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Abstract. Liquid types qualify ordinary Hindley-Milner types by pred-
icates expressing properties. The system infers the types of all the vari-
ables and checks that the verification conditions proving correctness hold.
These predicates are currently expressed in a quantifier free decidable
logic.

Here, we extend Liquid types with quantified predicates of a decidable
logic for arrays, propose a concept of an array refinement type, and
present an inference algorithm for this extension, that we have imple-
mented. By applying our tool to several imperative algorithms dealing
with arrays, we have been able to infer complex invariants.

1 Introduction

Liquid types [13, 10, 17–19] are a variant of dependent types which have been
successfully used for automatically verifying a number of non trivial properties
of programs. Recently they have also been used as a guide for synthesizing correct
programs [12]. They have been mainly applied to functional languages. A liquid
type is a refinement of an ordinary type, defined by restricting the set of possible
values to those satisfying a predicate. This predicate may have as free variables
some variables in scope. In this way, the type depends on the values computed
by the program.

The original idea [13] has been extended to recursive data structures [10], and
it is possible for instance to define a list whose tail values depend on the value at
the head, or a tree whose children values depend on the value at the root. This
captures in a natural way invariants of sorted lists, binary search trees, binary
heaps and many other interesting data structures. Once the programmer has
written the invariant, the system assists the programmer in verifying that the
functions manipulating the data structure actually preserve the invariant. This
saves most of the verification effort that would be needed by doing it manually.

The underlying machinery is a type inference algorithm which tries to prove
a set of logical implications, which in essence are the verification conditions
that a human programmer would try to prove manually. The system does it
automatically with the aid of a SMT solver. In order that the solver never fails
to prove a formula, the logic of the predicates used in liquid types must be
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decidable. In its current state, the logic, and hence the liquid types one can
infer, does not include quantifiers. It supports however linear integer arithmetic,
equality, algebraic types and uninterpreted functions (this logic is known as QF-
EUFLIA).

Our contribution here is extending the liquid types to properties on arrays,
which very frequently need predicates universally quantified over the array in-
dices. Nevertheless, we still remain in the safe side by only allowing formulas in
a decidable theory of arrays, which is a fragment of Bradley and colleagues’ [2].

Additionally, we extend the type inference algorithm to quantified formulas,
and also use SMTs to automatically discharge them. This extension includes
two novelties: (a) new liquid variables are created dynamically in order to split a
quantified formula over an array segment into two or more formulas over smaller
segments; and (b) these variables occur in negative positions of the formula.
Even though, our domain is still a finite one, and our abstract interpretation
is monotonic in this domain. This ensures that the inference algorithm always
terminates without the need of a widening operator.

Another contribution is that we apply the liquid type technology to impera-
tive programming languages dealing with arrays such as C++ and Java. This is
possible thanks to our verification platform [11] that transforms programs into
an intermediate representation (IR) common to all these languages. In essence,
this IR is a desugared functional language, where state updating has been re-
placed by dynamic creation of variables, and iteration has been transformed into
recursion.

Our inference algorithm has been integrated in that platform. With this
new tool, we have inferred complex invariants on arrays, as for instance those
occurring in the imperative sorting algorithms. We think that this opens the
door to the use of liquid types in verifying non trivial properties of programs
written in conventional imperative languages.

The plan of the paper is as follows: after this introduction, Sec. 2 explains
some fundamentals about liquid types and their inference algorithm; then, Sec. 3
reviews the decidable theories about arrays; inspired in those theories, Sec. 4
contains our proposal for an array refinement, whose aim is to capture as many
properties about arrays as possible out of those arising in imperative algorithms;
Sec. 5 presents our type inference algorithm, and Sec. 6 shows a number of
meaningful examples to which the algorithm has been applied. Sec. 7 relates our
approach to other works in the literature, and Sec. 8 draws some conclusions.

2 Liquid Types

The Liquid type system [13] extends the polymorphic Hindley-Milner type sys-
tem by decorating types with refinement predicates constraining the values rep-
resented by them. A refined type has the form {ν : τ | e}, where τ is a Hindley-
Milner type and e is a boolean expression which may name the ν variable and
other program variables. This type represents the values b of type τ such that
e[b/ν] evaluates to true. For instance, the type {ν : int | ν ≥ 0} represents



the type of nonnegative integers. Another example is the following declaration,
which specifies the type of a function get for array indexing,

get :: ∀α.(a : array α)→ i : {ν : int | 0 ≤ ν ∧ ν < len a} → {ν : α | ν = a[i]} (1)

where len a represents the length of the array a. The type array α abbreviates
the refined type {ν : array α | true}.

In their most general form, type checking and type inference of refined types
is undecidable. However, in the Liquid type system inference becomes decidable
by restricting the boolean expressions to the logic of linear arithmetic, equality
and uninterpreted functions (QF-EUFLIA), and by bounding the search space
of refinements with the help of logical qualifiers.

A logical qualifier q is a predicate which depends on ν and a placeholder vari-
able denoted by ?. The set Q of qualifiers to be used is given by the programmer.
The larger this set, the more complex refinements can be specified, but the larger
the search space becomes. An instance of a logical qualifier q is another qualifier
obtained by replacing each placeholder in q by a program variable. We denote
by Q∗ the set of qualifiers that are instances of Q. Since Q is finite, so is Q∗. A
liquid type is a refined type in which the refinement predicates are conjunctions
of elements in Q∗. For instance, if Q = {ν ≥ 0, ν < len ?, ν = ?[?]}, the type (1)
is a liquid type.

