
Polymorphic Types in Erlang Function
Specifications ?

Francisco J. López-Fraguas, Manuel Montenegro, and Juan Rodŕıguez-Hortalá

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, montenegro@fdi.ucm.es, juanrh@fdi.ucm.es

Abstract. Erlang is a concurrent functional programming language de-
veloped by Ericsson, well suited for implementing distributed systems.
Although Erlang is dynamically typed, the Dialyzer static analysis tool
can be used to extract implicit type information from the programs, both
for documentation purposes and for finding errors that will definitively
arise at program execution. Dialyzer is based on the notion of success
types, that correspond to safe over-approximations for the semantics of
expressions. Erlang also supports user given function specifications (or
just specs), that are contracts providing more information about the
semantics of functions. Function specs are useful not only as documen-
tation, but also can be employed by Dialyzer to improve the precision of
the analysis. Even though specs can have a polymorphic shape, in prac-
tice Dialyzer is not able to exploit all their potential. One reason for that
is that extending the notion of success types to a polymorphic setting
is not trivial, and several interpretations are possible. In this work we
propose a precise formulation for a novel interpretation of function specs
as polymorphic success types, and a program transformation that allows
us to apply this new interpretation on the call sites of functions with a
declared spec. This results in a significant improvement in the number
of definite errors that Dialyzer is able to detect.

1 Introduction

Erlang [2] is an eager concurrent functional programming language developed
by Ericsson. It is a dynamically typed language, in contrast with languages like
Haskell or ML where programs must be recognized as well typed by a static
analysis, according typically with some variant of Hindley-Milner system [4],
ensuring statically type safety, i.e., that the evaluation of a well-typed expression
within a well-typed program will not incur a type clash at any step. This kind of
analysis is conservative in the sense that it rejects programs that could be free
of runtime errors in purely operational terms, but that are not detected as such
by the analysis.

? Work partially supported by the Spanish MINECO project CAVI-ART (TIN2013-
44742-C4-3-R), Madrid regional project N-GREENS Software-CM (S2013/ICE-
2731) and UCM-Santander grants GR3/14-910502, GR3/14-910398.

Dynamic typing provides usually more liberality; however, runtime error de-
tection means probably late error detection, a serious inconvenience in practice.
To address this in Erlang, the Dialyzer static analysis tool was proposed in [7]
with two essential design principles: it should be applicable to already existing
Erlang programs and should not produce false positives: signalling a type error
must imply that a runtime error will certainly happen. As it is said in [14], the
lemma ‘well-typed programs never go wrong’ of Hindley-Milner types is replaced
in the Dialyzer approach by ‘ill-typed programs always fail’.

Dialyzer, success types and type specifications Dialyzer considers prim-
itive types integer, atom,. . . , tuple types {τ1, . . . , τn}, list types [τ], functional
types (τ1, . . . , τn)→ τ ,. . . . Each individual Erlang value v is itself a type and the
union τ1|τ2 of two types is also a type. Types represent sets of values that can be
ordered by set inclusion. The empty and the total set of values are represented
by the types none and any1.

Dialyzer tries to infer success types [9] that are over-approximations for the
semantics of expressions: τ is a success type for e if τ contains all the possible
values to which e can be reduced. A type (τ1, . . . , τn)→ τ is a success type for a
function f if whenever f(e1, . . . , en) reduces to a value v then v ∈ τ and each ei
reduces to a value vi ∈ τi. Notice that any is a success type for any expression,
that (any, . . . , any) → any is a success type for any f , and that if none is a
success type for e then e cannot be reduced to any value, thus indicating a
definite error, not just a possible one. Singleton and union types allow Dialyzer
to infer frequently quite precise success types, as this simple example shows:

f(0) -> 1 ; f(1) -> 0. g(2) -> 0. h(0) -> 0.

e1() -> f(0). e2() -> g(e1()). e3() -> h(e1()).

Dialyzer (more exactly, its associated tool Typer [8]) infers the following success
types, reported in the form of specs (type specifications or signatures):

-spec f(0 | 1) -> 0 | 1. -spec e1() -> 0 | 1.

-spec g(2) -> 0. -spec e2() -> none.

-spec h(0) -> 0. -spec e3() -> 0.

Dialyzer has detected that e2 is not reducible to any value. The rest of specs
are strict overapproximations of the corresponding semantics, but are neverthe-
less more precise than types like Int → Int (for f) or Int (for ei) that would
have been inferred in ML or Haskell. But, as we will see soon, Dialyzer has also
important limitations which are the focus of this paper.

User given type specifications were considered in [6] and later on incorporated
to Erlang, as contracts specifying the intended behavior of functions. They are
useful as documentation and also used by Dialyzer to refine its analysis. For
instance, the user could give the specification -spec f(0) -> 1 ; (1) -> 0 that
allows Dialyzer to refine its analysis, obtaining

1 Written in actual Erlang as none(), any(), but we omit those () for types.

-spec e1() -> 1. -spec e2() -> none. -spec e3() -> none.

which corresponds better (perfectly, in this case) to reality. In this paper we
assume that user specs correspond indeed to success types, i.e., that the contract
corresponding to each spec is fulfilled by its function definition. In practice,
Dialyzer only checks that user specs are compatible with the inferred success
types. In presence of user specs, errors reported by Dialyzer anticipate definite
runtime errors or violations of the contract given by the specs. It is in this sense
that the absence of false positives must be understood.

Dialyzer, polymorphism and this work The limitations of Dialyzer become
quickly apparent with polymorphic functions. The simplest example is given by
the function id(X) -> X, whose Hindley-Milner type would be ∀α.α→ α. What
Dialyzer infers is -spec id(any) -> any, with no connection between the two
any’s. This causes a great loss of precision: for the function f above, Dialyzer
infers none for f(2), but 0|1 for f(id(2)), since id(2) is analyzed as any.

Could user specs come to our rescue? Yes . . . in principle. User specs permit
polymorphic specifications like -spec id(X) -> X when X::any where a condition
X::τ expresses that X is a subtype of τ (so, in this case, any X fulfils X::any).
Erlang’s documentation [1] says that ‘it is up to the tools that process the spec-
ifications to choose whether to take this extra information into account or not’.
However, Dialyzer does not use it in a sensible way, but replaces each occurrence
of X by its bound any, thus falling exactly into the same imprecisions as before.
We do not know of any other Erlang tool that improves the situation. Moreover,
it is not obvious how polymorphism of function specs must be interpreted, due
to the union nature of success types.

