented as functions
of the following set:

F = {ξ : ((R+
∞)⊥)n → (R+

∞)⊥ | ξ is monotonic and strict}

The notation D⊥ denotes the set D ∪ {⊥}. In this chapter we use the special value ⊥ to make unde-
finedness of functions explicit. If ξ ∈ F, we say that ξ is undefined for some sizes xi

n if and only if
ξ xi

n = ⊥. Hence, the domain of a function ξ ∈ F (denoted by dom ξ) is defined as follows:

dom ξ = {xi ∈
(
R+

∞
)n | ξ xi 6= ⊥}

219

The intuitive meaning of a cost function returning ⊥ for a given size is that the function whose cost
is being inferred does not evaluate to any value for that size. The strictness condition of space cost
functions demands that the result is undefined if at least one of the arguments is undefined.

Example 7.2. Assume the following Full-Safe definition:

dropTail xs = case xs of (x : xx)→ [x]

The function application dropTail [] does not evaluate to any value. Hence the memory needs of this
function can be specified as follows:

ξ = λxs.

2 if xs ≥ 2

⊥ otherwise

For the sake of clarity, we shall use curried notation when dealing with functions in F (in order to
avoid an excessive amount of parentheses) and λ-notation when defining these functions (for instance,
as in λx.x + 1). We use ξ, ξi, . . . to denote a generic element of F. If we use an element of F for bounding
heap memory needs (that is, the m component in the resource vector (δ, m, s)) we shall use µ, µ1, . . . as
metavariables, whereas in the context of stack memory needs (the s component) we use σ, σi, . . .

The following guard notation will be convenient in the following sections. Given a boolean function
G of n variables and a function ξ ∈ F, the notation [G → ξ] denotes the following function:

[G → ξ] = λxi.

ξ xi if G xi holds

⊥ otherwise

By abuse of notation we omit the λxi. prefix in G. For instance, the function ξ in Example 7.2 above can
be expressed more succinctly as [xs ≥ 2→ 2].

The usual ordering in R+ can be extended to (R+
∞)
⊥ in the usual way:

x ≤ y ⇔def x = ⊥∨ y = +∞ ∨ (x, y ∈ R+ ∧ x ≤ y)

This order can be further extended to functions in F as follows:

ξ1 v ξ2 ⇔def ∀xi ∈
(
R+

∞
)n .ξ1 xi v ξ2 xi

The arithmetic operations + and ∗ can also be extended to (R+
∞)⊥ as usual:

(+∞) + x = x + (+∞) = +∞
(+∞) ∗ x = x ∗ (+∞) = +∞

}
for every x ∈ R+

∞

⊥+ x = x +⊥ = ⊥
⊥ ∗ x = x ∗ ⊥ = ⊥

}
for every x ∈

(
R+

∞
)⊥

We have two different kinds of operators for denoting least upper bounds in (R+
∞)
⊥, t and ·t. The first

one ignores undefined values, whereas the second one returns⊥ if at least one of the elements to which
it is applied is ⊥. For example, t{2, 5,⊥, 1} = 5, but ·t{2, 5,⊥, 1} = ⊥.

220

The +, ∗, t and ·t operators can be trivially extended to (R+
∞)
⊥-valued functions in the usual way.

It is easy to see these operators are monotonic on its arguments, and hence the F set is closed under
these operators. Moreover, we obtain the following result:

Proposition 7.3. Given a fixed function definition f xi @ rj = e f , its associated ordered set of space cost
functions (F,v) is a complete lattice, whose bottommost element is λxi.⊥ and the topmost one is λxi. + ∞.

Proof. It follows directly from the fact that ((R+
∞)⊥,≤) is a complete lattice (see [92, Section A.2]).

With regard to the δ component of the resource vector we need to take the different region type
variables into account. Assuming the function definition given in (7.1), its body can only charge space
costs to the regions given as parameters (of types ρ1 . . . ρm) and to the working region self (of type ρself).
If we denote by R f the set {ρ1, . . . , ρm}, the function that gives the memory charges separated by region
belong to the following class of functions:

D∗ = {∆ : ((R+
∞)⊥)n → (R f ∪ {ρself } → R+

∞)⊥ | ∆ is monotonic and strict}

and we use the variables ∆, ∆1, . . . to denote functions in this set. The fact that ∆ is monotonic should
be understood with regard to the following order relation:

∆ xi ≤ ∆ yi ⇔def ∀ρ ∈ R f ∪ {ρself }.∆ xi ρ ≤ ∆ yi ρ

⊥ ≤ ∆ yi for every yi

which works in a componentwise basis.

When considering a function definition from outside, its charges to the self region are not visible,
since this region is disposed of when the function finishes. In these cases it is more convenient to remove
the ρself region from ∆, so as to get the following set of functions:

D = {∆ :
(
R+

∞
)n →

(
R f → R+

∞

)⊥
| ∆ is monotonic}

The elements of D and D∗ are called abstract heaps. Given an abstract heap ∆ ∈ D∗, we denote by
b∆c the function λxi.(∆ xi)|R f , which always belongs to D. In other words, b∆c discards the information
regarding the self region.

We define the addition +, and the least upper bound t between abstract heaps in a component-by-
component basis, as usual. The same applies to the v relation. Slightly different is the multiplication
operator ∗, which is defined in F×D, and not between two abstract heaps, as expected. Given ξ ∈ F

and ∆ ∈ D, the result of ξ ∗ ∆ is defined as follows:

ξ ∗ ∆ = λxi.

λρ ∈ R f .(ξ xi) ∗ (∆ xi ρ) if ∆ xi 6= ⊥

⊥ otherwise

The guarded notation described previously can also be used with the elements of D to obtain functions
such as [G → ∆] for some ∆ ∈ D. Finally, we introduce the | · | operator as a function in D→ F, defined
as follows:

|∆| = λxi.

∑ρ∈R f
∆ xi ρ if ∆ xi 6= ⊥

⊥ otherwise

221

Intuitively, the | · | operator adds the charges made to all RTVs into a single function, and it resembles
the |δ| notation defined in Section 2.7.

All the operators +, ∗, t, | · | and the v relation can be easily extended to D∗.

Example 7.4. Given the set R f = {ρ1, ρ2, ρ3}, let us define:

∆1 = λx.

 ρ1 7→ x + 1
ρ2 7→ 2
ρ3 7→ x2 + 3

 ∆2 = [x ≥ 2→ ∆1] ξ = λx.2x

then:

∆1 + ∆2 = λx.

x ≥ 2→

 ρ1 7→ 2x + 2
ρ2 7→ 4
ρ3 7→ 2x2 + 6

ξ ∗ ∆1 = λx.

 ρ1 7→ 2x2 + 2x
ρ2 7→ 4x
ρ3 7→ 2x3 + 6x

|∆2| = λx.[x ≥ 2→ x2 + x + 6]

and ∆2 v ∆1 holds, but not ∆1 v ∆2.

Proposition 7.5. Given a fixed function definition f xi @ rj = e f , its associated ordered set (D,v) is a complete
lattice, whose bottommost element is λxi.⊥ and the topmost one is λxi.λρ ∈ R f . + ∞.

Proof. Since (R+
∞,≤) is a complete lattice, so is (R f → R+

∞,v) with the component-wise ordering [92,
Section A.2]. As a consequence, ((R f → R+

∞)⊥,v) is a complete lattice, and so is D, for the same
reason.

These definitions allow us to set up a correspondence between the actual memory consumption of
an expression (given by the resource vector (δ, m, s) resulting from its evaluation) and the results of our
analysis, which will be triples of the form (∆, µ, σ), where ∆ ∈ D (or D∗, depending on the context)
and µ, σ ∈ F. The abstract heap ∆ is meant to be an upper bound to the δ component, whereas µ and
σ are upper bounds to the m and s components, respectively. The main difference is that the vector
(δ, m, s) represents a particular execution of e for a given input size, and (∆, µ, σ) captures every possible
execution of the expression for every possible input size. As a consequence, we can abstract the resource
behaviour of a function definition by means of its function signature.

Definition 7.6. A function signature for f is a triple (∆, µ, σ), where ∆ belongs to D, and µ, σ belongs
to F.

The next step in this section is to precisely define what a correct function signature is. Assume the
following ⇓-judgement of the body e f of the function definition given in (7.1), whose derivation we call
the context derivation.

E0 ` h0, k0, e f ⇓ h f , k0, v f , (δ f , m f , s f) (7.2)

Intuitively, we expect a correct signature (∆, µ, σ) to be an upper bound to the actual vector (δ f , m f , s f)

for every input size. In order to check that µ is a correct approximation of m f , we compute the size of the

function parameters from the value environment E0 and the heap h0, so we define si
def
= size(h0, E0(xi))

222

for every i ∈ {1..n}. If µ si
n ≥ m f , then µ has given a correct result for this particular execution of e f .

If we are able to prove that this holds for every possible execution of e f , then µ correctly approximates
the memory needs of e f . For the σ we can proceed similarly. However, the case of ∆ is more involved,
since we have to take into account the correspondence between the RTVs ρ1 . . . ρm and the actual re-
gions given by E0(r1) . . . E0(rm). For this purpose we use the concept of region instantiation which was
introduced when proving the correctness of Safe’s type system (see Definition 3.15 on page 96). If Γ0 is
the environment typing the expression e f , then a region instantiation η is consistent with E0 and Γ0 it
does not contradict the region instantiation defined by from E0 and Γ0, i.e. common RTVs are bound to
the same actual region:

E0(r) = i ∧ Γ0(r) = ρ⇒ η(ρ) = i

In case Γ0 is injective, then η = (E0 ◦ Γ−1
0)|R f∪{ρself } is the only region instantiation consistent with E0

and Γ0. This is the case for our function bodies, since the region inference algorithm (Chapter 4) assigns
different types to different region parameters. Henceforth we will abbreviate η = (E0 ◦ Γ−1

0)|R f∪{ρself }.

Definition 7.7. Given a sequence of sizes si
n of the input arguments of the context function f , a number

k of regions and a region instantiation η, we say that:

• ∆ is an upper bound to δ in the context of si
n, k and η, denoted ∆ �si

n ,k,η δ iff

∀j ∈ {0..k}. ∑
η(ρ)=j

∆ si
n ρ ≥ δ(j)

• µ is an upper bound to m in the context of si
n, denoted µ �si

n m, iff µ si
n ≥ m.

• σ is an upper bound to s in the context of si
n, denoted σ �si

n s, iff σ si
n ≥ s.

Example 7.8. Assume a function definition f x y @ r1 r2 = e f and the execution of its body e f under a
environment E and a heap h with three regions (that is, k = 2). We also assume that sx = size(h, E(x)) =
4, sy = size(h, E(y)) = 2 and that the function is typable under an environment Γ such that Γ(ri) = ρi

for i ∈ {1, 2}. If E(r1) = 0, E(r2) = 0 and E(self) = 1, then we get η = [ρ1 7→ 0, ρ2 7→ 0, ρself 7→ 1]. Let
us define ∆ as follows:

∆ = λx y.

 ρ1 7→ 2x + y
ρ2 7→ xy
ρself 7→ 7x + 5

Then ∆ is a correct upper bound to δ = [0 7→ 10, 1 7→ 32] in the context of sx, sy, k and η, since

∆ 4 2 =

 ρ1 7→ 10
ρ2 7→ 8
ρself 7→ 32

 and

{
10 + 8 ≥ δ(0)
32 ≥ δ(1)

The following properties on the � will be useful in the following. In particular, we prove that the �
relation on D (or D∗) is preserved by + and | · | operators.

Lemma 7.9. If ∆1 �si
n ,k,η δ1 and ∆2 �si

n ,k,η δ2 then ∆1 + ∆2 �si
n ,k,η δ1 + δ2.

Proof. Let j ∈ {0..k}. Then:

∑
η(ρ′)=j

(∆1 + ∆2) si
n ρ = ∑

η(ρ′)=j
∆1 si

n ρ + ∑
η(ρ′)=j

∆2 si
n ρ ≥ δ1(j) + δ2(j) = (δ1 + δ2)(j)

223

Lemma 7.10. If ∆ �si
n ,k,η δ then |∆| si

n ≥ |δ|

Proof. We know that dom η = R f , so for every ρ ∈ dom η there exists some i ∈ {0..k} such that η(ρ) = i.
Thus we get:

|∆| si
n = ∑

ρ∈dom η

∆ si
n ρ =

k

∑
i=0

∑
η(ρ)=i

∆ si
n ρ ≥

k

∑
i=0

δ(i) = |δ|

Given these definitions, we are ready to give a formal notion of a correct function signature.

Definition 7.11 (Correct signature). Let (∆, µ, σ) be the signature of a function definition f xi
n @ rj

m =

e f and Γ the type environment inferred for e f . This signature is said to be correct if for all h, h′, k, E f ,
vi

n, ij
m

, v, δ, m, s, si
n, η such that:

1. E f ` h, k + 1, e f ⇓ h′, k + 1, v, (δ, m, s) where E f = [xi 7→ vi
n, rj 7→ ij

m
, self 7→ k + 1]

2. For each i ∈ {1..n}, si = size(h, vi)

3. η is the consistent region instantiation determined by E f and Γ.

then ∆ �si
n ,k,η δ|k, µ �si

n m, and σ �si
n s.

7.3 Abstract interpretation

Once we have defined what a correct signature is, we need to know how to infer a correct signature
for a given function definition. In this section we provide an abstract interpretation function which
addresses this problem for non-recursive function definitions, and also serves as a basis for the inference
of recursive function definitions.

Given an expression e , our aim is to find a tuple (∆, µ, σ) which is an upper bound to its memory
consumption. Firstly we have to distinguish between two kinds of Core-Safe expressions: literals, vari-
ables, copy expressions and function and constructor applications make up the set of basic expressions,
whereas the set of compound expressions include, additionally, let and case expressions. The motivation
for doing this is that basic expressions can be dealt with in an uniform way when inferring each of the
components of the tuple (∆, µ, σ), while the processing of let and case expressions differs substantially
depending on the specific component. Therefore, we redefine the grammar of Core-Safe expressions as
follows:

BExp 3 be ::= c | x | x @ r | a1 ⊕ a2 | C ai @ r | f ai
n @ rj

m

Exp 3 e ::= be | let x1 = e1 in e2 | case x of Ci xij
ni → ei

n

Let us start defining the abstract interpretation function for basic expressions. This function is de-
fined as a set of rules in Figure 7.1. The interpretation of a basic expression [[e]] receives a signature
environment Σ : Fun → D × F × F which maps each function name g appearing in e to its mem-
ory consumption signature (∆g, µg, σg), as in Definition 7.6. It also receives a typing environment
Γ : RegVar → RegType, giving the type of each region variable in scope, and the statically deter-
mined length td of the runtime environment when calling a function application. The latter has the
same meaning as in the resource-aware semantics of Figure 2.26. The interpretation function is also

224

[[c]] Σ Γ td = ([] f , 0, 1)

[[x]] Σ Γ td = ([] f , 0, 1)

[[a1 ⊕ a2]] Σ Γ td = ([] f , 0, 2)

[[x @ r]] Σ Γ td = ([Γ(r) 7→ |x|] f , |x|, 2)

[[C ai @ r]] Σ Γ td = ([Γ(r) 7→ 1] f , 1, 1)

Σ(g) = (∆g, µg, σg) θ = unify(Γ, g, rj)

G = λxj.
(

∆g |ai| xj
l 6= ⊥∧ µg |ai| xj

l 6= ⊥∧ σg |ai| xj
l 6= ⊥

)
∆ = [G → θ ↓|ai |

∆g] µ = [G → λxj.µg (|ai| xj
l
)] σ = [G → λxj.σg (|ai| xj

l
)]

[[g ai
l @ rj

q]] Σ Γ td = (∆, µ, ·t{l + q, l + q− td + σ})

Figure 7.1: Abstract interpretation function for basic expressions.

parametric on the context function definition f . However, since we assume this definition fixed (and
to avoid excessive subscripting) we consider this parameter implicit. The notation |x| denotes the size
function (R+

∞)
n → R+

∞ associated with x. These functions are assumed to have been inferred by an
external size analysis. If R f is the set of the context function’s region parameters, the [] f notation stands
for the abstract heap λxi.λρ.0 where ρ ∈ R f . Similarly, the binding [ρ′ 7→ ξ] f denotes the following
abstract heap:

[ρ′ 7→ ξ] f
def
= λxi.λρ.

ξ xi if ρ=ρ’

0 otherwise

The integer values occurring in the rules should be understood as constant functions (that is n def
= λxi.n).

We omit the λxi for the sake of simplicity.

Notice the similarity between the results of the abstract interpretation in Figure 7.1 and the resource
vectors of the semantic rules (Figure 2.26 on page 53). The only rule worth explaining is that of function
application. Given a function definition g yi

l @ rj
m, assume we want to infer a particular function

application g ai
l @ r′j

q
. Firstly we retrieve the signature of g from the signature environment Σ, so let

(∆g, µg, σg) = Σ(g). Each component is a function which depends on the sizes of its l parameters yi
l , so

we have to pass the sizes of the actual arguments |ai|
l
, which, in turn, are functions of the parameters

of the caller (that is why we have |ai| xj
l
). The guard G discards those values xi giving place to sizes

|ai| xi
l

not belonging to the domain of ∆g, µg or σg. Notice that, with regard to the computation of ∆,
the type of the arguments in the function application may be instances of the function’s type. Hence we
have to find a correspondence between the RTVs of g and the RTVs of the particular instance used in
the call. That is what the function unify does.

Definition 7.12. Given a type environment Γ, a function name g ∈ Fun and a sequence of region
variables rj

q, we say that θ = unify(Γ, g, rj
q), iff Γ(g) = ∀αρ.ti

l → ρj
q → t, and ∀j ∈ {1..q}.θ(ρj) = Γ(rj).

If there are several RTVs of g’s type being mapped to the same RTV ρ in the function application,
then the charges done to the region of type ρ are the sum of the charges made by g to the RTVs ρ′ such

225

that θ(ρ′) = ρ. The ↓ operator does this computation. It is defined as follows:

θ ↓|ai |
∆ = λxi.λρ. ∑

ρ′∈θ−1(ρ)

∆ |ai| xi
l

ρ′

where ρ ∈ R f ∪ {ρself }.

Example 7.13. Assume a function g of type

g :: ∀α, ρ1, ρ2, ρ3.[α] @ ρ1 → ρ1 → ρ2 → ρ3 → T α @ ρ2 ρ3

and the function call g x @ self r1 self , where x has type [Int]@ρself , r1 has type ρ, and self has type ρself .
Let us compare the general type of g with the particular instance of the function application:

General type : [α]@ρ1 → ρ1 → ρ2 → ρ3 → T α @ ρ2 ρ3

Function application: [Int]@ρself → ρself → ρ → ρself → T Int @ ρ ρself

Hence we obtain θ = unify(Γ, g, self r1 self) = [ρ1 7→ ρself , ρ2 7→ ρ, ρ3 7→ ρself]. If ∆g is defined as follows:

∆g = λy.

 ρ1 7→ y2 + 3
ρ2 7→ 3y
ρ3 7→ 2y + 1

and ξ = λx.2x, then we get:

θ ↓ξ ∆g = λx.

[
ρself 7→ ((2x)2 + 3) + (2 · (2x) + 1)
ρ 7→ 3 · (2x)

]
= λx.

[
ρself 7→ 4x2 + 4x + 4
ρ 7→ 6x

]

So far we have obtained a tuple (θ ↓
|ai | xi

l ∆g, µ |ai| xi, σ |ai| xi), which is an upper bound to the mem-

ory costs of the function’s body. From these we can easily compute the costs of the function application
itself: we just have to proceed as in rule [App] of Figure 2.26. We use the strict ·t operator, since we want
the stack cost function of the whole application to be undefined in those values where G does not hold.
If we used t instead we would get in these values t{l + q, l + q− td +⊥} = l + q, where an undefined
result is expected.

In the following we shall use the notation [[be]]∆ Σ Γ td, [[be]]µ Σ Γ td and [[be]]σ Σ Γ td to refer to the
first, second and third components of [[be]] Σ Γ td respectively. In the first two cases we will omit the td
since they are not relevant to the computation of ∆ and µ, whereas with the third component we omit
the Γ environment for the same reason. Sometimes we shall even leave out entirely the Σ and Γ when
they are clear from the context.

An important result is the fact that the results given by the [[·]]∆, [[·]]µ, and [[·]]σ abstract interpreta-
tions, when applied to basic expressions, have the same definition domain.

Lemma 7.14. For every basic expression be and every Γ, Σ, td we get:

dom [[be]]∆ Σ Γ = dom [[be]]µ Σ Γ = dom [[be]]σ Σ td

Proof. If be is not a function application the Lemma follows trivially, since the definition domain is R+

226

in these cases. If be is a function application, it holds because the results of [[be]]∆, [[be]]µ and [[be]]σ are
guarded by the same G, and the three are always distinct from ⊥ if the guard holds.

For inferring heap space consumption in presence of let and case expressions we have to apply a
flattening transformation to the expression being analysed. This works as follows: an expression e is
transformed into a set of sequences of basic expressions. Each sequence represents a possible execution
flow of the expression. The whole set of sequences capture all the possible execution flows that may
arise when executing this expression. This transformation destroys the structure of the program: in-
stead of having nested expressions, the result comprises all the basic expressions being executed into a
single “level” of nesting (that is why this transformation is called flattening). However, this transfor-
mation does not affect heap space consumption, since the latter does not depend on the structure of the
expression. The following example provides an intuition on this fact.

Example 7.15. Given the following expressions:

e ≡ let x1 = be1 in (let x2 = be2 in be3)

e′ ≡ let x2 = (let x1 = be1 in be2) in be3

Let (δi, mi, si) the resource vector associated to the execution of the expression bei for i ∈ {1..3}. If
x1 /∈ fv(be3) and we can execute e, we can also execute e′. Let (δ, m, s) and (δ′, m′, s′) be the resources of
the execution of e and e′ respectively. With the δ component, we get:

δ = δ1 + (δ2 + δ3) δ′ = (δ1 + δ2) + δ3

with regard to the m component we obtain:

m = t{m1, |δ1|+ t{m2, |δ2|+ m3}} m′ = t{t{m1, |δ1|+ m2}, |δ1 + δ2|+ m3}

The equality δ = δ′ follows trivially. The equality m = m′ follows from the fact that |δ1 + δ2| =
|δ1|+ |δ2| and the associativity of the t operator, so we get:

m = m′ = t{m1, |δ1|+ m2, |δ1|+ |δ2|+ m3} (7.3)

It is easy to show that, in both cases, the expression be1 is the first to be executed, then be2 and be3 comes
in the last place. That is why we can represent both expressions as a single sequence [be1, be2, be3].

When considering sequences of expressions we lose the pattern guards of the case expressions.
Nevertheless, these guards provide useful information on the size of the DS being matched against. For
instance, assume the following expression:

case x of
[]→ e1

(x : xx)→ e2

If the branch e2 is executed, we know for sure2 that the size of x must be greater or equal than 2. In
general, this size information will be included in the execution sequences as guards, specifying under

2At this point we assume the absence of dangling pointers in the heap, since the expression is well-typed.

227

seqs be = {[be]}
seqs (let x1 = e1 in e2) = {seq1 ++ seq2 | seq1 ∈ seqs e1, seq2 ∈ seqs e2}
seqs (case x of Ci xij

ni → ei) =
⋃n

i=1 (seqs ei ∧ λxi.(|x| xi ≥ 1 + |RecPos(Ci)|))

Figure 7.2: Definition of seqs, which converts an expression into a set of sequences.

which sizes of the case discriminant the execution of each sequence may take place. This motivates the
following definition:

Definition 7.16. A sequence is a list of basic expressions be1, . . . , ben preceded by a boolean function
G. We use the notation [G → be1, ...ben] to denote sequences. The notation [be1, . . . , ben] stands for the
sequence [true→ be1, . . . , ben].

We define the concatenation (++) of sequences as follows:

[G1 → be1, . . . , ben] ++[G2 → be′1, . . . , be′m] = [G1 ∧ G2 → be1, . . . , ben, be′1, . . . , be′m]

If seq is a sequence, we can strengthen its guard with the notation seq∧ G, which stands for

[G1 → be1, . . . , ben] ∧ G = [G1 ∧ G → be1, . . . , ben]

and this notation can be extended to sets of sequences as follows:

S ∧ G = {seq∧ G | seq ∈ S}

The function seqs transforms a Core-Safe expression into a set of sequences representing all the possi-
ble execution paths. It is defined in Figure 7.2. In order to transform a let expression, seqs gathers all the
sequences of the auxiliary expression e1 and the main expression e2 and considers all the combinations.
With respect to case expressions, it collects the sequences of each branch and adds the corresponding
size guard imposed by the recursive positions of the pattern: the size of the discriminant must be one
plus the number of recursive positions of its constructor.

Example 7.17. Assume the function append for joining two lists:

append xs ys @ r = case xs of

[]→ ys

(x : xx)→ let x1 = append xx ys @ r in (x : x1)@r

Its body eappend can be flattened into two sequences as follows:

seqs eappend = {[xs ≥ 1→ ys], [xs ≥ 2→ append xx ys, (x : x1)@r]}

The extension of the abstract interpretation rules to compound expressions will be done in terms
of their decomposition into sequences of basic expressions. Therefore our first step is to define the
[[·]]∆ and [[·]]µ interpretations of such sequences. Example 7.15 gives us an intuition on how to define
these interpretations. There we had three basic expressions with their associated costs (δ1, m1), (δ2, m2)

and (δ3, m3). The δ component is additive, in the sense that the δ component of the whole compound

228

expression is the sum of the δ’s of its components. It is reasonable to think that its abstract counterpart
(∆) should be additive, as well. Hence, if (∆1, µ1), (∆2, µ2) and (∆3, µ3) are the inferred costs of the
respective basic expressions, we would obtain the following result:

[[[be1, be2, be3]]]∆ = ∆1 + ∆2 + ∆3 (7.4)

With regard to the µ component, from the expression (7.3) we can define an “abstract” counterpart as
follows:

[[[be1, be2, be3]]]µ = ·t{µ1, |∆1|+ µ2, |∆1|+ |∆2|+ µ3} (7.5)

The intuition behind this expression is depicted in Figure 2.30, and its extension to three expressions.
The reason of choosing ·t instead of t is that, if the costs of one of the basic expressions return an
undefined value for some input sizes, we want to cancel out the whole sequence.

Now we can proceed to the generalization of the expressions given in (7.4) and (7.5) to guarded
sequences of an arbitrary number of expressions. This is done as follows:

[[[G → be1, ..., ben]]]∆ Σ Γ = [G → ∑n
i=1 ([[bei]]∆ Σ Γ)]

[[[G → be1, ..., ben]]]µ Σ Γ =
[

G → ·⊔n
i=1

(
∑i−1

j=1 |[[bej]]∆ Σ Γ|+ [[bei]]µ Σ Γ
)]

It is easy to see that Lemma 7.14 can be extended when applying the interpretation to sequences of
expressions:

Lemma 7.18. For every sequence of expressions seq, every Σ and Γ, we get:

dom ([[seq]]∆ Σ Γ) = dom ([[seq]]µ Σ Γ)

Proof. Let seq = [G → be1, . . . , ben]. Firstly we prove the ⊆ inclusion. Let xi ∈ dom ([[seq]]∆ Σ Γ). Then:

1. G(xi) holds, and

2. xi ∈ dom [[bei]]∆ for each i ∈ {1..n}, which implies:

(a) xi ∈ dom |[[bei]]∆| for each i ∈ {1..n}, by definition of | · | operator.

(b) xi ∈ dom [[bei]]µ for each i ∈ {1..n}, by Lemma 7.14.

Hence xi ∈ dom [[seq]]µ, by (1), (2a) and (2b). The ⊇ inclusion can be proven similarly.

Example 7.19. Back to our append function, assume a signature Σ in which Σ(append) = (f∆, fµ, λxs ys.0)
for some functions f∆ ∈ D and fµ ∈ F such that dom f∆ = {(xs, ys) | xs ≥ 2} and dom fµ = {(xs, ys) |
xs ≥ 3}. Given the flattening of eappend shown in Example 7.17:

seqs eappend = {[xs ≥ 1→ ys]︸ ︷︷ ︸
seq1

, [xs ≥ 2→ append xx ys, (x : x1)@r]︸ ︷︷ ︸
seq2

}

Let us apply the [[·]]∆ and [[·]]µ interpretations to seq1 and seq2 under an environment Γ = [r 7→ ρ2] and
assuming that |xx| = λxs ys.xs− 1. ·We start with the first sequence:

229

[[ys]]∆ = λxs ys.[ρ2 7→ 0]

[[seq1]]∆ = λxs ys.[xs ≥ 1→ [ρ2 7→ 0]]

[[ys]]µ = λxs ys.0

[[seq1]]µ = λxs ys.[xs ≥ 1→ 0]

whereas with the second sequence we get the following guard,

G = λxs ys. f∆(xs) 6= ⊥∧ fµ(xs) 6= ⊥

= λxs ys.xs ≥ 2 ∧ xs ≥ 3

= λxs ys.xs ≥ 3

which is used in the respective interpretations of the append function application:

[[append xs ys @ r]]∆ = λxs ys.[G (xs− 1) ys→ f∆ (xs− 1) ys]

= λxs ys.[xs− 1 ≥ 3→ [ρ2 7→ f∆ (xs− 1) ys ρ2]]

= λxs ys.[xs ≥ 4→ [ρ2 7→ f∆ (xs− 1) ys ρ2]]

[[append xs ys @ r]]µ = λxs ys.[xs ≥ 4→ fµ (xs− 1) ys]

[[(x : x1)@r]]∆ = λxs ys.[ρ2 7→ 1]

[[(x : x1)@r]]µ = λxs ys.1

[[seq2]]∆ = λxs ys.[xs ≥ 2→ [xs ≥ 4→ [ρ2 7→ f∆ (xs− 1) ys ρ2]] + [ρ2 7→ 1]]

= λxs ys.[xs ≥ 2→ [xs ≥ 4→ [ρ2 7→ 1 + f∆ (xs− 1) ys ρ2]]]

= λxs ys.[xs ≥ 4→ [ρ2 7→ 1 + f∆ (xs− 1) ys ρ2]]

[[seq2]]µ = λxs ys.[xs ≥ 2→ ·t{[xs ≥ 4→ fµ (xs− 1) ys], [xs ≥ 4→ f∆ (xs− 1) ys ρ2 + 1]}]

= λxs ys.[xs ≥ 2→ [xs ≥ 4→ ·t{ fµ (xs− 1) ys, f∆ (xs− 1) ys ρ2 + 1}]]

λxs ys.[xs ≥ 4→ ·t{ fµ (xs− 1) ys, f∆ (xs− 1) ys ρ2 + 1}]

Notice that, for every sequence, both interpretations have the same domain.

Sometimes it is useful to express the [[·]]∆ and [[·]]µ interpretations of a sequence in terms of its sub-
sequences. This is given by the following Lemma.

Lemma 7.20. Given two sequences seq1 and seq2, the following facts hold:

1. [[seq1 ++seq2]]∆ Σ Γ = [[seq1]]∆ Σ Γ + [[seq2]]∆ Σ Γ

2. [[seq1 ++seq2]]µ Σ Γ = ·t{[[seq1]]µ Σ Γ, |[[seq1]]∆ Σ Γ|+ [[seq2]]µ Σ Γ}

230

Proof. Let us assume seq1 = [G1 → be1, . . . , bek] and seq2 = [G2 → be′1, . . . , be′m]. We also define
[bek+1, . . . , bek+m] = [be′1, . . . , be′m]. Firstly we prove that the functions occurring in both sides of each
equation have the same domain. With regard to the first fact we get

xi ∈ dom [[seq1 ++seq2]]∆

⇔ G1 xi ∧ G2 xi ∧ ∀j ∈ {1..k + m}.xi ∈ dom [[bej]]∆

⇔ G1 xi ∧ ∀j ∈ {1..k}.xi ∈ dom [[bej]]∆ ∧ G2 xi ∧ ∀j ∈ {k + 1..k + m}.xi ∈ dom [[bej]]∆

⇔ G1 xi ∧ ∀j ∈ {1..k}.xi ∈ dom [[bej]]∆ ∧ G2 xi ∧ ∀l ∈ {1..m}.xi ∈ dom [[be′l]]∆
⇔ xi ∈ dom [[seq1]]∆ ∧ xi ∈ dom [[seq2]]∆

⇔ xi ∈ dom ([[seq1]]∆ + [[seq2]]∆)

whereas in the second one we get:

xi ∈ dom [[seq1 ++seq2]]µ

⇔ G1 xi ∧ G2 xi ∧ ∀j ∈ {1..k + m}.xi ∈ dom ∑
j−1
l=1 |[[bel]]∆|+ [[bej]]µ

⇔ G1 xi ∧ ∀j ∈ {1..k}.xi ∈ dom ∑
j−1
l=1 |[[bel]]∆|+ [[bej]]µ

∧ G2 xi ∧ ∀j ∈ {1..m}.xi ∈ dom ∑
j−1
l=1 |[[be′l]]∆|+ [[be′j]]µ

⇔ G1 xi ∧ ∀j ∈ {1..k}.xi ∈ dom ∑
j−1
l=1 |[[bel]]∆|+ [[bej]]µ

∧ G2 xi ∧ ∀j ∈ {1..m}.xi ∈ dom ∑
j−1
l=1 |[[be′l]]∆|+ [[be′j]]µ

∧ ∀j ∈ {1..k}.xi ∈ dom |[[bej]]∆|
⇔ xi ∈ dom [[seq1]]µ ∧ xi ∈ dom [[seq2]]µ ∧ xi ∈ dom |[[seq1]]∆|
⇔ xi ∈ dom ·t{[[seq1]]µ, |[[seq1]]∆|+ [[seq2]]µ}

Now let us assume that D = dom [[seq1 ++seq2]]∆ (and hence D = dom [[seq1 ++seq2]]µ, by Lemma
7.14). If we restrict ourselves to this definition domain D, we can prove the first fact as follows:

[[seq1 ++seq2]]∆ = [[[be1, . . . , bek, bek+1, . . . , bek+m]]]∆

= ∑k+m
i=1 [[bei]]∆

= ∑k
i=1[[bei]]∆ + ∑k+m

i=k+1[[bei]]∆

= ∑k
i=1[[bei]]∆ + ∑m

j=1[[bek+j]]∆

= ∑k
i=1[[bei]]∆ + ∑m

j=1[[be′j]]∆
= [[seq1]]∆ + [[seq2]]∆ (in D)

Under the same conditions, we prove the second fact:

[[seq1 ++seq2]]µ = [[[be1, . . . , bek, bek+1, . . . , bek+m]]]µ

= ·⊔k+m
i=1

(
∑i−1

j=1 |[[bej]]∆|+ [[bei]]µ
)

= ·t
{
·⊔k

i=1

(
∑i−1

j=1 |[[bej]]∆|+ [[bei]]µ
)

, ·⊔k+m
i=k+1

(
∑i−1

j=1 |[[bej]]∆|+ [[bei]]µ
)}

= ·t
{
[[seq1]]µ, ·⊔k+m

i=k+1

(
∑k

j=1 |[[bej]]∆|+ ∑i−1
j=k+1 |[[bej]]∆|+ [[bei]]µ

)}
= ·t

{
[[seq1]]µ, ∑k

j=1 |[[bej]]∆|+ ·
⊔k+m

i=k+1

(
∑i−1

j=k+1 |[[bej]]∆|+ [[bei]]µ
)}

= ·t
{
[[seq1]]µ,

∣∣∣∑k
j=1[[bej]]∆

∣∣∣+ ·⊔m
l=1

(
∑k+l−1

j=k+1 |[[bej]]∆|+ [[bek+l]]µ
)}

= ·t
{
[[seq1]]µ, |[[seq1]]∆|+ ·

⊔m
l=1

(
∑l−1

p=1 |[[bek+p]]∆|+ [[be′l]]µ
)}

= ·t
{
[[seq1]]µ, |[[seq1]]∆|+ ·

⊔m
l=1

(
∑l−1

p=1 |[[be′p]]∆|+ [[be′l]]µ
)}

= ·t
{
[[seq1]]µ, |[[seq1]]∆|+ [[seq2]]µ

}
(in D)

231

In case a compound expression gives place to several sequences, we have to take the least upper
bound of all of them. So, the abstract interpretation of a set S of sequences is defined as follows:

[[S]]∆ Σ Γ =
⊔

seq∈S
[[seq]]∆ Σ Γ

[[S]]µ Σ Γ =
⊔

seq∈S
[[seq]]µ Σ Γ

Finally, the ∆ and µ components of the abstract interpretation of a compound expression are given by
the following definition:

[[e]]∆ Σ Γ = [[seqs e]]∆ Σ Γ

[[e]]µ Σ Γ = [[seqs e]]µ Σ Γ

Example 7.21. Given the same signature and type environments of Example 7.19, we get:

[[eappend]]∆ = λxs ys.[xs ≥ 1→ [ρ2 7→ 0]] t [xs ≥ 4→ [ρ2 7→ 1 + f∆ (xs− 1) ys ρ2]]

[[eappend]]µ = λxs ys.[xs ≥ 1→ 0] t [xs ≥ 4→ ·t{ fµ (xs− 1) ys, f∆ (xs− 1) ys ρ2 + 1}]

both of which can be expressed with piecewise functions as follows:

[[eappend]]∆ = λxs ys.