The inference algorithm, which will be detailed in Sec. 2.1 transforms subtyp-
ing relations between liquid types into boolean formulas which are subsequently
sent to a SMT solver. The variables occurring in these formulas are assumed
to be universally quantified at the outermost level. However, in some cases we
need nested quantification: assume a function that initializes all the positions
of an array with a given element x. The type of the resulting array have the
refinement ∀i.0 ≤ i < n → ν[i] = x. As another example, a function that sorts
an array would have the refinement ∀i.∀j.0 ≤ i ≤ j < len ν → ν[i] ≤ ν[j] in the
type of the output. These types are not liquid types, since their refinements are
not conjunctions of qualifiers, but universally quantified formulas.

The original work of [13] summarized above only manages quantifier-free
refinements in order to make inference decidable. In further work [10, 17], the
authors extend the Liquid type system in order to allow parametricity on the re-
finement predicates. This is achieved by including refinement predicate variables.
For instance, if p denotes a predicate variable, the type int 〈p〉 stands for the set
of integers x such that p x holds. This type can be instantiated, for instance, to
int〈λx.x mod 2 = 0〉, which denotes the set of even integers. This idea is also
applied to arrays by including two refinement predicate variables into the array
data type. The first one (dom) constraints the set of valid indexes, whereas the
second one (rng) specifies the property that must hold for each element stored in
the array. This property may also, in turn, depend on the element index. There-
fore we would have the type array α〈dom, rng〉 with the following signatures for



accessing and modifying arrays:

get :: ∀α.∀(dom :: int → bool).∀(rng :: int → α→ bool).
(i : int〈dom〉)→ array α〈dom, rng〉 → α〈rng i〉

set :: ∀α.∀(dom :: int → bool).∀(rng :: int → α→ bool).
(i : int〈dom〉)→ array α〈dom ′, rng〉 → α〈rng i〉 → array α〈dom, rng〉

where dom ′ abbreviates λk.dom k∧k 6= i. These parametric arrays allow one to
express properties on the elements of an array while still avoiding quantified for-
mulas in the refinements. However, this approach has some drawbacks. In princi-
ple we would be tempted to think that the type array α〈dom, rng〉 is semantically
equivalent to the refined type {ν : array α | ∀i.dom i → rng i ν[i]}. However,
there is a difference: in presence of refinement variables, the subtyping relation is
defined covariantly. That is, in order to prove that array α〈dom, rng〉 is a subtype
of array α〈dom ′, rng ′〉 the condition ∀i.∀z.(dom i∧rng i z ⇒ dom ′ i∧rng ′ i z) is
sent to an SMT solver. We cannot justify covariance in the dom variable, as this
implies, for instance, that an array whose indices are in [0..3] is a subtype of an
array whose indices range over the interval [0..5]. On the other hand, if we allow
quantifiers in refinement types, proving that {ν : array α | ∀i.dom i→ rng i ν[i]}
is a subtype of {ν : array α | ∀i.dom ′ i → rng ′ i ν[i]} amounts to prove the
assertion (∀i.dom i → rng i ν[i]) ⇒ (∀i.dom ′ i → rng ′ i ν[i]). This kind of
assertions can be managed by some SMTs under some conditions which will be
explained in Sec. 3.

Another drawback of the type array〈dom, rng〉 is that properties involving
two quantifiers, such as the one shown above for the sort function, cannot be
expressed. Our main technical contribution in this work is the extension of the
Liquid type system in order to be able to infer properties involving quantification
on the indices of the array in order to overcome the limitations explained above.

2.1 Features of the type system and inference

As mentioned above, there is a subtyping relation between refined types. This
relation is defined by a set of rules of the form Γ ` τ1 <: τ2, meaning that τ1 is
a subtype of τ2 under an environment Γ . The type system is path-sensitive, so
the type environment does not only contain the types of the variables in scope,
but also the conditions that are satisfied in the context of an expression (these
are gathered, for example, when traversing if expressions). Among the typing
rules of the system (see [13]), the most relevant one specifies that, under Γ , the
type {ν : B | e1} is a subtype of {ν : B | e2} whenever B is a basic type and the
formula JΓ K ∧ e1 ⇒ e2 is valid. The notation JΓ K is a logical characterization of
the environment in which each binding of the form x : {ν : B | e} is translated
into the formula e[x/ν].

The inference algorithm assumes that a standard Hindley-Milner inference
has been applied previously. After this, each type τ in the typing derivation is
refined with a fresh template variable κ so as to obtain {ν : τ | κ}. Type inference
consists in finding a substitution A from variables κ to conjunctions of Q∗ such
that, when applied to the typing derivation, the expression type checks. This



solution is obtained by a standard fixpoint algorithm. Initially all refinement
templates are mapped to

∧
q∈Q∗ q, which is the strongest refinement. If it is a

valid solution, the algorithm terminates. Otherwise, the subtyping rules must
have generated an assertion A(JΓ K) ∧ A(κ1) ⇒ A(κ2) that is not proven valid
by the SMT. In this case the algorithm modifies the substitution A by removing
from A(κ2) the qualifiers not being satisfied in the formula. Then, program is
type checked again with the new substitution. This process is repeated until a
solution is found. Since the set of conjunctions of elements of Q∗ is finite, the
algorithm is guaranteed to terminate.

3 Decidable Theories on Arrays

As explained before, when working with liquid types, refinements should be
formalized using formulas whose satisfiability could be provable. Therefore, it is
important to know which theories concerning arrays are decidable, in order to
use formulas of such theories to specify array properties. First studies involving
satisfiability decision procedures for array theories have focused on quantifier-
free fragments [16], as the full theories are undecidable. Later, an extensional
theory of arrays with equality between unbounded arrays has been formalized
as a decidable fragment [15]. An extension of these theories is studied in [2]. The
motivation is that most assertions and invariants of programs related to arrays
require at least a universal quantifier over index variables. Usual array properties
can be formalized by formulas having the form (∀j.ϕI(j)→ ϕV (j)) where j is a
vector of index variables, the guard ϕI(j) delimits the segment of the array we
are interested in, while ϕV (j) refers to the value constraint. Both the guard and
the value constraint involve predicates referring to program variables.

