
A Generic Intermediate Representation for
Verification Condition Generation ?

Manuel Montenegro Ricardo Peña Jaime Sánchez-Hernández
montenegro@fdi.ucm.es {ricardo,jaime}@sip.ucm.es

Universidad Complutense de Madrid, Spain

Abstract. As part of a platform for computer-assisted verification, we
present an intermediate representation of programs that is both language
independent and appropriate for the generation of verification conditions.
We show how many imperative and functional languages can be trans-
lated to this generic intermediate representation, and how the generated
conditions reflect the axiomatic semantics of the original program. At
this representation level, loop invariants and preconditions of recursive
functions belonging to the original program are represented by assertions
placed at certain edges of a directed graph.
The paper defines the generic representation, sketches the transformation
algorithms, and describes how the places where the invariants should be
placed are computed. Assuming that, either manually or assisted by the
platform, the invariants have been settled, it is shown how the verification
conditions are generated. A running example illustrates the process.

Key words: verification platforms, intermediate representation, verifi-
cation conditions, program transformation.

1 Introduction

In the last few years, verification platforms are becoming more and more popular
[15, 1, 10]. Their success is in part due to the increasing power of the underly-
ing proving machinery, the SMT solvers [7, 8]. In these platforms, the user is
responsible for giving the source program, its specification in the form of a pre-
condition and a postcondition, and the invariant assertion of each loop. The
platform gives support for analysing and proving termination, for generating
the verification conditions (VC), and for automatically proving them, whenever
this is possible.

A possible drawback is that the source language is usually fixed by the plat-
form and it consists of a restricted subset of a real-life one. For instance, Dafny
supports object-oriented programming but not inheritance. WhyML does not
support object orientation, nor even has a heap.

The purpose of our platform CAVI-ART1 is a bit more ambitious. On the one
hand, it addresses real-life languages and will support most of, or ideally all, their

? Work partially supported by the Spanish MINECO project CAVI-ART (TIN2013-
44742-C4-3-R), Madrid regional project N-GREENS Software-CM (S2013/ICE-
2731) and UCM grant GR3/14-910502

1 CAVI-ART stands for Computer Assisted ValIdation by Analysis, tRansformation
and Testing.

complexities and subtleties. Additionally, it will cover both imperative, possibly
object-oriented ones, such as C, C++ and Java, and functional ones such as
Erlang, SML and Haskell. On the other hand, the platform will assist the user
in discovering the loop invariant assertions, or equivalently, the preconditions
of the recursive functions. The remaining platform assistance will be similar to
that of the other platforms. In fact, we plan to reuse the infrastructure of Why3
to interface different SMTs and proof assistants, by expressing our VCs in the
Why3 assertion language.

In Fig. 1 we show a picture of the whole project. A key aspect of it is de-
signing an intermediate representation (IR) of programs to which source pro-
grams, written in a variety of languages, can be transformed. Once programs
have undergone this transformation, the remaining activities —invariant syn-
thesis, termination analysis, VC generation, VC proving— can be performed in
a language-independent way. This transformation yields an abstraction of the
control and data flow of the program that relies on a set of language-dependent
primitive functions, which are defined via axioms and can be reused among
different languages. Moreover, some of them are already present in Why3’s stan-
dard library of theories, which includes definitions of integers, lists, arrays, real
numbers, etc. and their associated functions.

The platform is under construction. We have completed the design, the IR,
and a front-end for Java. Our current work mainly focuses on invariant synthesis.
In this paper we describe such a generic IR, and show how VCs can be generated
from it, guaranteeing that should all the VCs be discharged by the provers, then
the original program satisfies all assertions. A key step in mapping imperative
programs to the IR is transforming iteration to recursion, so that both are dealt
with uniformly. A second step is to detect where invariant assertions would be
needed in the resulting IR. Once these assertions have been provided, either by
the user or by the platform itself, the VC generation is done automatically.