Those are precisely the problems addressed in this paper: how to interpret
polymorphic specifications in a setting of success types and how to improve Di-
alyzer’s treatment of them. We do not investigate here inference of polymorphic
success types, a subject of obvious interest but left to future work. We postpone
until Sect. 3 the discussion of suitable interpretations of polymorphism, but we
elaborate a bit more via examples our ideas for improving Dialyzer’s behavior.

The kind of imprecisions pointed out with id occur with any other polymor-
phic function. Consider for instance map and two applications of it.

map(F,[]) when is function(F) -> [];

map(F,[X|Xs]) -> [F(X)|map(F,Xs)].

e1() -> map(fun(X)->not(X) end,[1,2]). %this expression will fail

e2() -> map(fun(X)->not(X) end,[true,false]).

Dialyzer infers the rather imprecises -spec map(fun(),[any]) -> [any] and
-spec ei() -> [any]. Adding the polymorphic -spec map(fun((A) -> B),[A1])

-> [B] when A1::A does not help too much: we still obtain -spec ei() -> [any].

Forcing Dialyzer to be polymorphic To overcome the diagnosed problem
we could have tried to identify which parts of Dialyzer should be changed or
even to build a completely new inference system and tool. Instead, we have done

something much more lightweight: we run Dialyzer (as it is, no change in the
tool) not over the original program but over a program transformation so that the
effect is as if Dialyzer had used properly the polymorphic specifications provided
in the program. The key idea is replacing inline each application of a function
with a polymorphic spec by an expression having the same type as the original
application and where the dependencies between types –lost in the direct use of
Dialyzer– are kept and properly managed by Dialyzer because of the inlining.
A convenient way of doing such a transformation is by means of parameterized
Erlang macros, that are expanded at compile time. Abstracting out the macros
to auxiliary functions would not be useful, because those functions would suffer
of the same problems of the original ones. To get an idea of how this works,
consider the map example: we distil a macro MAP(F,L) from the polymorphic
spec of map and replace each application of map by one of ?MAP.

-define(MAP(F,L),begin

F1 = F , L1 = L,

receive {A,A1,B} ->

F1 = ?FUN(A,B),

L1 = ?LIST(A1),

A = A1,

?LIST(B)

end

end).

% Other auxiliary macros FUN/2, LIST/2, ALT/2, ...

e1() -> ?MAP(fun(X)->not(X) end,[1,2]).

e2() -> ?MAP(fun(X)->not(X) end,[true,false]).

We leave detailed explanations for Sect. 4; but we remark that the trans-
formation does not pretend to preserve evaluation, since MAP is not based on
the code of map but only on its spec. The noticeable fact is that now Dialyzer
infers for ei the expected ‘good’ types: -spec e1() -> none and -spec e2() ->

[boolean]. That is precisely the purpose of the transformation. Sect. 4 contains
a complete transformation scheme that, being automatic and general, produces
a slightly more complex code.

Organization of the paper The two main sections come after formalizing
simple success types in Sect. 2. In Sect. 3 we discuss and propose a precise inter-
pretation of function specifications as polymorphic success types. Sect. 4 contains
the program transformation that forces Dialyzer to simulate polymorphic specs,
as well as some results about its correctness. Some auxiliary technical contents,
including proof sketches, have been left to a technical report [10].

2 Simple success types

In this section we formalize an interpretation of Dialyzer success types, which is
hopefully equivalent to the original notion from [9, 8]. The main idea is that a

CS0 = Atom] Integer] Float]
{[]}] Pid

CS2 = {[|], { , }}
CSn = {{ , . . .n , }} ∀n ∈ N\{2}

DVal ' Atom⊕ Integer ⊕ Float⊕ Pid⊕ {[]} ⊕⊕
c∈CSn

{c} ⊗DV al ⊗ . . .n ⊗DV al ⊕⊕
n∈N

(DV al ⊗ . . .n ⊗DV al) ↪→ P(DV al)

Fig. 1. Definition of the set of Erlang values

success type τ for an expression e represents a safe over-approximation for the
semantics of e, formalized through a denotational semantics for expressions and
types that gives e a smaller denotation than that for τ in a preorder over the
semantic domain.

For this task we use a variation of Core Erlang [3], that is expressive enough
to represent most Erlang programs, but that allows for a simpler presentation. A
detailed description of the syntax and denotational semantics of the considered
language is available in [10]. We use a reflexive semantic domain DVal (see
Fig. 1), whose definition is based on standard primitive domains and standard
domain constructors, which ensure it is correctly defined [5]. The denotation of
expressions is defined by the semantic function E [[]] : Exp→ (UFS → Exp)→
P(DV al) where Exp is the set of expressions, and definitional environments
Λ ∈ UFS → Exp are mappings from user function symbols to Exp that serve to
model programs. We write E [[e]]Λ for the semantics of e within Λ and frequently
omit Λ when implied by the context. In general E [[e]] is a set of values, due
to the non-determinism caused by concurrency primitives like receive. Note
that values can be functions, hence E [[e]] can be a set of functions. We will need
some notations regarding (sets of) functions: we write f |C for the restriction of
a function f to a subset C of its domain; the range restriction of f is denoted
by f |−1C , and is defined by f |−1C (x) = f(x) iff f(x) ∈ C; f |−1C (x) is undefined
otherwise. This is extended to set of functions as fs|C(x) = {f |C(x) | f ∈
fs}, and fs|−1C (x) = {f |−1C (x) | f ∈ fs}. We define the application of a set
of functions fs with common domain to a set of values vs in that domain as
fs(vs) = {f(v) | f ∈ fs, v ∈ vs}, and to a value as fs(v) = fs({v}).

We consider a preorder e v e′ on DVal (see [10]) and extend it to P(DVal)
to capture the notion that E [[e′]] is more powerful than E [[e]], in the sense that for
each value in E [[e]] there is a greater one in E [[e′]] (i.e. a function with a greater
graph, a tuple with greater elements, . . .).