In order to have a satisfiability procedure for universal quantified formulas
with that shape, some limitations are imposed to the syntax of ϕI(j) and ϕV (j).
These limitations restrict the set of predicates that can be used to build those
formulas, but most of the common program invariants referring arrays can be
expressed with the restricted set, as we will see. The form of an index guard
ϕI(j) is constrained according to the grammar:

guard ::= guard ∧ guard | guard ∨ guard | atom
atom ::= expr ≤ expr | expr = expr
expr ::= uvar | pexpr
pexpr ::= z | z ∗ evar | pexpr + pexpr

where z stands for Presburger arithmetic basic terms (i.e. terms built up from
the constants 0, 1 and the functions + and −), uvar represents variables that
will occur universally quantified, and evar represents integer variables that will
occur existentially quantified. Notice that the relations 6= and < are not allowed
between quantified indices, and that they cannot be simulated by using ≤ be-
cause terms like j + 1 are not valid in pexpr if j is a universally quantified
variable. However, we will write j < b, where j is quantified and b is in pexpr,
as an abbreviation of j ≤ b− 1, which is allowed if b is not quantified.



The formula ϕV (j) is constrained in such a way that any occurrence of a
quantified variable j ∈ j must be as a read into an array, a[j], for array term
a, and nested array reads are not allowed. Other program variables and terms
can occur everywhere in the formula. A formula of the form (∀j.ϕI(j)→ ϕV (j))
with the previous constraints for ϕI(j) and ϕV (j) is called an array property.

The theory consisting in all existentially-closed Boolean combinations of ar-
ray properties, and quantifier-free formulas built from program variables and
terms is decidable. However, when considering existentially-closed ∀-∃-fragments,
even with syntactic restrictions like those in the array property, the satisfiabil-
ity problem becomes undecidable. Other theories also proved undecidable are
the following extensions of the array property formulas: If the formula contains
nested reads as a1[a2[j]] and j is universally quantified, or if a[j] appears in the
guard and j is universally quantified, or if the formula includes general Pres-
burger arithmetic expressions over universally quantified index variables (e.g.,
j + 1) in the index guard or in the value constraint.

4 Array Refinements

In order to bound the decidable fragment of the array theory, we realize that
most of the array properties fall in some of the following categories:

– Some elements of an array satisfy individually a property. For example:

∀j.0 ≤ j < len v ∧ j%2 = 0→ v[j] > 0 (2)

∀j.a ≤ j ≤ b→ x < v[j] ∧ v[j] ≤ y (3)

– Some pairs of elements in a segment of an array satisfy a binary relation:

∀j1, j2.a ≤ j1 < j2 ≤ b→ v[j1] 6= v[j2] (4)

∀j1, j2.a ≤ j1 ≤ p ∧ p ≤ j2 ≤ b→ v[j1] ≤ v[j2] (5)

Property (5) holds after partition in quicksort, being p the pivot position.
Sometimes the binary relation concerns two different arrays. For example:

∀j1, j2.a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m→ v[j1] ≤ w[j2] (6)

is a property that holds while merging the two sorted halves [a,m] and
[m+ 1, b] of an array w into an ordered array v (see Example 3).

– Usually we also need properties related to the length of the array in order to
guarantee that the array accesses are well defined. For instance, the property
(3) can be completed with (0 ≤ a < len v) ∧ (0 ≤ b < len v).

Some formulas listed above do not belong to the decidable fragment men-
tioned in the previous section. In particular, (2) is not in the fragment because
operators over the quantified variables are not allowed, and (4) is not an ar-
ray property, because relation < is not allowed over the quantified indices. The
remaining formulas are allowed1, even more, they belong to a subset of the frag-
ment that we are going to characterize in our formalization of array refinements.

1 We consider len v to be a fixed integer rather than a function applied to v.



{0 ≤ n < len v ∧ ord(v, 0, n− 1)}

1 i = n-1; x = v[n];

2 while (i >= 0 && x < v[i])

3 {v[i+1] = v[i]; i = i-1;}

4 v[i+1] = x;

{ord(v, 0, n)}

Fig. 1. insert algorithm

{ord(v, 0, len v − 1)}

1 a = 0; b = (len v) - 1;

2 while (a<=b)

3 { m = (a+b)/2;

4 if (v[m] < x) {a = m+1;}

5 else {b = m-1;} }

{lt(v, x, 0, a) ∧ geq(v, x, a, len v)}

Fig. 2. binSearch algorithm

{0 ≤ a ≤ m ≤ b < len v ∧ ord(w, a,m) ∧ ord(w,m+ 1, b)}

1 i = a; j = m+1;k = a;

2 while (i <= m && j <= b)

3 { if (w[i] <= w[j]) { v[k] = w[i]; i=i+1; }

4 else { v[k] = w[j]; j=j+1; }

5 k=k+1; }

6 while (i <= m) {v[k]=w[i]; i=i+1; k=k+1;}

7 while (j <= b) {v[k]=w[j]; j=j+1; k=k+1;}

{ord(v, a, b)}

Fig. 3. merge algorithm

Considering these three kinds of array properties, we establish three kinds of
refinements with the aim of inferring automatically array properties. We consider
that they widely cover many of the invariants needed to verify programs dealing
with arrays, including the most known sorting algorithms, as we will show in
Sec. 6. We will call them respectively simple array refinements (denoted as ρ),
double array refinements (denoted as ρρ) and length refinements (denoted as ψ).