The plan of the paper is as follows: in Sect. 2 we describe the transformation
of several imperative features such as primitive and structured types, classes, and
the heap to a common framework. Then we explain how to abstract the control
by generating a Control Flow Graph (CFG). In Sect. 3, we briefly remind how
functional languages are compiled to a small core representation, which usually
is a slight extension of the λ-calculus. In Sect. 4, we present and justify our
IR, and give an axiomatic semantics to it by means of weakest preconditions.
Sect. 5 describes the algorithm transforming the CFG to the IR, and detects the
locations of the invariants. Sect. 6 explains the VC extraction algorithm. Finally,
Sect. 7 draws some conclusions and reviews the related work.

2 Imperative Languages

The computation model of imperative languages is given by the execution of a
sequence of statements that change the state of the program. Among the di-
versity of the features provided by modern imperative languages (such as Java,
Javascript, Python, etc.) there are two which are shared by most of them: de-
structive assignment and explicit management of control flow. However, lan-
guages differ in the kind of basic values that can be assigned to a variable, and

2

C C++ Java Erlang Haskell SML

Tr-1 Tr-2 Tr-3 Tr-4 Tr-5 Tr-6

IR

VC
generator

Test case
generator

Static
analyzers Compiler-1 Compiler-n

Test casesVCs Object code

SMT-1 SMT-2
Proof

assistant
Test drivers &

debuggers

. . .

. . .

Source
code:

Fig. 1. CAVI-ART project overview

the choice of control flow constructions (loops, exceptions, method calls, dele-
gates, etc.) In the following, we shall abstract their common parts in order to
determine the constructions needed by the IR. We also identify the language-
specific components, so that the IR will be parametric on them.

Example 1. As a running example, let us consider in this paper the following
Java implementation of the insertion sort algorithm:

1 public void insertionSort(int[] v) {
2 for (int i = 0; i < v.length; i++) {
3 int e = v[i];
4 int j = i - 1;
5 while ((j >= 0) && (v[j] > e)) {
6 v[j+1] = v[j];
7 j = j - 1;
8 }
9 v[j+1] = e;

10 }
11 }

Basic values For each language we identify its set of basic values. We classify
them into different categories, which will subsequently be mapped to theory
types of the underlying proof system.

For a given language, we consider a set of value categories {β1, . . . , βn}, each
one is a pair 〈Bβ ,≡β〉, where Bβ is the set of values contained within the category
β, and ≡β is an equivalence relation on these values. This relation is necessary
for performing case distinction on the values at the IR level. For every language,
we assume the existence of a category βBool with the set BBool = {true, false}
and the usual equivalence relation.

For instance, we use in Java the set of types given by the semantics of Jinja
[14]: booleans, integers, pointers, null reference and unit type. We also include
the category of floating point numbers and arrays, since some solvers (e.g. Z3
[7]) provide direct support for them.

Built-in operators and functions This is another language-dependent component.
We encode them in the IR as functions whose behaviour is defined by a set of

3

axioms. Therefore, for each programming language we define the set of primitive
functions and axioms. Both can be specified in terms of already existing theories.

In the case of the translation from Java into the IR, several primitive func-
tions are based on their counterparts defined in the Why3 Standard Library. For
instance, we associate the category βint of integer values with the int type de-
fined within Why3’s Int theory. The integer-based operators (such as <=, ==, +,
etc.) are mapped into its corresponding counterparts in this theory. An analogous
association is made with booleans and real numbers. Arrays are also translated
into the type array defined within the Array theory of Why3, defined as follows:

1 type array ’a model { length : int; mutable elts : map int ’a }
2 invariant { 0 <= self.length }

The definition of the built-in operations on arrays is more involved, since
a simple access to an array may result in a NullPointerException or an
ArrayIndexOutOfBoundsException. We consider two different policies:

• Safe array access assumption. The built-in function sel-array has a
precondition asserting that the array is not null and that the index lies
within the bounds. If this holds, then the selection yields a valid result.