We refer to the original success types from [9, 8] as simple success types, to
stress their difference to the success type schemes we will consider for function
specs in Sect. 3, reminding to what is usually done also in Hindley-Milner-like
type systems. We assume a set of type variables T V and use α, β ∈ T V. The set
of simple types T is defined in Fig. 2. To better reflect its meaning, we write here
τ ∪ τ ′ instead of the concrete Erlang syntax τ | τ ′. Notice that individual values
v ∈ Val are types, where Val is a subset of Exp that only contains (intensional)
values. We assume the existence of a denotation V[[]] of these intensional values—
see [10] for details—. The type nelist(τ, τ ′) stands for (possibly improper) not
empty lists with elements of type τ and ending of type τ ′; note all the variant

T C0 3 C0 ::= none | any | atom | integer | float | pid | v (v ∈ Val)
T C2 3 C2 ::= ∪ | nelist(,) T Cn 3 Cn ::= { , . . .n , }
T Cn+1 3 Cn+1 ::= (, . . .n ,)→
T 3 τ ::= α | Cn(τ1, . . . , τn)

T [[none]] = ∅ T [[any]] = DVal T [[atom]] = Atom T [[integer]] = Integer
T [[float]] = Float T [[pid]] = Pid T [[v]] = {V[[v]] []} T [[τ1 ∪ τ2]] = T [[τ1]] ∪ T [[τ2]]
T [[nelist(τv, τc)]] =

lfp (λZ.{([|], v, c) | v ∈ T [[τv]], c ∈ T [[τc]]} ∪ {([|], v, z) | v ∈ T [[τv]], z ∈ Z})
T [[{τ1, . . . , τn}]] = {({, n· · ·, }, v1, . . . , vn) | ∀i ∈ {1..n}.vi ∈ T [[τi]]}
T [[(τ1, . . . , τn)→ τ]] = {

⊕
z∈Dom

λ̂z.T [[τ]]} where Dom
def
=

∏n
i=1 T [[τi]]

Fig. 2. Syntax and semantics of simple types

types for lists from [1] can be expressed with nelist and ∪: for example list(0

| 1) can be expressed as nelist(0 ∪ 1, []), as [] ∈ CS0 implies [] ∈ Val , hence
[] ∈ T C0 and so [] ∈ T . Type substitutions π ∈ TSubst are finite mappings
π : T V → T . We say π is ground when π(α) is ground for any α.

The denotation T [[τ]] of a simple type τ is a set of semantic values in DVal

given by the mapping T [[]] : T → P(DVal) defined in Fig. 2. The notation λ̂v1.v2
denotes a function with a single binding from v1 to v2 —i.e., with a single point as
graph— whereas the⊕ operator merges two functions provided their domains are
disjoint. Note T [[]] is for example able to distinguish the type any from the type
(any) → any , as T [[any]] = P(DVal) and T [[(any) → any]] = DVal ↪→ DVal ,
and therefore T [[any]] 3 0 6∈ T [[(any) → any]], showing that any contains more
values than (any)→ any .

We formalize that hierarchy among types by overloading the preorder v on
DVal to T as τ1 v τ2 iff T [[τ1]] v T [[τ2]]. Note none of the overloadings of v is a
partial order, as they are not antisymmetric: for example, with τ1 = 0∪ integer ,
τ2 = integer we have τ1 v τ2 and τ2 v τ1, but τ1 and τ2 are different types.
Nevertheless, as is standard, this preorder defines a partial order on the quotient
set for the equivalence relation τ ′ v τ ∧ τ v τ ′, which is a lattice [8, 9] with
any as > and none as ⊥. For the remainder of the paper, when using t or u on
elements of T , we implicitly work modulo that equivalence relation. We can now
use the denotational semantics to formulate with precision the notion of success
types.

Definition 1 (Success type, for simple types). We say that τ ∈ T is a
success type for e ∈ Exp, written e : τ , iff E [[e]] v T [[τ]].

Example 1. τ1 = (0 ∪ 1) → 0 ∪ 1 is a success type for the expression e =

fun(X)→ case X of 0→ 0, as E [[e]] = λ̂(0).{0} v λ̂(0).{0, 1} ⊕ λ̂(1).{0, 1} =
T [[(0 ∪ 1) → 0 ∪ 1]]. The type τ1 is not the only valid success type for e. For
example, (0)→ 0 is a more precise one.

This formulation tries to generalize Def. 1 from [9], that is only defined for
functions, to arbitrary expressions. In general, expressions may have more than

one success type, because e : τ1 and τ1 v τ2 imply e : τ2. In particular e : any
for all expressions e. On other other hand, e : none is equivalent to E [[e]] v
T [[none]] = ∅, which implies that no value can be computed for e, i.e. that
evaluating e will surely lead to a runtime error.

3 Success type schemes

Following the official Erlang documentation [1], we define the set of success type
schemes T S as: T S 3 σ ::= ∀α1, . . . , αm. τ | τ11 ⊆ τ12 , . . . , τ l1 ⊆ τ l2 for αi ∈ T V,

τ, τ ji ∈ T . This notion of type schemes expresses a form of bounded polymor-
phism, as type variables can be instantiated only with types that respect the
corresponding type inclusion constraint. We use the semantics above to charac-
terize these constraints, so τ1 ⊆ τ2 is satisfied iff ∅ 6= T [[τ1]] and τ1 v τ2. Note
success type schemes are just another presentation of Erlang function specs,
and that T S contains type schemes corresponding to overloaded specs, which
have the general form ∀α1, . . . , αm. (τ1p1 , . . . , τ

1
pn) → τ1r ∪ . . . ∪ (τop1 , . . . , τ

o
pn) →

τor | τ11 ⊆ τ12 , . . . , τ
l
1 ⊆ τ l2 for a given f ∈ FSn. For this reason we will use the

terms ‘function spec’ and ‘type scheme’ interchangeably for the rest of the pa-
per. Notice that, in this system, overloaded schemes can be understood as union
types (represented with the ∪ operator), since success types overapproximate the
behaviour of programs. This contrasts with the traditional approach in which
overloading is achieved via intersection types [12].

Just like we have characterized whether a simple type is a success type for an
expression or not, we are interested in defining when a type scheme is a success
type scheme for a function. We discuss here the issue.