⊥ xs < 1

[ρ2 7→ 0] 1 ≤ xs < 4

[ρ2 7→ 1 + f∆ (xs− 1) ys ρ2] 4 ≤ xs

[[eappend]]µ = λxs ys.

⊥ xs < 1

0 1 ≤ xs < 4

·t{ fµ (xs− 1) ys, f∆ (xs− 1) ys ρ2 + 1} 4 ≤ xs

Regarding the σ component for bounding the stack costs, we cannot apply the flattening-based
approach, since this transformation breaks the structure of an expression and, unlike heap costs, the
stack costs do depend on this structure, as the following example shows.

Example 7.22. Back to the expressions e and e′ of Example 7.15, and assuming that si represent the stack
costs of bei, for i ∈ {1, 2, 3}. We get for e the following costs:

s = t{2 + s1, 1 + t{2 + s2, 1 + s3}} = t{2 + s1, 3 + s2, 2 + s3}

whereas with e′ we obtain:

s′ = t{2 + t{2 + s1, 1 + s2}, 1 + s3} = t{4 + s1, 3 + s2, 1 + s3}

which is clearly different from s.

Instead of defining the [[·]]σ interpretation as a function of the sequences originated from a com-
pound expressions, we have to define it in terms of the compound expression itself. The [[·]]σ interpreta-

232

tion of let expressions shown below roughly resembles its counterpart in the resource-aware semantics
of Figure 2.26. With respect to case expressions, we proceed in a similar way, but we take the least
upper bound of all the branches and include the corresponding guard:

[[let x1 = e1 in e2]]σ Σ td = ·t{2 + [[e1]]σ Σ 0, 1 + [[e2]]σ Σ (td + 1)}
[[case x of Ci xij

ni → ei
n
]]σ Σ td =

⊔n
i=1 [|x| ≥ 1 + |RecPos(Ci)| → ni + [[ei]]σ Σ (td + ni)]

Example 7.23. The [[·]]σ interpretation of our running example eappend leads to the following results with
td = 3, if we assume that Σ(append) = ([] f , 0, fσ) such that dom fσ = {(xs, ys) | xs ≥ 1}:

[[eappend]]σ Σ 3 = [xs ≥ 1→ [[ys]]σ Σ 3] t [xs ≥ 2→ 2 + [[let x1 = . . .]]σ Σ 5]

= [xs ≥ 1→ 1] t [xs ≥ 2→ 2 + ·t{2 + [[append xx ys @ r]]σ Σ 0, 1 + [[(x : x1)@r]]σ Σ 6}]

= [xs ≥ 1→ 1] t [xs ≥ 2→ 2 + ·t{2 + ·t{3, 3 + [xs− 1 ≥ 1→ fσ (xs− 1) ys]}, 1 + 1}]

= [xs ≥ 1→ 1] t [xs ≥ 2→ 2 + ·t{[xs ≥ 2→ ·t{5, 5 + fσ (xs− 1) ys}], 2}]

= [xs ≥ 1→ 1] t [xs ≥ 2→ 2 + ·t{[xs ≥ 2→ 5 + fσ (xs− 1) ys], 2}]

= [xs ≥ 1→ 1] t [xs ≥ 2→ ·t{7 + fσ (xs− 1) ys, 7}]

= [xs ≥ 1→ 1] t [xs ≥ 2→ 7 + fσ (xs− 1) ys)]

One may wonder why we have not followed the same approach with the [[·]]∆ and [[·]]µ interpreta-
tions. We could have directly defined these in terms of the let and case expressions, without any kind
of flattening:

[[let x1 = e1 in e2]]∆ Σ Γ = [[e1]]∆ Σ Γ + [[e2]]∆ Σ Γ
[[case x of Ci xij

ni → ei
n
]]∆ Σ Γ =

⊔n
i=1 [|x| ≥ 1 + |RecPos(Ci)| → [[ei]]∆ Σ Γ]

[[let x1 = e1 in e2]]µ Σ Γ = ·t{[[e1]]µ Σ Γ, |[[e1]]∆ Σ Γ|+ [[e2]]µ Σ Γ}
[[case x of Ci xij

ni → ei
n
]]µ Σ Γ =

⊔n
i=1
[
|x| ≥ 1 + |RecPos(Ci)| → [[ei]]µ Σ Γ

]
(7.6)

However, the interpretation given with these equations (as done in [83]) is, in some cases, less precise
than the one given in terms of sequences, as the following example shows:

Example 7.24. Assume the following expression in the context of a function depending on a parameter
b:

e ≡ let x1 = case b of
True→ be1

False→ be2

in be3

and let (∆i, µi) be the heap costs inferred for the basic expression bei (i ∈ {1, 2, 3}). If we split e into
sequences we get:

seqs e = {[be1, be3], [be2, be3]}

With the interpretation applied to sequences we get:

µ = t
{
·t{µ1, |∆1|+ µ3}
·t{µ2, |∆2|+ µ3}

}

233

whereas with the equations (7.6) we would obtain:

µ′ = ·t{t{µ1, µ2}, | t {∆1, ∆2}|+ µ3}

Then µ′ = µ if and only if | t {∆1, ∆2}| = t{|∆1|, |∆2|}. Assume R f = {ρ1, ρ2} and the following values
of ∆1 and ∆2:

∆1 = λb.

[
ρ1 7→ 1
ρ2 7→ 2

]
∆2 = λb.

[
ρ1 7→ 2
ρ2 7→ 1

]
We would get:

| t {∆1, ∆2}| =
∣∣∣∣∣λb.

[
ρ1 7→ 2
ρ2 7→ 2

]∣∣∣∣∣ = λb.4, but t {|∆1|, |∆2|} = t{λb.3, λb.3} = λb.3

So, in this particular case, µ′ is strictly less precise than µ.

7.4 Correctness of the abstract interpretation

In this section we aim to prove the following fact:

The tuple (∆, µ, σ) resulting from the abstract interpretation of e is an upper bound to the actual
resource vector (δ, m, s) resulting from the execution of e.

The meaning of (∆, µ, σ) being an upper bound to (δ, m, s) was already discussed in Section 7.2, in
which we defined a � relation. However, this relation is parametric with respect some sizes of the
input arguments. Hence, in order to prove the claim above we cannot consider e to be an expression
in its own, but contained within a context function definition (7.1) with its set of input parameters. In
the same way, we consider that the execution of e, represented as a ⇓-judgement, belongs to the context
derivation specified in (7.2). So, our sizes si

n occurring in the � relations are obtained from the values
of the parameters xi in the value environment E0 and heap h0 of the context judgement. In other words,
for every i ∈ {1..n}, si = size(h0, E0).

We shall assume the admissibility condition (Definition 2.14 on page 36) on the context derivation:

∀j ∈ {1..m}.E0(rj) < k0 and E(self) = k0

By Proposition 2.15 we know that this condition is propagated through the subderivations contained
within it. This admissibility property is also propagated to the consistent region instantiation defined
by E0 and the typing environment Γ0 of e f , since Γ0(rj) = ρj for all j ∈ {1..m} and Γ0(self) = ρself , hence

∀j ∈ {1..m}.η(ρj) < k0 and η(ρself) = k0

The result of the abstract interpretation depends on some elements that are given as parameters to
it, namely:

• The function signatures contained within the signature environment Σ passed to [[e]] as a parame-
ter. If we want [[e]] to return correct results we have to ensure that the function signatures in Σ are
correct approximations to the costs of their respective functions.

• The size functions | · | used in copy expressions and function applications. Although we do not
tackle the problem of size inference, it is necessary to pose a condition of correct size analysis in

234

order to prove that the results of [[e]] are correct. In other words, we have to ensure that the
sizes given by the analysis are exact or upper approximations of the actual runtime sizes of its
corresponding DSs.

The first problem has been already addressed in Definition 7.11. With respect to the second one, we
formulate the following notion of a correct size analysis.

Definition 7.25 (Correct size analysis). Let f xi @ rj = e f be the context function. The size analysis
| · | is correct if, given any initial environment E0 such that the judgement (7.2) is derivable, then for all
subexpressions e of e f such that the judgement:

E ` h, k0, td, e ⇓ h′, k0, v, (δ, m, s)

belongs to the derivation of (7.2) it holds that

∀x ∈ dom E : |x| si
n ≥ size(h, E(x)) where si = size(h0, E0(xi)) for each i ∈ {1..n}

In other words, a size function |x| is correct if it is always greater that the size of the data structure
pointed to by x at runtime.

The correctness proof of the abstract interpretation relies on the fact that both the signature environ-
ment and the size analysis are correct.

Theorem 7.26 (Correctness of the abstract interpretation). Let f xi
n @ rj

m = e f a context function, Γ the
inferred global type environment for e f , Σ containing correct signatures for all the functions called from e f , an
initial environment E0 and a heap h0 such that the judgement (7.2) is derivable. For each subexpression e of e f

and E, td, ∆, µ, σ, h, ,h′, v, ,t, δ, m, s, S such that:

1. S = seqs e.

2. For every seq ∈ S, every occurrence of |x| in the evaluation of [[seq]]∆ Σ Γ and [[seq]]µ Σ Γ has been inferred
with a correct size analysis.

3. E ` h, k0, td, e ⇓ h′, k0, v, (δ, m, s) belongs to the derivation of (7.2).

then:

1. [[e]]σ Σ td �si
n s , and

2. There exists some seq ∈ S such that [[seq]]∆ Σ Γ �si
n ,k0,η δ and [[seq]]µ Σ Γ �si

n m.

where ∀i ∈ {1..n}.si = size(h, E0(xi)), and η is the consistent region instantiation determined by E and Γ.

Proof. By induction on the structure of e. In the following we will leave out the si
n and k0 subscripts in

the � relations for a better readability. We distinguish cases:

• Cases e ≡ c, e ≡ x

We get a single sequence [e], for which [[[e]]]∆ = λxi
n.λρ.0, [[[e]]]µ = λxi

n.0. Besides this, we get
[[e]]σ = λxi

n.1. With respect to the execution, we obtain (δ, m, s) = ([]k0 , 0, 1). Thus we get:

1. [[e]]σ � s, since [[e]]σ si
n = 1 = s.

235

2. [[[e]]]∆ � δ and [[[e]]]µ � m, since for every j ∈ {0..k0}

∑
η(ρ)=j

[[[e]]]∆ si
n ρ = 0 = δ(j)

[[[e]]]µ si
n = 0 = m

• Case e ≡ a1 ⊕ a2

It is similar to the previous case. The only difference is that s = 2 instead of 1, and [[e]]σ = λxi
n.2

instead of λxi
n.1.

• Case e ≡ x @ r

Assume that Γ(r) = ρ and E(r) = j. If we denote m = size(h, E(x)), the resulting resource vector
is ([j 7→ m]k, m, 2), whereas the result of the analysis is ([ρ 7→ |x|], |x|, 2). Then:

1. [[[e]]]σ � s holds since σ si
n = 2 = s.

2. [[[e]]]∆ � δ. Let i ∈ {0..k0}. If i = j then η(ρ) = (E ◦ Γ−1)(ρ) = i. Hence:

∑η(ρ′)=i ∆ si
n ρ′ ≥ ∆ si

n ρ

= |x| si
n

≥ size(h, E(x)) {by Definition 7.25}
= δ(i)

If i 6= j we get:

∑
η(ρ′)=i

∆ si
n ρ′ ≥ 0 = δ(i)

The proof of [[[e]]]µ � m is similar:

[[[e]]]µ si
n = |x| si

n ≥ size(h, E(x)) = m

• Case e ≡ C ai @ r

Assume Γ(r) = ρ and E(r) = j. Then (δ, m, s) = ([j 7→ 1]k, 1, 1) and [[e]] Σ Γ td = ([ρ 7→ 1] f , 1, 1).
Again, we have a single sequence seq = [e], so we prove:

1. [[[e]]]σ � s. It follows from the fact that σ si
n = 1 = s.

2. [[[e]]]∆ � δ. Let i ∈ {0..k0}, if i 6= j we get:

∑
η(ρ′)=i

∆ si
n ρ′ ≥ 0 = δ(i)

and with regard to j, we know that η(ρ) = (E ◦ Γ−1)(ρ) = j, so

∑
η(ρ′)=j

∆ si
n ρ′ ≥ ∆ si

n ρ = 1 = δ(j)

The proof of [[[e]]]µ � m follows from the definitions of µ and m:

µ si
n = 1 = m

236

• Case e ≡ g ai
l @ r′j

q

We assume that Σ g ≡ g yi
l @ r′′j

q
= eg and, by using the corresponding rule:

Eg ` h, k0 + 1, l + q, eg ⇓ h′, k0 + 1, v, (δg, mg, sg)

where Eg =
[
yi 7→ E(ai)

l
, r′′j 7→ E(r′j)

q
, self 7→ k0 + 1

]

The correctness of the signature (∆g, µg, σg) follows by assumption. Moreover, g is well-typed
and if Γ(g) = ∀αρ.ti

l → ρj
q → t, the global type Γg being inferred for eg contains the bindings

[r′′j : ρj
q
]. On the other hand, if si,g denote the size of the i-th actual argument before evaluating

the function’s body (i.e. ∀i ∈ {1 . . . l} : si,g = size(h, Eg(yi))) then, by our definition of correct
signature:

∆g �si,g
l ,k0,η′ δg|k0 µg �si,g

l mg σg �si,g
l sg

where η′ = Eg · Γ−1
g . This implies, in particular, that ∆g si,g

l 6= ⊥, µg si,g
l 6= ⊥ and σg si,g

l 6= ⊥.
By Definition 7.25 we get, for each i ∈ {1 . . . l}

|ai| si
n ≥ size(h, E(ai)) = size(h, Eg(yi)) = si,g (7.7)

So, by monotonicity of ∆g, µg and σg we get ∆g (|ai| si
nl
) 6= ⊥, µg (|ai| si

nl
) 6= ⊥ and σg (|ai| si

nl
) 6=

⊥, from which G (|ai| si
nl
) holds. Now we prove:

1. [[e]]σ � s. Since σg is monotonic:

[[e]]σ si
n = ·t {l + q, σg (|ai| sj

n)
l − td + l + q}

≥ ·t {l + q, σg sj,g
l − td + l + q}

≥ ·t {l + q, sg − td + l + q}
= s

2. [[[e]]]∆ �si
n ,k0,η δ. Let i ∈ {0 . . . k0}. Let us define ∆ = θ ↓|ai |

∆g:

∑
η(ρ)=i

∆ si
n ρ = ∑

η(ρ)=i
∑

θ(ρ′)=ρ

∆g |ai| si
nl

ρ′

where θ = unify(Γ, g, r′j
q
).

Because of monotonicity of ∆g:

∑
η(ρ)=i

∆ si
n ρ ≥ ∑

η(ρ)=i
∑

θ(ρ′)=ρ

∆g si,g
l ρ′ = ∑

(η◦θ)(ρ′)=i
∆g si,g

l ρ′

By definition of ∆g �si,g
l ,k0,(η·θ) δg|k0 and because of the fact that i 6= k0 + 1, we can get the

desired result:

∑
η(ρ)=i

∆ si
n ρ ≥ δg|k0(i) = δ(i)

237

provided η ◦ θ = η′. However, for each j ∈ {1..q}:

η(θ(ρj)) = E(Γ−1(Γ(r′j))) {by definition of η and θ}

= E(r′j)

= Eg(r′′j) {by definition of Eg}

= Eg(Γ−1
g (ρj)) {by definition of Γg}

= η′(ρj) {by definition of η′}

So [[[e]]]∆ = ∆ �si
n ,k0,η δ. Finally, we prove that [[[e]]]µ �si

n m:

µ si
n = µg |ai| si

nl

≥ µg si,g
l {because of (7.7) and monotonicity of µg}

≥ mg {since µg �si,g
l mg}

= m

• Case e ≡ let x1 = e1 in e2

Let us denote by S1 and S2 the results of seqs e1 and seqs e2 respectively. Assume that the execu-
tion of e1 returns (δ1, m1, s1) as a resource vector, and the execution of e2 returns (δ2, m2, s2). By
induction hypothesis we get the following facts:

[[e1]]σ Σ 0 �si
n s1 [[e2]]σ Σ (td + 1) �si

n s2 (7.8)

∃seq1 ∈ S1.[[seq1]]∆ �si
n ,k,η δ1 ∧ [[seq1]]µ �si

n m1 (7.9)

∃seq2 ∈ S2.[[seq2]]∆ �si
n ,k,η δ2 ∧ [[seq2]]µ �si

n m2 (7.10)

Now we prove:

1. [[e]]σ �si
n s. This follows from (7.8) because:

[[e]]σ Σ td si
n = ·t{2 + ([[e1]]σ Σ 0) si

n, 1 + ([[e2]]σ Σ (td + 1)) si
n}

≥ ·t{2 + s1, 1 + s2}

= s

2. [[seq1 ++seq2]]∆ �si
n ,k,η δ and [[seq1 ++seq2]]µ �si

n m. We get:

[[seq1 ++seq2]]∆ = [[seq1]]∆ + [[seq2]]∆ �si
n ,k,η δ1 + δ2 = δ

[[seq1 ++seq2]]µ = ·t{[[seq1]]µ, |[[seq1]]∆|+ [[seq2]]µ} �si
n t{m1, |δ1|+ m2} = m

In both cases the first step follows from Lemma 7.20, and the second one follows from (7.9),
(7.10), and Lemmas 7.9 and 7.10.

• Case e ≡ case x of Ci xij
ni → ei

n

Assume the r-th branch being executed (r ∈ {1..n}). If (δr, mr, sr) is the resource vector associated
to this branch, we get δ = δr, m = mr and s = nr + sr. By induction hypothesis we obtain:

[[er]]σ Σ (td + nr) �si
n sr (7.11)

238

∃seq ∈ seqs er.[[seq]]∆ �si
n ,k,η δr = δ ∧ [[seq]]µ �si

n mr = m (7.12)

For each i ∈ {1..n} let us denote by Gi the guard λxi.|x| xi ≥ 1 + RecPos(Ci). Since the initial
configuration is closed, then size(h, E(x)) ≥ 1 + RecPos(Cr). By the correctness property of the
size analysis, |x| si

n ≥ size(h, E(x)) ≥ 1 + RecPos(Cr), so Gr(si
n) holds. We prove below the

conclusions of the Theorem:

1. [[e]]σ �si
n nr + sr. We get:

([[e]]σ Σ td) si
n =

n⊔
i=1

[Gi → ni + [[ei]]σ Σ Γ (td + ni)] si
n

≥ [Gr → nr + [[er]]σ Σ Γ (td + nr)] si
n

≥ nr + sr

The last step being justified by (7.11) and the fact that Gr(si
n) holds.

2. The existence of a sequence seq ∈ seqs e satisfying the conclusions of the theorem follows
trivially from (7.12), since seqs e =

⋃n
i=1 (seqs ei ∧ Gi) and Gr(si

n) holds.

Notice that we have not established that [[e]]∆ and [[e]]µ are upper bounds to the actual δ and m
components, respectively. The previous theorem states a stronger property: there exists a sequence in
seqs e whose [[·]]∆ and [[·]]µ-interpretations are upper bounds to the δ and m, respectively. However, and
since [[e]]∆ and [[e]]µ are defined as [[seqs e]]∆ =

⊔
seq∈seqs e[[seq]]∆ and [[seqs e]]µ =

⊔
seq∈seqs e[[seq]]µ, it follows

trivially that [[e]]∆ and [[e]]µ are correct approximations to δ and m.

From this correctness result we can devise a way for inferring upper bounds to the heap and stack
consumption of a non-recursive function, assuming that the functions called from it have already been
inferred. We just have to apply the abstract interpretation to the body of the function definition.

Example 7.27. Let us recall the combNumber function, which, given two integers n and m, returns the
result of (n

m) (see Example 4.20 on page 153). Assuming our signature environment Σ has the following
information regarding the stack costs of (!!) and pascal:

σ(!!) = λxs m.[xs ≥ 1→ 1] t [xs ≥ 2→ 6]

σpascal = λn.15n + 4

If ecombNumber denotes the body of the combNumber function, we get:

[[ecombNumber]]σ Σ 2 = λn m.[n ≥ 0→ 15n + 14] t [n ≥ 1→ 15n + 17]

which is a correct bound to the stack costs of combNumber, provided σ(!!) and σpascal are correct upper
bounds to the stack consumption of their respective functions.

The inference of recursive function definitions is far more involved, and its study is deferred to the
following section.

239

f a
i

f f

f f f f

f f

len
f
|a

i
|nr

f
|a

i
|

nb
f
|a

i
|

Figure 7.3: Representation of the activation tree of a given function call to f . The result of nr f |ai| and
nb f |ai| are the number of internal nodes and leaves, respectively. The value of len f |ai| represents the
height of the activation tree.

7.5 Memory consumption of recursive function definitions

The obvious question that arises when applying the abstract interpretation to a recursive function is
which signature associated to f must be stored into the signature environment Σ. The result of the
abstract interpretation will be correct if this initial signature is correct, but this signature is what we aim
to infer. We have to find a correct upper bound to the memory consumptions of a function definition
by other means different from the [[·]]-interpretations. Once these upper bounds are computed, it still
makes sense to apply the abstract interpretation under a signature environment Σ containing those
bounds. The new results are also correct, by Theorem 7.26, but they might be more precise than the
initial ones, as we will see later.

The rest of this section is devoted to the computation of these initial approximations, which will be
called ∆0, µ0 and σ0. In order to compute them, we need some information regarding the number
of recursive calls produced during the evaluation of a call to f . This information will be given as a
function of the input sizes xi. We represent these recursive calls by means of activation trees (or call
trees), as in Figure 7.3. Before computing an upper bound to the memory costs, we assume that the
following information is available as elements of F:

nr f Upper bound to the number of calls to f which invoke f again. This number corresponds to the
internal nodes of f ’s call tree.

nb f Upper bound to the number of basic calls to f that do not invoke f again. It corresponds to the leaf
nodes of f ’s call tree.

len f Upper bound to the maximum length of f ’s call chains. It corresponds to the height of f ’s call tree.

In general these functions are not independent of each other. For instance, with linear recursion we
get nr f = len f − 1 and nb f = 1. However, we shall not assume a fixed relation between them. The
computation of these three functions is closely related to the problem of termination and the compu-
tation of ranking functions, and we can use the techniques described in [73] for computing them. An-
other possibility is to give a definition of these components as a recurrence relation and obtain a closed
form by using recurrence solving tools, such as PUBS [7, 8], possibly in combination with polynomial
interpolation-based techniques [87].

240

Example 7.28. Assume a call to append xs ys where xs = [x1, . . . , xn]. We get the following call sequence:

append [x1, . . . , xn] 1st call
→ append [x2, . . . , xn] 2nd call
...
→ append [xn] n-th call
→ append [] (n + 1)-th call

So we obtain n + 1 calls to append, n of which are recursive. Since the size of a list is its number of
elements plus one, we get the following functions:

nbappend = λxs ys.1

nrappend = λxs ys.xs− 1

lenappend = λxs ys.xs

In the following subsections we shall present three algorithms for computing our initial ∆0, µ0 and
σ0 (sections 7.5.3, 7.5.4 and 7.5.5, respectively). For each algorithm, we have to prove the following facts:

[CR] The obtained bounds ∆0, µ0 and σ0 are correct bounds to the actual memory needs of the program.

[RD] The results of [[e f]]∆, [[e f]]µ and [[e f]]σ (being e f the body of the function definition) under a signa-
ture environment mapping f to (∆0, µ0, σ0) are equal or more precise than the initial approxima-
tions (∆0, µ0, σ0).

The latter fact is closely related to the concept of reductive functions over complete lattices. In the next
subsection we shall briefly describe all these concepts, including Tarki’s Fixed Point Theorem, which is of
crucial importance for proving that, under some conditions on the given nb f , nr f and len f , [RD] implies
[CR]. In case these conditions do not hold, [RD] may not hold, but [CR] still holds. Subsection 7.5.6
addresses this situation.

7.5.1 Preliminaries on fixed points in complete lattices

Let (L,v) be a complete lattice and f a monotonic function on L. Given an element x ∈ L:

• We say that x is a fixed point of f iff f (x) = x.

• We say that f is reductive at x iff f (x) v x.

• We say that f is extensive at x iff f (x) w x.

We denote by Fix(f) the set of fixed points of f :

Fix(f) = {x ∈ L | f (x) = x}

Similarly, we denote by Red(f) (resp. Ext(f)) the set of points upon which f is reductive (resp.
extensive).

Red(f) = {x ∈ L | f (x) v x}

Ext(f) = {x ∈ L | f (x) w x}

241

L

Red(f)

Ext(f)

Fix(f)

x
f(x)

f n(x)
f n+1(x)

∏
n
f n(x)

gfp(f)

lfp(f)

Figure 7.4: Representation of the points upon which a given function is reductive and extensive. The
intersection of Red(f) and Ext(f) is the set of fixed points of f . Given an element x ∈ Red(f), f n(x) is
always above the least fixed point.

Given the fact that L is a complete lattice, the least upper bound and the greatest lower bounds of Fix(f)
are both defined and respectively denoted by lfp(f) and gfp(f). Tarski’s fixed fixed point theorem [111]
establishes the relation between fixed points and the reductivity/extensivity properties.

Theorem 7.29 (Tarski 1955, taken from [92]). Let (L,v) a complete lattice and f : L → L a monotone
function. Then lfp(f) = uRed(f) and gfp(f) = tExt(f).

Proof. (see [92, Section A.4]).

Figure 7.4 depicts the layout of the reductive and extensive elements of L w.r.t. a function f . If x
is an element belonging to Red(f), then f (x) v x. By monotonicity of f , we get f (f (x)) v f (x). By
repeating this process we get the following chain,

x w f (x) w f 2(x) w . . . w f n(x) w . . .

whose elements, by Tarski’s theorem, are located above the least fixed point.

Now let us apply these concepts to our particular abstract interpretation. From Propositions 7.3 and
7.5 we know that (F,v) and (D,v) are complete lattices. Given the context function definition f , and
some fixed Σ, Γ and td, the iteration of the abstract interpretation can be understood as a function on
abstract heaps D → D (resp. on cost functions F → F) which, given an input ∆ (resp. µ, σ), inserts it
into the signature environment Σ, and apply the [[e f]]∆ interpretation (resp. [[e f]]µ and [[e f]]σ) to the body
of f .

Definition 7.30. Assume a function definition f xi @ rj = e f , and some fixed Σ, Γ, ∆ and td, such that

242

f /∈ dom Σ. The operators I f : D→ D,M∆, f : F→ F and S f : F→ F are defined as follows:

I f (∆) =
⌊
[[e f]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γ td

⌋
M∆, f (µ) = [[e f]]µ (Σ] [f 7→ (∆, µ, 0)]) Γ td

S f (σ) = [[e f]]σ (Σ] [f 7→ ([] f , 0, σ)]) Γ td

Notice that, strictly speaking, the I ,M and S operators are also parametric on the given Σ, Γ and
td, but we assume all these elements fixed. Now we prove their monotonocity.

Proposition 7.31. The operators I f ,M∆, f and S f are monotonic on their input arguments.

Proof. From the definition of the abstract interpretation it follows that the result of I , M and S is
computed by composing size functions with the t, ·t,+ operators, and possibly with the substraction
of a constant value (td). All these operations are monotone w.r.t. their inputs, and so is the composition
of all of them.

For each of these operators, we can define its set of fixed points, reductive elements and extensive
elements in the same way as above.

Example 7.32. Consider the append function of Example 7.17. Let ∆ be an abstract heap such that
dom ∆ = {(xs, ys) | xs ≥ 1}. If we assume that Γ = [r2 : ρ2], our operator Iappend is defined as follows:

Iappend(∆) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1 + ∆(xs− 1, ys)]

Let us consider the abstract heaps ∆1, ∆2 and ∆3 defined as follows:

∆1
def
= λxs ys.[xs ≥ 1→ [ρ2 7→ 0]]

∆2
def
= λxs ys.[xs ≥ 1→ [ρ2 7→ bxs− 1c]]

∆3
def
= λxs ys.[xs ≥ 1→ [ρ2 7→ 2xs]]

If we apply the Iappend iterator to each of these, we obtain the following results:

Iappend(∆1) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1 + 0]

= [xs ≥ 1→ 0] t [xs ≥ 2→ 1]

Iappend(∆2) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1 + bxs− 2c]

= [xs ≥ 1→ 0] t [xs ≥ 2→ bxs− 1c]

= [xs ≥ 1→ bxs− 1c]

Iappend(∆3) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1 + 2(xs− 1)]

= [xs ≥ 1→ 0] t [xs ≥ 2→ 2xs− 1]

Therefore, ∆1 ∈ Ext(Iappend), ∆2 ∈ Fix(Iappend), and ∆3 ∈ Red(Iappend).

243

An important result is that, if we take a fixed point of each operator, the resulting signature is correct
for the given function definition. The precise statement of this fact is rather involved and beyond the
scope of this work. For its purposes we consider a simplified version, and refer to Javier de Dios’ PhD
thesis [35] for more details.

Theorem 7.33. Let (∆, µ, σ) be a signature for f . If ∆ ∈ Fix(I f), µ ∈ Fix(M∆, f) and σ ∈ Fix(S f), the
signature (∆, µ, σ) is correct for f .

Proof. By induction on the maximum number of nested calls to f in the corresponding ⇓-derivation.
The full proof can be found in [35].

However, and by Tarski’s Theorem (7.29), the reductive elements of each operator are always located
above the corresponding least fixed point, so these can also be considered as correct bounds.

Corollary 7.34. Let (∆, µ, σ) be a signature for f . If ∆ ∈ Red(I f), µ ∈ Red(M∆, f) and σ ∈ Red(S f), the
signature (∆, µ, σ) is correct for f .

Proof. By Theorem 7.33, (lfp(I f), lfp(M∆, f), lfp(S f)) is a correct upper bound to f . Let ∆, µ and σ

defined as above. By Theorem 7.29 we get ∆ w lfp(I f) ∈ Fix(I f), µ w lfp(M∆, f) ∈ Fix(M∆, f), and
σ w lfp(S f) ∈ Fix(S f). Thus, (∆, µ, σ) is also a correct bound.

A consequence of this Corollary is that the [RD] condition shown above is sufficient in order to
prove the correctness condition [CR] of the initial bounds.

7.5.2 Splitting Core-Safe sequences

When computing initial approximations to the heap and stack consumption of a function definition,
it is useful to separate the costs charged by its base and recursive cases. The result of flattening an
expression into a sequence of basic expressions (via the seqs function) is quite amenable to this separa-
tion: a sequence takes part in the base case if it does not contain recursive calls, and it takes part in the
recursive one if it does contain them.

Definition 7.35. Given the context function f whose memory consumption is being inferred, a sequence
of basic expressions is said to be a base sequence if it does not contain any expression of the form f ai @ rj

for some ai and rj. Otherwise it is said to be recursive.

We define the splitExp f function, which classifies an arbitrary set of sequences into base and recur-
sive sequences.

Definition 7.36. Given a set of sequences S and a context function f , the splitExp f function is defined
as follows:

splitExp f S = (Sb, Sr) where

{
Sb = {seq ∈ S | seq is a base sequence}
Sr = {seq ∈ S | seq is a recursive sequence}

Obviously, if splitExp f S = (Sb, Sr), then S = Sb] Sr.

When computing the charges to the working region, it is also useful to separate the charges done
until (and including) the last recursive call. Again, we can do this in terms of sequences. It is easy to
see that, if seq is a recursive sequence of the body of the context function f , we can split it into two
sequences seqbef and seqaft such that seq = seqbef ++seqaft, the last element of seqbef is of the form f ai @ rj

244

f x
i
@ r

j

f x
i,1

@ r
j

f x
i,2

@ r
j

...

f x
i,b1

@ r
j

f x
i,b2

@ r
j

f x
i,b3

@ r
j

f x
i,bk

@ r
j

...