Simple refinements have the shape ρ(w) ≡ ∀j.I(j) → E(w[j]), where w is an
array. In the liquid type this will be the array being refined, i.e. ν. Predicate
I restricts the values of the indices whose elements satisfy the property, and
E expresses the individual property satisfied by each considered element. The
qualifiers allowed in both of them are constrained as explained in Sec. 3 to
ensure decidability, and belong to the sets of qualifiers which are provided by
the programmer. As we may have several simple refinements, we can consider
predicate I to be just a conjunction of qualifiers due to the logical equivalence
(A ∨ B) → C ⇔ (A → C) ∧ (B → C). In order to reduce the search space in the
inference process we have decided E to be a conjunction of qualifiers2. Due to
the logical equivalence A→ (B ∧ C)⇔ (A→ B) ∧ (A→ C), we can consider that
in fact E is a single qualifier. Note that the previous predicate (3) is a valid
simple refinement.

Double refinements have the shape ρρ(v, w)≡∀j1, j2.II(j1, j2)→EE(v[j1], w[j2]),
where v, w are array variables. In the liquid type, at least one of them will

2 This does not preclude that a qualifier could be a disjunction of atomic properties.



be the refined array ν, and in case the other is not, it has to be a free in
scope variable. Predicate II restricts the values of the pairs of indices, and EE
expresses the relation satisfied by each considered pair. Both of them must meet
the constraints of the array property formulas. Similarly to simple refinements,
II is a conjunction of qualifiers and EE is a single qualifier. Note that examples
(5) and (6) are valid double refinements.

Length refinements are qualifiers relating the length of the array to other
values or program variables, such as a < len ν or len ν = len w.

Definition 1. A refined array type has the following shape:

{ν : array τ | (
∧
i

ψi(ν)) ∧ (
∧
j

ρj(ν)) ∧ (
∧
k

ρρk(ν, vk))}

where each vk may be ν itself or a free array variable.

Example 1 Fig. 1 shows the specification and the imperative code correspond-
ing to the algorithm insert used in the insertion sort, where ord(v, l, r) ≡ ∀j1, j2.l ≤
j1 ≤ j2 ≤ r → v[j1] ≤ v[j2]. The property ∀j.i+ 2 ≤ j ≤ n→ x < ν[j] is part of the
refinement of array v in line 2, i.e. it is an invariant property of the loop. �

Example 2 Fig. 2 shows the specification and the imperative code correspond-
ing to the binary search algorithm, where lt(v, x, l, r) ≡ ∀j.l ≤ j < r → v[j] < x

and geq(v, x, l, r) ≡ ∀j.l ≤ j < r → x ≤ v[j]. The property geq(v, x, b + 1, len v) is
part of the refinement of array v in line 2, i.e. it is an invariant property of the
loop. �

Example 3 In Fig. 3 we show the specification and the imperative code corre-
sponding to the algorithm merge used in the mergesort algorithm. The property

(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m→ ν[j1] ≤ w[j2]) ∧
(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ j ≤ j2 ≤ b→ ν[j1] ≤ w[j2])

is part of the refinement of array v in line 2, i.e. it is an invariant property of
the first loop. It is also part of v’s refinement in the second and third loops. �

5 The Type Inference Algorithm

The inference algorithm has the following phases:

1. A standard type checking algorithm decorates every variable with its con-
ventional type. Our IR includes types at every defining occurrence. The type
checking propagates this information to every applied variable occurrence.

2. Each type occurrence is then refined with a liquid template (see below) of
the appropriate type. The template refining a type occurrence introduces a fresh
liquid variable. The purpose of the inference algorithm is to find appropriate
substitutions for these liquid variables.



3. The syntax-driven liquid typing rules of the IR are applied, and a set of
constraints is obtained. These are to be satisfied in order the program be correctly
typed in the liquid type sense. A constraint has the form JΓ K ∧ θ1.ι1 ⇒ θ2.ι2,
where ι1 and ι2 are liquid variables and θ1, θ2 pending substitutions, as in [13].
The purpose of the pending substitutions is to replace formal arguments by
actual ones in function applications. In our IR, actual arguments are always
variables. The liquid typing rule for application is as follows:

Γ ` e : (x : Tx → T ) Γ ` y : Tx

Γ ` e y : T [y/x]

4. The constraints are solved by an iterative weakening algorithm. The algorithm
starts with the strongest possible mapping A for all the liquid variables, and at
each step, a variable assignment is weakened in order to satisfy a constraint. If
a fixpoint is reached, then the final mapping obtained, when applied to all the
templates, gives us the liquid types for all the variables.

5.1 Liquid templates

The liquid types of the variables x that are not arrays are represented by a liquid
variable κ with pending substitutions θ, as usual: x : {ν : τ | θ.κ}. The range of
A(κ) are conjunctions of qualifiers taken from the set Q∗, which is obtained from
Q at each program location by substituting program variables in scope of the
appropriated type for the wildcard ?. After applying A, the pending substitution
θ is applied to the result.

The liquid types of the variables a of array type are dealt with similarly,
except for the fact that we denote the liquid variable by µ, a : {ν : array τ |
θ.µ}. In this case we assume that the programmer provides several qualifier sets
QE , QEE , QI , QII and Qlen , explained in detail below. The range of A(µ) are
array refinements obtained from conjunctions of array refinements templates by
substitution. These templates may be:

– Simple array refinement templates, ρ
def
= (∀j.η → q), where q is a qualifier

taken from the set Q∗E , and η is a liquid variable.

– Double array refinement templates, ρρ
def
= (∀j1, j2.ηη → q), where q is a qual-

ifier taken from the set Q∗EE and ηη is a liquid variable.
– An array length refinement template ζ. This liquid variable represents prop-

erties restricting the length of the array.