{H(p) = Array a ∧ 0 ≤ i < a.length} sel-array(H, p, i) {res = get a i}

In this specification theH denotes a heap, p a heap location, and get denotes
the actual array access function defined in the Why3 library. In a similar
way we define mod-array, which yields the heap resulting from modifying
an array in a given position.

• Array access with exceptions. We extend the specification of sel-array
by considering the possibility that the array access may throw an exception.
However, since exception handling is considered as a language-dependent
feature, exceptions should not be part of the IR. Exception management is
handled with a special type which is similar to the Either type of Haskell:

1 data opt_result = Ok value | Exception loc

In this definition value denotes a union type for basic values, and loc is the
type of heap locations. Both definitions are language-dependent.

The first policy is simpler, and it works if the prover can establish the validity
of all array accesses contained within the method. If it cannot, the correctness
of the method is not proved. With the second policy the postconditions of the
method can be more precise and assert facts regarding exceptions (for instance,
the reasons of an exception being thrown), but makes the resulting IR code
more complicated. For the sake of simplicity, we consider the first policy in our
running example.

Heap management The presence of a mutable memory heap plays an essential
role in imperative programs. As a consequence of its physical representation
in the memory, virtually all languages consider a heap H as a mapping from
locations to values. The language-dependent element here is the kinds of values
represented in the heap. In Java we follow the approach of [14] (extended with
array values) and define the set of heap values as follows:

4

blk ::= stm1; . . . ; stmn; jump { instruction BB }
| return x { exit BB, x is a variable }

stm ::= x = e { assignment (single variable) }
| (x1, . . . , xn) = e { assignment (several variables) }

jump ::= case x of c1 → n1 . . . cm → nm { conditional jump (n1, . . . , nm ∈ N) }
| goto n { unconditional jump (n ∈ N) }

e ::= a { atom }
| f(a1, . . . , an) { function application }

a ::= c { literal }
| x { variable }

Fig. 2. Structure of CFG blocks.

1 data heap_value = Array (array value)
2 | Object string (map (string , string) value)

where an object instance contains a class name and a map from pairs (p, c) to
pointers. In these pairs p denotes the name of an attribute and c the name of
the class to which the attribute belongs.

In order to specify heap modifications we follow the same approach as in the
previous section; they are managed as language-dependent built-in functions,
each one with a formal specification via pre- and post-conditions. Therefore
every heap-related operation subject to axiomatization, such as method calls,
dynamic dispatch, etc. can be used in the IR. Since we avoid the existence of
a mutable state, the operations modifying the heap are pure, in the sense that
they yield another heap with the corresponding changes.

Control flow In order to handle this feature in a language independent way, the
source program is transformed into a control-flow graph representation (CFG)
[2]. In this graph each node is a basic block (BB) containing a sequence of pro-
gram instructions without jumps between them (except calls to other functions
or methods).

The information inside a BB is defined by the grammar given in Fig. 2. A BB
can be an exit block (return) or contain a sequence of basic statements followed
by a jump instruction. Statements are assignments whose right-hand side can
be a literal, variable or a function application. In the latter case, only atomic
arguments are allowed. This requires a flattening transformation on the original
program and the addition of new assignments. Jump instructions refer to other
BBs in the CFG, each of which is identified by a natural number. Thus, a CFG
is a set of numbered BBs {(n1, blk1), . . . , (nr, blkr)}. We can attach to each CFG
an assertion which must be satisfied by every execution of the function being
analysed. This is useful for specifying loop invariants.

Example 2. The transformation of our insertion sort example into a CFG yields
the result shown in Fig. 3, where array accesses and basic operations have been
replaced by flattened function calls. A new variable H is introduced to denote
explicitly the heap.