A first obvious approach would be trying to mimic Def. 1, for which we
would need a suitable definition for the denotation of a success type scheme
T S[[]] : T S → P(DVal), and then require E [[f]] v T S[[σ]] for σ to be a success
type scheme of f . Let us consider for now a simplified setting where specs σ have
the shape ∀αj ⊆ τj . τ . A first possible definition of T S[[σ]] could be T S[[σ]] =
T [[C(σ)]] where C(σ) is the compaction of σ, the simple type resulting of replacing
type variables by their bounds, i.e., C(∀αj ⊆ τj . τ) = τ [αj/τj]. However, this
corresponds to the observed behaviour of Dialyzer, as described through the
examples of id and map in Sect. 1, for which we know that the polymorphism
nature of type schemes is lost.

We could also consider the other extreme, with the following “singleton”
interpretation of success type schemes in which a polymorphic type variable is
instantiated with individual values taken from the denotation of its bound:

T S[[∀αj ⊆ τj . τ]] =
⋃

vj∈T [[τj]]∩DVal

T [[τ [αj/vj]]]

Just like the previous interpretation was too loose, this interpretation is too
strict; for instance, when applied to take : ∀αe ⊆ any, αt ⊆ any. (integer, [] ∪
nelist(αe, αt)) → [] ∪ nelist(αe, αt) it does not allow αe to be instantiated

with 0 ∪ 1, because that does not correspond to a value but to a set of values.
Therefore take(1, [0 | [1 | []]]) would be considered a contract violation. So maybe
we should try with something in the middle. The following interpretation allows
to instantiate the type variables of a type scheme with any subtype of its bound.

T S[[∀αj ⊆ τj . τ]] =
⋃
τ ′j⊆τj

T [[τ [αj/τ ′j]]]

This seems to corresponds to the polymorphic treatment of the list constructor
that can be observed in Dialyzer: for example the type nelist(0∪1, []) is inferred
for the list [1, 0]. Sadly, the condition E [[f]] v T S[[σ]] for this T S is just as strong
as E [[f]] v T [[C(σ)]], i.e., the first T S we considered. The problem is that the
supremum of {τ [αj/τ ′j] | τ ′j ⊆ τj} is precisely C(σ). So this interpretation is as
loose as the first one.

Nevertheless, we are quite close to the final interpretation of type schemes we
propose in this paper, which at the end does not define a semantics T S[[σ]] for
type schemes, but needs to be more complex. Let us define the decomposition of
a type scheme, D() : T S → P(T) as D(∀αj ⊆ τj . τ) = {τ [αj/τ ′j] | τ ′j ⊆ τj}. It is
easy to check that for any type scheme

⊔
D(σ) = C(σ), and that C(σ) ∈ D(σ).

What it is interesting about D(σ) is that it corresponds to a decomposition of
the semantics T [[C(σ)]] as {T [[τ]] | τ ∈ D(σ)} ∈ P(P(DVal)). The idea then is
that σ is a success type scheme for f iff f : C(σ) and E [[f]] can be decomposed
following D(σ). We formalize this idea through several conditions that must be
satisfied by the semantics of any function for which a type scheme is declared.
These are understood as additional conditions that are part of the contract the
programmer assumes when declaring a function spec. We continue focusing on
simplified declarations f : σ for σ = ∀αj ⊆ τj . (τp)→ τr. Then D(σ) defines the
following decomposition of T [[C(σ)]]:

{T [[((τp)→ τr)[αj/τ ′j]]] | τ ′j ⊆ τj}

For f : σ we require the following condition to hold for any τ ′j ⊆ τj :

E [[f]]|T [[(τp)[αj/τ ′j]]]
v T [[((τp)→ τ lr)[αj/τ

′
j]]]

With this condition we are saying that f defines a relation between input argu-
ments and function results that respects the shape of the semantics decomposi-
tion expressed by σ. Consider for example the identity function id = fun(X)→
X, and assume we declare id : ∀α ⊆ any. (α) → α. It is easy to see that for
τ ⊆ any we have that id|T [[τ]] ∈ T [[(τ) → τ]], because id just returns its input
argument. Now we can use the inequality above to conclude that id(0) : 0, rea-
soning only with the specification id : ∀α ⊆ any. (α) → α, regardless of the
concrete definition of id, in the line of Wadler’s ‘free theorems’ [15].

Proof. E [[id(0)]] = E [[id]](E [[0]]) = E [[id]]|E[[0]](E [[0]]) = E [[id]]|T [[0]](E [[0]]), as E [[0]] v
T [[0]]. But then by id : ∀α ⊆ any. (α)→ α and using the inequality above with
τ ′j = 0 we have E [[id]]|T [[0]](E [[0]]) v T [[(0) → 0]](E [[0]]), and we can use 0 : 0 to

get T [[(0) → 0]](E [[0]]) v T [[(0) → 0]](T [[0]]) = (λ̂0.{0})({0}) = {0}. So we have
E [[id(0)]] v {0} v T [[0]], i.e. id(0) : 0.

On the other hand, for g = fun(X) → case X of {Y1 when is integer(X) →
0, Y2 when true→ X} that inequality does not hold for the declaration g : ∀α ⊆
any. (α) → α, because for τ = 1 we have that E [[g]]|T [[1]](1) = {0} 6∈ T [[(1) →
1]](1). One way to see this, that might be familiar to functional programmers, is
that the inequality condition above tries to capture the notion of parametricity
first proposed in Reynolds’ abstraction theorem [13], and later exploited in [15].
The function g breaks parametricity, because its rules inspect the variable X,
which has a polymorphic type α. Conversely, id respects parametricity, because
it does not inspect its polymorphic argument, and just returns it untouched.

That was a form of bottom-up information flow, where the type of a function
argument affects the type of the whole function application. For f : σ with
σ = ∀αj ⊆ τj . (τp)→ τr we also require the following inequality condition, that

corresponds to top down information flow, that should hold for any τ ′j ⊆ τj :

E [[f]]|−1
T [[τr[αj/τ ′j]]]

v T [[((τp)→ τ lr)[αj/τ
′
j]]]

We can use this inequality for equational reasoning with id, but now with top-
down information flow, where the type of a function application affects the type
of its arguments. In particular we will conclude (again by using only the type
specification of id) that if id(a) is evaluated to some value v : 0, then in that
evaluation a must be reduced to a value va : 0, i.e. 0 is a value for a.