We will use ξ to denote both a simple and a double array refinement tem-
plate, so A(µ) = (

∧n
i=1A(ξi)) ∧ A(ζ), where A(ρ) = ∀j.A(η) → q, and A(ρρ) =

∀j1, j2.A(ηη)→ q. The range of A(η), A(ηη) and A(ζ) are conjunctions of quali-
fiers taken respectively from the sets Q∗I , Q∗II , and Q∗len . Only variables in scope
are considered on these instances of the respective qualifier sets QE , QEE , QI ,
QII , Qlen . These sets meet several constraints which guarantee that, when wild-
cards are instantiated, then the obtained qualifiers satisfy the restrictions im-
posed on the array property formulas, e.g. QI and QE use ? and # as wildcards in



the qualifiers, and only the bound variable j can be substituted for the wildcard
#.

From now on, we will consider fixed the sets Q, QI , QII , QE , QEE and Qlen

and we denote by Q the collection of these six sets.

Definition 2. A mapping A is suitable to Q if it assigns a value of their re-
spective ranges to each κ, µ, ζ, η, and ηη variables, and for each η variable
of a ρ template, A(η) contains 0 ≤ j < len ν, where j is the universal quan-
tified variable in ρ, and for each ηη variable of a ρρ template, A(ηη) contains
0 ≤ j1 < len a ∧ 0 ≤ j2 < len b, where j1, j2 are the universal quantified vari-
ables in ρρ, a and b are either ν, or the free array variable in scope substituted
for ? in the qualifier at the right-hand side of ρρ. We denote by AQ the set of all
the mappings suitable to Q.

The κ, µ, ζ variables occur in logically positive positions in the templates,
while η, and ηη variables occur in negative ones. As a consequence, weakening
A may consist of weakening the assignment to a κ, a µ, or a ζ variable, or
strengthening the assignment to a η or a ηη variable.

For any liquid variable ι, ifQ is a set of qualifiers, or a set of array refinements,
when we write A(ι) = Q, Q denotes the conjunction of its elements. In the
examples, we omit the component 0 ≤ j < len ν of A(η) when it is not relevant
(analogously for A(ηη)).

Example 4 In the insert algorithm of Fig. 1, from the template (∀j1, j2.ηη → q),
and the sets QII = {0 ≤ #1, ?+ 2 ≤ #2,#1 ≤ ?,#2 ≤ ?}, and QEE = {ν[#1] ≤
ν[#2]}, the predicate ∀j1, j2.0 ≤ j1 ≤ i ∧ i + 2 ≤ j2 ≤ n → ν[j1] ≤ ν[j2] can be
obtained. It is part of the refinement type for v. �

5.2 The iterative weakening algorithm

Given a set C of constraints, and a collection Q = {Q,QI , QII ,QE ,QEE ,Qlen},
the purpose of the algorithm is to find a solution to C, in accordance to the
following definition:

Definition 3. Given A ∈ AQ, we say that A satisfies c ∈ C if A(c) is a valid
formula. We say that A is a solution of C, if the set A(C) is a set of valid
formulas, abbreviated A(C) valid.

Below we describe the steps of the weakening algorithm. It starts with the
strongest possible mapping A suitable to Q. This consists of:

1. For a κ variable, A(κ) is the conjunction of all the well-typed qualifiers of
Q∗ containing variables in scope.

2. For a µ variable, A(µ) is the conjunction of as many instances A(ρ) of ρ
templates as well-typed qualifiers in Q∗E , and as many instances A(ρρ) of
ρρ templates as well-typed qualifiers in Q∗EE . There is also an additional
conjunction A(ζ) for qualifying the array length (with variables in scope in
each case).



– For a ζ variable, A(ζ) is the conjunction of all the well-typed qualifiers
of Q∗len containing variables in scope.

– For the η variable of a ρ template, A(η) is the weakest possible predicate,
0 ≤ j < len ν, where j is the universally quantified variable in ρ.

– For the ηη variable of a ρρ template, A(ηη) is the weakest possible pred-
icate, 0 ≤ j1 < len a ∧ 0 ≤ j2 < len b, where j1, j2 are the universally
quantified variables in ρρ, a and b are either ν, or the free array variable
in scope substituted for ? in the qualifier at the right-hand side of ρρ.

Example 5 In the binSearch algorithm of Fig. 2, we have Q∗E = {x ≤ ν[j], x >
ν[j]}, Q∗I = {j ≤ a−1, b+1 ≤ j} for the µ3 variable corresponding to the array
v at the beginning of each iteration. Then the refinement:

(∀j . 0 ≤ j ∧ j < len ν → x ≤ ν[j]) ∧ (∀j . 0 ≤ j ∧ j < len ν → x > ν[j]) (7)

will be included in the strongest assignment to µ3. �

At each iteration, the algorithm arbitrarily chooses a constraint c ∈ C not
satisfied by A. Then, A is weakened in order to make the constraint valid. If this
is not possible, then the algorithm ends up with failure. If this is possible, A
is replaced by its weakened form A′, and the set C of constraints is inspected
again looking for a new unsatisfied constraint. Because A has changed, some
prior satisfied constraints may have turned into unsatisfied ones. If no unsat-
isfied constraint remains, then the algorithm ends up with success. The final
mapping A, when applied to all the templates, and then applying the pending
substitutions, gives the liquid type of each program variable.

The crucial step is then how to weaken the mapping A in order to satisfy
a constraint c. Differently to the standard algorithm of [13], weakening A in
our case may change the constraints themselves, and may introduce new liquid
variables. Let us see the process in detail:

1. If c has the form [[Γ ]]∧θ1.ι⇒ θ2.κ, where ι denotes either a κ or a µ variable,
and A(κ) = q1 ∧ · · · ∧ qr, then the weakening removes from A(κ) all the
qualifiers qi such that the formula A([[Γ ]])∧ θ1.A(ι)⇒ θ2.qi is not valid. This
approach corresponds to the standard weakening of [13]. The ζ variable of
an array refinement is dealt with exactly in the same way as a κ variable, so
in what follows we will not insist in these ζ variables.