Our next step is translating the CFG of the input program into a set of mutu-
ally recursive functions, from which the verification conditions will be extracted.
In order to obtain a set of functions, we dispose of destructive assignment by

5

[1] : i = 0
goto [2]

[2] : x1 = len(v)
b = <(i, x1)
case b of

true → [3]
false → [7]

[3] : e = sel-array(H, v, i)
j = -(i, 1)
goto [4]

[4] : b1 = >=(j, 0)
x2 = sel-array(H, v, j)
b2 = >(x2, e)
b3 = &&(b1, b2)
case b3 of

true → [5]
false → [6]

[5] : x3 = sel-array(H, v, j)
x4 = +(j, 1)
H = mod-array(H, v, x4, x3)
j = -(j, 1)
goto [4]

[6] : x5 = +(j, 1)
H = mod-array(H, v, x5, e)
i = +(i, 1)
goto [2]

[7] : return H

Fig. 3. CFG blocks of the insertionSort algorithm.

transforming our program into Static Single Assignment form (SSA) [3]. After
this, each program variable is assigned exactly once, and subsequent assignments
are done to different versions of the variable, each one having a different name.
In our case, the SSA transformation is applied locally to each BB. Instead of
having φ functions in confluence nodes (as usual in SSA), the transformation
performs a liveness analysis at the beginning of each node. Let LV i be the set
of live variables at node i (before applying SSA transformation). After applying
the local transformation to each node, we have to compute, for every node j
pointing to i, a substitution θj,i that maps each variable x ∈ LV i to the last
version of that variable occurring in j.

Example 3. The liveness analysis on the CFG of Example 2 produces:

LV 1 = {v,H}
LV 2 = {v, i,H}

LV 3 = {v, i,H}
LV 4 = {v, i, j, e,H}

LV 5 = {v, i, j, e,H}
LV 6 = {v, i, j, e,H}

LV 7 = {H}

The translation of each BB into SSA leads to the CFG represented in Fig.
4, in which the left-hand sides H and j of the BB [5] have been replaced by
H1 and j1, respectively. The corresponding mapping from [5] to [4] would be
θ5,4 = [v 7→ v, i 7→ i, j 7→ j1, e 7→ e,H 7→ H1].

After this transformation, we translate each BB i of the CFG into a recur-
sive function receiving as arguments the variables in LV i. Its definition is the
sequence of BB statements, and the jump branches are calls to the adjacent BBs
by using the respective substitutions. This will be shown in Sect. 5.

3 Functional Languages

Functional languages are radically different to imperative ones, as they provide
neither destructive variable assignment, nor control flow management. There is
no notion of state, as it is the case in the imperative paradigm. Their main fea-
tures are pattern matching for function definition arguments, higher-order func-
tions, recursive definitions for data types and functions, and lambda abstractions.
In addition, some of them are polymorphic and strongly typed, and provide a
type inference algorithm (Haskell, ML). A few of them are lazy (Haskell).

From a theoretical point of view, functional languages emerge from the λ-
calculus, which in fact can be seen as a minimalistic core language for all of
them. But from a practical point of view, the core for real functional languages

6

[1] i = 0

[2]
x1 = len(v)
b = <(i, x1)
case b

[3]
e = sel-array(H, v, i)
j = -(i, 1)

[4]

b1 = >=(j, 0)
x2 = sel-array(H, v, j)
b2 = >(x2, e)
b3 = &&(b1, b2)
case b3

[5]

x3 = sel-array(H, v, j)
x4 = +(j, 1)
H1 = mod-array(H, v, x4, x3)
j1 = -(j, 1)

[6]
x5 = +(j, 1)
H1 = mod-array(H, v, x5, e)
i1 = +(i, 1)

[7] return H

true

false

false

true

Fig. 4. Representation of the CFG/SSA of the insertion sort algorithm

usually includes constructor application, let-expressions for local definitions, re-
cursive letrec-expressions, and case-expressions, a normalized form of pattern
matching. This is the case of the enriched lambda-expressions used in [16], and
also in the core languages of the Glasgow Haskell Compiler [18], ML [17] and
Erlang [4].