Figure 7.5: Activation tree corresponding to a function call f xi @ rj. The grey nodes correspond to base
calls, whereas the white ones correspond to recursive calls.

whereas seqaft does not contain expressions of this form, and the guard of seqbef and seqaft is the same as
that of seq. The uniqueness of this decomposition allows us to define the function splitBAf which, when
applied to sequences, returns the pair (seqbef , seqaft) resulting from this decomposition. This definition
can be trivially extended to sets of sequences.

Definition 7.37. Given a set of sequences S and a context function f , the function splitBA f is defined as
follows:

splitBA f S = {splitBA f seq | seq ∈ S}

The splitBA f function returns a set of pairs. We can join the first components of all these pairs in order
to get a single set of before fragments. Similarly, the second components of these pairs can also be joined.
This gives place to the definition of splitBA∗f returning a pair of sets:

splitBAf
∗ S = ({seqbef | (seqbef , seqaft) ∈ splitBA f S}, {seqaft | (seqbef , seqaft) ∈ splitBA f S})

Example 7.38. In our append running example (7.17), if S = seqs eappend we obtain splitExpappend S =

(Sb, Sr) where:

Sb = {[xs ≥ 1→ ys]}

Sr = {[xs ≥ 2→ append xx ys, (x : x1)@r]}

by applying splitBA and splitBA∗ to the resulting Sr set, we get:

splitBAappend Sr = {([xs ≥ 2→ append xx ys], [xs ≥ 2→ (x : x1)@r])}

splitBA∗append Sr = ({[xs ≥ 2→ append xx ys]}, {[xs ≥ 2→ (x : x1)@r]})

7.5.3 Algorithm for computing ∆0

In order to grasp the intuitive meaning of the algorithm, let us consider the activation tree correspond-
ing to a function call f xi @ rj (Figure 7.5). We can abstract each node by its charges on memory as
follows:

• Base nodes are abstracted by the result of [[Sb]]∆, where Sb contains the base sequences of the
function’s body. We use ∆b to denote this abstract heap.

245

Δ
r
 x

i

Δ
r
 x

i,1
Δ

r
x

i,2

...

Δ
b
 x

i,b1
Δ

b
 x

i,b2
Δ

b
x

i,b3
Δ

b
x

i,bk
...

Figure 7.6: Abstraction of the charges done to each call in the activation tree.

Δ
r
 x

i

Δ
r
 x

i
Δ

r
x

i

...

Δ
b
 x

i
Δ

b
 x

i
Δ

b
x

i
Δ

b
x

i
...

Figure 7.7: The substitution of xi for the parameters in each recursive call leads to an abstraction that
approximates the tree shown in Figure 7.6.

• Recursive nodes are abstracted by the result of [[Sr]]∆, where Sr contains the recursive sequences
of the function’s body, and without taking into account the recursive calls occurring in Sr. We use
∆r to denote this abstract heap.

The result of this abstraction is depicted in Figure 7.6. In the internal nodes of the tree we get ∆r xi,j,
where j depends on the particular recursive call. In the leafs we obtain ∆b xi,bj, where j depends on the
particular base call. We can further approximate this abstraction by imposing some conditions on the
∆b and ∆r.

Definition 7.39. An abstract heap ∆ ∈ D (resp. a space cost function ξ ∈ F) is said to be parameter-
decreasing with respect to a function definition f xi @ rj = e f iff, for every recursive call f ai

n @ r′j
m

occurring in e f , it holds that
∆ |ai| xi v ∆ xi

or, respectively,
ξ |ai| xi v ξ xi

Therefore, if we assume that our ∆r and ∆b are parameter-decreasing, we can substitute each ∆r xi,j

and ∆b xi,bj by their counterparts ∆r xi and ∆b xi. The new tree we obtain in this way (Figure 7.7) is an
upper approximation to the previous one, but now all the recursive nodes charge the same cost, and so
do the base nodes. If nb and nr respectively approximate the number of base and recursive nodes, our
initial approximation is given by the function b∆bc ∗ nb + b∆rc ∗ nr.

The algorithm for computing the initial approximation ∆0 is shown in Figure 7.8. The least upper
bound with b∆bc handles those input sizes in which b∆rc becomes undefined.

246

computeDelta (f xi @ rj = e f) Σ Γ nb nr = (b∆bc ∗ nb + b∆rc ∗ nr) t b∆bc
where S = seqs e f

(Sb, Sr) = splitExp f S
∆b = [[Sb]]∆ (Σ] [f 7→ ([] f , 0, 0)]) Γ
∆r = [[Sr]]∆ (Σ] [f 7→ ([] f , 0, 0)]) Γ

Figure 7.8: Algorithm for computing ∆0.

f x
i
@ r

j

f x
i,1

@ r
j

f x
i,2

@ r
j

nb x
i,1

nb x
i,2

nr x
i,1

nr x
i,2

Figure 7.9: Activation tree of a call f xi @ rj. The triangles represent the activation trees of each child
call.

Example 7.40. If we apply computeDelta to our append example by considering the nb and nr functions
of Example 7.28, we get ∆b xs ys ρ2 = [xs ≥ 1→ 0] and ∆r xs ys ρ2 = [xs ≥ 2→ 1]. Therefore we get:

∆0 xs ys ρ2 = [xs ≥ 2→ xs− 1] t [xs ≥ 1→ 0]

Our next step is to prove that an abstract heap ∆0 computed by computeDelta falls into the reductive
area of the lattice (D,v) with respect to the iteration of the abstract interpretation I f . As noted in
Section 7.5.1, this also ensures that the result of computeDelta is a correct approximation to the actual
charges done by f . Reductivity of ∆0 holds provided some admissibility conditions on the externally
given nb and nr functions hold.

Definition 7.41 (Admissible nb). A function nb for computing the number of base calls is admissible
with respect to a definition f xi

n @ rj
m = e f iff for every xi

n ∈ Rn the following conditions hold:

1. nb xi
n ≥ 1

2. ∀seq ∈ seqs e f . ∑
{

nb |ai| xi
n | f ai

n @ rj
m ∈ seq

}
≤ nb xi

n

Definition 7.42 (Admissible nr). A function nr for computing the number of recursive calls is admissible
with respect to a definition f xi

n @ rj
m = e f iff for every xi

n ∈ Rn the following conditions hold:

1. nr xi
n ≥ 0

2. ∀seq ∈ seqs e f .1 + ∑
{

nr |ai| xi
n | f ai

n @ rj
m ∈ seq

}
≤ nr xi

n

In order to get an intuitive idea on these conditions, let us consider the activation tree shown in
Figure 7.9. The root of this tree is a call to f giving place to two recursive calls, each one with an

247

approximation of its number of leafs nb xi,j and internal nodes nr xi,j, with j = 1, 2. Hence, the whole
tree has nb xi,1 + nb xi,2 leafs or less. Admissibility on nb holds if the approximation nb xi given for the
root node is greater or equal than this number. Analogously, nr is admissible if the approximation nr xi

of the root node is greater or equal than 1 + nr xi,1 + nr xi,2.

Given these conditions, we are ready to prove the reductivity of ∆0:

Theorem 7.43. Let us define ∆0 = computeDelta (f xi @ rj = e f) Σ Γ nb nr. If nr and nb are admissible, and
the ∆b and ∆r occurring in the definition of computeDelta are parameter-decreasing, then:

b[[seq]]∆ (Σ] [f 7→ (∆0, 0, 0)]) Γc v ∆0 for every seq ∈ seqs e f

Therefore, ∆0 ∈ Red(I f)

Proof. Let us denote by Σ′ the signature environment Σ] [f 7→ (∆0, 0, 0)], and by Σ0 the signature
environment Σ] [f 7→ ([] f , 0, 0)]. It is easy to see that dom Σ′(f) ⊆ dom Σ0(f). Assume (Sb, Sr) =

splitExp (seqs e f). Then, seqs e f = Sb] Sr. Consider a sequence seq ∈ seqs e f . We distinguish cases:

• Case seq ∈ Sb. That is, seq is a base sequence. By the definition of ∆b we get [[seq]]∆ Σ0 Γ v ∆b. The
signature associated with f is not relevant, since seq does not contain calls to f . Therefore we get:

⌊
[[seq]]∆ Σ′ Γ

⌋
= b[[seq]]∆ Σ0 Γc v b∆bc v ∆0

• Case seq ∈ Sr. That is, seq is a recursive sequence. Let us define D = dom ([[seq]]∆ Σ′ Γ). In Rn\D
we get b[[seq]]∆ Σ′ Γc = ⊥ v ∆0 and the Theorem follows trivially. Thus, in the following, we
consider the points belonging to D. In those points we get b∆rc 6= ⊥, since seq ∈ Sr and hence
D ⊆ dom [[Sr]]∆ Σ′ Γ ⊆ dom [[Sr]]∆ Σ0 Γ = dom ∆r. We split the elements of seq into two sets: the
A set contains the elements of the form f ai

n @ rj
m, and the NA set contains the remaining ones.

Let us denote by p the number of elements of A, so we get:

A = { f ai,1
n @ rj

m, f ai,2
n @ rj

m, . . . , f ai,p
n @ rj

m}

The list of region arguments rj
m is the same as in the function definition of f , as we assume the

absence of polymorphic recursion. Since A]NA contains every element of the sequence, we get
the following equality in D:

⌊
[[seq]]∆ Σ′ Γ

⌋
= ∑

be∈NA

⌊
[[be]]∆ Σ′ Γ

⌋
+ ∑

be∈A

⌊
[[be]]∆ Σ′ Γ

⌋
= ∑

be∈NA

⌊
[[be]]∆ Σ′ Γ

⌋
+

p

∑
k=1

⌊
[[f ai,k

n @ rj
m]]∆ Σ′ Γ

⌋
(in D) (7.13)

in which, for every k ∈ {1..p}

[[f ai,k
n @ rj

m]]∆ Σ′ Γ = λxi.
[

Gk → ∆0 |ai,k| xj
n]

(7.14)

where Gk = λxi.
(

∆0 |ai,k| xj
n 6= ⊥

)
since unify(Γ, f , rj) = idRf , due to the absence of polymorphic recursion. Moreover, Gk holds in

those points belonging to dom (∆0 |ai,k| xj
nn
) and only in those points. So, we can rewrite (7.14)

248

as follows:
[[f ai,k

n @ rj
m]]∆ Σ′ Γ = λxi.∆0 |ai,k| xj

n

Let us define, for every k ∈ {1..p}:

∆b,k
def
= λxi

n.∆b |ai,k| xj
nn

∆r,k
def
= λxi

n.∆r |ai,k| xj
nn

nbk
def
= λxi

n.nb |ai,k| xj
nn

nrk
def
= λxi

n.nr |ai,k| xj
nn

where ∆b, ∆r, nb and nr are as defined in computeDelta. We get for each k ∈ {1..p}:

[[f ai,k
n @ rj

m]]∆ Σ′ Γ =
(⌊

∆b,k
⌋
∗ nbk +

⌊
∆r,k

⌋
∗ nrk

)
t
⌊
∆b,k

⌋
(in D)

By substituting this into (7.13) we get:

⌊
[[seq]]∆ Σ′ Γ

⌋
= ∑

be∈NA

⌊
[[be]]∆ Σ′ Γ

⌋
+

p

∑
k=1

((⌊
∆b,k

⌋
∗ nbk +

⌊
∆r,k

⌋
∗ nrk

)
t
⌊
∆b,k

⌋)
(in D)

(7.15)
For each k ∈ {1..p}We denote by ∆ f ,k the result of

(⌊
∆b,k

⌋
∗ nbk +

⌊
∆r,k

⌋
∗ nrk

)
t
⌊
∆b,k

⌋
. We prove

the following fact:

∀k ∈ {1..p}.∆ f ,k v b∆bc ∗ nbk + b∆rc ∗ nrk (in D) (7.16)

Let us consider a k ∈ {1..p} and define Rk
def
= {xi ∈ D |

⌊
∆b,k

⌋
xi ≥

(⌊
∆b,k

⌋
∗ nbk +

⌊
∆r,k

⌋
∗ nrk

)
xi}.

In Rk we obtain:

∆ f ,k =
⌊
∆b,k

⌋
v b∆bc v b∆bc ∗ nbk + b∆rc ∗ nrk (in Rk)

The first v holds because ∆b is parameter-decreasing, and the second v is due to the fact that
nbk w 1, nrk w 0, and b∆rc 6= ⊥. In D\Rk we get:

∆ f ,k =
⌊
∆b,k

⌋
∗ nbk +

⌊
∆r,k

⌋
∗ nrk v b∆bc ∗ nbk + b∆rc ∗ nrk (in D\Rk)

Again, this holds because both ∆b and ∆r are parameter-decreasing, so (7.16) holds for every
k ∈ {1..p}. By substituting (7.16) into (7.15) we obtain:

⌊
[[seq]]∆ Σ′ Γ

⌋
v ∑

be∈NA

⌊
[[be]]∆ Σ′ Γ

⌋
+

p

∑
k=1

(b∆bc ∗ nbk + b∆rc ∗ nrk) (in D)

It is easy to prove that

∆r w ∑
be∈NA

[[be]]∆ Σ0 Γ + ∑
be∈A

[[be]]∆ Σ0 Γ = ∑
be∈NA

[[be]]∆ Σ0 Γ + [] f = ∑
be∈NA

[[be]]∆ Σ′ Γ

in D. The first equality holds since Σ0(f) is defined for every input size, so the guard occurring in

249

the abstract interpretation rule for function application always holds. Hence:

⌊
[[seq]]∆ Σ′ Γ

⌋
v b∆rc+

p

∑
k=1

(b∆bc ∗ nbk + b∆rc ∗ nrk)

= b∆rc+ b∆bc ∗
p

∑
k=1

nbk + b∆rc ∗
p

∑
k=1

nrk

= b∆bc ∗
p

∑
k=1

nbk + b∆rc ∗
(

1 +
p

∑
k=1

nrk

)
(in D)

Finally, by admissibility of nb and nr:

⌊
[[seq]]∆ Σ′ Γ

⌋
v b∆bc ∗ nb + b∆rc ∗ nr

v ∆0 (in D)

This result not only proves the correctness of our initial approximation ∆0. It also allows to iterate
the abstract interpretation in order to reach more precise bounds by considering the following chain,

∆0 w I f (∆0) w I2
f (∆0) w · · · w In

f (∆0) w · · ·

which, if eventually stabilizes, it does in a fixed point. Since the initial approximation to µ depends on
the input ∆ given (see next section), it is advisable to spent some time iterating I f in order to achieve
better results.

Example 7.44. Assume the ∆0 of Example 7.40. By applying Iappend on this abstract heap we obtain:

Iappend(∆0) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1] t [xs ≥ 3→ xs− 1]

which is strictly smaller than ∆0 when xs ∈ [2, 3). Another iteration yields the following result:

I2
append(∆0) xs ys ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 1] t [xs ≥ 3→ 2] t [xs ≥ 4→ xs− 1]

In general, the i-th iteration results in the following abstract heap:

I i
append(∆0) = λxs ys ρ2 7→

⊥ xs < 1

bxs− 1c 1 ≤ xs < i + 2

xs− 1 i + 2 ≤ xs

Notice that, in the previous example, the abstract heaps of every iteration are equal if we consider
their domains only from a given threshold value. In some applications, it may be enough to obtain an
expression xs− 1 as an upper-bound to the costs of append, even though it is not a fixed point of the
corresponding iteration operator. This motivates the following definition:

Definition 7.45. Two abstract heaps ∆1, ∆2 ∈ D are said to be asymptotically equivalent (denoted ∆1 ≈
∆2) if there exists some xi,0 such that, for every xi such that xi ≥ xi,0 for all i ∈ {1..n}, ∆1(xi) = ∆2(xi).
The definition of two cost functions ξ1, ξ2 ∈ F being asymptotically equivalent is analogous.

250

computeMu (f xi @ rj = e f) Σ Γ ∆ len =
(

∆self ∗ (len− 1) + |∆bef |+ t{µbef , µaft, µb}
)
t µb

where S = seqs e f
(Sb, Sr) = splitExp f S
(Sbef , Saft) = splitBA∗f Sr

∆∗bef = [[Sbef]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γ

∆bef =
⌊

∆∗bef

⌋
∆self = ∆∗bef ρself

µbef = [[Sbef]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ
µaft = [[Saft]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ
µb = [[Sb]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ

Figure 7.10: Algorithm for computing µ0.

(a) Regions different from the working region (b) Working region

Figure 7.11: Growth of the charges done to different regions as the execution progresses.

In our example above, it holds that ∆0 ≈ Iappend(∆0). In this case, we say that ∆0 is an asymptotic
fixed point of Iappend.

7.5.4 Algorithm for computing µ0

The algorithm for computing a first approximation µ0 to the heap needs of a function is shown in Figure
7.10. Let us consider the call tree of a given function call f . We make distinction between the charges
done to the working regions of the calls in this tree, and the charges done to the remaining regions.
The latter are cumulative, in the sense that the cells created in these regions are not removed while the
execution of the root call to f progresses. The arrows in Figure 7.11a represent the directions of the
execution flow, in which charges to these regions grow. With respect to the charges done to the working

len

Figure 7.12: Execution point before the control flow reaches the last recursive call. Black nodes represent
those calls whose execution is finished. Gray nodes represent those calls whose execution has started,
but not finished.

251

regions of the calls of the activation tree, these only grow from the root call to the base cases, as Figure
7.11b shows. In this case we no longer have arrows pointing upwards in the tree, because all the cells
created in the working region are removed when its corresponding function call finishes. Therefore, the
only directions in which we know for sure that these charges grow, are the paths from the root call to
its recursive children.

Now assume that, during this call to f , the execution flow has reached the point before executing
the last base call (Figure 7.12). In the algorithm, ∆self ∗ (len− 1) represents the charges to the working
regions of the gray-marked calls3, whereas |∆bef | stands for the charges done to the remaining regions
during the execution of the black- and gray-marked calls. The combination of these two charges gives
us ∆self ∗ (len− 1) + |∆bef |. Taking this value as a base level, we have to take the following charges into
account:

1. Maximum level of occupied memory before the execution flow reaches the last base call, on ac-
count of the charges done in memory before the first recursive call, and between the subsequent
recursive calls (µbef).

2. Memory needs of the last base case, which is going to be executed (µb). This corresponds to the
white-marked call of Figure 7.12.

3. Memory needs of the part of the recursive cases which is still to be executed (µaft). This corre-
sponds to that part of the gray-marked cells whose execution is pending.

Since none of them is necessarily greater than the other, we take the least upper bound of the three. In
the same way as in our ∆0, we add µb in the least upper bound in order to deal with ⊥ in the remaining
components.

Since the [[·]]µ interpretation depends on the [[·]]∆ interpretation, the computeMu function receives an
abstract heap ∆, which is bound to f in the signature environment Σ.

Example 7.46. The algorithm applied to append yields the following partial results:

|∆bef | = λxs ys.[xs ≥ 3→ xs− 2] t [xs ≥ 2→ 0]

∆self = λxs ys.[xs ≥ 2→ 0]

µbef = λxs ys.[xs ≥ 2→ 0]

µaft = λxs ys.[xs ≥ 2→ 1]

µb = λxs ys.[xs ≥ 1→ 0]

which result in the following initial bound µ0:

µ0 = λxs ys.[xs ≥ 1→ 0] t [xs ≥ 2→ 1] t [xs ≥ 3→ xs− 1]

By applying theM operator to this µ0, we get an asymptotically equal upper bound.

Again, the reductivity of the µ0 computed in this way depends on some admissibility conditions of
the len function, which bounds the length of longest call chain.

Definition 7.47 (Admissible len). A function len for computing the maximal length of call chains is
admissible with respect to a definition f xi

n @ rj
m = e f iff for every xi

n ∈ Rn the following conditions
hold:

3We assume the worst-case execution in which the longest call chain is the one who leads to the last base call.

252

f x
i
@ r

j

f x
i,1

@ r
j

f x
i,2

@ r
jlen

f
 x

i,1
len

f
 x

i,2

Figure 7.13: Activation tree of a call f xi @ rj. The triangles represent the activation trees of each child
call.

1. len xi
n ≥ 1

2. ∀seq ∈ seqs e f .1 +
⊔{

len |ai| xi
n | f ai

n @ rj
m ∈ seq

}
≤ len xi

n

3. If (Sb, Sr) = splitExp f (seqs e f), for every seq ∈ Sr, len xi ≥ 2 whenever guard(seq) xi holds.

The first admissibility condition is fairly reasonable. The second one is analogous to its counterparts
in nb and nr. Assume the situation given in Figure 7.13. An upper bound to the height of the whole
tree is 1 + t{len xi,1, len xi,2}. The second condition states that the approximated height len xi must be
greater or equal than this bound. Finally, the third condition states that, in those values xi which may
possibly lead to a recursive call, len must be greater than two (accounting for the caller and the callee).

Assuming these admissibility conditions, we can prove the reductivity of µ0:

Theorem 7.48. Let us define µ0 = computeMu (f xi @ rj = e f) Σ Γ ∆ len. If len is admissible, the ∆self ,
µbef , µaft, µb occurring in computeMu are parameter-decreasing, and b[[seq]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γc v ∆ for
every seq ∈ seqs e f , then:

[[seq]]µ (Σ] [f 7→ (∆, µ0, 0)]) Γ v µ0 for every seq ∈ seqs e f

Therefore, µ0 ∈ Red(M∆, f).

Proof. We denote by Σ′ and Σ0 the signature environments Σ] [f 7→ (∆, µ0, 0)] and Σ] [f 7→ (∆, 0, 0)]
respectively. It is straightforward to prove that dom Σ′(f) ⊆ dom Σ0(f). Let seq ∈ seqs e f . If Sb and Sr

are as defined in computeMu, we know that seq ∈ Sb] Sr, so we distinguish cases:

• Case seq ∈ Sb. In other words, seq is a base sequence. In this case [[seq]]µ Σ′ Γ = [[seq]]µ Σ0 Γ, as seq
does not contain calls to f . In this case,

[[seq]]µ Σ′ Γ = [[seq]]µ Σ0 Γ v µb v µ0

where µb is as defined in computeMu.

• Case seq ∈ Sr. That is, seq is recursive. We define D = dom ([[seq]]µ Σ′ Γ). The Theorem
follows trivially in those points xi not belonging to D, so we assume xi ∈ D in the following.
Since our sequence is recursive, we can split it into two subsequences seqbef and seqaft such that

253

seqbef ++seqaft = seq, seqbef ∈ Sbef and seqaft ∈ Saft. As a consequence of Lemma 7.20, we know that

dom ([[seq]]µ Σ′ Γ) = dom ([[seqbef]]µ Σ′ Γ) ∩ dom ([[seqaft]]µ Σ′ Γ)

⊆ dom ([[seqbef]]µ Σ0 Γ) ∩ dom ([[seqaft]]µ Σ0 Γ)

which implies µbef xi 6= ⊥ and µaft xi 6= ⊥ for every xi ∈ D. Moreover, and by Lemma 7.18, we
get ∆∗bef xi 6= ⊥ for all xi ∈ D, which implies |∆bef | xi 6= ⊥ and |∆self | xi 6= ⊥ for every xi ∈ D.

Let us start with the computation of [[seq]]µ Σ′ Γ. By Lemma 7.20:

[[seq]]µ Σ′ Γ = [[seqbef ++seqaft]]µ Σ′ Γ

= ·t{[[seqbef]]µ Σ′ Γ, [[seqbef]]∆ Σ′ Γ + [[seqaft]]µ Σ′ Γ}

Since the result of [[seqbef]]∆ does not depend on the µ value given by Σ′(f), and there are not calls
to f in seqaft, we can substitute Σ0 for Σ′ in the previous equation in order to get:

[[seq]]µ Σ′ Γ = ·t{[[seqbef]]µ Σ′ Γ, [[seqbef]]∆ Σ0 Γ + [[seqaft]]µ Σ0 Γ}

v ·t{[[seqbef]]µ Σ′ Γ, |∆∗bef |+ µaft}

The Theorem holds if we can prove that each element of the ·t is subsumed by µ0. Let us start
with the second one. Since len w 2 (in D) we get:

|∆∗bef |+ µaft = |∆bef |+ ∆self + µaft

v |∆bef |+ ∆self ∗ (len− 1) + t{µbef , µaft, µb}

v µ0 (in D)

Now we prove that [[seqbef]]µ Σ′ Γ v µ0 (in D). By unfolding the definition of [[seqbef]]µ Σ′ Γ, this
inequality can we rewritten as follows:

·⊔n
k=1

(
∑k−1

j=1 |[[bej]]∆ Σ′ Γ|+ [[bek]]µ Σ′ Γ
)
v µ0

where n is the number of elements in seqbef . It is enough to prove that each element of the ·⊔ is
dominated by µ0. We denote by ξk the k-th element of the ·⊔. Let k ∈ {1..n}. We distinguish cases:

– bek does not have the form f ai,k @ rj.

In this case [[bek]]µ Σ′ Γ = [[bek]]µ Σ0 Γ. In addition, [[bej]]∆ Σ′ Γ = [[bej]]∆ Σ0 Γ for each
j ∈ {1..k− 1}. Hence we obtain (in D):

ξk =
k−1

∑
j=1

(
|[[bej]]∆ Σ0 Γ|

)
+ [[bek]]µ Σ0 Γ

v µbef

v ∆self ∗ (len− 1) + |∆bef |+ t{µbef , µaft, µb}

v µ0 (in D)

since len w 1 (in D) and |∆bef |, ∆self are distinct from ⊥ in D.

– bek has the form f ai,k @ rj.

254

Let P be the set of k ∈ {1..n} such that bek is a function call to f . We define, for each k ∈ P:

µf ,k
def
= λxi

n.µ0 |ai,k| xi
nn

∆bef ,k
def
= λxi

n.∆bef |ai,k| xi
nn

∆self ,k
def
= λxi

n.∆self |ai,k| xi
nn

∆f ,k
def
= λxi

n.∆0 |ai,k| xi
nn

µbef ,k
def
= λxi

n.µbef |ai,k| xi
nn

µaft,k
def
= λxi

n.µaft |ai,k| xi
nn

µb,k
def
= λxi

n.µb |ai,k| xi
nn

lenk
def
= λxi

n.len |ai,k| xi
nn

We get (in D)

ξk =
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ µ f ,k

=
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+

((
∆self ,k ∗ (lenk − 1) + |∆bef ,k|+ t{µbef ,k, µaft,k, µb,k}

)
t µb,k

)

Since ∆self , µbef , µaft and µb are parameter-decreasing we get:

ξk v
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+

((
∆self ∗ (lenk − 1) + |∆bef ,k|+ t{µbef , µaft, µb}

)
t µb

)
Let Rk be the set of elements xi ∈ D such that (∆self ∗ (lenk − 1) + |∆bef ,k|+ t{µbef , µaft, µb}) xi ≤
µb xi. We obtain, in Rk

ξk v
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ µb (in Rk) (7.17)

Again, for each j ∈ {1..k− 1} it holds that [[bej]]∆ Σ′ Γ = [[bej]]∆ Σ0 Γ. Thus we get:

k−1

∑
j=1
|[[bej]]∆ Σ′ Γ| =

k−1

∑
j=1
|[[bej]]∆ Σ0 Γ| v

n

∑
j=1
|[[bej]]∆ Σ0 Γ| v |∆∗bef | (in D) (7.18)

provided ([[bej]]∆ Σ0 Γ) xi 6= ⊥ for every xi ∈ D and j ∈ {k..n}. However, if we had some xi ∈ D
such that ([[bej]]∆ Σ0 Γ) xi = ⊥ for some j ∈ {k..n} we would have ([[seq]]∆ Σ0 Γ) xi = ⊥ contra-
dicting the fact that xi ∈ D since D = dom [[seq]]µ Σ′ Γ = dom [[seq]]∆ Σ′ Γ ⊆ dom [[seq]]∆ Σ0 Γ.
Hence we can rewrite the inequality (7.17) above by using (7.18) as follows (in Rk):

ξk v |∆∗bef |+ µb

= |∆bef |+ |∆self |+ µb

v |∆bef |+ |∆self | ∗ (len− 1) + t{µbef , µaft, µb}

v µ0 (in Rk)

255

where the third step holds by admissibility of len. On the other hand we get, in D\Rk:

ξk v
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ ∆self ∗ (lenk − 1) + |∆bef ,k|+ t{µbef , µaft, µb}

v
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ ∆self ∗ (

⊔
p∈P

lenp − 1)

+|∆bef ,k|+ t{µbef , µaft, µb} (in D\Rk) (7.19)

Now we prove that |∆bef ,k| v |∆ f ,k|. Let us consider a sequence seq′ ∈ Sr of the form [G →
be′1, . . . , be′m]. This sequence can be split into two subsequences seq′bef and seq′aft, each guarded by
G, as done by splitBA f . Notice that dom [[seq′bef]]∆ Σ Γ ⊆ dom [[seq′aft]]∆ Σ Γ for every Σ and Γ, as
seq′aft does not contain calls to f . Therefore:

⌊
[[seq′bef]]∆ Σ0 Γ

⌋
v
⌊
[[seq′bef]]∆ Σ0 Γ

⌋
+
⌊
[[seq′aft]]∆ Σ0 Γ

⌋
=
⌊
[[seq′]]∆ Σ0 Γ

⌋
=
⌊
[[seq′]]∆ Σ′ Γ

⌋
v ∆

where the last step follows by assumption (reductivity of ∆). Since ∆bef is the least upper bound

of all the
⌊
[[seq′bef]]∆ Σ0 Γ

⌋
, then ∆bef v ∆, which implies |∆bef | v |∆| and, in turn, |∆bef ,k| v |∆ f ,k|.

We apply this into (7.19) so as to get:

ξk v
k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ ∆self ∗ (

⊔
p∈P

lenp − 1) + |∆ f ,k|+ t{µbef , µaft, µb} (in D\Rk)

In a similar way as with the set Rk, in D\Rk it holds that

k−1

∑
j=1
|[[bej]]∆ Σ′ Γ|+ |∆ f ,k| =

k

∑
j=1
|[[bej]]∆ Σ′ Γ| =

k

∑
j=1
|[[bej]]∆ Σ0 Γ| v

n

∑
j=1
|[[bej]]∆ Σ0 Γ| = |∆∗bef |

hence,

ξk v |∆∗bef |+ ∆self ∗ (
⊔

p∈P
lenp − 1) + t{µbef , µaft, µb}

= |∆bef |+ ∆self + ∆self ∗ (
⊔

p∈P
lenp − 1) + t{µbef , µaft, µb}

= |∆bef |+ ∆self ∗ (
⊔

p∈P
lenp) + t{µbef , µaft, µb}

v |∆bef |+ ∆self ∗ (len− 1) + t{µbef , µaft, µb} (in D\Rk)

where the last step follows by admissibility of len. Hence ξk v µ0, which proves the theorem.

Notice that there is an additional constraint in the assumptions of this theorem: the ∆ given as
parameter must satisfy the conclusions of Theorem 7.43. This assumption holds, in particular, if ∆ is
either the initial approximation ∆0 computed by the algorithm of Section 7.5.3, or the result of applying
the abstract interpretation n > 0 times to it, In

f (∆0).

256

time

Stack level

Before
recursive call

Stack level
difference

Function execution
starts

Figure 7.14: The stack level difference value denotes the maximum difference between the stack levels
when the function starts executing and before its recursive call is done.

SD f (f ai
n @ rj

m) td = n + m− td
SD f be td = ⊥ if be is not a call to f
SD f (let x1 = e1 in e2) td = t{2 + SD f e1 0, 1 + SD f e2 (td + 1)}
SD f (case x of Ci xij

ni → ei
n
) td = tn

r=1(nr + SD f er (td + nr))

Figure 7.15: Definition of SD f , which computes the stack level difference.

7.5.5 Algorithm for computing σ0

In order to approximate the stack costs of a function we follow an approach similar to that of µ0. In this
case we do not have cumulative components such as the ∆bef shown before, because the behaviour of
the stack, in this sense, is analogous to that of the self region in the heap: it grows as the execution flow
descends the activation tree. We use the term stack level to denote the number of words existing in the
stacks at a given execution time. It is useful to obtain the maximum difference between the stack levels
in two execution points: when the context function f starts its execution, and when a recursive call to
f is going to be done (Figure 7.14). We use the term stack level difference to refer to this value, which is
not expressed as an element of F, but as an element of N⊥ instead. This is because this value does not
depend on the input sizes as the rest of the components we have seen so far.

The SD function computes the stack level difference for a given expression in the context of a func-
tion definition. If this expression does not contain recursive calls, it returns ⊥. If e f is the body of the
context function f , with n data parameters and m region parameters, the result of SD f e f (n + m) is the
stack level difference of this function. A formal proof of this fact is not necessary at this moment and it
will deferred to Appendix B.

Figure 7.16 shows the algorithm for computing an initial approximation σ0 to the stack consumption.
The intuitive idea that, if we replicate the behaviour shown in Figure 7.14 along a number len of nested
recursive calls, we get the graph shown in Figure 7.17. At the point in which the last base case is about to

computeSigma (f xi
n @ rj

m = e f) Σ td len = t{0, SD f e f (n + m)} ∗ (len− 1) + σ
where σ = [[e f]]σ (Σ] [f 7→ ([] f , 0, 0)]) td

Figure 7.16: Computation of an initial approximation σ0.

257

time

Stack level

1 2 3 len

 1

...

len

S
f
 e

f
 (n+m)

S
f
 e

f
 (n+m) * (len 1)

σ

Figure 7.17: Stack level behaviour during the execution of subsequent recursive calls.

be executed, the stack level reaches SD e f (n + m) ∗ (len− 1) words. Then we have to proceed similarly
as in the computation of µ0: taking the value SD e f (n + m) ∗ (len − 1) as a base level, we should
consider the stack costs on account of the base cases and the part of the recursive cases before and after
the last recursive call. If we denote these components by σb, σbef and σaft respectively, we have to take
the least upper bound ·t{σb, σbef , σaft}. However, and because the absence of cumulative components
in the computation of stack needs (unlike the heap needs µ, in which the cumulative ∆ component is
involved), taking the least upper bound of these three components is equivalent to applying the [[·]]σ-
interpretation to the whole expression, without taking into account the costs of the subsequent recursive
calls. That is what the σ component represents.

Example 7.49. The algorithm computeSigma, when applied to the append function, yields the following
intermediate results,

SDappend (eappend) 3 = 7 σ = [xs ≥ 1→ 1] t [xs ≥ 2→ 7]

leading to σ0 = [xs ≥ 1→ 7xs− 6] t [xs ≥ 2→ 7xs], which is an asymptotic fixed point.

As in the previous cases, we have to prove the reductivity of the σ0 obtained in this way. Before this,
we need two auxiliary results: the first one states the minimum value that SD f can return for a given
function f .