2. If c has the form [[Γ ]] ∧ θ1.ι ⇒ θ2.µ, and A(µ) = A(ξ1) ∧ · · · ∧ A(ξr), in a
first step the weakening removes from A(µ) all the refinements A(ξi) such
that the formula A([[Γ ]]) ∧ θ1.A(ι)⇒ θ2.A(ξi) is not valid and cannot not be
made valid. If the formula is not valid, then it is tested whether it can be
made valid by strengthening the antecedent of A(ξi). To do this, the η or ηη
variable of ξi is assigned the strongest possible value, i.e. the conjunction of
all the qualifiers of its respective Q∗I or Q∗II set. This assignment makes the
instance of ξi as weak as possible. If, in spite of being that weak, the formula
is not valid, then A(ξi) is discarded from A(µ).



3. For each not valid A(ξi) in A(µ) which can be made valid by strengthening
its antecedent as explained before, a search for the strongest possible valid
forms of the ξi instance is performed. Let us assume for a moment that ξi is a
simple refinement template ρ1 of the form ∀j.η1 → q, and A(η1) = Q1 ⊆ Q∗I .
The discussion would be similar for a double one. Conjunctions mj of |Q1|+1,
|Q1|+2, |Q1|+3, etc. qualifiers from Q∗I , all of them supersets of Q1, are tried
in this order as possible mappings for the η1 variable of ρ1, until one of them,
let us call it m1, makes the formula valid. Then the algorithm refrains from
trying any superset of m1, instead, it continues the search by trying the
rest of the conjunctions. It may be the case that more than one conjunction
(excluding their respective supersets) succeeds. Let them be m2, . . . ,ms.
Then, fresh copies of ρ1, call them ρ2, . . . , ρs, of the form ∀j.ηl → q, with
ηl fresh variables l = 2..s, are created. Now A′ is defined from A changing
the component A(ξi) of A(µ) by the conjunction A′(ρ1)∧ · · ·∧A′(ρs), where
A′(η1) = m1, . . . , A

′(ηs) = ms.

Example 6 In the binSearch algorithm, the following constraint establishes the
correctness of the initial iteration:

x : κ1 ∧ v : µ1 ∧ a = 0 ∧ b = (len v)− 1⇒ v : µ3

This constraint is not valid under the initial assignment to µ3 given in (7), but
it can be made valid by strenghtening its antecedent, since for instance the first
conjunct of (7) becomes:

(∀j . 0 ≤ j ∧ j ≤ a− 1 ∧ b+ 1 ≤ j ∧ j < len ν → x ≤ ν[j])

The search for supersets refines this predicate into the following two:

(∀j . 0 ≤ j ∧ j ≤ a− 1→ x ≤ ν[j]) ∧ (∀j . b+ 1 ≤ j ∧ j < len ν → x ≤ ν[j])

which are both valid because the j ranges over two empty sets. The first conjunct
will disappear from the µ3 assignment in subsequent weakenings. �

5.3 Soundness and completeness

We have proven the following properties of the inference algorithm:

1. The algorithm always terminates.
2. If the algorithm terminates with failure, there exists no mapping A satisfy-

ing all the constraints.
3. If the algorithm terminates with success, the result mapping A satisfies all

the constraints and it is the strongest possible mapping satisfying them.

The proof starts by showing that the search space, i.e the setAQ of mappings,
is a complete lattice, with the following definition of v.

Definition 4. Let A,A′ ∈ AQ. We say that A v A′ if for all κ, A(κ)⇒ A′(κ)
and for all µ, A(µ)⇒ A′(µ).



Theorem 1 The partial ordered set (AQ,v) is a (finite) complete lattice.

Sketch of the Proof: Since the liquid variables are mapped to conjunctions of
formulas, the empty conjunction true is the weakest one, corresponding to the >
of the lattice. The strongest possible mapping is the initial one A0, i.e. ⊥ = A0.
It is easy to prove that the following definition (A1 u A2)(ι) = A1(ι) ∪ A2(ι)
makes u a greatest lower bound, and the lowest upper bound can be defined in
terms of u in a standard way. Since all the Q∗ sets are finite, so it is the set of
formulas, and also the set AQ of mappings. �

Moreover, the following theorem shows that each step of the weakening al-
gorithm produces an output mapping weaker than the input one.

Theorem 2 Let A ∈ AQ. If A′ is obtained from A by one step of the inference
algorithm, then A′ ∈ AQ and A v A′. �

The following two theorems allow to prove that, if a solution exists for C,
then the algorithm terminates in a finite number of steps, and gives the strongest
mapping As as a result.

Theorem 3 Given a set C of constraints, if there exists a mapping A ∈ AQ
such that A is a solution of C, then there exists a minimum mapping As ∈ AQ
such as As(C) is valid.

Sketch of the Proof: As the set of mappings making C valid is finite, it is enough
to show that for every pair of mappings A1, A2 making C valid, their greatest
lower bound A1 uA2 is also a solution of C. �

Theorem 4 If the set C of constraints has a strongest solution As ∈ AQ, and
A is a mapping produced by the inference algorithm, then A v As.

Proof: By induction on the number of weakening steps of the algorithm. �

6 Implementation and Results

We have implemented our tool in two separated phases. The first one, called
Template Generator, traverses the program text previously transformed to the
platform IR, applies the typing rules, and generates the set of relevant constraints
that should be valid in order the program to be well-typed in the liquid-type
sense. These constraints contain κ and µ variables for respectively the unknown
basic and array types. The second phase is properly the type inference algorithm
explained in Sec. 5.2. It searches for a substitution of the κ and µ variables that
will make all the constraints valid. It uses the Why3 platform [5] and its SMT
solvers as the underlying proving machinery.