Sometimes it may be useful to enrich the core syntax in order to facilitate the
compiler code generation, or to reduce it in order to simplify formal reasoning.
For example, λ-abstractions can be removed from the core with the well-known
lambda lifting transformation [16], which transforms λ-abstractions into ordinary
(named) functions. Also, the applicative notation can be flattened in order to
avoid complex nesting of expressions. Moreover, nested pattern matching can be
compiled in such a way [16], that it is converted in a sequence of nested case-
expressions, each one with flat and mutually exclusive patterns, and covering all
datatype constructors.

4 The Intermediate Representacion

From the precedent sections, it is clear that a minimal (core) functional language
can serve both to represent imperative programs which have undergone an SSA
transformation and functional programs which have been previously desugared.
The minimal common elements of this core language are the followings:

• Sequential let expressions, which also represent imperative SSA assignments.
• Recursive letrec expressions, needed to define mutually recursive functions.
• λ-abstractions and applications, needed to define and apply functions.

7

a -> -- atom
c -- constant

| x -- variable
ae -> -- atomic expression

a -- atom
| f a1 ... an -- primitive operator/function application
| C a1 ... an -- constructor application

e -> -- structured expression
ae -- atomic expression

| let p = ae in e -- sequential let
| letfun fd1 ... fdn in e -- function definition block
| case a of alt1 ... altn -- algebraic type or primitive type case

[-> e] -- optional default clause
alt -> -- case alternative

C x1 ... xr -> e -- algebraic type alternative
c -> e -- primitive type alternative

p -> -- pattern
x -- variable pattern

| (x1,...,xn) -- tuple pattern
fd -> f x1 ... xn = e -- function definition. The name f is global

Fig. 5. Abstract syntax of the CAVI-ART Intermediate Representation

• case expressions, which can serve both to mimic imperative switch state-
ments and to express functional pattern matching.

In addition to this, imperative languages need support for structured data types
such as arrays and records, and functional languages need support for algebraic
data types, polymorphism, and higher-order. Taking all this into account, we
have defined an intermediate representation (IR) that gives support to most of
the features one can find in imperative and functional languages. In Fig. 5 we
show the abstract syntax of our IR.

We justify some of the decisions leading to this IR. Firstly, the arguments
of applications and case discriminants are restricted to be atoms. This facili-
tates the renaming of predicate arguments when propagating assertions, and also
makes the definition of weakest preconditions for the case construction simpler.
We make note that an if construction is not needed as it is a particular instance
of case. Secondly, function definitions are confined to be in a letfun expression,
and they are by default mutually recursive. A letfun can be considered as syn-
tactic sugar for a functional letrec expression in which each variable is bound
to a lambda abstraction. Thirdly, expressions are in the so-called A-normal form
[11]. In particular, this implies that in let bindings, applications occur as stand
alone expressions. Finally, case patterns are flat and they exclude each other,
so that only one alternative is possible. If a case does not include an alternative
for each constructor, it necessarily has a default clause. The purpose of all these
restrictions is again to facilitate the definition of weakest preconditions and the
generation of verification conditions.

The IR is strongly typed and the type system is polymorphic in a Hindley-
Milner style, similar to that of the logical language Why3 [9] in which the as-
sertions are expressed. This type system supports both polymorphic functional
languages such as SML and Haskell, untyped functional languages such as Er-
lang, monomorphic imperative languages such as C, and polymorphic imperative
languages such as C++ or Java.

8

Arrays and records are not built-in data types of the IR, but they can be
defined in a language-specific way as explained in Sect. 2 for arrays, and similarly
for records. Algebraic data types (ADT) can be defined in the IR, and pattern
matching is supported by case expressions. All these types (i.e. arrays, records
and ADTs), and their primitive operators, are directly supported by the SMTs
underlying the CAVI-ART platform. They contain a rich set of axioms allowing
to reason about the formulas using them.

Other features which are present in a particular language but not in others,
can be mapped to the IR by the front-end of each particular language, either by
introducing new primitive types and operators, supported by their corresponding
theories, or by representing them in the IR built-in types. An example of this
is the mapping of the OO-language heap into an array variable that is passed
around as an additional argument of methods, as it has been illustrated in our
running example.