Proof. By hypothesis E [[id(a)]] v T [[0]]. Also E [[id(a)]] = E [[id]](E [[a]]), hence
E [[id(a)]] = E [[id]]|−1T [[0]](E [[a]]) v T [[(0) → 0)]](E [[a]]) using the inequality above

with τ ′j = 0. So, given v ∈ E [[id(a)]] we have v ∈ T [[(0)→ 0]](E [[a]]). This implies
that to compute any v ∈ E [[id(a)]] we need compute some va ∈ E [[a]] such that
va ∈ dom(T [[(0)→ 0]]) = T [[0]], i.e. va : 0.

Additionally, for f : σ we require f : C(σ), in order to avoid accepting
trivially small type schemes. For example, that condition rejects id : (0) → 0,
since (0)→ 0 is not a success type for id .

After giving the intuitions, we generalize the previous conditions to arbitrary

types schemes for function symbols of the shape ∀αj .
⋃o
l=1(τ lpi)→ τ lr | τk1 ⊆ τk2 .

We first need to generalize the notion of compaction. For any conjunction of

constraints τk1 ⊆ τk2 the set of its solutions is the set Sol(τk1 ⊆ τk2) of ground

π ∈ TSubst such that var(τk1 ⊆ τk2) ⊆ dom(π) and (τk1 ⊆ τk2)π is satisfied. For

any σ ∈ T S, given σ = ∀αj .
⋃o
l=1(τ lpi) → τ lr | τk1 ⊆ τk2 we assume var(σ) ⊆

var(τk1 ⊆ τk2) without loss of generality, by adding additional trivial constraints

α ⊆ any for any α ∈ var(σ)\var(τk1 ⊆ τk2). Then the compaction of σ is defined

as C(σ) = (
⋃o
l=1(τ lpi)→ τ lr)πs for πs =

⊔
Sol(τk1 ⊆ τk2).

Definition 2 (Success type, for type schemes). For any f ∈ FSn and
σ ∈ T S we say that σ is a success type scheme for f , denoted f : σ, iff given

σ = ∀αj .
⋃o
l=1(τ lpi)→ τ lr | τk1 ⊆ τk2 we have f : C(σ) and the following conditions

are met for πs =
⊔
Sol(τk1 ⊆ τk2):

1. For any π ∈ Sol(τk1 ⊆ τk2), given πlp = π|
var(τ l

p)
then

E [[f]]|⋃o
l=1 T [[(τ l

pi
)πl

p]]
v

o⋃
l=1

T [[(τ lpi)π
l
p → τ lrπ

l
pπs]]

2. For any π ∈ Sol(τk1 ⊆ τk2), given πlr = π|var(τ l
r)

then

E [[f]]|−1⋃o
l=1 T [[τ l

rπ
l
r]]
v

o⋃
l=1

T [[(τ lpi)π
l
rπs → τ lrπ

l
r]]

3. For any ground πp such that dom(τp) ⊆
⋃o
l=1 var(τ

l
p) and Sol((τk1 ⊆ τk2)πp) =

∅ then E [[f]]|⋃o
l=1 T [[(τ l

pi
)πp]]

= ∅

4. For any ground πr such that dom(τp) ⊆
⋃o
l=1 var(τ

l
r) and Sol((τk1 ⊆ τk2)πr) =

∅ then E [[f]]|−1⋃o
l=1 T [[τ l

rπr]]
= ∅

Items 1. and 2. of Def. 2 express the relation between function input and outputs.
These are basically the same we discussed above, with minor modifications over
the domain of solutions π, that for the sake of readability were omitted in the
presentation above. To understand these changes, let’s consider a function f with
declared spec f : σ with σ = ∀α. (α) → 0 | α ⊆ any. A function with this type
can only return 0 regardless of its argument. So for any expression e used as an
argument for f , we have E [[f(e)]] = E [[f]]|−1T [[0]](E [[e]]), and we should not be able

to say a thing about the type of e, because α does not appear in the right hand
side of σ. If we could, then we would be able to perform wrong deductions, thus
introducing false positives in Dialyzer. A less artificial example would be the case
of map, assuming the same spec as in Sect. 1: ∀α, α1, β. ((α) → β, list(α1)) →
list(β) | α1 ⊆ α, α ⊆ any, β ⊆ any. Assuming for instance a call map(g, [e]), in
a context that forces map(g, [e]) : [true ∪ false], then β should be instantiated
to true ∪ false, but we should not be able to infer derive any constraint about
the domain of g from that.

Regarding items 3. and 4. of Def. 2, they express relationships between poly-
morphic variables, which can be used to fail when an instantiation of the variables
results in unsolvable constraints. Consider again the example of map together
with the function not defined as fun(X)→ case X of {true→ false; false→
true}; then it is clear that the call map(fun(X) → not(X), [1, 2]) will fail.
We can use item 3. of Def. 2 to deduce E [[map(fun(X) → not(X), [1, 2])]] =
E [[map]]|((α)→β,list(α1))πp

(E [[(fun(X) → not(X)]], E [[[1, 2])]]) = ∅(E [[(fun(X) →
not(X)]], E [[[1, 2])]]) = ∅ = T [[none]] for πp = [α/true ∪ false, α1/1 ∪ 2, β/true ∪
false], as 1 ∪ 2 ⊆ true ∪ false has no solution.

Although certainly complex, the notion of success type scheme given by us
corresponds to the intuitive idea of parametricity honouring function. That can

be understood in simple terms considering that polymorphic functions should
not inspect data variables with a polymorphic variable as type, i.e. data variables
with a polymorphic variable as type are a kind of opaque data container. Note
we can still perform matching against the constructed part of a polymorphic
variable, as for example in head defined by fun(Xs)→ case Xs of [X|]→ X,
declared as head : ∀α. nelist(α) → α | α ⊆ any. In this case we inspect Xs,
but only for the constructed fragment nelist of its type nelist(α, []). The same
applies to the typical operations in polymorphic lists like map, take, filter, . . .
These notions should be familiar to the seasoned functional programmer, that
would then have an intuitive understanding of the additional contract she is
accepting by assuming Def. 2.

At the time of writing, Erlang only allows the programmer to place specs in
top-level function definitions. However, we can also apply Def. 2 to expressions
that are always evaluated to a function.