We have applied the tool to an assorted set of array algorithms, including
several sorting ones, or pieces of them, the binary search in a sorted array, a
simple linear search, the Dutch National Flag algorithm [4, pp. 111–116], and
the fill algorithm filling an array with a fixed value. Some of them are iterative,



Function Array Inferred liquid type #C #F

fill v (loop) {ν : array α | (∀j . 0 ≤ j < i→ ν[j] = x) ∧ (i ≤ len ν) 13 49
insert v (loop) {ν : array α | (∀j . i+ 2 ≤ j ≤ n→ x < ν[j]) 30 593

∧(∀j1, j2 . 0 ≤ j1 ≤ j2 ≤ i→ ν[j1] ≤ ν[j2])
∧(∀j1, j2 . i+ 2 ≤ j1 ≤ j2 ≤ n→ ν[j1] ≤ ν[j2])
∧(∀j1, j2 . 0 ≤ j1 ≤ i ∧ i+ 2 ≤ j2 ≤ n→ ν[j1] ≤ ν[j2])
∧(n < len ν)}

merge v (1st loop) {ν : array α | (∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m→ ν[j1] ≤ w[j2]) 88 1.278
∧(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ j ≤ j2 ≤ b→ ν[j1] ≤ w[j2])
∧(∀j1, j2 . a ≤ j1 ≤ j2 ≤ k − 1→ ν[j1] ≤ ν[j2])
∧(a < len ν) ∧ (b < len ν)}

partition v (loop) {ν : array α | (∀j1, j2 . a+ 1 ≤ j1 ≤ i− 1 ∧ j2 = a→ ν[j1] ≤ ν[j2]) 44 287
∧(∀j1, j2 . j1 = a ∧ j + 1 ≤ j2 ≤ b→ ν[j1] ≤ ν[j2]
∧(a < len ν) ∧ (b < len ν)}

quicksort v (before {ν : array α | (∀j1, j2 . a ≤ j1 ≤ p− 1 ∧ j2 = p→ ν[j1] ≤ ν[j2])
2nd call) ∧(∀j1, j2 . j1 = p ∧ p+ 1 ≤ j2 ≤ b→ ν[j1] ≤ ν[j2]) 18 203

∧(∀j1, j2 . a ≤ j1 ≤ j2 ≤ p− 1→ ν[j1] ≤ ν[j2])
∧(a < len ν) ∧ (b < len ν)}

selsort v (outer {ν : array α | (∀j1, j2 . 0 ≤ j1 ≤ j2 < i→ ν[j1] ≤ ν[j2]) 30 233
loop) ∧(∀j1, j2 . 0 ≤ j1 < i ∧ i ≤ j2 < len ν → ν[j1] ≤ ν[j2])

∧(i ≤ len ν)}
selsort v (inner {ν : array α | (∀j1, j2 . j1 = min ∧ i ≤ j2 < j → ν[j1] ≤ ν[j2])

loop) ∧(i ≤ len ν) ∧ (j ≤ len ν)}
binSearch v (loop) {ν : array α | (∀j1, j2 . 0 ≤ j1 ≤ j2 < len ν → ν[j1] ≤ ν[j2]) 25 206

∧(∀j . 0 ≤ j ≤ a− 1→ x > ν[j]) ∧ (∀j . b+ 1 ≤ j < len ν → x ≤ ν[j])}
∧0 ≤ a ≤ b+ 1 ≤ len v

linSearch v (loop) (i ≤ len ν) ∧ (∀j . 0 ≤ j ≤ i− 1→ ν[j] 6= x) 19 193
DutchFlag v (loop) {ν : array α | (∀j . 0 ≤ j < len ν → ν[j] = R ∨ ν[j] = W ∨ ν[j] = B) 40 2.935

∧(∀j . 0 ≤ j < a→ ν[j] = R) ∧ (∀j . a ≤ j < b→ ν[j]) = W )
∧(∀j . c < j < len ν → ν[j] = W ) ∧ c < len v}

Fig. 4. Some of the liquid types inferred for assorted examples of array algorithms

and some other are recursive. As explained in the introduction section, after
transformed to our IR, all of them are recursive. In some cases, they call to
an external function that has been separately inferred. This poses no special
problems to the inference algorithm.

We have provided the liquid types of the arguments and the results, i.e. the
equivalent to the preconditions and the postconditions of the algorithms, and
left the system to infer all the intermediate types. The quicksort algorithm does
not include the code of partition. The qualifier sets used for inferring the types
of these algorithms are variants of the following ones:

Q = {constant ≤ ν, ? ≤ ν, ν ≤ ?, ν < ?}
QE = {? < ν[#], constant = ν[#], ? 6= ν[#]}
QI = {? ≤ #, # ≤ ?, ? < #, # < ?}
QEE = {ν[#1] ≤ ν[#2], ν[#1] ≤ ?[#2]}
QII = {? ≤ #1, #1 ≤ ?, ? ≤ #2, #2 ≤ ?, #1 ≤ #2, #1 = ?, #2 = ?}
Qlen = {? < len ν, ? ≤ len ν, ? < len ?, ? ≤ len ?}

For the sets QI and QII , the qualifiers 0 ≤ #, # < len ν, 0 ≤ #1, #1 <
len ν, 0 ≤ #2, and #2 < len ν are automatically introduced by the tool, so
programmers do not need to provide them. Also, the algorithm removes fake
formulas (e.g. ∀j . a ≤ j < a→ v[j] > x) that it can prove equivalent to true.



Some of the relevant types obtained are shown in Fig. 4. There, we have
observed the types in text positions corresponding to entering a loop iteration,
or entering a recursive call, which amounts to inferring the relevant invariants of
the respective programs. With these inferred invariants all the algorithms have
been proven correct by our tool.