Lemma 7.50. Let f xi
n @ rj

m = e f be a function definition. Then SD f e td ≥ n + m− td for all td and every
subexpression e of e f in which there is a recursive call to f .

Proof. By induction on the structure of e. If e is a recursive call to f the property holds trivially. We
consider the remaining cases:

• Case e ≡ let x1 = e1 in e2

If there is a call to f in e2 then:

SD f e td ≥ 1 + SD f e2 (td + 1) ≥ 1 + n + m− (td + 1) = n + m− td

If there is no call to f in e2, there must be at least one call in e1 and hence:

SD f e td ≥ 2 + SD f e1 0 ≥ 2 + n + m− 0 ≥ n + m− td

258

• Case e ≡ case x of Ci xij
ni → ei

n

Let us assume that there is a call to f in the r-th branch of the case. Then:

SD f e td ≥ nr + SD f er (td + nr) ≥ nr + n + m− (td + nr) = n + m− td

As a consequence of this Lemma, it holds that SD f e (n + m) ≥ 0 for every function definition
f xi

n @ rj
m = e f . The second auxiliary lemma allows us to express the result of the [[·]]σ-interpretation

as the least upper bounds of the stack costs of the function itself (without taking recursive calls into
account), and the stack costs of its recursive calls (taking the maximum stack level difference as a base
level).

Lemma 7.51. Let f be the context function, and e a subexpression of its body which contains p recursive calls to
f . Let σ′ ∈ F a stack cost function. For each recursive call k ∈ {1..p} we denote by σ′k the stack cost function
λxi.σ′ (|aki| xi), where |aki| is the size function of the i-th argument ocurring in the k-th recursive call. If we
define:

σ = [[e]]σ (Σ] [f 7→ ([] f , 0, σ′)]) Γ td
σr = [[e]]σ (Σ] [f 7→ ([] f , 0, 0)]) Γ td

then the following relation between σ, σr and σ′ holds:

σ v t
(
{σr} ∪

{
SD f e td + σ′k | k ∈ {1 . . . p}

})
Proof. By induction on the structure of e.

• Case e ≡ be, where be is not a recursive call.

In this case we get p = 0 and the signature of f is not relevant. Thus σ = σr, from which the
required result follows trivially.

• Case e ≡ f ai
n @ rj

m

We get p = 1, σ = ·t{n + m, σ′1 − td + n + m} and σr = ·t{n + m, n + m− td} = n + m and hence:

σ = ·t{n + m, n + m− td + σ′1} = ·t{σr, SD f e td + σ′1} v t{σr, SD f e td + σ′1}

• Case e ≡ let x1 = e1 in e2

We assume there are q ∈ {0 . . . p} calls to f in e1 and q− p calls to f in e2. If we denote by σ1 and
σ2 the stack costs obtained in e1 and e2, we can apply the induction hypothesis as follows:

σ1 v t
(
{σ1,r} ∪ {SD f e1 0 + σ′k | k ∈ {1 . . . q}}

)
σ2 v t

(
{σ2,r} ∪ {SD f e2 (td + 1) + σ′k | k ∈ {q + 1 . . . p}}

)
Consider the set D = dom σ1 ∩ dom σ2. If xi /∈ D then we get:

σ xi = ·t{2 + σ1 xi, 1 + σ2 xi} = ⊥

259

and the lemma holds trivially. On the other hand, if xi ∈ D then σ1 xi 6= ⊥ and σ2 xi 6= ⊥, which
implies, by the definition of σ1,r and σ2,r, σ1,r xi 6= ⊥ and σ2,r xi 6= ⊥. Therefore we get, in D:

σ

= { by definition of [[·]]σ }
·t{2 + σ1, 1 + σ2}

v { by I.H. }

·t{2 + t
(
{σ1,r} ∪ {SD f e1 0 + σ′k | k ∈ {1 . . . q}}

)
,

1 + t
(
{σ2,r} ∪ {SD f e2 (td + 1) + σ′k | k ∈ {q + 1 . . . p}}

)
}

= { by properties of t, and since σ1,σ2 6= ⊥ in D }
t{t{2 + σ1,r, 1 + σ2,r},t{2 + SD f e1 0 + σ′k | k ∈ {1 . . . q}},
t{1 + SD f e2 (td + 1) + σ′k | k ∈ {q + 1 . . . p}}}

v { by definition of SD f and σr, and since σ1,r,σ2,r 6= ⊥ in D }
t{σr,t{SD f e td + σ′k | k ∈ {1 . . . q}},
t{SD f e (td) + σ′k | k ∈ {q + 1 . . . p}}}

= { by properties of t }
t{σr,t{SD f e td + σ′k | k ∈ {1 . . . p}}}

= { by properties of t }

t
(
{σr} ∪ {SD f e td + σ′k | k ∈ {1 . . . p}}

)
• Case e ≡ case x of Ci xij

ni → ei
n

The p recursive calls are distributed among the ei, so we assume a sequence 1 = p0 ≤ p1 ≤
. . . ≤ pn = p such that there are pj − pj−1 recursive calls in the j-th branch. If we denote by σj

(j ∈ {1 . . . n}) the result of applying the abstract interpretation rules to the j-th branch, we get:

σ

= { by definition of [[·]]σ }
tn

j=1{nj + σj}
v { by I.H. }

tn
j=1{nj + t

(
{σj,r} ∪ {SD f ej (td + nj) + σ′k | k ∈ {pj−1 . . . pj}}

)
}

= { by properties of t }
t{tn

j=1{nj + σj,r},tn
j=1{nj + SD f ej (td + nj) + σ′k | k ∈ {pj−1 . . . pj}}}

v { by defs. of SD f and σr }
t{σr,tn

j=1{SD f e td + σ′k | k ∈ {pj−1 . . . pj}}}

= { by properties of t }

t
(
{σr} ∪ {SD f e td + σ′k | k ∈ {1 . . . p}}

)

Given these two properties, we can prove the reductivity of σ0 provided the len function involved in
its computation is admissible (see Definition 7.47).

Theorem 7.52. Let σ0 = computeSigma (f xi @ rj = e f) Σ td len. If len is admissible and the σ occurring in
the definition of computeSigma is parameter-decreasing, then σ0 ∈ Red(S f).

260

Proof. If f is not recursive, we get:

S f (σ0) = [[e]]σ Σ] [f 7→ ([] f , 0, σ)] Γ (n + m) = [[e]]σ Σ[f 7→ ([] f , 0, 0)] Γ (n + m) = σ v σ0

and reductivity of σ0 holds. Now let us assume that there are p ≥ 1 recursive calls in the function
definition. For each k ∈ {1..p} we define σf ,k, lenk and σk as follows.

σf ,k
def
= λxn.σ0 (|aki| xi) lenk

def
= λxn.len (|aki| x) σk

def
= λxn.σ (|aki| x)

where the |aki| are size functions previously inferred for each parameter in each recursive call. Then:

S f (σ0)

v { by Lemma 7.51 }

t
(
{σ} ∪ {SD f e f (n + m) + σf ,k | k ∈ {1 . . . p}}

)
= { by Lemma 7.50, SD f e f (n + m) ≥ 0 }

t
(
{σ} ∪ {t{0, SD f e f (n + m)}+ σf ,k | k ∈ {1 . . . p}}

)
= { by definition of σ0 }

t
(
{σ} ∪ {t{0, SD f e f (n + m)}+ t{0, SD f e f (n + m)} ∗ (lenk − 1) + σk | k ∈ {1 . . . p}}

)
=

t
(
{σ} ∪ {t{0, SD f e f (n + m)} ∗ lenk + σk | k ∈ {1 . . . p}}

)
v { admissibility of len }

t
(
{σ} ∪ {t{0, SD f e f (n + m)} ∗ (len− 1) + σk | k ∈ {1 . . . p}}

)
v { since σk v σ for each k ∈ {1 . . . p} }

t
(
{σ} ∪ {t{0, SD f e f (n + m)} ∗ (len− 1) + σ | k ∈ {1 . . . p}}

)
= { by properties of t, and because lenw1 }
t{0, SD f e f (n + m)} ∗ (len− 1) + σ

= { by definition of σ0 }
σ0

7.5.6 Correctness in absence of admissibility conditions

Let us summarize what we have achieved so far: given a function definition f , we have defined three al-
gorithms for computing an initial signature (∆0, µ0, σ0), which is a correct approximation of the memory
needs of f . Moreover, if we insert this signature into a signature environment Σ and apply the abstract
interpretation functions with this updated environment, we get a triple (∆1, µ1, σ1), whose components
can be equal or more precise than the initial (∆0, µ0, σ0). Hence, the initial signature is reductive w.r.t.
the abstract interpretation. In case this new signature is strictly more precise than the original one, we
can apply the abstract interpretation again and get another triple (∆2, µ2, σ2) which can be equal or
more precise than (∆1, µ1, σ1), and so on.

A key point to notice is that we have only shown the reductivity property of the initial signature,
but not (directly) its correctness, since the latter follows from the reductivity property (Corollary 7.34).
However, reductivity only holds under some admissibility conditions on the externally given nb, nr,

261

len functions. If one of these admissibility conditions does not hold, the initial signature may not be
reductive. In this case we cannot apply the implication [RD]⇒[CR], since the antecedent does not
hold. However, it can be proven that, even in those cases in which these admissibility conditions do
not hold, the initial signature (∆0, µ0, σ0) is still correct. The proof of this fact is rather technical, and its
details are left to Appendix B.

Given the above, let us assume that (∆0, µ0, σ0) is correct, but not reductive. If we define, ∆1 =

I f (∆0), µ1 =M∆0, f (µ0) and σ1 = S f (σ0), we know, by Theorem 7.26, that the new signature (∆1, µ1, σ1)

is correct, but not necessarily more precise than (∆0, µ0, σ0). If ∆1 = ∆0 then we can safely discard ∆1,
since our initial approximation ∆0 is more precise. It could also be the case that ∆1 and ∆0 are not
comparable, in which case we compute ∆′1 = u{∆1, ∆0}, since it is more precise than both ∆1 and ∆0,
but still correct. The same reasoning applies to the µ0 and σ0 components.

Therefore, in absence of the reductivity property we can define the following modified iteration
operators as follows:

I ′f (∆) = u{∆, I f (∆)}

M′
∆, f (µ) = u{µ,M∆, f (µ)}

S ′f (σ) = u{σ,S f (σ)}

for every ∆ ∈ D, µ ∈ F and σ ∈ F. It is easy to show that, if (∆0, µ0, σ0) is our initial signature,

∆0 ∈ Red(I ′f) ∧ µ0 ∈ Red(M′
∆0, f) ∧ σ0 ∈ Red(S ′f)

and, for every n ≥ 0, ((I ′f)
n(∆0), (M′

∆0, f)
n(µ0), (S ′f)

n(σ0)) is a correct signature.

7.5.7 Correctness in absence of parameter-decrease conditions.

In addition to the above mentioned admissibility conditions, the reductivity of the initial bounds also
depend on the fact that their components are parameter-decreasing, as stated in Definition 7.39. In
absence of these conditions, we can ensure neither the reductivity nor the correctness of these initial
bounds. Therefore, it is useful to establish some sufficient conditions under which the parameter-
decrease property is guaranteed. Given a function definition, the first condition states that if the sizes
of the parameters do not increase from the root call to the recursive ones, every abstract heap or space
cost function is parameter-decreasing with respect to that definition.

Proposition 7.53. Assume a function definition f xi
n @ rj

m = e f . If for every recursive call f ai
n @ rj

m in its
body it holds that |ak| xi

n v xk for every k ∈ {1..n}, then every ∆ ∈ D and ξ ∈ F is parameter-decreasing with
respect to f .

Proof. It follows trivially from the fact that the elements of D and F are monotone functions.

It is not usual to obtain function definitions for which this condition does not hold. In particular,
those functions having an accumulator parameter whose size increases from the root call to its recursive
calls (such as revAuxD, in Example 5.2) do not satisfy this condition. Notice, however, that in these kind
of functions, the costs do not depend on the sizes of these accumulator functions. Hence we can set out
the following weaker sufficient condition:

Proposition 7.54. Assume a function definition f xi
n @ rj

m = e f . If for every recursive call f ai
n @ rj

m in its
body it holds that |ak| xi

n v xk for every k ∈ P ⊆ {1..n}. For every ∆ ∈ D (resp. ξ ∈ F), if ∆ (resp. ξ) does not

262

depend on the parameters belonging to {1..n}\P, then ∆ (resp. ξ) is parameter-decreasing with respect to f .

Proof. It follows trivially from monotonicity of ∆ and ξ.

This criterion is satisfied by every example function definition in this thesis. In absence of the
parameter-decrease property, we can still adapt our computeDelta, computeMu and computeSigma algo-
rithms so as to get correct initial approximations. We can follow an approach similar to that of [4]: the
key idea is to compute an invariant Ψ bounding the feasible sizes of the parameters as a function of the
arguments given to the root call, and then maximize the partial components appearing in each algo-
rithm (for instance, ∆b and ∆r in computeDelta). If the invariant Ψ is given by a set of linear constraints,
we can use linear programming techniques for this maximization. This adaptation is subject of future
work.

7.6 Case studies

In this section we apply our space analysis to several examples. Some of the functions have already
been introduced in previous chapters. Since, at this moment, our algorithm does not deal with explicit
destruction, case! expressions are handled by our implementation as non-destructive case expressions.
The upper bounds to the heap costs of these non-destructive versions are correct approximations to the
costs of their destructive counterparts, whereas stack costs are not affected by explicit destruction.

All the algorithms explained in this chapter are currently implemented in Maple. The compiler’s
front-end generates a representation of the abstract syntax tree corresponding to the program being
analysed, and Maple computes the initial symbolic approximations and perform the necessary simplifi-
cations. This system is also used for computing the asymptotic expressions to the obtained bounds.

In order to avoid excessive subscripting, we shall use I ,M and S to denote the iteration operators,
without specifying the name of the function being inferred. The latter can be deduced from the context.

Example 7.55 (Insertion sort). We will compute a bound to the memory needs of insertD and inssortD
from Example 3.12 on page 91. Let us start with the insertD function. We use x and ys to denote its input
parameters. We start from the following information regarding its activation tree,

nb = λx ys.1

nr = λx ys.ys− 1

len = λx ys.ys

and the following size information,
|yy| = λx ys.ys− 1

assuming yy is the name of the variable with which the recursive call to insertD is done. It is easy to
see that the admissibility conditions on nb, nr and len hold, as well as the parameter-decreasingness
conditions.

The computeDelta algorithm returns the abstract heap ∆0 = λx ys.[ρ1 7→ ξ(x, ys)], where ξ is defined
as follows:

263

ξ(x, ys) = t

nr︷ ︸︸ ︷

(ys− 1) ∗
∆r︷ ︸︸ ︷

[ys ≥ 2→ 1] +

nb︷︸︸︷
1 ∗

∆b︷ ︸︸ ︷
t{[ys ≥ 1→ 2], [ys ≥ 2→ 0], [ys ≥ 2→ 2]},

t{[ys ≥ 1→ 2], [ys ≥ 2→ 0], [ys ≥ 2→ 2]}︸ ︷︷ ︸
∆b

This result can be converted into a piecewise function, so as to obtain:

∆0 = λx ys.

ρ1 7→

⊥ ys < 1

2 1 ≤ ys < 2

ys + 1 2 ≤ ys

An iteration of the abstract interpretation leads to the following result,

∆1
def
= I(∆0) = λx ys.

ρ1 7→

⊥ ys < 1

2 1 ≤ ys < 2

3 2 ≤ ys < 3

ys + 1 3 ≤ ys

which is equal to ∆0, except in those points belonging to the interval [2, 3), in which the latter result is
more precise. However, ∆0 is an asymptotic fixed point. If we use this abstract heap as an input to the
computeMu function we get the following initial approximation:

µ0 = λx ys.

⊥ ys < 1

2 1 ≤ ys < 2

4 2 ≤ ys < 3

ys + 2 3 ≤ ys

By applying the iteratorM∆0 to this result, we obtain,

µ1
def
= M∆0(µ0) = λx ys.

⊥ ys < 1

2 1 ≤ ys < 2

3 2 ≤ ys < 3

4 3 ≤ ys < 4

ys + 1 4 ≤ ys

264

which is strictly lower than µ0. A second iteration shows that µ1 is an asymptotic fixed point ofM∆0 :

µ2
def
= M2

∆0
(µ0) = λx ys.

⊥ ys < 1

2 1 ≤ ys < 2

3 2 ≤ ys < 3

4 3 ≤ ys < 4

5 4 ≤ ys < 5

ys + 1 5 ≤ ys

With respect to the stack costs, we obtain

σ0 = λx ys.

⊥ ys < 1

9ys− 5 1 ≤ ys < 2

9ys 2 ≤ ys

which is an asymptotic fixed point, since an application of the iterator S leads to the following function:

σ1
def
= S(σ0) =

⊥ ys < 1

9ys− 5 1 ≤ ys < 3

9ys 3 ≤ ys

Notice that the iteration of S never reaches its actual fixed point, which is λx ys.[ys ≥ 1→ b9ys− 5c].

With respect to the inssortD definition, and given the following functions:

nb = λxs.1

nr = λxs.xs− 1

len = λxs.xs

The abstract heap ∆0 returned by computeDelta is the following:

∆0 ≈ λxs.[ρ2 7→ xs2 − xs + 1]

The successive iterations of the abstract interpretation lead to the following results,

∆1 = I(∆0) ≈ λxs.[ρ2 7→ xs2 − 2xs + 3]
∆2 = I2(∆0) ≈ λxs.[ρ2 7→ xs2 − 3xs + 6]
∆3 = I3(∆0) ≈ λxs.[ρ2 7→ xs2 − 4xs + 10]
∆4 = I4(∆0) ≈ λxs.[ρ2 7→ xs2 − 5xs + 15]

which are depicted in Figure 7.18. None of them is an asymptotic fixed point.

Assume we give ∆4 as an input to the computeMu algorithm. We get,

µ0 ≈ λxs.xs2 − 6xs + 21

from which, by iterating withM∆4 we obtain an asymptotically equivalent bound µ1. Finally, an initial

265

Figure 7.18: Graphical representation of ∆i xs ρ2 resulting from the i-th iteration.

approximation to the stack costs is given by the following expression:

σ0 ≈ λxs.15xs− 14

and the successive iterations of S give place to the following functions.

σ1 = S(σ0) ≈ λxs.15xs− 23
σ2 = S(σ1) ≈ λxs.15xs− 32

none of which is an asymptotic fixed point. They are shown in Figure 7.19.

Example 7.56. In Figures 7.20, 7.21 and 7.22 we show the results of our memory consumption analysis
for most of the examples appearing in this thesis. We omit the λ-prefixes for a better readability. The
values ∆0, µ0 and σ0 represent the intial upper bounds obtained by the computeDelta, computeMu and
computeSigma functions. In case these bounds are not fixed points of their corresponding I , M and
S , we represent the results of successive applications of these operators. When i > 0, ∆i denotes the
abstract heap I i(∆0). The same applies with the µi and σi. A (?) mark besides an abstract heap or cost
function indicates that it is an asymptotic fixed point of its corresponding operator.

Some functions have been slightly adapted to meet the requirements of the analysis. In particu-
lar, polymorphic recursion on regions has been disabled. That is why, in pascal function we obtain a
quadratic cost function pascal instead of linear, as stated in Example 4.20. With regard to the fib func-
tion, we use a variant of type Int → HInt, instead of the function appearing in Example 4.2, of type
HInt → HInt. This is done in order to accommodate the input values to the size model of our analysis.
A value of type HInt always has size one, whereas the size of an non-negative Int is its value.

In some cases, we would get an infinite descending chain µ0 = µ1 = . . . = µi = . . . of functions, as
in the µ component of appendC. However, this does not mean that the limit of this chain when i tends
to +∞ is the zero-constant function, since the results shown here are only asymptotic bounds, and the

266

Figure 7.19: Graphical representation of σi xs resulting from the i-th iteration.

limit does not have to coincide asymptotically with the µi. In the case of appendC, the sequence {µi}i∈N

converges pointwise to λxs ys.xs + ys− 1, which is a fixed point of theM operator. With the stack costs
of qsort we get a similar situation.

Normally, the initial bounds are overapproximations of the actual fixed points. In the case of msort,
whose worst-case space complexity is in O(xs log xs), we get a quadratic bound. Notice, however, that
the xs2 coefficient keeps decreasing at each iteration.

The reverse′ function of Figure 7.22 implements a naive algorithm for reversing the elements of a list.

reverse′ [] = []

reverse′ (x : xs) = append (reverse′ xs) [x]

This algorithm has quadratic heap space complexity, in contrast to the revAux function, of linear heap
space complexity. These differences become apparent in the results shown in Figure 7.22.

Recall from Section 2.8 that the SVM allows us to obtain constant stack costs for tail-recursive func-
tions. Our algorithm computeSigma is aware of this, since it can be proven that for every tail-recursive
function definition f xi

n @ rj
m = e f the result of SD f e f (n + m) is always zero. As a consequence,

we get σ0 = σ, where σ is defined as in computeSigma. If the latter does not depend on the input sizes,
neither does σ0.

Example 7.57 (Tail recursive selection sort). Let us consider the implementation of the selection sort
algorithm shown in Figure 7.23, where every function builds its result in an accumulator parameter.
As a consequence, all the functions are tail recursive, and their stack costs are constant (i.e. do not
depend on the size of the input). Besides this, the stack upper bounds inferred by computeSigma are also

267

append xs ys @ r (pg. 24) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs− 1](?) µ0 ≈ xs− 1(?) σ0 ≈ 7xs(?)

appendC xs ys @ r (pg. 26) with Γ(r) = ρ3

∆0 ≈ [ρ3 7→ xs + ys− 1](?) µ0 ≈ 2ys + xs− 2 σ0 ≈ 7xs(?)

µ1 ≈ 2ys + xs− 3
µ2 ≈ 2ys + xs− 4

length xs (pg. 21)

∆0 ≈ [](?) µ0 ≈ 0 σ0 ≈ 5xs(?)

split n xs @ r1 r2 r3 (pg. 171) with Γ(r1) = ρ1, Γ2(r2) = ρ2, Γ3(r3) = ρ3

∆0≈

 ρ1 7→ 0
ρ2 7→ min(n, xs + 1) + 1
ρ3 7→ min(n, xs + 1) + 1

(?) µ0 ≈ 6 + 2 min(xs, n− 1) σ0 ≈ 9 min(n + 1, xs + 2) + 1(?)

µ1 ≈ 5 + 2 min(xs, n− 1)(?)

merge xs ys @ r (pg. 171) with Γ(r) = ρ1

∆0 ≈ [ρ1 7→ 2xs + 2ys− 3] µ0 ≈ 2xs + 2ys− 3 σ0 ≈ 11xs + 11ys− 10

msort xs @ r1 r2 (pg. 171) with Γ(r1) = ρ1, Γ(r2) = ρ2

∆0 ≈
[

ρ1 7→ 1
2 xs2 + 1

2 xs− 3
ρ2 7→ 2xs2 − 3xs

]
µ0 ≈ 1

2 xs log(xs− 1) + 2xs+
1
2 log(xs− 1) + 15

8 xs2 − 55
8

σ0 ≈ 14 log(xs− 1)+
11xs + 15

∆1 ≈
[

ρ1 7→ 1
4 xs2 + 3

2 xs− 15
4

ρ2 7→ xs2 + xs− 3

]
µ1 ≈ 5

4 xs2 + 3xs− 25
4

(?) σ1 ≈ 11xs + 1 (?)

∆2 ≈
[

ρ1 7→ 1
8 xs2 + 9

4 xs− 35
8

ρ2 7→ 1
2 xs2 + 4xs− 11

2

]

∆3≈
[

ρ1 7→ 1
16 xs2 + 23

8 xs− 79
16

ρ2 7→ 1
4 xs2 + 13

2 xs− 31
4

]

partition y xs @ r2 r3 r4 (pg. 152) with Γ(r2) = ρ2, Γ(r3) = ρ3, Γ(r4) = ρ4

∆0 ≈

 ρ2 7→ xs
ρ3 7→ xs
ρ4 7→ xs

(?) µ0 ≈ 3xs σ0 ≈ 9xs− 2(?)

µ1 ≈ 3xs− 1(?)

Figure 7.20: Results of the space analysis when applied to some example functions on lists. (∆0, µ0, σ0)
are the initial bounds, and (∆i, µi, σi) denote the result of the i-th iteration. A (?) mark indicates that
the corresponding bound is an asymptotic fixed point.

268

qsort xs @ r1 r2 (pg. 129) with Γ(r1) = ρ1 and Γ(r2) = ρ2

∆0 ≈
[

ρ1 7→ 2xs2 − 4xs + 2
ρ2 7→ xs2 − xs + 1

]
µ0 ≈ 7xs2 − 37xs + 91 σ0 ≈ 20xs− 9

∆1 ≈
[

ρ1 7→ 2xs2 − 6xs + 6
ρ2 7→ xs2 − 2xs + 3

]
µ1 ≈ 7xs2 − 48xs + 132 σ1 ≈ 20xs− 19

∆2 ≈
[

ρ1 7→ 2xs2 − 8xs + 12
ρ2 7→ xs2 − 3xs + 6

]
µ2 ≈ 7xs2 − 59xs + 184 σ2 ≈ 20xs− 29

∆3 ≈
[

ρ1 7→ 2xs2 − 10xs + 20
ρ2 7→ xs2 − 4xs + 10

]
µ3 ≈ 7xs2 − 70xs + 247 σ3 ≈ 20xs− 39

sumList xs @ r (pg. 153) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs](?) µ0 ≈ xs + 1 σ0 ≈ 9xs− 9(?)

µ1 ≈ xs(?)

pascal n @ r (pg. 153) with Γ(r) = ρ1

∆0 ≈ [ρ1 7→ n2 + 3n + 2] µ0 ≈ n2 − 2n + 17(?) σ0 ≈ 15n + 13
∆1 ≈ [ρ1 7→ n2 + 2n + 3] σ1 ≈ 15n + 4
∆2 ≈ [ρ1 7→ n2 + n + 5] σ2 ≈ 15n− 5
∆3 ≈ [ρ1 7→ n2 + 8] σ3 ≈ 15n− 14

combNumbers m n (pg. 153)

∆0 ≈ [](?) µ0 ≈ m2 −m + 12(?) σ0 ≈ 15m + 17(?)

fib′ n @ r (variation of fib, pg. 130) with Γ(r) = ρ1

∆0 ≈ [ρ1 7→ 2n − 1]
µ0 ≈ 4 · 2n−5 + 14 · 2n−6+

18 · 2n−7 + 10 · 2n−8+
2 · 2n−9 − 3

σ0 ≈ 5n + 7

∆1 ≈ [ρ1 7→ 2n−1 + 2n−2 − 1]

µ1 ≈ 2 · 2n−5 + 6 · 2n−6+
10 · 2n−7 + 16 · 2n−8+
18 · 2n−9 + 10 · 2n−10+
2 · 2n−11 − 4

σ1 ≈ 5n + 6

∆2 ≈ [ρ1 7→ 2n−1 + 2n−4 − 1]
µ2 ≈ 2 · 2n−5 + 8 · 2n−6+

12 · 2n−7 + 8 · 2n−8+

2 · 2n−9 − 1(?)
σ2 ≈ 5n + 5

∆3 ≈ [ρ1 7→ 2n−3 + 3 · 2n−4+
3 · 2n−5 + 2n−6 − 1]

σ3 ≈ 5n + 4

Figure 7.21: Results of the space analysis when applied to some example numeric functions and func-
tions on lists. (∆0, µ0, σ0) are the initial bounds, and (∆i, µi, σi) denote the result of the i-th iteration. A
(?) mark indicates that the corresponding bound is an asymptotic fixed point.

269

unshuffle xs @ r2 r3 (pg. 205) with Γ(r2) = ρ2 and Γ(r3) = ρ3

∆0 ≈
[

ρ2 7→ xs + 1
ρ3 7→ xs

](?)
µ0 ≈ 2xs + 2 σ0 ≈ 7xs + 2(?)

µ1 ≈ 2xs + 1(?)

reverse′ xs @ r (variation of reverse on pg. 165) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs2 − xs + 1] µ0 ≈ xs2 − 5xs + 15(?) σ0 ≈ 13xs− 12
∆1 ≈ [ρ2 7→ xs2 − 2xs + 3] σ1 ≈ 13xs− 19
∆2 ≈ [ρ2 7→ xs2 − 2xs + 6] σ2 ≈ 13xs− 26
∆3 ≈ [ρ2 7→ xs2 − 2xs + 10] σ3 ≈ 13xs− 33

revAux xs ys @ r (pg. 165) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs− 1](?) µ0 ≈ xs(?) σ0 ≈ 6(?)

reverse xs @ r (pg. 165) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs](?) µ0 ≈ xs + 1(?) σ0 ≈ 7(?)

insertT x t @ r (pg. 156) with Γ(r) = ρ1

∆0 ≈
[
ρ1 7→ 1

2 t + 5
2

]
(?) µ0 ≈ 1

2 t + 9
2 σ0 ≈ 11

2 t + 11
2
(?)

µ1 ≈ 1
2 t + 7

2

µ2 ≈ 1
2 t + 5

2
(?)

mkTree xs @ r (pg. 156) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ xs2] µ0 ≈ xs2 − 4xs + 14(?) σ0 ≈ 17xs− 16
∆1 ≈ [ρ2 7→ xs2 − xs + 2] σ1 ≈ 17xs− 27
∆2 ≈ [ρ2 7→ xs2 − 2xs + 5] σ2 ≈ 17xs− 38
∆3 ≈ [ρ2 7→ xs2 − 3xs + 9] σ3 ≈ 17xs− 49

inorder t @ r (pg. 156) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ t2 − 7
2 t + 7

2] µ0 ≈ 2t2 − 22t + 79 σ0 ≈ 39
2 t− 79

2
∆1 ≈ [ρ2 7→ t2 − 11

2 t + 19
2] µ1 ≈ 2t2 − 30t + 131 σ1 ≈ 39

2 t− 143
2

∆2 ≈ [ρ2 7→ t2 − 15
2 t + 39

2] µ2 ≈ 2t2 − 38t + 199 σ2 ≈ 39
2 t− 207

2
∆3 ≈ [ρ2 7→ t2 − 19

2 t + 67
2] µ3 ≈ 2t2 − 46t + 283 σ3 ≈ 39

2 t− 271
2

treesort xs @ r (pg. 156) with Γ(r) = ρ2

∆0 ≈ [ρ2 7→ 4xs2 − 19xs + 28](?) µ0 ≈ 9xs2 − 103xs + 340(?) σ0 ≈ 39xs− 123(?)

Figure 7.22: Results of the space analysis when applied to some example functions on lists and trees.
(∆0, µ0, σ0) are the initial bounds, and (∆i, µi, σi) denote the result of the i-th iteration. A (?) mark
indicates that the corresponding bound is an asymptotic fixed point.

270

min :: Int→ Int→ Int
min x y | x ≤ y = x

| x > y = y

minimumAc :: Int→ [Int]→ Int
minimumAc ac [] = ac
minimumAc ac (x : xs) = minimumAc (ac ‘min‘ x) xs

removeAc :: Int→ [Int]→ [Int]→ [Int]
removeAc x [] ac = ac
removeAc x (y : ys) ac

| x == y = revAux ys ac
| x/ = y = removeAc x ys (y : ac)

selectSortAc :: [Int]→ [Int]→ [Int]
selectSortAc [] ac = ac
selectSortAc xs ac = selectOrdAc (removeAc y xs []) (y : ac)

where y = minimumAc (−∞) xs

Figure 7.23: Tail-recursive selection sort algorithm

constant. In particular, we obtain:

σmin ≈ λx y.5

σminimumAc ≈ λac xs.11

σremoveAc ≈ λx ys ac.9

σselectSortAc ≈ λxs ac.17

7.7 Inference in presence of explicit destruction and polymorphic recursion

The techniques shown in this chapter yield correct upper bounds provided the input function does
not have destructive pattern matching, and assuming the absence of region-polymorphic recursion.
In this section we briefly sketch how to improve the algorithms of this chapter in order to deal with
these language facilities. Notice, however, that none of these extensions is implemented nor formally
specified. They are just given here as a proof of the feasibility of these techniques for inferring full-
fledged Safe definitions.

If we consider region-polymorphic recursive definitions the abstract interpretation described in Sec-
tion 7.3 would require no changes, since its proof of correctness does not distinguish between recursive
and non-recursive function applications. Both of these are handled exactly in the same way. Polymor-
phic recursion does affect the computation of the initial ∆0 and µ0 explained in Section 7.5. Assume a
function definition with m region parameters, and that the type of the i-th region parameter is ρi, for
each i ∈ {1..m}. The computeDelta algorithm assumes that this mapping between region parameters
and RTVs remains constant through the subsequent recursive calls, but this is not true in the case of re-
cursive definitions: the i-th region parameter may be mapped to a different ρj (j 6= i) in some recursive
calls, or it could be mapped to ρself . As a consequence, we have a finite number Γ1, . . . , Γn of typing en-
vironments typing the subsequent recursive calls. For every recursive call, the correspondence between

271

region variables and RTVs is given by one of these environments. Assume we are able to find some
nr(i) (i ∈ {1..n}) such that:

nr v nr(1) + nr(2) + · · ·+ nr(n)

and each nr(i) bounds the number of recursive calls associated with the environment Γi. Then we would
be able to consider each nr(i) separately, multiplied by the charges done by the recursive subsequences
under the environment Γi, in the style of the following example:

Example 7.58. Given the following region-annotated definition:

f :: Int→ ρ1 → ρ2 → ρ3 → ([Int]@ρ1, [Int]@ρ2)@ρ3

f 0 @ r1 r2 r3 = ([]@r1, []@r2)@r3

f n @ r1 r2 r3 = (n : xs, n : ys)@r3

where (xs, ys) = f (n− 1) @ r2 r1 self

Assume Γ = [r1 : ρ1, r2 : ρ2, r3 : ρ3]. In the first recursive call, the type of first parameter becomes ρ2

and the type of the second one becomes ρ1, whereas no region is mapped to ρ3. In the second recursive
call, the type of the first parameter is ρ1 again, and the type of the second parameter is ρ2. In the third
recursive call we have the same mapping as in the first one. These changes in the mappings between
parameter positions and RTVs can be depicted as follows:

r
1

 ↦ ρ
1

r
2
 ↦ ρ

2

r
3
 ↦ ρ

3

r
1

 ↦ ρ
2

r
2
 ↦ ρ

1

r
3
 ↦ ρ

self

r
1

 ↦ ρ
1

r
2
 ↦ ρ

2

r
3
 ↦ ρ

self

�
1

�
2

�
3

If nr = λn.n is an upper bound to the number of recursive calls, one of these calls is done with the
typing environment Γ1 above, at most

⌈
n−1

2

⌉
of these calls correspond to Γ2, and at most

⌈
n−1

2

⌉
are

done with Γ3. Therefore, we have three different functions for modeling the number of recursive calls:

nr(1) = λn.1 nr(2) = λn.
⌈

n− 1
2

⌉
nr(3) = λn.