4 A program transformation for simulating success types
schemes

In this section we introduce an algorithm that transforms a given program by
substituting macro expansions for polymorphic function calls. For each ground
type τ there is a macro which is replaced with an Erlang term with the same
semantics as T [[τ]]. We can build these terms in a compositional way. For each
function definition f/n with a monomorphic type τi

n → τ , the algorithm gener-
ates a macro with n arguments, and is expanded to a term that overapproximates
T [[τ]] provided the set of possible arguments of the macro overapproximate their
corresponding T [[τi]]. If f/n has a polymorphic type ∀αi.τf , the macro generates
fresh variables corresponding to the αi, which are subsequently bound to ground
types during type inference.

The generation of the macro for a type scheme requires the latter to be left
linear, that is, that no variable occurs twice in the types of the parameters. In
the presence of union types, nonlinearity can be a source of misconceptions. For
instance, assume a function f/2 with type scheme ∀α.(α, α) → true. Although
it seems at first sight that the definition f(0,a) -> true does not fit into this
scheme, it actually does under the instance [α/0 ∪ a]. In fact, we can prove by
using Def. 2 that this scheme is equivalent to ∀α1, α2.(α1, α2)→ true. In a similar
way we can establish the equivalence between ∀α.(α, α)→ α and ∀α.(α1, α2)→
α1 ∪α2. If the programmer intends to convey the constraint of both parameters
being equal, she would have to add the conditions α1 ⊆ α2 and α2 ⊆ α1 to
the previous scheme. The resulting scheme would exclude any function f such
that E [[f(v1, v2)]] 6= ∅ for some values v1, v2 ∈ DVal such that there exist two
types τ1 and τ2 that “separate” these values, that is, v1 ∈ T [[τ1]]\T [[τ2]] and
v2 ∈ T [[τ2]]\T [[τ1]]. In this case, the third condition of Def. 2 would not be
satisfied, since we would get Sol({τ1 ⊆ τ2, τ2 ⊆ τ1}) = ∅ but E [[f]]|T [[(τ1,τ2)]] w
E [[f]]|E[[(v1,v2)]] = ∅. With the current type system there are values that cannot be
separated by types. For instance, let us consider fun(X)→ X+1 and fun(X)→

X − 1. Each of these expressions has (integer) → integer as the smallest type
containing its semantics, so the expressions cannot be separated.

In order to left-linearize a type scheme we rename each occurrence of the
same variable with different type variables and substitute, in the right-hand side
of the type scheme, the union of these variables for the original one.

Definition 3. Given a type scheme σ = ∀αi.(τj) → τ | C, we say that a type
scheme σ′ = ∀αi′.(τj ′) → τ ′ | C ′ is a left linearization of σ iff σ′ does not
contain free type variables, no type variable occurs twice in τj

′ and there exists
a substitution π : {αi′} → {αi} such that:

1. τ ′jπ = τj for every j.

2. If we define the substitution πimg = [αi/ ∪β∈π−1({αi}) β] then τ ′ = τπimg .
3. C ′ = {τ ′1 ⊆ τ ′2 | var({τ ′1, τ ′2}) ⊆ {αi′}, (π(τ ′1) ⊆ π(τ ′2)) ∈ C}.

The first condition of this definition requires the types of the parameters τj to
be instantiations of their counterparts τ ′j in which type variables are replaced by
type variables. The second condition states that whenever we replace a variable
α by several variables α′1, . . . , α

′
n, the left linearization of σ replaces α by α′1 ∪

. . . ∪ α′n in the result type of the function. The last condition specifies the set
of constraints C ′ in the linearized type scheme. The constraints occurring in the
original (non-linear) type scheme have to be replicated in the linear type scheme
with their corresponding variables. For instance, the linearization of ∀α.(α, α)→
integer | α ⊆ integer yields ∀α1, α2, (α1, α2) → integer | α1 ⊆ integer , α2 ⊆
integer as a result.

Now we show how to transform a type τ into an Erlang term or macro expan-
sion with the same semantics. The function BT fun (Fig. 3) does this transforma-
tion. It is given the simple type τ to be transformed. If τ is a type constructor
applied to several arguments τi

n, the function receives a list of expressions ei
n

such that each ei is an overapproximation of the semantics of τi. In the transla-
tion we assume function definitions such as ’ANY’, ’NONE’, etc. These functions
are defined in [10], and their semantics are those of their corresponding type.
For instance, E [[’ANY’()]] = T [[any]]. We assume an environment Λ0 containing
these auxiliary definitions. The ALT macro represents a nondeterministic choice
between its arguments. The macro NELIST expands to a list of arbitrary length
with elements of a given type. Finally, we have a family of macros {FUNn}ni ∈ N
representing the functions of arity n. Each macro is parametric on the variables
corresponding to the input arguments and the variable corresponding to the re-
sult. From these macro definitions we specify the translation of compound types
in the right column of Fig. 3.

As we shall see later, the macro generated for a given function binds its
parameters to the translation of their corresponding types. We could perform
this translation directly via the BT fun function, but the notion of parametricity
implied by Def. 2 allows us to generate macros that reflect a given type scheme
in a more accurate way. For instance, assume a function f/1 with type scheme
∀α.[] ∪ nelist(α) → α ∪ false. By using Def. 2 we can prove that f([]) can be

BT fun [[none]] [] = ’NONE’()
BT fun [[any]] [] = ’ANY’()
BT fun [[atom]] [] = ’ATOM’()
BT fun [[integer]] [] = ’INTEGER’()
BT fun [[float]] [] = ’FLOAT’()
BT fun [[pid]] [] = ’PID’()

BT fun [[v]] [] = v where v ∈ Val
BT fun [[∪]] [e1, e2] = ?ALT(e1, e2)

BT fun [[{ , n· · ·, }]] [ei
n] = {ein}

BT fun [[nelist(,)]] [e1, e2] = ?NELIST(e1, e2)

BT fun [[(,
n· · ·,)→]] [ei

n, e] = ?FUNn(ei
n, e)

Fig. 3. Translation of type constructors into expressions.

TRpar [[C()]] η αi
n = {{fun()→ ’NONE’()

n
},BT fun [[C]] []} (if C ∈ T C0)

TRpar [[α]] η αi
n = {{ein}, η(α)} where ∀i.ei =

{
fun()→ η(α) if αi = α

fun()→ ’NONE’() otherwise

TRpar [[τ1 ∪ τ2]] η αi
n = ?ALT(TRpar [[τ1]] η αi

n,TRpar [[τ2]] η αi
n)

TRpar [[C(τj
m)]] η αi

n = {{
⊔
ej,1

m, . . . ,
⊔
ej,n

m},BT fun [[C]] [ej
m]}

where ∀j ∈ {1..m}.{{ej,1, . . . , ej,n}, ej} = TRpar [[τj]] η αi
n

if C ∈ {nelist(,), { , m· · · }, (,m−1· · ·)→ }

e1 t e2 =

{
e2 if e1 = fun()→ ’NONE’()

e1 otherwise

⊔
ei

n = e1 t (e2 t ...(en−1 t en)...)