The definition of the axiomatic semantics of the IR, given as weakest precon-
ditions, is as follows:

wp(let x = e1 in e2, R)
def
= Dom(e1) ∧ (x = e1)→ wp(e2, R)

wp(case a of . . . C x1 · · ·xn → e . . . , R)
def
= (a = C x1 · · ·xn)→ wp(e,R)
∧ the remaining alternatives

wp(case a of true → e1; false → e2, R)
def
= (a→ wp(e1, R)) ∧ (¬a→ wp(e2, R))

For many primitive applications (e.g. e ≡ x + y), Dom(e) is assumed to be
true. But some others are partial functions and require a precondition. Func-
tion definitions are assumed to be annotated with their respective precondi-
tion and postcondition. Let f x1 · · ·xn = e be the definition of a function f ,
and let respectively Q(x1, . . . , xn) and R(x1, . . . , xn, res) be its precondition and
postcondition, where res stands for f ’s result. Then, in an application such as
f(a1, . . . , an), it must be proved that Q(a1, . . . , an) holds before reaching this
call, and it can be assumed that R(a1, . . . , an, res) holds when f returns.

In principle, we do not need to define an operational semantics for the IR,
since its aim is not to be executed, but rather to be used for verification. When

we define wp(e,R)
def
= Q for an expression e with free variables x, and predicates

Q(x) and R(x, v), we mean as usual that the set of all the initial states for the
variables x guaranteeing that the value v to which e is evaluated satisfies R(x, v)
is exactly that specified by Q(x). This logical definition is supposed to capture
the semantics of e independently of the details of its evaluation. In this way, it
is not important whether the evaluation mechanism is imperative or functional,
whether there is, or is not, internal sharing during e’s evaluation, or even whether
the evaluation order is lazy or eager.

5 Determining the Invariant Locations

In order to set the invariant conditions in the appropriate places, the CFG must
be structured according to its strongly connected components (SCC) and sub-
components. Formally, the Connected Components Structure (CCS) of a graph

9

1

2

3

4 5

6

7

Fig. 6. CCS for the CFG of Fig. 4

G is a list of components, where each one is either a single node, or a pair with
an entry point and a list of components:

CCS ::= [COMP]
COMP ::= node | (entry node,CCS)

This structure is built up by computing the maximal SCCs of a graph, then the
SCCs inside these components, and so on. The resulting structure contains all
the nodes of the graph grouped according to the loops of the original program.
For any pair (entry node, ccs) in the structure, the subgraph of G corresponding
to the nodes of ccs is a connected one, and entry node is the only entry point to
this subgraph. Moreover, for any component c of a CCS, except for the outermost
one, there is a component c′ in the immediate prior level which contains some
node connected to the entry node of c.

Example 4. Considering the CFG of Fig. 4, and disregarding for simplicity the
node contents, the CCS is [1, (2, [3, (4, [5]), 6]), 7], which is represented in Fig. 6.
We get the external components: 1, 7, and the node set [2, 3, 4, 5, 6], which has 2
as entry point, and then another internal component with the nodes [4, 5], which
has 4 as entry point. The invariants should be placed before the entry points 2
and 4, which correspond to the entry points of the loops of Ex. 1.

The function cfg to ccs(G) of Fig. 7 computes the CCS of a given control
flow graph G. It decomposes the graph into connected subgraphs in successive
recursive calls, until it reaches the base case of a single node (line 2). Otherwise,
it searches for the entry point of the graph (line 5) which is guaranteed to exists
since the graph is a CFG. Then, it considers the subgraph G′ (line 6) obtained by
removing the entry point and its edges, and computes their strongly connected
components (see [5]) of this subgraph (line 7). These components are then sorted
by the function sort (line 8) as follows:

• Collapse each strongly connected component into a single node;
• Compute a topological sort of the resulting graph in a list (this sorting is

always possible as cycles have been collapsed in the previous step);
• Uncollapse the strongly connected components;

Then for each list component (line 9), the algorithm obtains the corresponding
subgraph (line 10) and the corresponding CCS for them (line 11). Finally, it
returns the list of components, together with their entry point (line 13).