⌈
n− 1

2

⌉
By applying the abstract interpretation rules with the recursive part of the expression assuming each Γi,
we obtain the following abstract heaps:

∆r
(1) =

 ρ1 7→ 1
ρ2 7→ 1
ρ3 7→ 1

 ∆r
(2) =

[
ρ1 7→ 1
ρ2 7→ 1

]
∆r
(3) =

[
ρ1 7→ 1
ρ2 7→ 1

]

We proceed in a similar way with the base sequences of the function’s body:

∆b
(1) =

 ρ1 7→ 1
ρ2 7→ 1
ρ3 7→ 1

 ∆b
(2) =

[
ρ1 7→ 1
ρ2 7→ 1

]
∆b
(3) =

[
ρ1 7→ 1
ρ2 7→ 1

]

272

Hence we get:

∆0 n ρ1 = nr(1) n ∗ ∆r
(1) n ρ1 + nr(2) n ∗ ∆r

(2) n ρ2 + nr(3) n ∗ ∆(3) n ρ1

+nb n ∗ (∆b
(1) n ρ1 t ∆b

(2) n ρ2 t ∆b
(3) n ρ1)

= 1 +
⌈

n− 1
2

⌉
+

⌈
n− 1

2

⌉
+ 1

∆0 n ρ2 = nr(1) n ∗ ∆r
(1) n ρ2 + nr(2) n ∗ ∆r

(2) n ρ1 + nr(3) n ∗ ∆(3) n ρ2

+nb n ∗ (∆b
(1) n ρ2 t ∆b

(2) n ρ1 t ∆b
(3) n ρ2)

= 1 +
⌈

n− 1
2

⌉
+

⌈
n− 1

2

⌉
+ 1

∆0 n ρ3 = nr(1) n ∗ ∆r
(1) n ρ3 + nb n ∗ ∆b

(1) n ρ2

= 1

With regard to destructive pattern matching facility, we need to know which variable is affected
by a given case!. This variable, which appears explicitly in the discriminant of the case!, is lost after
flattening. So, our first modification is to keep these variables somewhere in the sequences. Assume we
adapt our seqs function such that it returns sequences of the form [G → be1, . . . , ben | D], where D is a
set containing the variables occurring in the discriminant of a destructive pattern matching. The [[·]]∆
interpretation of sequences would be extended as follows:

[[[G → be1, ..., ben | D]]]∆ Σ Γ =
[

G → ·⊔{[] f , ∑n
i=1 ([[bei]]∆ Σ Γ) + ∑x∈D[region(x) 7→ −1]

}]
where region(x) denotes the outermost RTV of the type of x. This information can be obtained from
the typing environment4. The least upper bound with the empty abstract heap is done to avoid overall
negative charges. With this new definition it can be proven that the [[·]]∆ interpretation is correct, and
yields a function in D. However, the computeDelta algorithm is more problematic: it could return an
initial bound ∆0 not belonging to D, since the monotonicity property might not hold. However, in those
examples where ∆b and ∆r (being these as defined in computeDelta) belong to D, so does the resulting
∆0. The same applies to µ0 and σ0: if their respective components belong to F, so do the results µ0 and
σ0.

Example 7.59. Assume the revAuxD function of Example 5.2.

revAuxD :: [α]@ρ1 → [α]@ρ2 → ρ2 → [α]@ρ2

revAuxD xs ys @ r = case! xs of
[]→ ys
(x : xx)→ let x1 = (x : ys)@r in revAuxD xx x1 @ r

We get the following sequences:

seq1 = [xs ≥ 1→ ys | xs]

seq2 = [xs ≥ 2→ (x : ys)@r, revAuxD xx x1 | xs]

4It is worth noting that, with this new definition, the set R f occurring in the definition of D would have to be extended with
the RTVs occurring in the types of the input parameters, since there could be negative charges in those RTVs.

273

The first one is a base sequence, from which we get following abstract heap:

b∆bc = λxs ys.[xs ≥ 1→ [ρ2 7→ 0]]

The second sequence is recursive, and by assuming Σ(revAuxD) = ([] f , 0, 0) we obtain:

b∆rc = λxs ys.[xs ≥ 2→ [ρ2 7→ 0]]

Both of these heaps belong to F. Since nr = λxs ys.xs − 1 and nb = λxs ys = 1, the computeDelta
algorithm yields the following result:

∆0 = λxs ys.[xs ≥ 1→ [ρ2 7→ 0]]

7.8 Conclusions and related work

We have introduced an abstract interpretation-based analysis for computing memory bounds, which
takes heap and stack consumption into account. Our approach consists in finding some initial correct
approximations, and applying an abstract interpretation function repeatedly in order to increase their
accuracy. The strengths of our approach can be summarized as follows:

1. It scales well to large programs, as each Safe function can be separately inferred. The relevant
information about the called functions is recorded in the signature environment.

2. It supports arbitrary algebraic data types, provided they do not present mutual recursion.

3. We get upper bounds for the maximum amount of live memory, as the inference algorithms take
into account the deallocation of dead regions made at function termination.

4. It can accommodate several complexity classes, provided these are monotone with respect to the
input sizes.

5. It is, to our knowledge, the first approach in which the upper bounds can be improved just by
iterating the inference algorithm.

The latter point should be interpreted cautiously, since a larger amount of iterations implies more accu-
racy, but also more complexity in the resulting expressions (at least with our current implementation).
Notice, however, that we still can get simple asymptotic bounds. In those cases where the programmer is
only interested in asymptotic bounds, these can be given as input to the next iteration, and the result is
also (asymptotically) another asymptotic bound, much simpler to compute than if the iteration is done
with a non-asymptotic initial bound.

Notice that, in some cases, it is possible to get an infinite, strictly decreasing sequence of upper
bounds without reaching a fixed point. It is an interesting subject of future work to study the conver-
gence of such sequences.

A weak point that still requires more work is the restriction we have imposed to our functions:
they must be non-negative and monotone. That is why destructive pattern matching has been omitted
from our analysis in a first phase. In Section 7.7 we have given some sufficient conditions in which cell

274

deallocation can be taken into account without breaking the monotonicity restriction. Notice, however,
that these are not necessary conditions: there are some examples not satisfying them, but still resulting
in monotone bounds. For instance, the inssortD function of Example 7.55 gives a constant space bound
in presence of explicit destruction. In spite of this, restricting the abstract domain to monotone functions
still excludes some interesting function definitions, such as those that destroy more memory than they
consume, or those whose output size decreases as the input size increases.

The first approaches to space consumption analysis were restricted to infer linear memory bounds.
Hughes and Pareto developed in [61] a type system and a type-checking algorithm which guaran-
tees safe memory upper bounds in a region-based first-order functional language. Unfortunately, the
approach requires the programmer to provide detailed consumption annotations. The first fully auto-
matic technique is due to Hofmann and Jost. In [58] they present a type system and a type inference
algorithm which, in case of success, guarantees linear heap upper bounds for a first-order functional
language, and it does not require programmer annotations. This type system has been extended in [64]
so as to support higher-order functions.

Beyond linear bounds, the pioneer research on memory consumption is that carried out under the
AHA project (Amortised analysis of Heap space Usage) [43], aimed at inferring amortised costs for heap
space. In [105], Shkaravska et al. introduce a variant of sized types, in which the size annotations can be
polynomials of any degree. They address two novel problems: polynomials are not necessarily mono-
tonic and they are exact bounds, as opposed to approximate upper bounds. These bounds are inferred
with a combination of testing and polynomial interpolation-based techniques. In [107] they extend their
work to give approximate upper bounds on the output sizes, thus broadening the class of analysable
programs. In this case, the size relations are expressed via non-deterministic conditional rewriting
systems, from which a closed form is extracted by using polynomial interpolation. A strength of this
approach is that, since the inference is testing-based, the function being inferred can be considered as
a black box. This allows them to use the same inference techniques in different applications, such as,
for example, inferring loop-bounds for Java programs [106]. Unfortunately, polynomial interpolation-
based techniques do not necessarily lead to a correct upper bound, and some external mechanism is
needed for checking that the result of the analysis is sound. Our analysis always gives correct bounds
if the externally given call-tree and size information is correct.

The COSTA system (COSt and Termination Analyzer for Java Bytecode) [5, 6] implements a fully me-
chanical approach to resource analysis for Java bytecode programs. It is based on the classical method
of Wegbreit [119]. It consists in the generation of a recurrence relation which captures the cost of the
program being analysed, and the computation of a closed form by using a built-in recurrence solver
PUBS [3, 4]. Their results go far beyond linear bounds: the system can infer polynomial, logarithmic,
and exponential bounds. COSTA also allows a restricted form of non-monotonicity, provided it occurs
in the context of linear expressions. The computation of our initial ∆0 shares some similarities with the
way in which PUBS solves recurrence relations. The main difference is that PUBS computes the nb and
nr functions giving the number of calls in a recurrence, whereas these functions are given externally in
our system. However, PUBS’ approach of computing both nr and nb from the len function may yield
imprecise over-approximations in some cases (e.g. Quicksort). A drawback, in comparison to our sys-
tem, is that COSTA does not support non-linear size relations, even if these were given externally. The
reason behind this is that these relations are the guards of the recurrence being generated, and PUBS
assumes these guards to be conjunctions of linear constraints.

More recently, the COSTA team has extended their system in order to deal with different models of
garbage collection [7]. The new results are very promising. In their work, they claim that their liveness-

275

based model can accommodate the region-based memory management approach of [27], although this
integration is neither described nor formally specified.

Another promising technique for inferring polynomial bounds is due to Hoffmann and Hofmann
[56], which extends the work of [58]. In the univariate case, their system is able to infer bounds, ex-
pressed as non-negative linear combinations of binomial coefficients. These combinations subsume the
class of polynomials with non-negative coefficients, while allowing some polynomials with negative
coefficients, such as x2 − x. However, it does not cover some other natural-valued polynomial bounds,
such as 3x2 − 6x + 7. In a more recent work [55], Hoffmann et al. extend their analysis to the infer-
ence of multivariate functions. Unlike our system, they do not handle regions nor explicit destruction,
although they claim that the latter can be added with no difficulty. Another drawback is that, to our
knowledge, their approach does not deal with arbitrary data types.

Both the original type system of [58], and its extension to polynomial bounds [56] are closely related
to the potential method used in the context of amortised analysis [110, 32]. This approach provides an
implicit notion of input size (the number of elements in a list, usually), but there is no explicit depen-
dence between input sizes and costs, since the latter are given by the potential assigned to each element
of the input and output DSs. On the contrary, our space analysis, as well as the COSTA system, are both
based on explicit sizes and symbolic manipulation. It is arguable whether one is better than the other.
An advantage of amortised analysis is that it allows to express more precisely the memory costs, when
they do not depend exclusively on the input size. Moreover, amortised analysis yields more precise
results when considering several functions executed in sequence, since it accounts for the overall costs
as a whole, instead of just adding the worst-case costs of each function separately. On the contrary, the
approaches based on symbolic manipulation can be extended more easily, for instance, by including
cost expressions from several complexity classes, as it is done in Safe.

276

Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis we have designed and implemented several analyses for proving pointer-safety and
bounded memory consumption of programs written in a first-order functional language combining
region-based memory management with explicit deallocation. Let us summarize the goals of this work,
and assess the extent to which they have they been achieved.

1. Develop an efficient, fully automatic, type-based, static analysis for ensuring pointer safety
[98, 84, 85, 81].

We have defined a type system which attaches region type variables and marks to standard
Hindley-Milner algebraic types. Region type variables reflect all the regions in which a DS may
live. They allow the compiler to track the DSs that will be located in the working region at run-
time, and ensure that neither the input parameters nor the result of the function are located in this
region. Marks indicate whether a given DS is destroyed via destructive pattern matching. An aux-
iliary analysis is needed for approximating the sharing relations between the different variables.
Those relations determine which variables may get corrupted when some of them are disposed
of.

We have provided an inference algorithm for this destruction-aware type system. It consists of
two separate parts:

(a) A region inference algorithm, which annotates the program with region variables, and infers
the region type variables in the typing derivation. The fact that our language is first-order,
and that our memory model is simpler than in [116], makes our inference algorithm simpler
and more efficient than Tofte and Birkedal’s algorithm [112].

(b) A mark inference algorithm, which annotates the types with marks, and ensures that de-
structive pattern matching is done in a safe way.

We have tested the inference algorithms with several case studies. A number of algorithms ma-
nipulating data structures with constant heap space cost have been successfully typed by the
algorithm. In those which have not, we have identified the auxiliary sharing analysis as the main
source of accuracy loss.

The type system has been proven correct with respect to the semantics of Safe, whereas the infer-
ence algorithms have been shown to be correct with respect to the type system. In addition, the

277

mark inference algorithm is complete with respect to the latter.

2. Certify pointer-safety in an automatic way [36].

We have shown how the compiler generates an Isabelle/HOL script establishing that the program
being certified is well-typed. Together with a set of previously proved theorems guaranteeing
pointer-safety of well-typed programs, this certifies that the object program is pointer-safe.

3. Develop a memory cost model for Safe programs [82].

From the big-step operational semantics of the language, and in a series of successive refine-
ments, we have derived an imperative abstract machine (called SVM) in which Safe programs
are run. The translation between Safe and the instructions of the SVM has been formalized. This
translation has allowed us to set up a connection between each Safe expression and its heap and
stack memory consumption in the SVM. This connection has been formalised by means of some
resource annotations, which have been attached to the big-step operational semantics. These an-
notations make up a cost model for Safe. Finally, these annotations have been proved correct with
respect to the actual consumption of Safe programs in the SVM.

4. Develop an abstract interpretation-based analysis for inferring heap and stack memory bounds
[83].

We have developed an analysis which, given a Safe function, returns an expression bounding its
stack and heap memory consumption as a function on the sizes of the input parameters. Our
abstract domain is the set of monotone functions with the usual v ordering.

As a first step, we have defined an abstract interpretation function describing the heap and stack
needs of each expression. This interpretation has been proved correct with respect to the cost
model developed previously. After this, we have introduced algorithms addressing the inference
problem for recursive functions. We have proved that the result of these algorithms is reductive
under certain conditions. This implies that we can iterate the abstract interpretation in order to
improve the results of these algorithms with each iteration.

In a first stage we have considered the inference of recursive bounds in absence of polymorphic
recursion and explicit destruction, but we have shown the feasibility of the integration of these
features in our inference algorithms, provided that the result belongs to the abstract domain.

The main advantages of our approach are its flexibility for including functions from a broad set
of complexity classes, in spite that, at this moment, non-monotonic functions are not considered.
A remarkable feature is that the obtained upper bounds can be improved by just iterating the
inference algorithm.

8.2 Future work

In this section we describe some possible extensions and improvements that are subject of future work.
Regarding our destruction-aware type system, we have the following issues to address:

• Improved sharing analysis.

Some of the case studies of Section 5.3 show the need for a more accurate sharing analysis than
the one currently implemented [98], so that the programmer does not have to adjust manually its
results in these cases. Our current analysis distinguishes between the recursive and non-recursive

278

part of a data structure, and keeps track of those variables that may point to each of these parts.
However, when approximating the sharing relations in the context of function applications, this
distinction has to be lost, in order to keep the analysis sound. A possibility that may increase
the accuracy of our analysis is to give more information on which particular descendant of a data
structure is being shared by a variable.

• Principal types.

In Section 4.7 we have proved the absence of principal types in the `Reg rules, when considering
some pathological cases, such as the function that copies its parameter and returns it as a result.
The reason behind this is that the copy operator must be applied to a variable with an algebraic
type, but it can be any algebraic type. The syntax of our types allows us to specify concrete alge-
braic types, such as [α]@ρ1 or Tree Int @ ρ2, and also polymorphic type variables, which may be
instantiated to any type (basic or algebraic). However, there is no mechanism in our type syntax
for denoting an arbitrary algebraic data structure whose outermost variable is fixed. A solution to
this problem involves adding a new sort of types that allows to specify such algebraic structures.
It is subject of short-term future work to integrate this extension in the type system.

• Mutually recursive data types.

The current implementation of Safe does not allow the specification of mutually recursive data
types. Extending the type system with this broader class of types would have major implications
in the sharing analysis, but also in the semantics of the language itself. In absence of mutual recur-
sion, we can easily refer to the recursive spine of a DS just by considering the recursive positions
of the data constructors that make up that spine. As a consequence, the recursive children of a
given cell are located just one pointer away from this cell. This does not hold if two data types
are mutually recursive, as there might be several cells staying in the middle of the path between a
given cell and its recursive children. Under these circumstances, our notion of recursive positions
would become more sophisticated.

• Data types with nested recursion.

Safe currently allows recursion in data types, but only at the outermost level. Support for nested
recursion involves the same implications as having mutually recursive data types. In particular,
nested recursion can be translated into a set of mutually recursive data structures.

• Nested destruction.

Although our in-danger types are able to track those DS whose non-recursive part may be cor-
rupted, they give very little information on which part. For instance, assume a variable x with
type [[α]@ρ1]#@ρ2. The fact that x gets an in-danger type implies that:

– The outermost list pointed to by x may be destroyed, and/or

– Some of the innermost lists may be destroyed, and/or

– Some element in some innermost list may be destroyed.

By extending the type system with nested condemned types, we can increase the accuracy of the
type system in determining the level of nesting to which the DS pointed to by x can be destroyed.
For instance, [[α]@ρ1]!@ρ2 only allows the destruction of the outermost list, whereas [[α]!@ρ1]!@ρ2

allows the programmer to destroy the innermost lists, while ensuring that none of their elements

279

of type α is destroyed. In order to carry out this improvement, we have to increase the accuracy
of our auxiliary sharing analysis, so that it distinguishes between the different layers of a DS. This
is more precise than distinguishing only the outermost recursive spine from the rest of the DS.

With respect to our abstract interpretation-based space consumption analysis, we highlight the follow-
ing aspects to be improved:

• Support for different kinds of resources.

In this thesis we have focused on bounding memory consumption, but the research field of re-
source analysis is broader; it addresses more kinds of resources. Most of the ideas shown in
Chapter 7 can be applied to different classes of resources. A desirable property of a resource
bounds analysis is to have some kind of parametrizability on the resource being measured. As
an example, the COSTA system [5] provides support for several fixed notions of resources: num-
ber of instructions executed, memory consumption in the presence of different models of garbage
collection, and number of calls to a given method.

The work of Aspinall et al. [9] introduces a generic concept of resource algebras, providing a general
framework for embedding different kinds of resources. A generalization of our abstract interpre-
tation function for arbitrary resource algebras should be straightforward. However, the compu-
tation of the initial bounds requires special attention. The algorithm for computing the initial ∆0

(see Section 7.5.3) can be applied on those kind of resources which are compositionally additive, that
is, those resources in which the cost of a compound expression is the sum of the costs of its basic
sub-expressions. The algorithm for the computation of the initial σ0 (Section 7.5.5) can be applied
on those resources whose consumption may increase and/or decrease along the execution of the
program, and we are interested in a maximum consumption level. The algorithm for computing
µ0 also finds a maximum consumption level, but also entails an additive component. A more
general resource framework should set certain conditions on resource algebras for determining
which algorithm can be used for computing the initial approximation of the bounds to a given
resource consumption.

• Support for different size models.

In the same way it is useful to consider different kinds of resources, it is also convenient to consider
different kinds of size models. With the term size we mean being bound in cost expressions, and
that gives an idea on how easy or difficult is to process the input. In this sense, the size of a
DS is not necessarily related to the amount of heap memory needed by the DS. For instance, in
our system, the size of a natural number is its value, although natural numbers do not take up
space in the heap. Safe has a fixed notion of size of a DS: the number of cells in the recursive
spine. This notion is also fixed in the COSTA system: the size of a DS is the length of the longest
reachable chain from its root. The size model may decisively influence the complexity order of
the resulting bound. For instance, consider a function for generating a copy of a binary tree. In
Safe this function is reported to have O(t) space complexity, whereas, according to COSTA, it has
O(2t) space complexity. The actual difference is the meaning of the t variable: in Safe it stands for
the number of nodes in the tree, whereas in COSTA it represents the height of the tree.

A good starting point is the work of Tamalet et al. [109], which presents a sized type system with
arbitrary algebraic data types. Sizes are defined by assigning a weight to each data constructor.
The amortised analysis-based approach of Jost et al. [64, 63] can also assign different potentials to
each constructor.

280

• Non-monotonic upper bounds.

As it was shown in Section 7.2, the abstract domain in our system is the set F of monotonic func-
tions. The monotonicity condition is essential in order to ensure the correctness of the abstract
interpretation, but it is very restrictive in presence of explicit deallocation, since the latter can
produce negative charges in the heap. There are some interesting functions that cannot be con-
sidered with this restriction, such as those destroying a data structure without building anything.
In these cases we can observe some sort of duality with respect to our current approach. Assume
a function that only destroys a cell in each recursive call, and does nothing else. Regarding heap
consumption, the worst-case corresponds to the minimum number of recursive calls, as, in that
case, less cells are destroyed, which implies less free memory. Hence, when analysing a function
whose costs are monotonically decreasing in each call, we have to consider lower bounds on the size
of the call-tree. Those cost functions which are neither monotonically increasing nor decreasing
would have to be considered in a piecewise basis.

• Convergence of a sequence of cost functions.

Our approach allows us to get a decreasing sequence of upper bounds by iterating the abstract
interpretation function. In some case studies we have obtained an infinite strictly decreasing
sequence of functions, without reaching a fixed point. In many cases we have been able to graph-
ically represent the behaviour of this sequence, and we have been able to (manually) determine
the cost function to which this sequence converges, which turned out to be a fixed point of the ab-
stract interpretation. It would be interesting to study the conditions under which we can ensure
the convergence of those sequences, and the resulting function that we would obtain when the
number of iterations tends to infinity.

Finally, and with respect to the Safe language itself, there are two extensions that are worth considering:

• Higher-order functions.

The most challenging (but rewarding, as well) extension which is subject of future work is the
inclusion of higher-order functions in Safe. This would require a change in almost every aspect
of the language: syntax, semantics, virtual machine, region and mark inference, sharing analysis,
space consumption analysis, and certification.

The adaptation of some of the already existing analyses to a higher-order language can be carried
out with relatively low difficulty. This includes the region inference algorithm, and the space
consumption analysis. With respect to the former, the MLKit compiler [116, 113] already supports
region inference for higher-order functions. Since we will maintain the decision of having a single
region per call, we expect that our algorithm will remain simpler than that appearing in [112].
With respect to the space consumption analysis for higher-order functions, the cost expressions
of functional parameters must appear symbolically in the resulting bound. Only when concrete
functions are passed as parameters (and their memory costs have been inferred), these symbols
can be replaced by particular cost functions. A different approach, based on amortised analysis, is
that of [64], which extends the work of [58] in order to include support for higher-order functions.

• Alternative target languages.

The current implementation of Safe generates Java bytecode as a result. A strong point of the Java
virtual machine is that it is available in many software and hardware platforms. However, it is
somewhat restrictive with regard to memory management. As a consequence of this, the explicit

281

destruction of a cell is handled by linking that cell to a free list. This cell is reused by the runtime
system when a subsequent allocation takes place. Moreover, the statically typed nature of the
JVM makes the process of translation awkward. It is convenient to target the bytecode generation
to other virtual machines and compilation frameworks which allow more flexibility in memory
management. A notable example of this is the LLVM (Low Level Virtual Machine) compilation
framework [71], which provides a language-independent instruction set. Programs written in this
language can be further translated into machine code.

282

Appendix A

Type constraints solving by unification

The region inference algorithm described in Chapter 4 involves the computation of a solution to a
previously generated set of constraints between types. In this appendix we put forward an algorithm
for computing this solution. This algorithm is an extension of [12], which, in turn, is based on the
original Robinson’s unification algorithm [101]. This algorithm is extended to support isData constraints
and ≈k equations, which are weaker forms of standard unification (see 4.4.1 for details)

We provide here a description of our algorithm as a state machine. A configuration is a pair of
the form (E, 〈θ, ϕi

p〉), where E is the set of constraints to be solved and 〈θ, ϕi
p〉 is the partial solution

accumulated from the initial configuration. We assume that the number of elements p in the list ϕi
p

is fixed, and the corresponding superscript will be ommited when it is not relevant. We also define
a transition relation =⇒ between configurations, as the minimal relation satisfying the rules in Figure
A.1. The reflexive-transitive closure of this relation is denoted by =⇒∗.

Given a set E of constraints to be solved, our algorithm starts from the initial configuration E, 〈id, []
p〉

and applies successively the rules in Figure A.1 in order to reach a configuration in which the set of
constraints is empty. The pair 〈θ, ϕi〉 contained within this final configuration is a solution to E, that is,
it satisfies the conditions stated in Definition 4.5. If the state machine gets stuck in a configuration in
which the set of constraints to be solved is nonempty, the algorithm returns an error.

The ϕi given as a result is a list of functions on RegType → RegType. However, during the algo-
rithm, some ϕi may map a given RTV to several different RTVs. As a consequence, the ϕi ocurring in
the intermediate states of the =⇒∗ derivation are relations on RegType, rather than functions. Hence
we shall consider our ϕi as a relation on RegType. The notation ϕi(ρ) 3 ρ′ specifies that the pair (ρ, ρ′)

belongs to ϕi. We extend the notation ϕk(ρ) 3 ρ′ to arbitrary types as follows:

ϕk(B) 3 B
ϕk(α) 3 α

ϕk(T si
n @ ρj

m) 3 T s′i
n

@ ρj
m if ∀i ∈ {1..n}.ϕk(si) 3 s′i ∧ ∀j ∈ {1..m}.ϕk(ρj) 3 ρ′j

ϕk(si
n → ρj

m → s) 3 s′i
n → ρ′j

m → s′ if ∀i ∈ {1..n}.ϕk(si) 3 s′i ∧ ∀j ∈ {1..m}.ϕk(ρj) 3 ρ′j
∧ ϕk(s) 3 s′

Notice that, also in this case, there may be more than one s′ such that ϕk(s) 3 s′. Our algorithm
ensures that the list of relations ϕi obtained in the final state is actually a list of functions. Only then we
can write ϕi(ρ) = ρ′. Moreover, if ϕk is a function on regions, so will be its extension to arbitrary types.

283

Name Equations Substitutions Cond.

[ID] {τ = τ}] E, 〈θ, ϕi
p〉

=⇒ E, 〈θ, ϕi
p〉

[VAR] {α = s}] E, 〈θ, ϕi
p〉 (1)

=⇒ [α 7→ s](E), 〈[α 7→ s] ◦ θ, ϕi
p〉

[REG] {ρ1 = ρ2}] E 〈θ, ϕi
p〉 (2)

=⇒ [ρ1 7→ ρ2](
⋃p

i=1 Ei ∪ E) 〈[ρ1 7→ ρ2] ◦ θ, [ρ1 7→ ρ2](ϕi)
p〉

[FUN] {si
n → ρj

m → s = s′i
n → ρ′j

m → s′}] E, 〈θ, ϕi
p〉

=⇒ {si = s′i
n
, ρj = ρ′j

m
, s = s′} ∪ E, 〈θ, ϕi

p〉

[CONS] {T si
n @ ρj

m = T s′i
n

@ ρ′j
m}] E, 〈θ, ϕi

p〉
=⇒ {si = s′i

n
, ρj = ρ′j

m} ∪ E, 〈θ, ϕi
p〉

[ISD1] {T si
n @ ρj

m = isData(α, ρ)}] E, 〈θ, ϕi
p〉 (3)

=⇒ {α = T si
n @ ρj

m−1ρ′, ρm = ρ} ∪ E, 〈θ, ϕi
p〉

[ISD2] {α = isData(T si
n @ ρj

m, ρ)}] E, 〈θ, ϕi
p〉

=⇒ {α = T si
n @ ρj

m−1ρ} ∪ E, 〈θ, ϕi
p〉

[ISD3] {T si
n @ ρj

m = isData(T s′i
n

@ ρ′j
m

, ρ)}] E, 〈θ, ϕi
p〉

=⇒ {T si
n @ ρj

m−1ρ = T s′i
n

@ ρ′j
m} ∪ E, 〈θ, ϕi

p〉

[QFUN] {si
n → s ≈k s′i

n → s′}] E 〈θ, ϕi
p〉

=⇒ {si ≈k s′i
n
, s ≈k s′} ∪ E 〈θ, ϕi

p〉

[QCONS] {T si
n @ ρj

m ≈k T s′i
n

@ ρ′j
m}] E 〈θ, ϕi

p〉
=⇒ {si ≈k s′i

n
, ρj ≈k ρ′j

m} ∪ E 〈θ, ϕi
p〉

[QVAR-L] {α ≈k s}] E 〈θ, ϕi
p〉 (4)

=⇒ {s′ ≈k s} ∪ [α 7→ s′](E) 〈[α 7→ s′] ◦ θ, ϕi
p〉

[QVAR-R] {s ≈k α}] E 〈θ, ϕi
p〉 (4)

=⇒ {s ≈k s′} ∪ [α 7→ s′](E) 〈[α 7→ s′] ◦ θ, ϕi
p〉

[QREG1] {ρ1 ≈k ρ2}] E 〈θ, ϕi
p〉 (5)

=⇒ {ρ2 = ρ′} ∪ E 〈θ, ϕi
p〉

[QREG2] {ρ1 ≈k ρ2}] E 〈θ, ϕi
p〉 (6)

=⇒ E 〈θ, ϕ1 · · · ϕk] [ρ1 7→ ρ2] · · · ϕp〉

[QEND] {αi ≈k α′i
n} 〈θ, ϕi

p〉
=⇒ {αi = α′i

n} 〈θ, ϕi
p〉

Figure A.1: Rules defining the =⇒ relation between configurations. For each rule, the topmost line
stands for the initial configuration and the line below it denotes the final configuration. Some rules
may only be applied under certain conditions, which are described in Figure A.2.

284

(1) α /∈ fv(s)

(2) ρ1 6≡ ρ2 ∧ ∀i ∈ {1..p}.Ei =

{
{ρ = ρ′} if (ρ1, ρ), (ρ2, ρ′) ∈ ϕi for some ρ, ρ′ such that ρ 6≡ ρ′

∅ otherwise
(3) fresh(ρ′)
(4) s /∈ TypeVar, α /∈ fv(s), s′ = freshReg(s)
(5) (ρ1, ρ′) ∈ ϕk
(6) @ρ′.(ρ1, ρ′) ∈ ϕk

Figure A.2: Conditions under which the unification rules of Figure A.1 may be applied.

Since we have generalized the notion of our ϕi
p functions to relations, it is necessary to modify the

Definition 4.5 as follows:

Definition A.1. A pair 〈θ, ϕi〉 is a solution to a set of constraints E (denoted 〈θ, ϕi〉 � E) if and only if
the following conditions hold:

1. For each s1 = s2 ∈ E, then θ(s1) ≡ θ(s2). The same applies to equations of the form sf1 = sf2.

2. For each s = isData(s′, ρ) ∈ E then θ(s) ≡ T si
n @ ρj

m(θ(ρ)) and θ(s′) ≡ T si
n @ ρj

mρ′ for some
si

n, ρj
m and ρ′.

3. For each s1 ≈k s2, then ϕk(θ(s1)) 3 θ(s2). The same applies to equations of the form sf1 ≈k sf2.

If the ϕi are functions, this definition is equivalent to Definition 4.5. In order to ensure that the ϕi

resulting from the algorithm are functions, we have to prove that the following property is an invariant
preserved by the =⇒ relation:

If a ϕk relates the same ρ to different RTVs ρa, ρb, the latter will be eventually unified.

The following definition formalizes these intutitions:

Definition A.2. A machine configuration E, 〈θ, ϕi
p〉 is said to be good if, for every k ∈ {1..p} and

ρ, ρa, ρb ∈ RegType such that ϕk(ρ) ⊇ {ρa, ρb} and ρa 6≡ ρb, then there exists a list of region type
variables ρi

n (with n ≥ 2) such that:

ρa ≡ ρ1 ∧ ρb ≡ ρn ∧ ∀j ∈ {1..n− 1}.ρj = ρj+1 ∈ E

We abbreviate this as follows:

{ρa ≡ ρ1 = ρ2 = . . . = ρn ≡ ρb} ⊆ E

where ≡ denotes syntactic equality, and = denotes belongship to E.
The existence of a chain in E between two different RTVs may be considered as an equivalence

relation on RegType. Two RTVs belong to the same equivalence class if and only if there exists a chain
of equations connecting them in E. As an example, let us assume the following definition of ϕk for some
k:

ϕk = {(ρ1, ρ3), (ρ1, ρ5), (ρ1, ρ8), (ρ2, ρ4), (ρ2, ρ7)} (A.1)

The configuration E, 〈θ, ϕi〉 is good if E = {ρ3 = ρ5, ρ5 = ρ8, ρ4 = ρ7}. There exists a chain of
equations in E between ρ3 and ρ8, namely {ρ3 = ρ5 = ρ8} ∈ E. We have two equivalence classes:
{ρ3, ρ5, ρ8} and {ρ4, ρ7}.

285

We now explain the rules of Figure A.1. Rules [ID], [VAR], [FUN] and [CONS] are standard and
deserve no explanation. The = rules are symmetric, so the equations of the form s = α are deal with
by [VAR]. Rule [REG] is applied when unifying two region types. In addition to generating the corre-
sponding substitution, more equations may be generated in order to preserve the goodness property of
the initial configuration. For example, given the definition of ϕk in (A.1), let us assume that the equation
ρ1 = ρ2 is being processed. We apply the substitution [ρ1 7→ ρ2] to this relation, and we obtain:

[ρ1 7→ ρ2](ϕk) = {(ρ2, ρ3), (ρ2, ρ5), (ρ2, ρ8), (ρ2, ρ4), (ρ2, ρ7)}

In order to preserve the invariant, every RTV in the set {ρ3, ρ5, ρ8} has to be unified with the RTVs
of the set {ρ4, ρ7}, as the goodness property demands. This is done by selecting a representative of
each equivalence class and generating an equation between these two representatives. In our example,
we could choose ρ3 = ρ4. With this new equation the two equivalence classes would be merged into
a single equivalence class. If we denote by E′ the set E ∪ {ρ3 = ρ4}, we can always find a chain in E′

between two given variables of this class. For instance, between ρ5 and ρ7: {ρ5 = ρ3 = ρ4 = ρ7} ⊆ E′.