Fig. 4. Translation of the types of the parameters and type variable bindings

evaluated only to false. In fact, for every simple type τ :

E [[f([])]] v E [[f]]|T [[[]∪nelist(τ)]] (E [[[]]]) v T [[[] ∪ nelist(τ)→ τ ∪ false]] (E [[[]]]) v T [[τ]] ∪ {false}

In particular, for τ = 0 and τ = 1 we would obtain that E [[f([])]] is a subset
of both {0, false} and {1, false}, so, if f([]) is evaluated to a value, then that
value must be false. Thus, f has also the type scheme ∀α.([]→ none ∪ false) ∪
(nelist(α) → α ∪ false), which is equivalent to the scheme shown previously.
In general, when a function expects a parameter of type τ , but the type of
the actual argument does not bind some of the variables in τ , these variables
are bound to none in f ’s result type. In Fig. 4 we define the TRpar function,
which receives a simple type τ , a mapping η from type variables to program
variables and a list of variables αi. It returns a tuple whose second component is
an Erlang term with the same semantics as τ , but replacing the type variables
of the latter by program variables as specified by η. The first component of the
result is another tuple with as many closures as type variables in the list αi
given as third parameter. The i-th closure of the tuple will be evaluated to η(αi)
if αi occurs free in τ , or to ’NONE’() otherwise. We return closures instead of
plain values, since a none value inside tuple component would make the whole
tuple to have type none. As an example, let us assume η = [α/A]. The result of
TRpar [[0 ∪ α]] η [α] is ?ALT({{fun()→ ’NONE’()}, 0}, {{fun()→ A}, A}).

In Fig. 5 we show the GenMacro function which, given a type scheme σ for
a function f/n it returns the definition of a macro Mf/n overapproximating its
semantics. The macro receives as many parameters as the arity of f . Firstly, it

GenMacro(∀αi
m.τj

n → τ | {τ ′k ⊆ τ ′′k
l}) =

-define(Mf/n(Xj
n
),

let {Zj = Xj
n} in

receive {Ai
m} → let {{η′(αj,k)}, Zj} = TRpar [[τj]] η αj,k

n

in

let {{}, Tk} = TRpar [[τ ′k]] η []
l

in

let {{}, Tk} = TRpar [[τ ′′k]] η []
l

in
let {{}, R} = TRpar [[τ]] η′′ [] in R

end)

where {Zj
n}, {Tk

l}, {Ai
n}, {A′i

n} and R are fresh

η = [αi/Ai
m

], η′ = [αi/A′i
m

], η′′ = [αi/A′i()
m

]
∀j ∈ {1..n}.{αj,k} = var(τj)

Fig. 5. Translation of a function f of a type scheme σ into a macro

assigns those parameters to fresh variables Zj in order to avoid unnecesary code
replication of the macro arguments at the macro expansion when the Xj occurs

more than once in its definition. The receive statement brings the variables Ai
m

into scope with type any . The types of these variables are subsequently bound
to the types of the parameters Zj by the assignments generated by TRpar , which

also bind the A′i variables to their corresponding closures containing either the Ai
or ’NONE’(), as explained in the previous paragraph. Then, GenMacro translates
the constraints of the type schemes into assignments to the same fresh variable
T . Notice that, assuming that e1 : τ1 and e2 : τ2, the sequence T = e1, T = e2
is typable if τ1 and τ2 are joinable (i.e. non disjoint). This is a less accurate,
but safe, overapproximation of the ⊆ relation between types. Finally, the result
of the macro expansion is the type of the result of the function, in which the
closures assigned to the A′i are invoked. As an example, we consider the macro
generated for the type scheme ∀α.(int , [] ∪ nelist(α, []))→ [] ∪ nelist(α, [])):

-define(M(N, Xs), Z1 = N, Z2 = Xs,

receive A ->

{{}, Z1} = {{}, ’INT’()},

{{AP}, Z2} = ?ALT({{fun ’NONE’/0}, []},

{{fun() -> A end}, ?NELIST(A,[])),

?ALT([], ?NELIST(AP(),[]))

end).

The definition of Fig. 5 only covers the case in which the input scheme is
not overloaded. In the case of overloaded schemes we would have to generate
an auxiliary macro for each of the specifications and another one defined as the
disjunction (via ?ALT) of these auxiliary macros.

Once these macros have been generated, the transformation of the program
is straightforward. Given an expression e, we denote by eT the result of replac-
ing each function call f(e1, . . . , en) in e by the corresponding macro expansion
?Mf/n(e1, . . . , en). Aditionally, the transformed environment ΛT of Λ is the en-
vironment resulting from the transformation of the expressions occurring in the
right-hand side of the bindings in Λ plus the bindings contained within Λ0.

The following results prove the adequacy of the transformation. The first one
shows three related things: that Mσ reflects the largest semantics compatible
with σ, that the transformation overapproximates the semantics of expressions
and, as a consequence, that the transformation is sound for computing success
types, hence for detecting failures.

Proposition 1. Let Λ be an environment and ΛT its transformation. Then:

(i) If f/n : σ, then E [[f]]Λ v E [[fun(X1, . . . , Xn)→?Mσ(X1, . . . , Xn)]]Λ
0

.

(ii) E [[e]]Λ v E [[eT]]Λ
T

, for any e.
(iii) If eT : τ for ΛT then e : τ for Λ, for any e, τ .

All this would be useless if the loss of precision of the transformation with respect
to the real semantics implied also a loss of precision in Dialyzer’s analysis. We
shall study now under which conditions the transformed program produces less
accurate results than the original one. As it was stated in Sect. 3, Dialyzer uses
the compaction of the polymorphic spec given by the user. Let us denote by
ΛC the environment that results from replacing in Λ every type scheme σ by
C(σ). If Dialyzer used the environment ΛC for inferring success types, then we
would ensure that it yields the same or more accurate results when applied to
the transformed program.