Column #C records the number of constraints generated for the example,
and column #F the number of formulas sent to the SMT solvers. Our current
prototype is extremely slow: in order to prove a formula, two processes (Why3
and Z3) are, each time, started and stopped. Due to that, we can only process
10-12 formulas per second. This leads to times of up to 4 minutes in one of the
examples. We are improving the tool by implementing a direct interface to Z3
via its API, which will process 500-1000 formulas per second. Then, the most
complex example of Fig. 4 could be solved in about 5 seconds.

We make note that the properties inferred are in general far from being trivial.
Up to five array refinements are needed in some cases to completely express the
property kept invariant by a loop. We believe that these results are encouraging
enough to continue exploring the power of liquid types to assist the programmer
in the verification of complex array manipulating algorithms.

7 Related Work

The nearest works related to this paper are those about liquid types. These
have been already reviewed in Sec. 2, and we have explained their limitations
regarding universally quantified formulas.

A related technique to infer invariants of imperative programs is predicate
abstraction, a variant of abstract interpretation which is also part of the liquid
type approach. This was applied by [1] and [6]. The starting point is to have a
finite set Q = {p1, . . . , pn} of atomic predicates in a decidable logic, from which
more complex predicates can be built. In [6], the domain contains all combina-
tions of the pi by ∧ and ∨, i.e. the set of all boolean functions with n boolean
arguments, that is 22

n

functions. The abstract interpretation of a loop proceeds
in the forward direction, by using a strongest postcondition semantics. After each
loop iteration, the predicate obtained is joined by ∨ to the one obtained in the
prior iteration, and the result is abstracted by the abstraction function to that
domain. Since this one is finite, a least fixpoint is always reached, provided the
loop invariant can be effectively expressed by combinations of the given atomic
predicates. If the algorithm succeeds, it obtains the strongest invariant belong-
ing to the domain. They report experimenting their system with a Java program
consisting of 520 loops, and were able to infer invariants for 98% of these loops.

In [8], they propose an abstract interpretation domain with universally quan-
tified predicates. In prior attempts, quantification was introduced by rather ad-
hoc means, but the abstract domain did not contain quantified formulas. Af-
ter looking at the shape of many invariants, the authors propose the general
form E ∧

∧n
j=1 ∀Uj(Fj⇒ ej) where E, all the Fj , and all the ej , are formu-

las belonging to non-quantified domains. Both E and the Fj are conjunctions



of atomic predicates, and the ej are just atomic ones. Each Uj is a tuple of
(quantified) variables occurring free in Fj and ej . An example of invariant is
1 ≤ i ≤ n ∧ ∀k(0 ≤ k < i⇒ a[k] = 0). The authors define an infinite lattice
where the elements are formulas with this shape, define widening and narrowing
operators to ensure termination, and also give some heuristics in order to convert
non-quantified facts into quantified ones, when at least two iterations have been
done during the interpretation of a loop. They infer invariants for most of the
usual sorting algorithms, for finding an element in an array, and for other similar
examples. The main differences with our approach are that our lattice is finite,
so termination is guaranteed, and that we need neither widening nor heuristics.

In [14], the user gives a template formula for each particular invariant. In
the template, the predicates are represented by unknowns that the system must
guess. For instance, in a ∧ ∀k(b⇒ c) the system must find a substitution of
concrete predicates for the variables a, b and c. The user must also supply a set Q
of atomic predicates, conjunctions of which will replace the template unknowns.
If an invariant exists having the template shape and formed by conjunctions
of predicates from Q, then the algorithm finds the strongest one. The reported
examples include invariants for all the sorting algorithms, the binary search in
an array, list insertion, and list deletion. A difference with our approach is that
decidability of the formulas is not guaranteed. The authors recognize that they
sometimes provide their SMT solver with additional hints (triggers) in order
to deal with undecidable quantified formulas. Additionally, they need to give
a template with the exact number of quantified conjuncts, which is sometimes
difficult to guess. Our algorithm generates as many conjuncts as needed to prove
the correctness of the input program.

A last group of related papers is the temporal sequence [7, 9, 3], based on
abstract interpretation. The main insight is the definition of an abstract domain
for arrays, where they are considered to be split into a finite number of slices,
and each slice satisfies a possibly different property. Its contents is represented
by a single abstract variable that is updated as long as the algorithm progresses.
They succeed in obtaining invariants for some array processing algorithms, the
most complex of which is insertion sort. The approach is limited to single for
loops, and to slices described by a predicate with only one universally quantified
index. Also, they would be forced to change the abstract domain each time they
wish to infer a different property. All the reported examples can be dealt with
by our approach, and they admit that, at present, they cannot infer quicksort.

8 Conclusions

We have presented an extension of the Liquid type approach to universally quan-
tified formulas about arrays. Arrays are non-recursive data structures and cannot
be dealt with by using the recursive refinements introduced in [10]. Addition-
ally, arrays are normally updated in-place and so used in imperative languages,
while the Liquid type approach seems to fit better with functional ones. We
have circumvented both obstacles: the first one, by allowing predicates on arrays



where the indices can be universally quantified, and the second one, by using
our verification platform which transform imperative programs into functional
ones. The array refinements introduced in this paper try to cover properties sat-
isfied for all the elements of an array segment and properties between pair of
elements, either of the same array, or of two different ones. Algorithms searching
arrays for a certain property are also covered, since their invariant can usually
be expressed by a universal quantification (saying that no element of the array
segment currently explored satisfies the property). As future work, we would like
to generate at least a part of the qualifiers directly from the code, so liberating
the programmer from most of this task.

We believe that other general refinements for arrays could be defined in order
to cover programs in which certain elements of an array segment are counted
or operated in some way. The resulting constraints should still be automatically
proved valid by the current SMT solver technology. In this way, more decid-
able array invariants could be rescued from the general undecidable problem of
invariant synthesis.
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