Rules [ISD1], [ISD2], [ISD3] deal with isData constraints. These are relaxed forms of standard unifi-
cation, since they allow different outermost regions in each side of the equation. Notice that there is no
rule for processing equations of the form α1 = isData(α2, ρ), which are not addressed until one of the
type variables is replaced by an algebraic type. If this substitution never takes place, the algorithm fails.

The rest of the rules involve≈-equations. In this case, the right-hand side of the equations must be a
region instance of the left-hand side. The corresponding ϕk may be updated when processing equations
of the form ρ1 ≈k ρ2. This equation would add the pair (ρ1, ρ2) to ϕk if ρ1 is not related to any RTV in
ϕk (rule [QREG2]). Otherwise we would have to unify the ρ2 with the RTV already bound to ρ1, so that
the goodness property is preserved (rule [QREG1]). Finally, the rule [QEND] ensures that the equations
of the form α1 ≈k α2 are the last ones to be processed, and they will processed as standard unification
equations (α1 = α2). By delaying the processing of these equations we achieve more general types, since
one of involved variables may be instantiated to a more concrete type, so that the variable occurring in
the other side of the ≈k-equation may get the same type with different RTVs. On the contrary, if we
unify both variables with an equation of the form α1 = α2, they will be forced to have the same region
types, if they are instantiated later.

Now we prove that this property is preserved by the =⇒ rules of Figure A.1.

Lemma A.3. Given a transition E, 〈θ, ϕi〉 =⇒ E′, 〈θ′, ϕ′i〉, if the initial configuration is good, then so is the final
configuration.

Proof. By case distinction on the =⇒ rule applied. Most cases are trivial, except the following ones:

• Case [ID]

In this case E = E′] {ρ = ρ} for some ρ and ϕi = ϕ′i. So, if ϕ′k(ρ
′) 3 {ρa, ρb} with ρa 6≡ ρb

for some ρ′, then ϕk(ρ
′) 3 {ρa, ρb}. Since the initial configuration is good, we have the following

chain:
{ρa ≡ ρ1 = ρ2 = . . . = ρi−1 = ρi = ρi+1 = . . . = ρn ≡ ρb} ⊆ E

Assume that there exists an i such that ρi ≡ ρ and ρi+1 ≡ ρ. We can shorten the chain as follows:

{ρa ≡ ρ1 = ρ2 = . . . = ρi−1 = ρi+1 = . . . = ρn ≡ ρb} ⊆ E

286

If we repeat this until we obtain a chain in E not containing the ρ = ρ equation, the result is a
chain in E′, which proves the lemma.

• Case [REG]

Assume k such that ϕ′k(ρ
′) ⊇ {ρ′a, ρ′b}, where ρ′a 6≡ ρ′b. There must exist some RTVs ρx, ρy, ρa, ρb

such that ρa 6≡ ρb and:

[ρ1 7→ ρ2](ρx) = ρ′

[ρ1 7→ ρ2](ρy) = ρ′

[ρ1 7→ ρ2](ρa) = ρ′a

[ρ1 7→ ρ2](ρb) = ρ′b

and ϕk(ρx) 3 ρa, ϕk(ρy) 3 ρb. We distinguish cases:

1. ρx ≡ ρy

Since the initial configuration is good, there exists a chain:

{ρa ≡ ρ′1 = . . . = ρ′n ≡ ρb} ⊆ E

By applying the [ρ1 7→ ρ2] substitution to each element, we get:

{[ρ1 7→ ρ2](ρa) ≡ [ρ1 7→ ρ2](ρ
′
1) = . . . = [ρ1 7→ ρ2](ρ

′
n) ≡ [ρ1 7→ ρ2](ρb)} ⊆ [ρ1 7→ ρ2](E)

which is equivalent to:

{ρ′a ≡ [ρ1 7→ ρ2](ρ
′
1) = . . . = [ρ1 7→ ρ2](ρ

′
n) ≡ ρ′b} ⊆ [ρ1 7→ ρ2](

n⋃
i=1

Ei ∪ E)

which proves the required result.

2. ρx 6≡ ρy

In this case one of the ρx, ρy must be equal to ρ1. Otherwise we would get:

ρx ≡ [ρ1 7→ ρ2](ρx) ≡ ρ′ ≡ [ρ1 7→ ρ2](ρy) ≡ ρy

which contradicts the fact that ρx and ρy are distinct. Without loss of generality, let us assume
that ρx ≡ ρ1 (the case ρx ≡ ρ2 is symmetrical). Then ρ′ ≡ ρ2, and ρy must be either ρ1 or ρ2

(otherwise ρ′ ≡ ρ2 6≡ [ρ1 7→ ρ2](ρy), which leads to a contradiction). Since ρy is distinct from
ρx (which is equal to ρ1), the only possibility is ρy ≡ ρ2. Summarizing, we get:

ϕk(ρx) 3 ρa, which is equivalent to ϕk(ρ1) 3 ρa

ϕk(ρy) 3 ρb, which is equivalent to ϕk(ρ2) 3 ρb

By one of the premises of the [REG] rule, there exist some ρc, ρd with ϕk(ρ1) 3 ρc and ϕk(ρ2) 3
ρd such that the equation [ρ1 7→ ρ2](ρc = ρd) belongs to E′. Notice that these ρc, ρd may or
may not be equal to the region types ρa, ρb. Thus there are four possibilities:

287

– ρc ≡ ρa and ρd ≡ ρb. We build the chain:

{ρ′a ≡ [ρ1 7→ ρ2](ρa) = [ρ1 7→ ρ2](ρb) ≡ ρ′b} ⊆ E′

– ρc 6≡ ρa and ρd ≡ ρb. In this case ϕk(ρ1) ⊇ {ρa, ρc}. Since the initial state is good, there
exists a chain:

{ρa ≡ ρ
(0)
1 = . . . = ρ

(0)
n1 ≡ ρc} ⊆ E

to which the substitution [ρ1 7→ ρ2] can be applied:

{ρ′a ≡ [ρ1 7→ ρ2](ρ
(0)
1) = . . . = [ρ1 7→ ρ2](ρ

(0)
n1) ≡ [ρ1 7→ ρ2]ρc} ⊆ [ρ1 7→ ρ2](E)

By using the equation [ρ1 7→ ρ2](ρc = ρd), we get the required result:

{ρ′a ≡ [ρ1 7→ ρ2](ρ
(0)
1) = . . . = [ρ1 7→ ρ2](ρc) = [ρ1 7→ ρ2](ρd)} ⊆ E′ (A.2)

and the lemma follows since [ρ1 7→ ρ2](ρd) = [ρ1 7→ ρ2](ρb) = ρ′b.

– ρc ≡ ρa and ρd 6≡ ρd. Similarly to the previous case, we obtain ϕk(ρ2) ⊇ {ρb, ρd} and the
following chain:

{ρd ≡ ρ
(1)
1 = . . . = ρ

(1)
n2 ≡ ρb} ⊆ E

By applying the above mentioned substitution and equation, we get:

{[ρ1 7→ ρ2](ρc) = [ρ1 7→ ρ2](ρd) = . . . = [ρ1 7→ ρ2](ρ
(1)
n2) ≡ ρ′b} ⊆ E′ (A.3)

and the lemma follows since [ρ1 7→ ρ2](ρc) = [ρ1 7→ ρ2](ρa) = ρ′a.

– ρc 6≡ ρa and ρb 6≡ ρd. We obtain the desired result by joining the chains (A.2) and (A.3).

The next step is to prove that a =⇒∗ derivation builds incrementally a solution to the system of
constraints given in the initial configuration. Before this, we need the following auxiliary results, whose
proof is a direct consequence of Definition A.1.

Lemma A.4. The � relation satisfies the following properties:

1. 〈θ, ϕi〉 � θ′(E)⇔ 〈θ ◦ θ′, ϕi〉 � E

2. 〈θ, ϕi〉 � E⇒ 〈θ, ϕ′i ∪ ϕi〉 � E

Proof. Both facts follow trivially from the definition of �.

Lemma A.5. If E, 〈θ0, ϕi,0
p〉 =⇒ E′, 〈θ, ϕi

p〉 then, for some θ′:

1. θ = θ′ ◦ θ0

2. θ′(ϕi,0) ⊆ ϕi for all i ∈ {1..p}.

Proof. By simple inspection of the =⇒ rules.

Lemma A.6. Given the following transition:

E, 〈θ0, ϕi,0〉 =⇒ E′, 〈θ ◦ θ0, ϕi〉

288

If 〈θ′, ϕ′i〉 is a solution to E′, then 〈θ′ ◦ θ, ϕ′i ∪ θ′(ϕi)〉 is a solution to E.

Proof. By case distinction on the =⇒ rule applied. We show only the most relevant cases. The remaining
ones are either straightforward or similar.

• Case [QVAR-L]

Let us assume s′ = freshReg(s). By hypothesis, 〈θ′, ϕ′i〉 � {s
′ ≈k s} ∪ [α 7→ s′](E). Therefore:

ϕ′k(θ
′(s′)) 3 θ′(s) ∧ 〈θ′, ϕ′i〉 � [α 7→ s′](E)

⇒ { since α /∈ fv(s)}
ϕ′k((θ

′ ◦ [α 7→ s′])(α)) 3 (θ′ ◦ [α 7→ s′])(s) ∧ 〈θ′, ϕ′i〉 � [α 7→ s′](E)
⇒ { by Lemma A.4 (1) }

ϕ′k((θ
′ ◦ [α 7→ s′])(α)) ≡ (θ′ ◦ [α 7→ s′])(s) ∧ 〈θ′ ◦ [α 7→ s′], ϕ′i〉 � E

⇒ { by definition of �}
〈θ′ ◦ [α 7→ s′], ϕ′i〉 � {α ≈k s} ∪ E

⇒ { by Lemma A.4 (2) }
〈θ′ ◦ [α 7→ s′], ϕ′i ∪ θ′(ϕi)〉 � {α ≈k s} ∪ E

• Case [QREG1]

Again, we start from 〈θ′, ϕ′i〉 � {ρ2 = ρ′} ∪ E and the precondition ϕk(ρ1) = ϕk,0(ρ1) 3 ρ′ of the
[QREG1] rule.

θ′(ρ2) ≡ θ′(ρ′) ∧ 〈θ′, ϕ′i〉 � E ∧ ϕk(ρ1) 3 ρ′

⇒ { by properties of substitutions }
θ′(ρ2) ≡ θ′(ρ′) ∧ 〈θ′, ϕ′i〉 � E ∧ (θ′(ϕk))(θ

′(ρ1)) 3 θ′(ρ′)

⇒ { by the first equality }
〈θ′, ϕ′i〉 � E ∧ (θ′(ϕk))(θ

′(ρ1)) 3 θ′(ρ2)

⇒ { by definition of �}
〈θ′, ϕ′i〉 � E ∧ 〈θ′, θ′(ϕi)〉 � ρ1 ≈k ρ2

⇒ { by Lemma A.4 (2) and definition of �}
〈θ′, ϕ′i ∪ θ′(ϕi)〉 � {ρ1 ≈k ρ2} ∪ E

The following lemmata generalize these results to =⇒∗ derivations.

Lemma A.7. Assume the derivation E, 〈θ, ϕi〉 =⇒∗ E′, 〈θ′, ϕ′i〉. If the initial configuration is good, then so is
the final configuration.

Proof. By induction on the length of the =⇒∗ derivation, and by Lemma A.3.

Lemma A.8. If E, 〈θ0, ϕi,0
p〉 =⇒∗ E′, 〈θ, ϕi

p〉 then, for some θ1:

1. θ = θ1 ◦ θ0

2. θ1(ϕi,0) ⊆ ϕi for all i ∈ {1..p}.

Proof. By induction on the length of the =⇒∗ derivation. If the length is zero we can prove the lemma
by choosing θ1 = id. If the =⇒∗ derivation is of length greater than zero, we can split it as follows:

E, 〈θ0, ϕi,0
p〉 =⇒ E1, 〈θ1, ϕi,1

p〉 =⇒∗ E′, 〈θ, ϕi
p〉

289

By induction hypothesis we obtain:

θ = θ′ ◦ θ1 ∧ θ′(ϕi,1) ⊆ ϕi
p

for some θ′

and, by applying Lemma A.5 in the first step:

θ1 = θ′′ ◦ θ0 ∧ θ′′(ϕi,0) ⊆ ϕi,1
p

for some θ′′

Hence we get:
θ = (θ′ ◦ θ′′) ◦ θ1 ∧ (θ′ ◦ θ′′)(ϕi,1) ⊆ θ′(ϕi,1) ⊆ ϕi

p

which proves the lemma.

Lemma A.9. Given the following derivation:

E, 〈θ0, ϕi,0〉 =⇒∗ E′, 〈θ ◦ θ0, ϕi〉

If 〈θ′, ϕ′i〉 is a solution to E′, then 〈θ′ ◦ θ, ϕ′i ∪ θ′(ϕi)〉 is a solution to E.

Proof. By induction on the length n of the =⇒∗ derivation.

• Case n = 0

We get θ = id and, by hypothesis, 〈θ′, ϕ′i〉 � E, which implies 〈θ′, ϕ′i ∪ θ′(ϕi)〉 � E by Lemma A.4
(2).

• Case n > 0

Let us split the derivation as follows:

E, 〈θ0, ϕi,0〉 =⇒ E1, 〈θ1 ◦ θ0, ϕi,1〉 =⇒∗ E′, 〈θ2 ◦ θ1︸ ︷︷ ︸
θ

◦θ0, ϕi〉

We obtain:
〈θ′, ϕ′i〉 � E′

⇒ { by i.h. }
〈θ′ ◦ θ2, ϕ′i ∪ θ′(ϕi)〉 � E1

⇒ { by applying Lemma A.6 on the first step }
〈θ′ ◦ θ2 ◦ θ1, ϕ′i ∪ θ′(ϕi) ∪ (θ′ ◦ θ2)(ϕi,1)〉 � E

⇒ { by Lemma A.8, ∀i ∈ {1..p}.θ2(ϕi,1) ⊆ ϕi }
〈θ′ ◦ θ2 ◦ θ1, ϕ′i ∪ θ′(ϕi)〉 � E

Finally, we prove that if we start applying the =⇒∗ rules on a set of constraints E with the empty
solution and we reach a configuration with no equations to be solved, the final result is a solution to E,
not only in the sense of Definition A.1, but also in the sense of Definition 4.5.

Corollary A.10 (Soundness). Assume a set E of constraints and θ, ϕi
p such that the following judgment can

be derived from the rules of Figure A.1:

E, 〈id, []
p〉 =⇒∗ ∅, 〈θ, ϕi

p〉

290

Then:

1. For each i ∈ {1..p}, ϕi is a function from RTVs to RTVs.

2. 〈θ, ϕi
p〉 is a solution to E.

Proof. The first configuration is trivially good. By Lemma A.7, the final configuration is also good. Now
let us prove (1) by contradiction: assume that there exists some ϕk not being a function. Then there exist
ρ, ρa, ρb such that ϕ(ρ) 3 {ρa, ρb} and ρa 6≡ ρb. Since the final configuration is good, there must exist a
chain of the form:

{ρa ≡ ρ1 = . . . = ρm ≡ ρb} ⊆ ∅

Which is contradictory, since the chain must have at least one equation. Therefore our assumption was
false, and every ϕi is a function. The result (2) is a particular instance of Lemma A.9.

Lemma A.11 (Termination). Given a finite configuration E, 〈θ, ϕi〉, there does not exist an infinite =⇒∗

derivation:
E, 〈θ, ϕi〉 =⇒ E1, 〈θ1, ϕ1,i〉 =⇒ . . . =⇒ En, 〈θn, ϕn,i〉 =⇒ . . .

Proof. Let us define the size function || · || : Type→N as follows:

||α|| = ||ρ|| = ||B|| = 1
||T si

n @ ρj
m|| = ||T si

n !@ ρj
m|| = ||T si

n #@ ρj
m|| = 1 + ∑n

i=1 ||si||+ ∑m
j=1 ||ρj||

||ti
n → ρj

m → s|| = 1 + ∑n
i=1 ||ti||+ ∑m

j=1 ||ρj||

The domain of this function can be easily extended to constraints:

	τ1 = τ2		=		τ1		+		τ2					
	s1 = isData(s2, ρ)		=		s1		+		s2		+		ρ	
	τ1 ≈k τ2		=		τ1		+		τ2					

Let Φ be a function mapping a configuration E, 〈θ, ϕi〉 to a tuple (Nα, NisData, Nρ, s, N≈) such that:

• Nα is the number of distinct type variables occurring in E.

• NisData is the number of isData constraints in E.

• Nρ is the number of distinct RTVs occurring in E and in the ϕi.

• s is the sum of the sizes of the constraints in E.

• N≈ is the number of ≈k-constraints in E.

Then, if E, 〈θ, ϕi〉 =⇒ E′, 〈θ′, ϕ′i〉, Figure A.3 shows that Φ(E, 〈θ, ϕi〉) > Φ(E′, 〈θ′, ϕ′i〉), where > is
the lexicographical order in N5. If we apply Φ to every configuration in a infinite =⇒∗ derivation we
would obtain a infinite > chain in N5, which is not possible since (N5,≤) is a well-founded set.

291

Rule Nα NisData Nρ s N≈
[ID] ≤ = ≤ < =
[VAR] < = = ≥ =
[REG] = = < ≥ =
[FUN] = = = < =
[CONS] = = = < =
[ISD1] = < > > =
[ISD2] = < = < =
[ISD3] = < = < =
[QFUN] = = = < >
[QCONS] = = = < >
[QVAR-L] < = > ≥ =
[QVAR-R] < = > ≥ =
[QREG1] = = = = <
[QREG2] = = = = <
[QEND] = = = = <

Figure A.3: Variation of each component in the Φ function when applying each unification rule. A <
sign in a cell means that the value of the corresponding component in the size of the final configuration
is strictly lower than in the size of the initial one. Similarly with≤, =,≥ and >. Notice that, considering
the lexicographical order (Nα, NisData, Nρ, s, N≈), the =⇒ relation always gives a configuration of lower
size than the size of the initial one.

292

Appendix B

Correctness of the initial bounds

In Section 7.5 we introduced three algorithms for computing an initial signature (∆, µ, σ) in order to
bound the stack and memory needs of a given recursive function definition. In that section we were
concerned about the reductivity of each of the components of the signature, but we did not state explic-
itly that these components are correct bounds to the actual runtime figures (δ, m, s). This statement was
intentionally left out, since we had shown in Section 7.5.1 the fact of an upper bound being reductive
was a sufficient condition to its correctness.

Nevertheless, reductivity is not a necessary condition to obtain correct bounds. It was pointed out
in Section 7.5.6 that reductivity can only be guaranteed under some admissibility conditions on the
externally given bounds to the size of the call tree (nb, nr, and len). These conditions were formalised in
Definitions 7.41, 7.42 (page 247), and 7.47 (page 252). When these conditions do not hold, the results of
the algorithms computing the initial bounds may not be reductive, but they still would be useful if we
are able to show their correctness. This shows the need for an explicit proof of the correctness properties
of the results of computeDelta, computeMu, and computeSigma, without basing our proof on reductivity
arguments.

In this Appendix we aim to show the following fact: If (∆0, µ0, σ0) are initial approximations to
the memory needs of f , they have been computed with the algorithms of Section 7.5, and the nb, nr,
and len functions are correct approximations to the corresponding runtime figures of the call tree, then
(∆0, µ0, σ0) is a correct signature with respect to f . The proof of this statement is very technical, since it
requires several extensions to the resource-aware big-step semantics defined in Figure B.1.

Remark. Throughout this section we assume the absence of explicit destruction via case! expressions.
We also assume, by convention, that max ∅ = 0.

B.1 Before/after semantics with call tree counters

In this section we will make precise the idea of the nb, nr, and len functions being correct approximations
to the actual parameters of the call tree deployed at runtime. This is done by extending our semantic
judgements with a triple (Nb, Nr, L) of natural numbers representing the number of base calls, recursive
calls, and the maximum depth of the call tree. Obviously, it makes little sense to talk about recursive
calls, if we do not specify which function do these numbers refer to. Therefore, the name of this function
will be attached to the arrow of these judgements, as in ⇓ f .

Besides this, it turns out to be useful to distinguish between the charges done in memory before the
last recursive call in the current context, and those done after this call. For this reason, we shall split

293

each of the δ and m components of our resource vector into two subcomponents: their before part, (δb

and mb), and their after part (δa and ma). The former takes into account the expressions being executed
before (and including) the last recursive call in the current call context, and the latter takes into account
the expressions being executed after (and excluding) that recursive call. By convention, we assume that,
if the evaluation of an expression does not contain any recursive call, all its charges are stored in the
after part, and the before part is left with no charges.

Given the above, our extended semantics defines the derivation of judgements of the following
form:

E ` h, k, e ⇓ f h′, k, v, (Nb, Nr, L), (δb/δa, mb/ma)

We omit the s component of the resource vector, since no distinction between the before and after part
is necessary for that component, as we shall see later. The semantic rules are shown in Figure B.1. The
[BasicNC] rule is used when the expression being evaluated does not contain recursive calls to f . In this
case the evaluation can be described by our usual ⇓ rules of Figure 2.26. We follow our convention
mentioned above, and we consider their charges in the after part. The opposite situation is that of rule
[AppRNC], where all the charges are added to the before component. The number of recursive calls Nr,
and the length of the call-tree L are incremented accordingly. When evaluating a let expression we have
to distinguish whether a recursive call to f is done during the evaluation of e2. This can be done with
the help of the L2 component of the call tree counter returned by the evaluation of e2. If there are no
recursive calls in e2 we obtain L2 = 1 (i.e. the depth of the call tree is 1), and we apply [Let1NC]. In
this case, the before part corresponds to the before part of the evaluation of e1, whereas the after part
comprises the after part of e1 and the whole evaluation of e2. The [Let2NC] rule is used when there
are recursive calls in e2 (that is, L2 > 1). The before part includes the evaluation of e1 and the before
part of e2, whereas the after part only contains the after part of e2. In this case, the formalization of
the (Nr, Nb, L) requires further case distinction, and we define in Figure B.2 a separate operator ⊕ for
this purpose. The [CaseNC] rule just propagates the before/after information, and the call tree counters
given by the branch being executed.

From these semantic rules it is easy to show that the new components introduced are just counters,
and they do not influence the evaluation of the expression. As a consequence, if we can execute an
expression e under the ⇓ semantics for a given environment E and heap h with k regions, we can do the
same under the ⇓ f semantics (for any f), and we will get the same normal form v and final heap h′. A
little less obvious is the relation between the (δb/δa, mb/ma) components of the ⇓ f semantics, and the
original resource vector (δ, m, s) given by the corresponding ⇓-judgement. The whole δ component is
equivalent to the (region-wise) addition of the before and after parts. With respect to the m component,
an intuitive idea of its relation with the mb and ma is given by Figure 2.30. The following lemma states
these results formally.

Lemma B.1. Let us assume an evaluation E ` h, k, td, e ⇓ h′, k, v, (δ, m, s) under a signature environment Σ.
Given a function f ∈ dom Σ, there exists a single tuple (Nb, Nr, L) and a single tuple (δb/δa, mb/ma) such that
E ` h, k, e ⇓ f h′, k, v, (Nb, Nr, L), (δb/δa, mb/ma). Moreover, it holds that:

1. Nb ≥ 1, Nr ≥ 0, and L ≥ 1.

2. If L = 1, then δb = []k and mb = 0.

3. δ = δb + δa.

4. m = max{mb, |δb|+ ma}.

294

E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)
e is of the form c, x, a1 ⊕ a2, x @ r, C ai @ r or g ai @ rj with g 6= f

E ` h, k, e ⇓ f h′, k, v, (1, 0, 1), ([]k/δ, 0/m)
[BasicNC]

(f yi
n @ r′j

l
= e f) ∈ Σ

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1] ` h, k + 1, e f ⇓ f h′, k + 1, v, (Nb, Nr, L), (δb/δa, mb/ma)

E ` h, k, f ai
n @ rj

l ⇓ f h′ |k, k, v, (Nb, Nr + 1, L + 1), ((δb + δa)|k/[]k, max{mb, |δb|+ ma}/0)
[AppRNC]

L2 = 1
E ` h, k, e1 ⇓ f h′, k, v1, (Nb,1, Nr,1, L1), (δb,1/δa,1, mb,1/ma,1)

E ∪ [x1 7→ v1] ` h′, k, e2 ⇓ f h′′, k, v, (Nb,2, Nr,2, L2), (δb,2/δa,2, mb,2/ma,2)

E ` h, k, let x1 = e1 in e2 ⇓ f h′′, k, v, (Nb,1, Nr,1, max{L1, L2}), (δb,1/δa,1 + δa,2, mb,1/ max{ma,1, |δa,1|+ ma,2})
[Let1NC]

L2 6= 1 mb = max{mb,1, |δb,1|+ ma,1, |δb,1|+ |δa,1|+ mb,2}
(Nb, Nr, L) = (Nb,1, Nr,1, L1)⊗ (Nb,2, Nr,2, L2)

E ` h, k, e1 ⇓ f h′, k, v1, (Nb,1, Nr,1, L1), (δb,1/δa,1, mb,1/ma,1)
E ∪ [x1 7→ v1] ` h′, k, e2 ⇓ f h′′, k, v, (Nb,2, Nr,2, L2), (δb,2/δa,2, mb,2/ma,2)

E ` h, k, let x1 = e1 in e2 ⇓ f h′′, k, v, (Nb, Nr, L), (δb,1 + δa,1 + δb,2/δa,2, mb/ma,2)
[Let2NC]

C = Cr E(x) = p
E] [xrj 7→ vj

nr] ` h, k, er ⇓ f h′, k, v, (Nb, Nr, L), (δb/δa, mb/ma)

E ` h[p 7→ (j, C vi
nr)], k, case x of Ci xij

ni → ei
n ⇓ f h′, k, v, (Nb, Nr, L), (δb/δa, mb/ma)

[Case]

Figure B.1: Big-step semantics enriched with components for counting the number of recursive calls,
and for distinguishing the charges done before and after the last recursive call.

295

(Nb,1, Nr,1, L1)⊗ (Nb,2, Nr,2, L2) = (Nb, Nr, max{L1, L2})

where (Nb, Nr) =

(Nb,2, Nr,2) if Nr,1 = 0∧ Nr,2 6= 0
(Nb,1, Nr,1) if Nr,2 = 0
(Nb,1 + Nb,2, Nr,1 + Nr,2 − 1) otherwise

Figure B.2: Definition of ⊗ operator on (Nb, Nr, L) tuples.

Proof. The existence and uniqueness of the respective tuples can be easily shown by induction on the
size of the ⇓ derivation. They are direct consequence of the semantic rules being deterministic. Hence,
let us prove (1), (2), (3), and (4) by induction on the ⇓ derivation. Let us distinguish cases according to
the last ⇓-rule applied. Cases [Lit], [Var], [PrimOp], [Copy], [Cons], and [App] when the function being
applied is different from f , are trivial. In the case of rules [Case], and [App] when the function being
applied is f , the result follows trivially from the induction hypothesis. The only subtlety when proving
(3) is related to the restriction of the domain of δ occurring in [App], but we get:

δ|k = (δa + δb)|k = δa|k + δb|k

The [Let] case is more involved. Assume the tuples (Nb,1, Nr,1, L1) and (δb,1/δa,1, mb,1/ma,1), corre-
sponding to the ⇓-evaluation of e1, and the tuples (Nb,2, Nr,2, L2) and (δb,2/δa,2, mb,2/ma,2) regarding
the ⇓-evaluation of e2. By induction hypothesis, we get:

Nb,i ≥ 1 Nr,i ≥ 0 Li ≥ 1 for i ∈ {1, 2} (B.1)

δi = δb,i + δa,i for i ∈ {1, 2} (B.2)

mi = max{mb,i, |δb,i|+ ma,i} for i ∈ {1, 2} (B.3)

where δi and mi are the figures of the resource vectors occurring in each ⇓-subderivation. Now we
distinguish cases:

• Case L2 = 1. Then Nb = Nb,1, Nr = Nr,1, and L = max{L1, L2}. The fact (1) follows from equation
(B.1). With regard to (2), if L = 1, then L1 = 1, which implies δb,1 = []|k and mb,1 = 0, so that
property holds. Moreover, by induction hypothesis, we get δb,2 = []k and mb,2 = 0, since L2 = 1.
Therefore:

δb + δa

= δb,1 + δa,1 + δa,2

= δb,1 + δa,1 + δb,2 + δa,2 { since δb,2 = []k}
= δ1 + δ2 { by (B.2) }
= δ

max{mb, |δb|+ ma}
= max{mb,1, |δb,1|+ max{ma,1, |δa,1|+ ma,2}}
= max{mb,1, |δb,1|+ ma,1, |δb,1|+ |δa,1|+ ma,2}
= max{m1, |δ1|+ ma,2} { by (B.2) and (B.3) }
= max{m1, |δ1|+ max{mb,2, |δb,2|+ ma,2}} { since ma,2 ≥ 0, mb,2 = 0 and |δb,2| = 0}
= max{m1, |δ1|+ m2} { by (B.3) }

• Case L2 > 1. We get (Nb, Nr, L) = (Nb,1, Nr,1, L1) ⊗ (Nb,2, Nr,2, L2). From induction hypothesis

296

it follows that Nb ≥ 1 and L ≥ 1. With respect to Nr, the only caution to take is the case when
Nr = Nr,1 + Nr,2 − 1, but this only holds when both Nr,1 and Nr,2 are strictly positive, so Nr ≥ 1,
and (1) holds. Property (2) holds vacuously, since L2 > 1 implies L > 1. Now we prove (3) and
(4):

δb + δa

= δb,1 + δa,1 + δb,2 + δa,2

= δ1 + δ2 { by (B.2) }
= δ

max{mb, |δb|+ ma}
= max{mb,1, |δb,1|+ ma,1, |δb,1|+ |δa,1|+ mb,2, |δb,1|+ |δa,1|+ |δb,2|+ ma,2}
= max{m1, |δ1|+ mb,2, |δ1|+ |δb,2|+ ma,2} { by (B.2) and (B.3) }
= max{m1, |δ1|+ max{mb,2, |δb,2|+ ma,2}}
= max{m1, |δ1|+ m2}

In the following we shall use the letters ϕ, ψ, χ, etc. to denote ⇓-judgements. Given one of these:

ϕ ≡ E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)

we have shown that, given a function f , there exist unique numbers Nb, Nr, L, mb, and ma, and unique
mappings δa, δb such that E ` h, k, e ⇓ f h′, k, v, (Nb, Nr, L), (δb/δa, mb/ma) can be derived. All these

components are determined by the judgement ϕ, so we can use the notation N f
b (ϕ), N f

r (ϕ), L f (ϕ),
δ

f
b (ϕ), and δ

f
a (ϕ) to refer to these components. By abuse of notation, we use δ(ϕ), m(ϕ), s(ϕ) for

denoting, respectively, the δ, m, and s components of the resource vector occurring in the judgement ϕ.
Moreover, we use Exp(ϕ) for denoting the expression being evaluated in ϕ.

Our abstract interpretation functions [[·]]∆ and [[·]]µ defined in Section 7.3 were defined in terms of
sequences of basic expressions. The following lemma establishes the relation of these sequences to the
before and after parts of the evaluation of an expression. It also presents some useful properties of the
call tree.

Lemma B.2. Assume the following judgement:

ϕ ≡ E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)

There exists a sequence [G → be1, . . . , ben] ∈ seqs e and some ϕi
n, Ei

n, hi
n
, td

n
i , h′i

n
, vi

n, δi
n, mi

n, si
n such that:

1. For every i ∈ {1..n}, ϕi ≡ Ei ` hi, k, tdi, bei ⇓ h′i, k, vi, (δi, mi, si), and ϕi belongs to the derivation of ϕ.

2. Let I ⊆ {1..n} be the set of indices i such that bei has the form f ai @ rj for some f , ai and rj of their
respective types. Then:

N f
b (ϕ) =

1 if I = ∅

∑i∈I N f
b (ϕi) otherwise

N f
r (ϕ) =

0 if I = ∅

1 + ∑i∈I(N f
r (ϕi)− 1) otherwise

297

L f (ϕ) =

1 if I = ∅

1 + maxi∈I{L f (ϕi)− 1} otherwise

3. Being I defined as above, let p = max I, that is, the index of the last recursive call (if any; otherwise take
p = 0). Then:

δ
f
b (ϕ) =

p

∑
i=1

δi δ
f
a (ϕ) =

n

∑
i=p+1

δi

m f
b (ϕ) = max

i∈{1..p}

{
i−1

∑
j=1
|δj|+ mi

}
m f

a (ϕ) = max
i∈{p+1..n}

{
i−1

∑
j=p+1

|δj|+ mi

}

δ =
n

∑
i=1

δi m = max
i∈{1..n}

{
i−1

∑
j=1
|δj|+ mi

}
(B.4)

Proof. Let us start with the last equation, that is, (B.4), by assuming that the remaining facts of the third
conclusion have been proved, and by using Lemma B.1:

δ = δ
f
b (ϕ) + δ

f
a (ϕ) =

p

∑
i=1

δi +
n

∑
i=p+1

δi =
n

∑
i=1

δi

m = max{m f
b (ϕ), |δ f

b (ϕ)|+ m f
a (ϕ)}

= max

{
max

i∈{1..p}

{
i−1

∑
j=1
|δj|+ mi

}
,

k

∑
i=1

δi + max
i∈{p+1..n}

{
i−1

∑
j=k+1

|δj|+ mi

}}

= max

{
max

i∈{1..k}

{
i−1

∑
j=1
|δj|+ mi

}
, max

i∈{k+1..n}

{
i−1

∑
j=1
|δj|+ mi

}}

= max
i∈{1..n}

{
i−1

∑
j=1
|δj|+ mi

}

The rest of the lemma is proven by induction on the size of the ⇓- derivation. We distinguish cases
depending on the structure of e.

• Cases e ≡ c, e ≡ x, e ≡ a1 ⊕ a2, e ≡ x @ r, e ≡ C ai @ r, and e ≡ g ai @ rj with g 6= f

In all these cases we get seqs e = {[e]}, and (1) holds trivially by taking ϕ1 ≡ ϕ. Moreover, we can
apply the [BasicNC] rule, so N f

b (ϕ) = 1, N f
r (ϕ) = 0, L f (ϕ) = 1, and (2) follows from the fact that

I = ∅ (we have a single expression in the sequence, which is not a call to f). Finally, since p = 0,
and, again, by the [BasicNC] rule:

δ
f
b (ϕ) = []k =

0

∑
i=1

δi δ
f
a (ϕ) = δ = δ1 =

1

∑
i=1

δi

m f
b = 0 = max

i∈∅

{
i−1

∑
j=1
|δj|+ mi

}
m f

a (ϕ) = m = m1 = max
i∈{1}

{
i−1

∑
j=1
|δj|+ mi

}

Therefore, (3) holds.