Proposition 2. If Dialyzer infers e : τ in an environment ΛC , then it infers
eT : τ ′ in ΛT for some τ ′ v τ .

The improvement is in fact strict in many cases, as proved by the examples of
id, map and all usual polymorphic functions. This proposition applies when the
user has specified a spec σ whose compaction C(σ) is equal or more accurate
than the type τ inferred by Dialyzer, as it happens in the great majority of cases.
If it does not, then Dialyzer uses τ u C(σ) in the environment that is used for
analysing the calls to f in the rest of the program. This may lead to a loss of
precision when applying our transformation, as the following example shows:

-spec f(any()) -> any(). g() -> f(1).

f(0) -> 0.

Dialyzer would infer the call g() to have type none, as it considers the type
((0)→ 0)u((any)→ any) = 0→ 0 when analysing f(1). However, our transfor-
mation replaces f(1) by a term ?F(1) whose semantics is that of (any) → any ,
so the expression g() is inferred with type any . Nevertheless, we can adapt our
transformation such that it uses GenMacro(τ) instead of GenMacro(σ) when-
ever τ ⊆ C(σ). We just would have to apply Dialyzer twice, firstly to the original
program without user-given specs, and then to the transformed program.

5 Conclusions and future work

Dialyzer is a great tool for preventing statically different kinds of failures in
Erlang programs; in particular, runtime reduction errors are detected when Di-
alyzer infers the empty type none as the return success type for a function.

The precision of the inference can be improved if the user provides more refined
types by means of type specs, that can be even polymorphic and with subtyping
constraints. However, polymorphism of specs is not fully exploited by Dialyzer,
leading to a great loss of precision in many cases (for instance, most of the func-
tions in the Erlang module lists have a polymorphic spec). Types inferred in
previous proposals, like [11], were not better.

This weakness is probably not casual: as we have discussed in this paper, it is
not obvious how polymorphic success types must be interpreted. Our first con-
tribution has been a precise notion of what a polymorphic specification means,
expressing the intuition, familiar to the seasoned functional programmer, that
polymorphic functions are parametric and must not inspect argument positions
corresponding to polymorphic data variables.

Our second contribution came from the observation that the content of poly-
morphic specs can expressed by pieces of Erlang code that, when inlined in
a program replacing original function calls, force Dialyzer to really take into
account the polymorphism of the function spec. This leads to a macro-based
program transformation that, although losing precision from the point of view
of the actual program semantics, permits Dialyzer to do a more refined analysis.

We think fair to say that our work improves significantly the present behavior
of Dialyzer regarding polymorphism, and we see other positive aspects in the ap-
proach: it is lightweight, since no changes are needed in Dialyzer nor in user writ-
ten programs, as far as the specifications are already in the program; it is scalable,
because the macro expansions have a linear impact on the size of programs; and it
is modular in the sense that only function specs are used for the transformation,
so the actual definitions of function can be changed as far as specs are respected.
We have implemented the transformation in an easy-to-use tool that can be
found at http://dalila.sip.ucm.es/poly erlang. Its source code is available
at https://github.com/manuelmontenegro/erlang-poly-transformer. This
tool runs under Dialyzer 2.7.3 with Erlang/OTP 17 (ERTS v6.13).

In this work we have assumed that the specs given by the user are correct, in
the sense that they are success types schemes of the function to which they are
attached, according to Def. 2. Checking that correctness of user-given specs is
left to future work. We also aim to devise an inference algorithm for polymorphic
specs, so that the programmer does not need to declare them.
Acknowledgements The authors would like to thank Kostis Sagonas and Stavros
Aronis, for many fruitful discussions about Dialyzer and success types, that have
been fundamental for developing the intuitions about the meaning of polymor-
phic success types that is proposed in this paper.

References

1. Erlang reference manual user’s guide v 6.4: 7. types and function specifications.
http://erlang.org/doc/reference manual/typespec.html, 2015.

2. J. Armstrong. Programming Erlang. Pragmatic Programmers, 2013.
3. R. Carlsson. An introduction to core erlang. In Proceedings of the PLI’01 Erlang

Workshop. Citeseer, 2001.

4. L. Damas and R. Milner. Principal type-schemes for functional programs. In
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 207–212. ACM, 1982.

5. C. A. Gunter, P. D. Mosses, and D. S. Scott. Semantic domains and denota-
tional semantics. Technical Report MS-CIS-89-16, Department of Computer and
Information Science, University of Pennsylvania, February 1989.

6. M. Jimenez, T. Lindahl, and K. Sagonas. A language for specifying type contracts
in erlang and its interaction with success typings. In Proceedings of the 2007
SIGPLAN workshop on ERLANG Workshop, pages 11–17. ACM, 2007.

7. T. Lindahl and K. Sagonas. Detecting software defects in telecom applications
through lightweight static analysis: A war story. In Programming Languages and
Systems, pages 91–106. Springer, 2004.

8. T. Lindahl and K. Sagonas. Typer: a type annotator of erlang code. In Proceedings
of the 2005 ACM SIGPLAN workshop on Erlang, pages 17–25. ACM, 2005.

9. T. Lindahl and K. Sagonas. Practical type inference based on success typings.
In Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’06, pages 167–178, New York,
NY, USA, 2006. ACM.

10. F. J. López-Fraguas, M. Montenegro, and J. Sánchez-Hernández. Polymorphic
types in Erlang function specifications (extended version). Technical Report TR-
3-15, Departamento de Sistemas Informáticos y Computación, Universidad Com-
plutense de Madrid, 2015.

11. S. Marlow and P. Wadler. A practical subtyping system for erlang. In Proceedings of
the Second ACM SIGPLAN International Conference on Functional Programming,
ICFP ’97, pages 136–149, New York, NY, USA, 1997. ACM.

12. B. C. Pierce. Programming with intersection types and bounded polymorphism.
Technical report, 1991.

13. J. C. Reynolds. Types, abstraction and parametric polymorphism. 1983.
14. K. F. Sagonas. Using static analysis to detect type errors and concurrency defects

in erlang programs. In Functional and Logic Programming, 10th International
Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings, volume
6009 of Lecture Notes in Computer Science, pages 13–18. Springer, 2010.

15. P. Wadler. Theorems for free! In Proceedings of the fourth international conference
on Functional programming languages and computer architecture, pages 347–359.
ACM, 1989.