• Case e ≡ f ai @ rj

298

Again, we get a sequence with a single element (n = 1), so (1) holds with ϕ1 ≡ ϕ. In this case it
holds that I = {1}, so (2) is proved as follows:

N f
b (ϕ) = N f

b (ϕ1) N f
r (ϕ) = 1 + (N f

r (ϕ1)− 1) L f (ϕ) = 1 + (L f (ϕ1)− 1)

With respect to (3), we denote by ψ the judgment corresponding to the evaluation of the body
of the function f , which is just above ϕ in the derivation tree of the latter, and by (δ f , m f , s f) the
resource vector resulting from its evaluation. By applying the [AppRNC] rule and Lemma B.1 we
get:

δ
f
b (ϕ) = (δ

f
b (ψ) + δ

f
a (ψ))|k = δ f |k = δ1 =

1

∑
i=1

δi

δ
f
a (ϕ) = []k =

0

∑
i=1

δi

m f
b = max{m f

b (ψ), |δ
f
b (ψ)|+ m f

a (ψ)} = m f = m1 = max
i∈{1}

{
i−1

∑
j=1
|δj|+ mi

}

m f
a (ϕ) = 0 = max

i∈∅

{
i−1

∑
j=1
|δj|+ mi

}

• Case e ≡ let x1 = e1 in e2

We get the following judgements belonging to ϕ:

ψA ≡ E ` h, k, 0, e1 ⇓ hA, k, vA, (δA, mA, sA)

ψB ≡ E ∪ [x1 7→ vA] ` hA, k, td + 1, e2 ⇓ hB, k, v, (δB, mB, sB)

By applying induction hypothesis, there exist two sequences [G1 → be1, . . . , ben] ∈ seqs e1 and
[G2 → be1, . . . , bem] satisfying the lemma. By definition of seqs, the sequence

[G1 ∧ G2 → be1, . . . , ben, be′1, . . . , be′m]

belongs to seqs e, so let us prove that the conclusions of the lemma hold for this sequence. The first
condition follows from the induction hypothesis. If we denote by ϕi

n the judgements belonging
to ψA, and by ϕ′i

m
the judgements of ψB (the existence of both lists is justified by induction hy-

pothesis), it is obvious that both the ϕi
n and ϕ′i

m
belong to the main judgement ϕ. Now we move

on to (2). Before this, let us define, for each j ∈ {n + 1, ..., n + m}, bej = be′j−n, ϕj = ϕ′i. Let IA be
the set of indices i such that bei is a function application, and let I′B be defined similarly, but with
the be′i. We define IB = {n + j | j ∈ I′B}, and I = IA ∪ IB. In this way we ensure that, for every
i ∈ {1..n + m}, bei is a function application if and only if i ∈ I. Now we distinguish cases in order
to prove (2):

– IA = ∅, IB = ∅

This implies that both IA and IB (and hence I′B) are empty. By induction hypothesis, this
means that:

N f
b (ψA) = 1 N f

r (ψA) = 0 L f (ψA) = 1 (B.5)

N f
b (ψB) = 1 N f

r (ψB) = 0 L f (ψB) = 1 (B.6)

299

Therefore, we get, by rule [Let1NC]:

N f
b (ϕ) = N f

b (ψA) = 1 N f
r (ϕ) = N f

r (ψA) = 0 L f (ϕ) = max{L f (ψA), L f (ψB)} = 1

and (2) holds.

– IA 6= ∅, IB = ∅

Then I = IA, but the facts (B.6) also hold in this case. Again, by [Let1NC]:

N f
b (ϕ) = N f

b (ψA) = ∑
i∈IA

N f
b (ϕi) = ∑

i∈I
N f

b (ϕi)

N f
r (ϕ) = N f

r (ψA) = 1 + ∑
i∈IA

(N f
r (ϕi)− 1) = 1 + ∑

i∈I
(N f

r (ϕi)− 1)

L f (ϕ) = max{L f (ψA), 1} = L f (ψA) = 1 + max
i∈IA
{L f (ϕi)− 1} = 1 + max

i∈I
{L f (ϕi)− 1}

where, in each case, the second step is justified by induction hypothesis. Thus (2) holds.

– IA = ∅, IB 6= ∅

In this case we apply [Let2NC] in order to obtain:

N f
b (ϕ) = N f

b (ψB) = ∑
i∈I′B

N f
b (ϕ′i) = ∑

i∈IB

N f
b (ϕi) = ∑

i∈I
N f

b (ϕi)

and similarly with N f
r (ϕ) and L f (ϕ), so (2) holds.

– IA 6= ∅, IB 6= ∅

Again, we apply [Let2NC] and get:

N f
b (ϕ) = N f

b (ψA) + N f
b (ψB)

= ∑
i∈IA

N f
b (ϕi) + ∑

i∈I′B

N f
b (ϕ′i)

= ∑
i∈IA

N f
b (ϕi) + ∑

i∈IB

N f
b (ϕi)

= ∑
i∈I

N f
b (ϕi)

N f
r (ϕ) = N f

r (ψA) + N f
r (ψB)− 1

= 1 + ∑
i∈IA

(N f
r (ϕi)− 1) + 1 + ∑

i∈I′B

(N f
r (ϕ′i)− 1)− 1

= 1 + ∑
i∈IA

(N f
r (ϕi)− 1) + 1 + ∑

i∈IB

(N f
r (ϕi)− 1)− 1

= 1 + ∑
i∈I

(N f
r (ϕi)− 1)

300

L f (ϕ) = max{L f (ψA), L f (ψB)}

= max{1 + max
i∈IA
{L f (ϕi)− 1}, 1 + max

i∈I′B
{L f (ϕ′i)− 1}}

= 1 + max{max
i∈IA
{L f (ϕi)− 1}, max

i∈IB
{L f (ϕi)− 1}}

= 1 + max
i∈I
{L f (ϕi)− 1}

Finally, let us prove (3). For every i ∈ {1..n + m}, let (δi, mi, si) be the resource vector occurring in
ϕi. For every i ∈ {1..n}, let (δ′i , m′i, s′i) be the resource vector of ϕ′i. With IA, I′B, and IB defined as
above, we define pA = max IA and pB = max I′B, so n + pB = max IB. Let us distinguish cases:

– IB = ∅

In this case pB = 0, and L f (ψB) = 1. Therefore, p = max (IA ∪ IB) = pA. We obtain, by
[Let1NC], and the induction hypothesis:

δ
f
b (ϕ) = δ

f
b (ψA) =

pA

∑
i=1

δi =
p

∑
i=1

δi

δ
f
a (ϕ) = δ

f
a (ψA) + δ

f
a (ψB) =

n

∑
i=pA+1

δi +
m

∑
i=pB+1

δ′i =
n

∑
i=p+1

δi +
m

∑
i=1

δ′i

=
n

∑
i=p+1

δi +
n+m

∑
i=n+1

δi =
n+m

∑
i=p+1

δi

m f
b (ϕ) = m f

b (ψA) = max
i∈{1..pA}

{
i−1

∑
j=1
|δj|+ mi

}
= max

i∈{1..p}

{
i−1

∑
j=1
|δj|+ mi

}

m f
a (ϕ) = max{m f

a (ψA), |δ
f
a (ψA)|+ m f

a (ψB)}

= max

{
max

i∈{kA+1..n}

{
i−1

∑
j=kA+1

|δj|+ mi

}
,

n

∑
i=kA+1

|δi|+ max
i∈{kB+1..m}

{
i−1

∑
j=1
|δ′j |+ m′i

}}

= max

{
max

i∈{k+1..n}

{
i−1

∑
j=k+1

|δj|+ mi

}
,

n

∑
i=k+1

|δi|+ max
i∈{1..m}

{
i−1

∑
j=1
|δ′j |+ m′i

}}

= max

{
max

i∈{k+1..n}

{
i−1

∑
j=k+1

|δj|+ mi

}
,

n

∑
i=k+1

|δi|+ max
i∈{1..m}

{
n+i−1

∑
j=n+1

|δj|+ m′i

}}

= max

{
max

i∈{k+1..n}

{
i−1

∑
j=k+1

|δj|+ mi

}
,

n

∑
i=k+1

|δi|+ max
i∈{n+1..n+m}

{
i−1

∑
j=n+1

|δj|+ mi

}}

= max

{
max

i∈{k+1..n}

{
i−1

∑
j=k+1

|δj|+ mi

}
, max

i∈{n+1..n+m}

{
i−1

∑
j=k+1

|δj|+ mi

}}

= max
i∈{k+1..n+m}

{
i−1

∑
j=k+1

|δj|+ mi

}

– IB 6= ∅

We obtain, in this case p = max IB = n+ pB. That is, the last call to f in the whole sequence is
the last call to f in the sub-sequence [G2 → be′1, . . . , be′n]. Moreover, we know that L f (ψB) 6= 1

301

in this case, so we have to apply [Let2NC], instead of [Let1NC]. We obtain:

δ
f
b (ϕ) = δ

f
b (ψA) + δ

f
a (ψA) + δ

f
b (ψB) =

pA

∑
i=1

δi +
n

∑
i=pA+1

δi +
pB

∑
i=1

δ′i

=
n

∑
i=1

δi +
n+pB

∑
i=n

δi =
n+pB

∑
i=1

δi =
p

∑
i=1

δi

δ
f
a (ϕ) = δ

f
a (ψB) =

m

∑
i=pB+1

δ′i =
n+m

∑
i=n+pB+1

δi =
n+m

∑
i=p+1

δi

m f
b (ϕ) = max

{
m f

b (ψA), |δ
f
b (ψA)|+ m f

a (ψA), |δ
f
b (ψA)|+ |δ

f
a (ψA)|+ m f

b (ψB)
}

= max

{
max

i∈{1..kA}

{
i−1

∑
j=1
|δj|+ mi

}
,

kA

∑
i=1
|δi|+ max

i∈{kA+1..n}

{
i−1

∑
j=kA+1

|δj|+ mi

}
,

kA

∑
i=1
|δi|+

n

∑
i=kA+1

|δi|+ max
i∈{1..kB}

{
i−1

∑
j=1
|δ′j |+ m′i

}}

= max

{
max

i∈{1..kA}

{
i−1

∑
j=1
|δj|+ mi

}
, max

i∈{kA+1..n}

{
i−1

∑
j=1
|δj|+ mi

}
,

n

∑
i=1
|δi|+ max

i∈{n+1..n+kB}

{
i−1

∑
j=n+1

|δj|+ mi

}}

= max

{
max

i∈{1..kA}

{
i−1

∑
j=1
|δj|+ mi

}
, max

i∈{kA+1..n}

{
i−1

∑
j=1
|δj|+ mi

}
,

max
i∈{n+1..n+kB}

{
i−1

∑
j=1
|δj|+ mi

}}

= max
i∈{1..n+kB}

{
i−1

∑
j=1
|δj|+ mi

}

= max
i∈{1..k}

{
i−1

∑
j=1
|δj|+ mi

}

m f
a (ϕ) = m f

a (ψB) = max
i={kB+1..m}

{
i−1

∑
j=kB+1

|δ′j |+ m′i

}

= max
i={kB+1..m}

{
n+i−1

∑
j=n+kB+1

|δj|+ m′i

}

= max
i={n+kB+1..n+m}

{
i−1

∑
j=n+kB+1

|δj|+ mi

}

= = max
i={k+1..n+m}

{
i−1

∑
j=k+1

|δj|+ mi

}

Therefore, (3) holds in both cases.

• Case e ≡ case x of Ci xij → ei

302

Since the values N f
b (ϕ), N f

r (ϕ), L f (ϕ), δ
f
b (ϕ), δ

f
a (ϕ), m f

b (ϕ), m f
a (ϕ) of the ϕ judgement are ex-

actly the same as their counterparts in the judgement of the ei being executed, the lemma follows
trivially from the induction hypothesis applied to the latter judgement.

Now we are ready to give a formal definition of a function nb, nr and len being correct.

Definition B.3. Let us assume a function definition f xi
n @ rj

m = e f . We say that nr (resp. nb and len)
are correct approximations of the number of recursive calls (resp. base calls and height of the call tree),
iff for every ϕ, E f , h, k, td, h′, v, δ, m, s, vi

n, ij
m

, si
n such that:

1. ϕ ≡ E f ` h, k, td, e ⇓ h′, k, v, (δ, m, s), where E f = [xi 7→ vi
n, rj 7→ ij

m
, self 7→ k + 1].

2. For each i ∈ {1..n}, si = size(h, vi)

Then it holds that nr si
n ≥ N f

r (ϕ) (resp. nb si
n ≥ N f

b (ϕ) and len si
n ≥ L f (ϕ)).

B.2 Correctness of the initial ∆0

The first step for proving the correctness of computeDelta is to express our δ component resulting from
the evaluation of a given function in terms of the charges done by the base and recursive cases, and the
number of base and recursive calls done during that evaluation. The intuition behind this idea is the
same as in Section 7.5.3. In order to compute the charges done by a recursive call, we need to be able to
isolate the charges done by the call itself from the charges done by its subsequent recursive calls. This
can be done with the help of an additional syntactic construct dmask, which resets the δ component of
a given expression. Its semantics are given by the following rule:

E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)
E ` h, k, td, dmask e ⇓ h′, k, v, ([]k, m, s)

It is easy to see that if we replace a function definition f xi @ rj = e f in a signature Σ by another
masked function definition f xi @ rj = dmask e f we will be able to obtain the same judgements as
with our initial signature, but we will obtain a possibly different δ component in the resource vector.
The next theorem uses this function to define the charges done by a recursive call. The notation Φ(ϕ)

denotes the set of judgements belonging to the derivation of ϕ (including ϕ itself).

Theorem B.4. Assume a function definition f xi @ rj = e f ∈ Σ such that the following execution takes place:

ϕ ≡ E ` h, k + 1, td, e f ⇓Σ h′, k + 1, v, (δ, m, s)

Let us define Σ′ = (Σ\ f)] [f 7→ f xi @ rj = dmask e f], and assume the following execution under Σ′,

ϕ′ ≡ E ` h, k + 1, td, e f ⇓Σ′ h, k + 1, v, (δ′, m, s)

which is derivable by using the ⇓-rules. Given the following definitions:

δbase = max {δ(ψ) | ψ ∈ Φ(ϕ), Exp(ψ) = e f , L f (ψ) = 1}

δrec = max {δ(ψ) | ψ ∈ Φ(ϕ′), Exp(ψ) = e f , L f (ψ) > 1}

303

Then we get:
δ|k ≤ δbase|k ∗ N f

b (ϕ) + δrec|k ∗ N f
r (ϕ) (B.7)

Proof. By induction on L f (ϕ). Let us distinguish cases:

• Case L f (ϕ) = 1

In this case δbase ≥ δ. Since we assume absence of destruction, we get δrec(i) ≥ 0 for each i ∈ {1..n}.
Moreover, N f

b (ϕ) ≥ 1 and N f
r (ϕ) ≥ 0, so:

δ|k ≤ δbase|k ≤ δbase|k ∗ N f
b (ϕ) ≤ δbase|k ∗ N f

b (ϕ) + δrec|k ∗ N f
r (ϕ)

• Case L f (ϕ) > 1

By Lemma B.2, there exists a sequence [G → be1, . . . , ben] in seqs e f and some Ei
n, hi

n
, tdi

n
, hi

n
, vi

n,
δi

n
, mi

n, si
n of their respective types such that:

ϕi ≡ Ei ` hi, k, tdi, bei ⇓Σ h′i, k, vi, (δi, mi, si) belongs to the derivation of ϕ

For each i ∈ {1..n}, since the derivation of ϕ′ is the same as that of ϕ, but with different δ compo-
nents in the resource vectors, the following judgements belong to the derivation of ϕ′,

ϕ′i ≡ Ei ` hi, k, tdi, bei ⇓Σ′ h′i, k, vi, (δ′i , mi, si)

with δ′ = ∑n
i=1 δ′i . Now we define the set I of indices such that the corresponding bei is a function

application to f . For every i ∈ {1..n}, if i /∈ I we can execute bei under Σ to obtain a judgement
similar to ϕ′i, since the latter does not contain calls to f , and the value of Σ(f) is not relevant to
this execution. Thus we get:

Ei ` hi, k, tdi, bei ⇓Σ h′i, k, vi, (δ′i , mi, si)

But, since ϕi holds, and the computation of the resource vector is deterministic, we get δi = δ′i . If
i ∈ I, we know that there is an evaluation of dmask e f “above” the judgement ϕ′i, so we know
that δ′i = []k in these cases. Thus we get:

∑
i/∈I

δi = ∑
i/∈I

δ′i = ∑
i/∈I

δ′i + ∑
i∈I

δ′i =
n

∑
i=1

δ′i = δ′ ≤ δrec (B.8)

Now assume an index i ∈ I, and consider again the corresponding ϕi. Above this judgement, we
can find the execution of the body of the function , whose judgement we denote by χi:

χi ≡ Ei, f ` hi, f , k + 2, tdi, f , e f ⇓Σ h′i, f , k + 2, vi, f , (δi, f , mi, f , si, f)

There exists a counterpart χ′i, defined as follows:

χi ≡ Ei, f ` hi, f , k + 2, tdi, f , e f ⇓Σ′ h′i, f , k + 2, vi, f , (δ′i, f , mi, f , si, f)

By induction hypothesis, we get, for each i ∈ I:

δi, f |k+1 ≤ δbase,i|k+1 ∗ N f
b (χi) + δrec,i|k+1 ∗ N f

r (χi)

304

where δbase,i and δrec,i are defined as follows:

δbase,i = max {δ(ψ) | ψ ∈ Φ(χi), Exp(ψ) = e f , L f (ψ) = 1}

δrec,i = max {δ(ψ) | ψ ∈ Φ(χ′i), Exp(ψ) = e f , L f (ψ) > 1}

Since Φ(χi) ⊆ Φ(ϕ) and Φ(χ′i) ⊆ Φ(ϕ′), we get δbase,i ≤ δbase and δrec,i ≤ δrec. Hence:

δi|k ≤ δbase|k ∗ N f
b (ϕi) + δrec|k ∗ (N f

r (ϕi)− 1) (B.9)

Therefore, we can prove the required result:

δ|k = ∑n
i=1 δi|k { by Lemma B.2 }

= ∑i/∈I δi|k + ∑i∈I δi|k
≤ δrec|k + ∑i∈I δi|k { by (B.8) }
≤ δrec|k + ∑i∈I(δbase|k ∗ N f

b (ϕi) + δrec|k ∗ (N f
r (ϕi)− 1)) { by (B.9) }

= δbase|k ∗∑i∈I N f
b (ϕi) + δrec|k ∗ (1 + ∑i∈I(N f

r (ϕi)− 1))

= δbase|k ∗ N f
b (ϕ) + δrec|k ∗ N f

r (ϕ) { by Lemma B.2 }

Notice the similarity between the expression (B.7) and that occurring in the definition of computeDelta.
The latter can be considered an “abstract” version of the former. The correctness of the result of
computeDelta follows from this theorem. Before this, we need some technical result on the domain
of the result given by the abstract interpretation function. In particular, it states the conditions under
which this result is defined.

Lemma B.5. Assume an execution ϕ ≡ E ` h, k, td, e ⇓ h′, k, v, (δ, m, s) belonging to the derivation of the
following context judgement:

E0 ` h0, k, td0, e f ⇓ h′0, k, v0, (δ0, m0, s0)

corresponding to the function definition f xi
n @ rj

m = e f . Let us define, for each i ∈ {1..n}, si = size(h, E0(xi)),
and [[e]] Σ Γ td = (∆, µ, σ), where Σ is an environment Σ containing correct signatures for the functions being
called from f , and Γ is an environment typing e f . If closed(h, E0(xi)) for each i ∈ {1..n}, then ∆ si

n 6= ⊥,
µ si

n 6= ⊥, and σ si
n 6= ⊥.

Proof. (Sketch) By induction on the size of the ⇓ derivation. All cases are straightforward. In the case
of function applications, the guards of the resulting triple (∆, µ, σ) hold because Σ is a correct signa-
ture. In case expressions, the guards are satisfied because the initial heap is closed, and closedness is
propagated through the execution of a well-typed function.

Theorem B.6. Let ∆ = computeDelta (f xi @ rj = e f) Σ Γ nb nr. If the following conditions hold:

1. Σ is a correct signature for all the functions being called from f .

2. Γ ` e : s for some s ∈ SafeType.

3. nb and nr are correct approximations of the number of base and recursive calls of f , respectively.

4. The abstract heaps ∆b and ∆r occurring in the definition of computeDelta are parameter-decreasing.

Then ∆ is a correct abstract heap for f .

305

Proof. (Sketch) It is a consequence of Theorem B.4, and the ∆b and ∆r being upper bounds of the δbase

and δrec, respectively. The abstract heap ∆b is a correct bound of δbase because of Theorem 7.26, whereas
∆r is a correct bound for δrec, because [] f is a correct bound to the heap charges of the function definition
f xi

n @ rj
m = dmask e f . Assume a judgement:

ϕ ≡ E ` h, k, td, e f ⇓ h′, k, v, (δ, m, s)

Let us define, for each i ∈ {1..n}, si = size(h, E(xi)), and let us denote by η the region instantiation
consistent with E and Γ. We get:

∆ w b∆bc ∗ nb + b∆rc ∗ nr �si
n ,k,η δbase|k ∗ N f

b (ϕ) + δrec|k ∗ N f
r (ϕ) ≥ δ|k

B.3 Correctness of the initial µ0

For proving the correctness of the computeMu algorithm we follow a similar approach as in the previous
section. In this case we need an additional construct mmask, which resets the m component of the
resource vector:

E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)
E ` h, k, td, mmask e ⇓ h′, k, v, (δ, 0, s)

Similarly as above, the following theorem gives the memory needs as an expression which resembles
the cost expression given by computeDelta. The difference is that it uses elements from the concrete
domain, rather than the abstract one.

Theorem B.7. Assume a function definition f xi @ rj = e f ∈ Σ and the following judgement:

ϕ ≡ E ` h, k + 1, td, e f ⇓Σ h′, k + 1, v, (δ, m, s)

Let us define Σ′ = (Σ\ f)] [f 7→ f xi @ rj = mmask e f], and assume the following execution under Σ′,

ϕ′ ≡ E ` h, k + 1, td, e f ⇓Σ′ h, k + 1, v, (δ, m′, s)

which is derivable by using the ⇓-rules. Given the following definitions:

δself = max {δ f
b (ψ)(k + 1) | ψ ∈ Φ(ϕ′), Exp(ψ) = e f , L f (ψ) > 1}

mbef = max {m f
b (ψ) | ψ ∈ Φ(ϕ′), Exp(ψ) = e f , L f (ψ) > 1}

maft = max {m f
a (ψ) | ψ ∈ Φ(ϕ′), Exp(ψ) = e f , L f (ψ) > 1}

mbase = max {m(ψ) | ψ ∈ Φ(ϕ), Exp(ψ) = e f , L f (ψ) = 1}

We get:
m ≤ |δ f

b (ϕ′)|k|+ δself ∗ (L f (ϕ)− 1) + max{mbef , maft, mbase} (B.10)

Proof. By induction on the maximum number of nested calls, L f (ϕ). We distinguish cases:

• Case L f (ϕ) = 1.

306

Then m ≤ mbase. Moreover, |δ f
b (ϕ′)|k| ≥ 0, since we are assuming absence of explicit destruction.

Hence we get:
m ≤ mbase ≤ |δ

f
b (ϕ′)|k|+ δself ∗ 0 + max{mbef , maft, mbase}

• Case L f (ϕ) > 1.

By Lemma B.2, there exists a sequence [G → be1, . . . , ben] such that ϕi belongs to Φ(ϕ), where ϕi

is defined as follows:
ϕi ≡ Ei ` hi, k, tdi, bei ⇓Σ h′i, k, vi, (δi, mi, si)

for every i ∈ {1..n}, and for some Ei, hi, tdi, h′i, vi, δi, mi and si of their respective types. Since the
only difference between Σ and Σ′ is that the latter resets the m component of each recursive call to
f , there exists, for each of these ϕi judgements, a counterpart ϕ′i belonging to ϕ′,

ϕ′i ≡ Ei ` hi, k, tdi, bei ⇓Σ′ h′i, k, vi, (δi, m′i, si)

for some m′i. Let us denote by I the set of indices i such that bei has the form f ai @ rj for some
ai and rj. The difference between Σ and Σ′ is not relevant in the judgements ϕ′i when i /∈ I, since
there are no applications of f in their derivations. Then we can substitute Σ for Σ′ in those ϕ′i, and
we would get the same resource vector (δi, m′i, si) as a result. Since the computation of this vector
is deterministic, and because ϕi holds, we get mi = m′i whenever i /∈ I.

Let us define p = max I. By applying Lemma B.1 we know that

m = max{m f
b (ϕ), |δ f

b (ϕ)|+ m f
a (ϕ)}

We have to prove that each one of the expressions in the max{. . .} is lower than the right-hand
side of (B.10). Let us start with the second one. By Lemma (B.2) it holds that

δ
f
b (ϕ) =

p

∑
i=1

δi = δ
f
b (ϕ′) (B.11)

and, similarly,

m f
a (ϕ) = max

i∈{p+1..n}

{
i−1

∑
j=p+1

|δj|+ mi

}
= max

i∈{p+1..n}

{
i−1

∑
j=p+1

|δj|+ m′i

}
= m f

a (ϕ′) (B.12)

The second step can be done because i /∈ I for every i ∈ {p + 1..n}, by definition of I. Besides this,
we know that dom δ

f
b (ϕ′) = {0..k + 1}, so we can split |δ f

b (ϕ′)| as follows:

|δ f
b (ϕ′)| = |δ f

b (ϕ′)|k|+ δ
f
b (ϕ′)(k + 1) (B.13)

307

Hence we get:

|δ f
b (ϕ)|+ m f

a (ϕ)

= |δ f
b (ϕ′)|+ m f

a (ϕ′) { by (B.11) and (B.12) }
= |δ f

b (ϕ′)|k|+ δb(ϕ′)(k + 1) + m f
a (ϕ′) { by (B.13) }

≤ |δ f
b (ϕ′)|k|+ δself + maft { by definition of δself and maft}

≤ |δ f
b (ϕ′)|k|+ δself ∗ (L f (ϕ)− 1) + maft { since L f (ϕ) > 1}

≤ |δ f
b (ϕ′)|k|+ δself ∗ (L f (ϕ)− 1) + max{mbef , maft, mbase}

and we are done. Now let us prove that m f
b (ϕ) is lower than the right-hand side of (B.10). We can

unfold, by Lemma B.2 the value of m f
b (ϕ) as follows:

m f
b (ϕ) = max

i∈{1..p}
{Mi} , where ∀i ∈ {1..p}.Mi

def
=

i−1

∑
j=1
|δj|+ mi

Thus, the required result amounts to proving that Mi is lower or equal than the right-hand side of
(B.10), for each Mi ∈ {1..p}. So, let us assume i ∈ {1..p} and distinguish cases:

– i /∈ I

In this case it holds that:

Mi =
i−1

∑
j=1
|δj|+ mi =

i−1

∑
j=1
|δj|+ m′i ≤ m f

b (ϕ′) ≤ mbef

and, hence,

Mi ≤ mbef ≤ |δ
f
b (ϕ′)|k|+ δself ∗ (L f (ϕ)− 1) + max{mbef , maft, mbase}

since δ
f
b (ϕ′)(j) ≥ 0 for each j ∈ {1..k}, δsel f ≥ 0, and L f (ϕ) > 1.

– i ∈ I

In this case, bei is a function application. We get that the following judgement:

χi ≡ Ei, f ` hi, f , k + 2, tdi, f , e f ⇓Σ h′i, f , k + 2, vi, f , (δi, f , mi, f , si, f)

belongs to the derivation of ϕi, and a analogous one χ′i belongs to ϕ′i:

χ′i ≡ Ei, f ` hi, f , k + 2, tdi, f , e f ⇓Σ′ h′i, f , k + 2, vi, f , (δi, f , m′i, f , si, f)

By induction hypothesis:

mi, f ≤ |δ
f
b (χ
′
i)|k+1|+ δself ,i ∗ (L f (χi)− 1) + max{mbef ,i, maft,i, mbase,i} (B.14)

308

where

δself ,i = max {δ f
b (ψ)(k + 1) | ψ ∈ Φ(χ′i), Exp(ψ) = e f , L f (ψ) > 1}

mbef ,i = max {m f
b (ψ) | ψ ∈ Φ(χ′i), Exp(ψ) = e f , L f (ψ) > 1}

maft,i = max {m f
a (ψ) | ψ ∈ Φ(χ′i), Exp(ψ) = e f , L f (ψ) > 1}

mbase,i = max {m(ψ) | ψ ∈ Φ(χi), Exp(ψ) = e f , L f (ψ) = 1}

By Lemma B.1 (3) we know that δ
f
b (χ
′
i) ≤ δi, f . Moreover, by the [App] rule, δi, f |k+1 = δi.

Therefore:
|δ f

b (χ
′
i)|k+1| ≤ |δi, f |k+1| ≤ |δi| (B.15)

Besides this, the judgement χi belongs to the derivation of ϕ, and χ′i belongs to the derivation
of ϕ′. Thus Φ(χi) ⊆ Φ(ϕ) and Φ(χi) ⊆ Φ(ϕ′), which implies:

δself ,i ≤ δself mbef ,i ≤ mbef maft,i ≤ maft mbase,i ≤ mbase (B.16)

Finally, by the [AppNC] rule, it holds that L f (ϕi) = L f (χi) + 1. By combining (B.14), (B.15),
(B.16) with this equality and the fact that mi = mi, f , we obtain:

mi = mi, f ≤ |δi|+ δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase}

Therefore:

Mi = ∑i−1
j=1 |δj|+ mi

≤ ∑i−1
j=1 |δj|+ |δi|+ δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase}

= ∑i
j=1 |δi|+ δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase}

≤ ∑
p
j=1 |δi|+ δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase} { since i ≤ p}

The last step is justified by the fact that |δi| ≥ 0 for each i ∈ {1..p}. By Lemma B.2 we know
that δ

f
b (ϕ′) = ∑

p
i=1 δi, and, since dom δ

f
b (ϕ′) = {0..k + 1} we get:

Mi ≤ |δ f
b (ϕ′)|k|+ δ

f
b (ϕ′)(k + 1) + δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase}

≤ |δ f
b (ϕ′)|k|+ δself + δself ∗ (L f (ϕi)− 2) + max{mbef , maft, mbase}

= |δ f
b (ϕ′)|k|+ δself ∗ (1 + (L f (ϕi)− 1)− 1) + max{mbef , maft, mbase}

≤ |δ f
b (ϕ′)|k|+ δself ∗ (L f (ϕ)− 1) + max{mbef , maft, mbase}

The correctness of computeMu is established by connecting the elements of the abstract domain ap-
pearing in its result with the elements of the concrete domain occurring in the previous theorem.

Theorem B.8. Let µ = computeMu (f xi @ rj = e f) Σ Γ ∆ len. If the following conditions hold:

1. Σ is a correct signature for all the functions being called from f .

2. Γ ` e : s for some s ∈ SafeType.

3. len is a correct approximation of the maximum length of the call tree of f .

4. ∆ is a correct abstract heap for f .

309

5. The space cost functions ∆self , µaft, and µbef occurring in the definition of computeMu are parameter-
decreasing.

Then µ is correct with respect to f .

Proof. (Sketch) The proof proceeds in a similar way as Corollary B.6. In this case, it follows from Theo-
rem B.7. If we have a judgement:

ϕ ≡ E ` h, k, td, e f ⇓ h′, k, v, (δ, m, s)

and denote, for each i ∈ {1..n}, si = size(h, E(xi)), we obtain:

µ w ∆self ∗ (len− 1) + |∆bef |+ t{µbef , µaft, µb} �si
n δself ∗ (L f (ϕ)− 1) + |δ f

b (ϕ)|k|+ max{mbef , maft, mbase} ≥ m

B.4 Correctness of the initial σ0

The computation of the initial approximation to the stack costs relies on the concept of stack level,
defined in Section 7.5.5. This level stands for the number of words existing in the stack at a given time.
Neither the semantic rules of Figure 2.26 nor the rules we have defined in Figure B.1 is able to capture
this information. Recall that the td component only counts the number of words from the top of the
stack to the topmost continuation, whereas we are interested in the total number of words in the stack
including those lying below that continuation. For this reason, we have to extend again the semantic
rules of Figure 2.26 in order to include this information. Our judgements will have the following form:

E ` h, k, (td, s0), e ⇓ h′, k, v, (δ, m, s)

where s0 is the new component that counts the number of words in the stack. In Figure B.3 we show
the rules defining this extension. Most of them are self-explaining. The s0 components mimics the td
component in almost every expression, except when evaluating the bound expression of a let, where
the td component becomes zero (as a new continuation has been pushed), and the s0 component is
incremented by two (the number of stack words taken by a continuation).

We are particularly interested in the difference between the stack levels between two points: when a
function starts, and when a recursive call is going to be done. That is what the SD f function defined in
Figure 7.15 computes. The following lemma shows how we can compute the stack costs of the execution
of a given expression from these differences between stack levels, and the stack costs of each recursive
call. Before this, we need to introduce the semantics of the smask expressions, which play a similar role
as dmask and mmask.

E ` h, k, td, e ⇓ h′, k, v, (δ, m, s)
E ` h, k, td, smask e ⇓ h′, k, v, (δ, m, 0)

Lemma B.9. Let us assume the execution of an expression under an environment Σ, and that there are p direct
calls to f in the corresponding execution (and hence p judgements evaluating e f). For each i ∈ {1 . . . p}, we

310

E ` h, k, (td, s0), c ⇓ h, k, c, ([]k, 0, 1)
[LitST]

E[x 7→ v] ` h, k, (td, s0), x ⇓ h, k, v, ([]k, 0, 1)
[VarST]

E ` h, k, (td, s0), a1 ⊕ a2 ⇓ h, k, E(a1)⊕ E(a2), ([]k, 0, 2)
[PrimOpST]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)
E[x 7→ p, r 7→ j] ` h, k, (td, s0), x @ r ⇓ h′, k, p′, ([j 7→ m]k, m, 2)

[CopyST]

(g yi
n @ r′j

l
= eg) ∈ Σ

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1] ` h, k + 1, (n + l, s0 + n + l − td), e ⇓ h′, k + 1, v, (δ, m, s)

E ` h, k, (td, s0), g ai
n @ rj

l ⇓ h′ |k, k, v, (δ |k, m, max {n + l, s + n + l − td})
[AppST]

E(r) = j j ≤ k freshh(p)

E ` h, k, (td, s0), C ai
n @ r ⇓ h] [p 7→ (j, C E(ai)

n
)], k, v, ([j 7→ 1]k, 1, 1)

[ConsST]

E ` h, k, (0, s0 + 2), e1 ⇓ h′, k, v1, (δ1, m1, s1)
E ∪ [x1 7→ v1] ` h′, k, (td + 1, s0 + 1), e2 ⇓ h′′, k, v, (δ2, m2, s2)

E ` h, k, (td, s0), let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2, max{m1, |δ1|+ m2}, max{2 + s1, 1 + s2})
[LetST]

C = Cr E(x) = p E] [xrj 7→ vj
nr] ` h, k, (td + nr, s0 + nr), er ⇓ h′, k, v, (δ, m, s)

E ` h[p 7→ (j, C vi
nr)], k, (td, s0), case x of Ci xij

ni → ei
n ⇓ h′, k, v, (δ, m, s + nr)

[CaseST]

Figure B.3: Operational semantics of Core-Safe expressions with stack level information.

311

denote the initial stack size (resp. stack cost) of the i-th derivation by s(i)0 (resp. s(i)):

. . . (td(1), s(1)0), e f ⇓ . . . (δ(1), m(1), s(1))

... . . .

. . . (td(p), s(p)
0), e f ⇓ . . . (δ(p), m(p), s(p))

...
. . . (td, s0), e ⇓ . . . (δ, m, s)

In addition, we assume the execution of the same expression e under the environment Σ\ f] [f 7→ f xi @ rj =

smask e f], obtaining s′ as the stack cost. Then the following relation between s and s′ holds:

s = max
(
{s′} ∪ {s(i)0 − s0 + s(i) | i = 1 . . . p}

)
Proof. By induction on the structure of e.

• Cases e ≡ c, e ≡ x, e ≡ a1 ⊕ a2, e ≡ C ai @ r, and e ≡ g ai @ rj with g 6= f .

This is trivial, since p = 0 and both executions with Σ and with Σ′ produce the same stack costs.
Hence s = s′ = max{s′}

• Case e ≡ f ai
n @ r′j

m

There is a single recursive call (p = 1):

. . . (n + m, s0 + n + m− td), [smask] e f ⇓ . . . (. . . , . . . , s(1))

. . . (td, s0), f ai
n @ r′j

m ⇓ . . . (. . . , . . . , max{n + m, s(1) + n + m− td})

Under Σ′ we get s(1) = 0 and hence s′ = max{n + m, 0 + n + m− td} = n + m. Since s(1)0 − s0 =

(s0 + n + m− td)− s0 = n + m− td, we get:

s = max{n + m, s(1) + n + m− td} = max{s′, s(1)0 − s0 + s(1)}

• Case e ≡ let x1 = e1 in e2

We assume that there are q calls to f in the execution of e1 and p− q calls in the execution of e2,
with 0 ≤ q ≤ p. We have got the following situation:

(q calls to f)
. . . , (0, s0 + 2), e1 ⇓ . . . (δ1, m1, s1)

(p− q calls to f)
. . . , (td + 1, s0 + 1), e2 ⇓ . . . (δ2, m2, s2)

. . . , (td, s0), let x1 = e1 in e2 ⇓ . . . (δ, m, s)

If we denote by s′ (resp. s′1, s′2) the costs of e (resp. e1, e2) when evaluated under Σ′, we get:

s = max{2 + s1, 1 + s2}
= max

{
2 + max

(
{s′1} ∪ {s

(i)
0 − (s0 + 2) + s(i) | i ∈ {1 . . . q}}

)
,

1 + max
(
{s′2} ∪ {s

(j)
0 − (s0 + 1) + s(j) | j ∈ {q + 1 . . . p}}

)}
{ by i.h. }

= max
{

max{2 + s′1, 1 + s′2}, max{s(i)0 − s0 + s(i) | i ∈ {1 . . . q}},

max{s(j)
0 − s0 + s(j) | j ∈ {q + 1 . . . p}}

}
= max

(
{s′} ∪ {s(i)0 − s0 + s(i) | i ∈ {1 . . . p}}

)
312

• Case e ≡ case x of Ci xij
ni → ei

We assume that the r-th branch is executed and we denote by sr and s′r the costs associated to the
derivations with Σ and Σ′.

s = nr + sr

= nr + max
(
{s′r} ∪ {s

(i)
0 − (s0 + nr) + s(i) | i ∈ {1 . . . p}}

)
{ by i.h. }

= max
(
{nr + s′r} ∪ {s

(i)
0 − s0 + s(i) | i ∈ {1 . . . p}}

)
= max

(
{s′} ∪ {s(i)0 − s0 + s(i) | i ∈ {1 . . . p}}

)

The following lemma shows that the SD f function returns an upper bound to the above mentioned
stack difference.

Lemma B.10 (Correctness lemma for SD f). We assume the execution E ` h, k, (td, s0), e ⇓ h′, k, v, (δ, m, s),

in which there are p ≥ 1 direct calls to a function f . For a given i ∈ {1 . . . p}, we denote by s(i)0 the stack size
before executing the e f body corresponding to the i-th call of f :

. . .

E′ ` hi, k + 1, (tdi, s(i)0), e f ⇓ h′i, k + 1, vi, (δi, mi, si)

...

. . .

E ` h, k, (td, s0), e ⇓ h′, k, v, (δ, m, s)

Then: SD f e td ≥ s(i)0 − s0

Proof. By induction on the size of the ⇓-derivation. Since the derivation contains a call to f , we assume
that e contains a sub-expression f ai @ rj. This rules out the cases e ≡ c, x, a1 ⊕ a2, C ai

n @ r, and
g bi

q
@ sj

q with g 6= f . We distinguish the remaining cases:

• Case e ≡ f ai
n @ rj

m

We get s(i)0 = s0 + n + m− td, and hence, SD f e td = n + m− td = s(i)0 − s0

• Case e ≡ let x1 = e1 in e2

If the i-th call to f is in e2 we get:

SD f e td ≥ 1 + (SD f e2 (td + 1)) { by definition of SD f }
≥ 1 + s(i)0 − (s0 + 1) { by i.h. }
= s(i)0 − s0

If the i-th call to f is in e1 we get:

SD f e td ≥ 2 + (SD f e1 0) { by definition of SD f }
≥ 2 + s(i)0 − (s0 + 2) { by i.h. }
= s(i)0 − s0

• Case e ≡ case x of Ci xij
ni → ei

n

313

We assume the r-th branch being executed (1 ≤ r ≤ n). Therefore:

SD f e td ≥ nr + (SD f er (td + nr)) { definition of SD f }
≥ nr + s(i)0 − (s0 + nr) { by i.h. }
= s(i)0 − s0

Given these results, we are ready to proceed as in previous sections: we find an expression for s that
resembles its abstract counterpart given by computeSigma.

Theorem B.11. Assume a function definition f xi
n @ rj

m = e f ∈ Σ such that the following execution takes
place:

ϕ ≡ E ` h, k + 1, td, e f ⇓Σ h′, k + 1, v, (δ, m, s)

Let us define Σ′ = (Σ\ f)] [f 7→ f xi @ rj = smask e f], and assume the following execution under Σ′:

ϕ′ ≡ E ` h, k + 1, td, e f ⇓Σ′ h′, k + 1, v, (δ, m, s′)

Given the following definition,

smax = max {s(ψ) | ψ ∈ Φ(ϕ′)}

we get,
s ≤ max{0, SD e f (n + m)} ∗ (L f (ϕ)− 1) + smax (B.17)

Proof. By induction on L f (ϕ). We distinguish cases:

• Case L f (ϕ) = 1

There are no function applications to f in the derivation of ϕ′. Hence the value of Σ′(f) is not
relevant in that judgement, and we can substitute Σ for Σ′ in ϕ′, so as to get:

E ` h, k + 1, td, e f ⇓Σ h′, k + 1, v, (δ, m, s′)

But, because of Lemma 2.19, we get s = s′, which implies s ≤ smax. Therefore:

s ≤ smax ≤ max{0, SD f e f (n + m)} ∗ 0 + smax

• Case L f (ϕ) > 1

Let us assume there are p calls to f in the derivation of ϕ. We know that p ≥ 1 (otherwise, L f (ϕ)

would not be greater than 1). For each i ∈ {1..p} there exists a judgement

χi ≡ Ei ` hi, k + 2, (tdi, s0,i), e f ⇓ h′i, k + 2, vi, (δi, mi, si)

in the derivation ϕ. Similarly, there exists another judgement

χ′i ≡ Ei ` hi, k + 2, (tdi, s0,i), e f ⇓ h′i, k + 2, vi, (δi, mi, s′i)

in the derivation of ϕ′. Let us denote by ϕi (resp. ϕ′i) the judgements situated “below” χi (resp. χ′i)
in the corresponding derivation tree. These judgements must represent the execution of a function

314

application of f . By Lemma B.9 we get:

s = max{{s0,i − s0 + si | i ∈ {1..p}} ∪ {s′}} (B.18)

But we know that s′ ≤ smax by definition of smax. By Lemma B.10 we get SD f e f (n+m) ≥ s0,i− s0

for each i ∈ {1..p}. Moreover, by induction hypothesis, we get, for each i ∈ {1..p}:

si ≤ max{0, SD f e f (n + m)} ∗ (L f (χi)− 1) + smax,i

where:

smax,i = max {s(ψ) | ψ ∈ Φ(χ′i), Exp(ψ) = e f }

Since Φ(χ′i) ⊆ Φ(ϕ′), we get smax,i ≤ smax. Besides this, L f (ϕi) = 1 + L f (χi). Therefore:

si ≤ max{0, SD f e f (n + m)} ∗ (L f (ϕi)− 2) + smax

Finally, we get 1 + (L f (ϕi)− 1) ≤ L f (ϕ). Thus:

si ≤ max{0, SD f e f (n + m)} ∗ (L f (ϕ)− 2) + smax

We can rewrite (B.18) as follows:

s ≤ max{{SD f e f (n + m) + max{0, SD f e f (n + m)} ∗ (L f (ϕ)− 2) + smax} ∪ {smax}

≤ max{0, SD f e f (n + m)} ∗ (L f (ϕ)− 1) + smax

which proves the Lemma.

Finally, the required result follows from this theorem. We have to prove that σ actually approximates
smax.

Theorem B.12. Let σ = computeSigma (f xi
n @ rj

m = e f) Σ (n + m) len. If the following conditions hold:

1. Σ is a correct signature for all the functions being called from f .

2. len is a correct approximation of the maximum length of the call tree of f .

3. The space cost function σ occurring in the definition of computeSigma is parameter-decreasing.

Then σ is correct with respect to f .

Proof. (Sketch) Similarly to Corollaries B.6 and B.8, it follows from Theorem B.11. Now σ is a correct
bound to smax, by Theorem (7.26). By assuming a judgement:

ϕ ≡ E ` h, k, td, e f ⇓ h′, k, v, (δ, m, s)

315

and defining, for each i ∈ {1..n}, si = size(h, E(xi)), we obtain:

σ w t{0, SD f e f (n + m)} ∗ (len− 1) + σ

�si
n max{0, SD f e f (n + m)} ∗ L f (ϕ) + smax

≥ s

316

Appendix C

Map of semantic definitions and type systems

Standard semantics
()⇓

Figure 2.14

SVM
(→

S'
)

Figure 2.17

*

Harmless semantics
(⇓*)

Figure 3.12

Type system
()⊢

Figure 3.6

Type system (regions)
(⊢

Reg
)

Figure 3.18

Type system (marks)
(⊢

Dst
)

Figure 3.19

Theorem 3.45

Theorem 2.27

+

Theorem 3.50

Region inference
()⊩

Figure 4.9

Mark inference
((R,D,S))⊢

Figure 5.1

Theorem 4.14 Theorem 5.8 (minimal signature)
Theorem 5.18

(Straightforward)

317

318

Bibliography

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between evaluators and abstract machines. In Proceedings of the 5th ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming, PPDP’03, pages 8–19. ACM,
2003.

[2] Alexander Aiken, Manuel Fähndrich, and Raph Levien. Better static memory management: Im-
proving region-based analysis of higher-order languages. In Proceedings of the ACM SIGPLAN
1995 conference on Programming language design and implementation, PLDI’95, pages 174–185. ACM,
1995.

[3] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic inference of upper
bounds for recurrence relations in cost analysis. In Springer Berlin / Heidelberg, editor, Static
Analysis: 15th International Symposium, SAS 2008., pages 221–237, 2008.

[4] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form upper bounds in
static cost analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

[5] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost anal-
ysis of Java bytecode. In 16th European Symposium on Programming, volume 4421, pages 157–172.
Lecture Notes in Computer Science. Springer, March 2007.

[6] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini. Costa: De-
sign and implementation of a cost and termination analyzer for java bytecode. In Formal Methods
for Components and Objects, FMCO 2008, volume 5382, pages 113–132. Springer, 2008.

[7] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric inference of memory
requirements for garbage collected languages. In Proceedings of the 2010 international symposium
on Memory management, ISMM’10, pages 121–130. ACM Press, 2010.

[8] Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet widely applicable cost
analysis. In Proceedings of the 12th International Conference on Verification, Model Checking and Ab-
stract Interpretation, VMCAI’11, pages 38–53. Springer, 2011.

[9] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto
Momigliano. A program logic for resources. Theoretical Computer Science, 389:411–445, 2007.

[10] David Aspinall and Martin Hofmann. Another type system for in-place update. In 11th European
Symposium on Programming, ESOP 2002, pages 36–52. Springer, 2002.

[11] David Aspinall, Martin Hofmann, and Michal Konečný. A type system with usage aspects. Jour-
nal of Functional Programming, 18(2):141–178, 2008.

319

[12] Franz Baader and Tobias Nipkow. Term rewriting and all that, chapter 4, pages 73–79. Cambridge
University Press, 1998.

[13] Roberto Bagnara, Alessandro Zaccagnini, and Tatiana Zolo. The automatic solution of recurrence
relations I: Linear recurrences of finite order with constant coefficients. Quaderno 334, Diparti-
mento di Matematica, Università di Parma, 2003.

[14] Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin Hofmann, Peter Müller,
Erik Poll, Germán Puebla, Ian Stark, and Eric Vétillard. Mobius: Mobility, ubiquity, security. In
Trustworthy Global Computing, pages 10–29. Springer-Verlag, 2007.

[15] Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk. Certificate translation for op-
timizing compilers. ACM Transactions on Programming Languages and Systems, 31(5):18/1–18/45,
2009.

[16] Florence Benoy and Andy King. Inferring argument size relationships with CLP(R). In Pro-
ceedings of the 6th International Workshop on Logic Programming Synthesis and Transformation, LOP-
STR’96, pages 204–223. Springer, 1997.

[17] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsidering custom memory
allocation. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’02, pages 1–12. ACM, 2002.

[18] Lennart Beringer, Martin Hofmann, Alberto Momigliano, and Olha Shkaravska. Automatic cer-
tification of heap consumption. In Proceedings of 11th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR’04, pages 347–362. Springer, 2005.

[19] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von Neumann ma-
chines via region representation inference. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’96, pages 171–183. ACM, 1996.

[20] Richard Bornat. Proving pointer programs in hoare logic. In Proceedings of the 5th International
Conference on Mathematics of Program Construction, MPC’00, pages 102–126. Springer, 2000.

[21] Gérard Boudol. Typing safe deallocation. In Proceedings of the 17th European Symposium on Pro-
gramming, ESOP 2008, pages 116–130. Springer, 2008.

[22] Benjamin Brosgol, James Gosling, Peter Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Addison-Wesley, 2000.

[23] Christopher W. Brown. QEPCAD. quantifier elimination by partial cylindrical algebraic decom-
position. http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html.

[24] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Space invading sys-
tems code. In Proceedings of the 18th International Symposium on Logic-Based Program Synthesis and
Transformation, LOPSTR’08, pages 1–3. Springer, 2009.

[25] Brian Campbell. Prediction of linear memory usage for first-order functional programs. In Trends
in Functional Programming. Volume 9. Selected papers of the 9th Symposium on Trends in Functional
Programming, TFP’08. Intellect, 2008.

320

[26] Brian Campbell. Type-based amortised stack memory prediction. PhD thesis, Laboratory for Founda-
tions of Computer Science. School of Informatics. University of Edinburgh, 2008.

[27] Sigmund Cherem and Radu Rugina. Region analysis and transformation for java programs.
In Proceedings of the 4th International Symposium on Memory Management, ISMM’04, pages 85–96.
ACM, 2004.

[28] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Region inference for an
object-oriented language. ACM SIGPLAN Notices, 39(6):243–254, 2004. Extended version of PLDI
’04.

[29] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types. Higher Order and Symbolic Com-
putation, 14(2–3):261–300, 2001.

[30] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth Cline. A
certifying compiler for java. In Proceedings of the ACM SIGPLAN 2000 conference on Programming
Languages Design and Implementation, PLDI’00, pages 95–107. ACM, 2000.

[31] Jesús Conesa, Ricardo López, and Ángel Lozano. Desarrollo de un compilador para un lenguaje
funcional con gestión explícita de memoria. Master’s thesis, Universidad Complutense de
Madrid, 2006.

[32] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, chapter 17, pages 451–463. MIT Press, third edition, 2009.

[33] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’77,
pages 238–252. ACM Press, 1977.

[34] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings of
the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’82, pages
207–212. ACM Press, 1982.

[35] Javier de Dios. Certificación de propiedades en un lenguaje funcional impaciente. PhD thesis, Universi-
dad Complutense de Madrid, 2011.

[36] Javier de Dios, Manuel Montenegro, and Ricardo Peña. Certified absence of dangling pointers in
a language with explicit deallocation. In Proceedings of the 8th International Conference on Integrated
Formal Methods, IFM’10, pages 305–319. Springer, 2010.

[37] Javier de Dios, Manuel Montenegro, and Ricardo Peña. Certified absence of dangling
pointers in a language with explicit deallocation. Technical report, Dpto. de Sistemas
Informáticos y Computación. Universidad Complutense de Madrid., 2010. Available at:
http://dalila.sip.ucm.es/safe/papers/ifm10_extended.pdf.

[38] Javier de Dios and Ricardo Peña. A certified implementation on top of the Java virtual machine.
In Proceedings of the 14th International Workshop on Formal Methods for Industrial Critical Systems,
FMICS’09, pages 181–196. Springer, 2009.

321

[39] Javier de Dios and Ricardo Peña. Formal certification of a resource-aware implementation. In
Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOL’09,
pages 196–211. Springer, 2009.

[40] Javier de Dios and Ricardo Peña. Certification of safe polynomial memory bounds. In Proceedings
of the 17th International Symposium on Formal Methods, FM 2011. Springer, 2011. To appear.

[41] Alberto de la Encina and Ricardo Peña. From natural semantics to C: A formal derivation of two
STG machines. Journal of Functional Programming, 2008. To appear.

[42] Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide, 2005.

[43] Marko van Eekelen, Olha Shkaravska, Ron van Kesteren, Bart Jacobs, Erik Poll, and Sjaak Smet-
sers. AHA: Amortized space usage analysis. In Trends in Functional Programming. Volume 8. Se-
lected Papers of the 7th Symposium on Trends in Functional Programming, TFP’07, pages 36–53. Intel-
lect, 2008.

[44] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Proceedings of the ACM SIGPLAN 1993 conference on Programming language
design and implementation, PLDI’93, pages 237–247. ACM, 1993.

[45] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you need. In 15th
European Symposium on Programming, ESOP 2006, pages 7–21. Springer, 2006.

[46] D. Gaertner and W. E. Kluge. π-RED+ – an interactive compiling graph reduction system for an
applied λ-calculus. Journal of Functional Programming, 6(5):723–757, 1996.

[47] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated termination
tools with AProVE. In Proceedings of the 15th International Conference on Rewriting Techniques and
Applications, RTA’04, pages 210–220. Springer, 2004.

[48] Gudmund Grov, Greg Michaelson, Christoph Herrmann, Hans-Wolfgang Loidl, Steffen Jost, and
Kevin Hammond. Hume cost analyses for imperative programs. In Proceedings of International
Conference on Software Engineering Theory and Practice, SETP 2009, 2009.

[49] Sumit Gulwani. SPEED: Symbolic complexity bound analysis. invited talk. In Proceedings of the
21st International Conference on Computer Aided Verification, CAD 2009, pages 51–62. Springer, 2009.

[50] Kevin Hammond and Greg Michaelson. Hume: A domain-specific language for real-time embed-
ded systems. In Frank Pfenning and Yannis Smaragdakis, editors, Proceedings of Generative Pro-
gramming and Component Engineering, Second International Conference (GPCE 2003), volume 2830,
pages 37–56. Springer, 2003.

[51] Kevin Hammond and Greg Michaelson. Predictable space behaviour in FSM-Hume. In Imple-
mentation of Functional Languages 2002, pages 1–16, 2003.

[52] John Hannan and Dale Miller. From operational semantics to abstract machines. Mathematical
Structures in Computer Science, 2(4):415–459, 1992.

[53] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):253, 1993.

322

[54] Fritz Henglein, Henning Makholm, and Henning Niss. A direct approach to control-flow sen-
sitive region-based memory management. In Proceedings of the 3rd ACM SIGPLAN international
conference on Principles and Practice of Declarative Programming, PPDP’01, pages 175–186. ACM,
2001.

[55] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource analysis.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, POPL’11, pages 357–370. ACM, 2011.

[56] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polynomial potential. In
Proceedings of the 19th European Symposium on Programming, ESOP 2010, pages 287–306. Springer,
2010.

[57] Martin Hofmann. A type system for bounded space and functional in-place update–extended
abstract. Nordic Journal of Computing, 7(4):258–289, Autumn 2000.

[58] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order functional
programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 185–197, 2003.

[59] Martin Hofmann and Steffen Jost. Type-based amortised heap-space analysis. In Proceedings of
the 15th European Symposium on Programming, ESOP 2006, pages 22–37. Springer, 2006.

[60] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: being
lazy with class. In Proceedings of the third ACM SIGPLAN conference on History of programming
languages, HOPL III, pages (12–1)–(12–55), 2007.

[61] John Hughes and Lars Pareto. Recursion and dynamic data-structures in bounded space: towards
embedded ML programming. In Proceedings of the 4th ACM SIGPLAN international conference on
Functional programming, ICFP’99, pages 70–81. ACM, 1999.

[62] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized
types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL’96, pages 410–423. ACM Press, 1996.

[63] Steffen Jost. Automated Amortised Analysis. PhD thesis, Fakultät für Mathematik, Informatik und
Statistik der Ludwig-Maximilians-Universität München, August 2010.

[64] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static determina-
tion of quantitative resource usage for higher-order programs. In Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL’10, pages 223–
236. ACM, 2010.

[65] Werner Kluge. Abstract Computing Machines: A Lambda Calculus Perspective. Springer Texts in
Theoretical Computer Science, 2005.

[66] Naoki Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, POPL’99, pages 29–42. ACM, 1999.

[67] Michal Konečný. LFPL with types for deep sharing. Technical Report EDI-INF-RR-157, LFCS,
Division of Informatics, University of Edinburgh, October 2002.

323

[68] Michal Konečný. Typing with conditions and guarantees for functional in-place update. In Se-
lected papers from the 2nd International Workshop on Types for Proofs and Programs, TYPES 2002, pages
182–199. Springer, 2002.

[69] Michal Konečný. Functional in-place update with layered datatype sharing. In Proceedings of
the 6th International Conference on Typed Lambda Calculi and Applications, TLCA’03, pages 195–210.
Springer, 2003.

[70] Peter Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.

[71] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In Proceedings of the 2004 International Symposium on Code Generation and
Optimization, CGO’04, pages 75–87. ACM, 2004.

[72] Salvador Lucas. MU-TERM: A tool for proving termination of context-sensitive rewriting. In Pro-
ceedings of the 15th International Conference on Rewriting Techniques and Applications, RTA’04, pages
200–209. Springer, 2004.

[73] Salvador Lucas and Ricardo Peña. Rewriting techniques for analysing termination and complex-
ity bounds of Safe programs. In Draft Proceedings of 18th International Symposium on Logic-Based
Program Synthesis and Transformation, LOPSTR’08, pages 43–57, 2008.

[74] David C. Luckham and Norihisa Suzuki. Verification of array, record, and pointer operations in
pascal. ACM Transactions on Programming Languages and Systems, 1(2):226–244, 1979.

[75] Henning Makholm. A language-independent framework for region inference. PhD thesis, University
of Copenhagen. Departament of Computer Science, August 2003.

[76] Simon Marlow et al. Haskell 2010 Language Report, 2010.

[77] Simon Marlow and Andy Gill. Happy User Guide, 2001.

[78] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic. Information
and Compututation, 199(1-2):200–227, 2005.

[79] Manuel Montenegro. Inferencia de tipos seguros en un lenguaje funcional con destrucción ex-
plícita de memoria. Master’s thesis, Universidad Complutense de Madrid, September 2007.

[80] Manuel Montenegro, Ricado Peña, and Clara Segura. Experiences in developing a compiler for
safe using Haskell. In Actas del I Taller de Programación Funcional, TPF’09, pages 31–46, 2009.

[81] Manuel Montenegro, Ricardo Peña, and Clara Segura. An inference algorithm for guaranteeing
safe destruction. In Proceedings of the 18th International Symposium on Logic-Based Program Synthesis
and Transformation, LOPSTR’08, pages 135–151. Springer, 2008.

[82] Manuel Montenegro, Ricardo Peña, and Clara Segura. A resource-aware semantics and abstract
machine for a functional language with explicit deallocation. In Proceedings of the 17th Interna-
tional Workshop on Functional and (Constraint) Logic Programming, WFLP’08, pages 167–182. Else-
vier, 2008.

[83] Manuel Montenegro, Ricardo Peña, and Clara Segura. A space consumption analysis by abstract
interpretation. In Proceedings of the 1st International Workshop on Foundational and Practical Aspects
of Resource Analysis, FOPARA’09, pages 34–50. Springer, 2010.

324

[84] Manuel Montenegro, Ricardo Peña, and Clara Segura. A type system for safe memory manage-
ment and its proof of correctness. In Proceedings of the 10th international ACM SIGPLAN conference
on Principles and practice of declarative programming, PPDP’08, pages 152–162. ACM Press, 2008.

[85] Manuel Montenegro, Ricardo Peña, and Clara Segura. A simple region inference algorithm for a
first-order functional language. In Proceedings of the 18th International Workshop on Functional and
(Constraint) Logic Programming, WFLP’09, pages 145–161. Springer, 2009.

[86] Manuel Montenegro, Ricardo Peña, and Clara Segura. A resource-aware semantics and abstract
machine for Safe. A functional language with regions and explicit deallocation, 2011. Submitted.

[87] Manuel Montenegro, Olha Shkaravska, Marko van Eekelen, and Ricardo Peña. Interpolation-
based height analysis for improving a recurrence solver. In Draft Proceedings of the 2nd International
Workshop on Foundational Practical Aspects of Resource Analysis (FOPARA 2011). Technical Report
SIC-08/11. Dpto. de Sistemas Informáticos y Computación. Universidad Complutense de Madrid, pages
95–110, 2011.

[88] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL’97, pages 106–119, 1997.

[89] George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, September
1998.

[90] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In Proceedings
of the second USENIX symposium on Operating Systems, Design and Implementation, OSDI’96, pages
229–243. ACM, 1996.

[91] George C. Necula and Peter Lee. The design and implementation of a certifying compiler. In Pro-
ceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation,
PLDI’98, pages 333–344. ACM, 1998.

[92] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

[93] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[94] Manuel Núñez, Pedro Palao, and Ricardo Peña. A second year course on data structures based
on functional programming. In First international symposium on Functional Programming Languages
in Education, FPLE’95, pages 65–84. Springer Verlag, 1995.

[95] Martin Odersky. Observers for linear types. In Proceedings of the 4th European Symposium on
Programming, ESOP’92, pages 390–407. Springer, 1992.

[96] Lars Pareto. Sized types, 1998. Licentiate thesis, Chalmers University of Technology.

[97] Ricardo Peña and Agustin D. Delgado. Size invariant and ranking function synthesis in a func-
tional language. In Proceedings of the 20th International Workshop on Functional and (Constraint) Logic
Programming, WFLP 2011, pages 52–67. Springer, 2011.

[98] Ricardo Peña, Clara Segura, and Manuel Montenegro. A sharing analysis for Safe. In Trends in
Functional Programming (Volume 7). Selected Papers of the Seventh Symposium on Trends in Functional
Programming, TFP’06, pages 109–128. Intellect, 2007.

325

[99] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[100] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Science, LICS’02, pages 55–74. ACM, 2002.

[101] John A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, 1965.

[102] Cristina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynamically allocated objects. In
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages,
POPL’88, pages 285–293. ACM, 1988.

[103] Donald Sannella, Martin Hofmann, David Aspinall, Stephen Gilmore, Ian Stark, Lennart Beringer,
Hans-Wolfgang Loidl, Kenneth MacKenzie, Alberto Momigliano, and Olha Shkaravska. Mobile
resource guarantees. In Trends In Functional Programming, volume 6. Selected papers of the 6th Inter-
national Symposium on Trends in Functional Programming, TFP 2005, pages 211–226. Intellect, 2005.

[104] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming, 7(3):231–264,
1997.

[105] Olha Shkaravska, Marko van Eekelen, and Ron van Kesteren. Polynomial size analysis of first-
order shapely functions. Logical Methods in Computer Science, 5(2):1–35, 2009. Special Issue with
Selected Papers from TLCA 2007.

[106] Olha Shkaravska, Rody Kersten, and Marko van Eekelen. Test-based inference of polynomial
loop-bound functions. In Proceedings of the 8th International Conference on the Principles and Practice
of Programming in Java, PPPJ 2010. ACM, 2010.

[107] Olha Shkaravska, Marko van Eekelen, and Alejandro Tamalet. Collected size semantics for func-
tional programs over lists. In Proceedings of the 20th International Symposium on the Implementation
and Application of Functional Languages, IFL’08, pages 1–21. Springer, 2008.

[108] Fausto Spoto, Patricia M. Hill, and Étienne Payet. Path-length analysis for object-oriented pro-
grams. In EAAI’06: First International Workshop on Emerging Applications of Abstract Interpretation,
2006.

[109] Alejandro Tamalet, Olha Shkaravska, and Marko van Eekelen. Size analysis of algebraic data
types. In Trends in Functional Programming Volume 9. Selected papers of the 9th Symposium on Trends
in Functional Programming, TFP’08, pages 33–48. Intellect, 2009.

[110] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Discrete
Methods, 6:306–318, 1985.

[111] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathe-
matics, 5(2):285–309, 1955.

[112] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Transactions on Programming
Languages and Systems, 20(5):724–767, 1998.

[113] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen, and Peter
Sestoft. Programming with regions for the MLKit. Technical report, University of Copenhagen,
2006.

326

[114] Mads Tofte and Niels Hallenberg. Region-based memory management in perspective. In Hen-
ning Makholm Fritz Henglein, John Hughes and Henning Niss, editors, Workshop on Semantics,
Program Analysis and Computing Environments for Memory Management, SPACE 2001 (Invited Talk),
pages 23–30, 2001.

[115] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus using
a stack of regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, POPL’94, pages 188–201. ACM, 1994.

[116] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Compu-
tation, 132(2):109–176, 1997.

[117] Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recursive, polymorphic
and higher-order functional programs. In Proceedings of the 15th International Workshop on Imple-
mentation of Functional Languages, IFL’03, pages 86–101. Springer, 2004.

[118] Philip Wadler. Linear types can change the world! In IFIP TC 2 Working Conference on Programming
Concepts and Methods, pages 347–359. North Holland, 1990.

[119] Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9):528–539, 1975.

327

	Introduction
	Motivation
	Region-based memory management
	Explicit cell deallocation
	Safe's approach to memory management

	Certification of safety properties
	Memory consumption analysis
	Goals and structure of the work
	Notation and basic assumptions

	Syntax and resource-aware semantics of Safe
	Introduction
	Language concepts: Safe by example
	Region-based memory management in Safe
	Destructive pattern matching
	Runtime system implementation
	Full-Safe vs Core-Safe

	Syntax of Core-Safe
	Semantics of Safe
	Big-step semantics
	Small-step semantics

	Virtual machines
	SAFE-M2 abstract machine
	SVM imperative abstract machine

	Translating Core-Safe into SVM code
	Resource-aware semantics
	Correctness of the translation into SVM
	A global overview of the Safe certifying compiler
	Conclusions and related work

	Type system
	Introduction
	Type system concepts
	Type expressions and environments
	Typing rules
	Case studies
	Correctness of the type system
	Preservation of region consistency
	Reachability and harmless semantics
	Correctness of the sharing analysis
	Preservation of closedness

	Towards the type inference of function definitions
	Conclusions and related work

	Region Inference
	Introduction
	A high level view of the algorithm
	Region inference of data declarations
	Region inference of function definitions
	HM Inference
	Kernel of the algorithm
	Annotating function definitions with region variables

	Correctness and optimality
	Case studies
	Conclusions and related work

	Safe types inference
	Introduction
	Mark inference algorithm
	Inference rules for expressions
	Inference of function definitions
	Inference of a Core-Safe program

	Case studies
	Correctness, completeness, and efficiency
	Correctness
	Termination
	Completeness
	Efficiency

	Conclusions and related work

	Certified absence of dangling pointers
	Introduction
	Preliminaries
	Rules regarding region deallocation
	Rules regarding explicit deallocation

	Certificate generation
	Case studies
	Conclusions and related work

	Memory consumption analysis
	Introduction
	Function signatures
	Abstract interpretation
	Correctness of the abstract interpretation
	Memory consumption of recursive function definitions
	Preliminaries on fixed points in complete lattices
	Splitting Core-Safe sequences
	Algorithm for computing 0
	Algorithm for computing 0
	Algorithm for computing 0
	Correctness in absence of admissibility conditions
	Correctness in absence of parameter-decrease conditions.

	Case studies
	Inference in presence of explicit destruction and polymorphic recursion
	Conclusions and related work

	Conclusions and future work
	Conclusions
	Future work

	Type constraints solving by unification
	Correctness of the initial bounds
	Before/after semantics with call tree counters
	Correctness of the initial 0
	Correctness of the initial 0
	Correctness of the initial 0

	Map of semantic definitions and type systems
	Bibliography