10

1 cfg to ccs(G):
2 if G is a single node then
3 return [G]
4 else
5 In ← entry point(G)
6 G′ ← G− {In}
7 Comps← strongly connected components(G′)
8 [C1, . . . , Cn]← sort(Comps)
9 for all Ci in [C1, . . . , Cn] do

10 Gi ← subraph of G with the nodes of Ci

11 CCSi ← cfg to ccs(Gi)
12 end for
13 return (In,[CCS1, . . . , CCSn])
14 end if

Fig. 7. Algorithm computing the CCS of a graph

6 Generating the Verification Conditions

The verification of a complex program is usually done in a modular way, pro-
cedure by procedure. Indeed, this is the whole purpose of defining pre-post as-
sertions for every user procedure: to make it possible the verification of each
one independently of the others. We concentrate then in the activities associ-
ated to generating the VCs for a single user procedure. By this we mean a user
unit, together with its pre-post assertions, disregarding whether it comes from
an imperative or a functional input language.

After the transformation of Sect. 5, invariant assertions are placed as pre-
conditions of some IR nodes. The CAVI-ART platform will help the user in this
task, either by synthesizing parts of the invariants, or by completing the incom-
plete ones given by the user. The description of this part of the project is beyond
the purpose of this paper. In what follows, we assume that the invariants have
been placed by someone in the locations computed by the algorithm of Sect. 5.

Summarizing the result of the transformations described in sections 2 and 3,
given a procedure we get an IR consisting of:

1. A function definition for every basic block (BB).
2. Each BB consists of a sequence of let expressions, ended in a jump. Each let

binding is either an atom, or an application. A jump is simple, or it is a case
with a simple jump at each of its branches. A simple jump to the exit node
consists of a tuple expression returning the relevant variables. Otherwise, it
is a call to another BB, passing the relevant variables as arguments.

3. The postcondition assertion, annotated in every arc to the exit node.
4. The precondition assertion, annotated in the only arc leaving the entry node.
5. An invariant assertion as precondition of the entry node of every CCS.

The IR may have a hierarchical structure reflecting the decomposition of an
imperative CFG into its constituent CCSs. In this section, we look at it as a flat
set of BBs recursively calling to each other, or as a control flow graph consisting
of a set of nodes and a set of directed arcs between them.

11

{Q(v,H)}
insertionSort v H =
letfun

f1 v H = let i = 0 in f2 v i H
{I1(v, i,H)}
f2 v i H = let x1 = len(v) in

let b = <(i, x1) in
case b of true → f3 v i H

false → H
f3 v i H = let e = sel-array(H, v, i) in

let j = -(i, 1) in f4 v i j e H
{I2(v, i, j, e,H)}
f4 v i j e H = let b1 = >=(j, 0) in

let x2 = sel-array(H, v, j) in
let b2 = >(x2, e) in
let b3 = &&(b1, b2) in
case b3 of true → f5 v i j e H

false → f6 v i j e H

f5 v i j e H = let x3 = sel-array(H, v, j) in
let x4 = +(j, 1) in
let H1 = mod-array(H, v, x4, x3) in
let j1 = -(j, 1) in f4 v i j1 e H1

f6 v i j e H = let x5 = +(j, 1) in
let H1 = mod-array(H, v, x5, e) in
let i1 = +(i, 1) in f2 v i1 H1

in f1 v H
{R(v,H, res)}

Fig. 8. IR of the insertion sort algorithm

Example 5. In Fig. 8 we show the flattened version of the IR corresponding to
the CFG/SSA of the example of Fig. 4. In that IR, the locations of assertions I1
and I2 —i.e. the preconditions of f2 and f4— are indicated, and they correspond
to the invariants. The precondition Q and the postconditon R are also indicated.
For this example, a typical postcondition R will assert that the output vector is
sorted and that it is a permutation of the original one. A typical invariant I1 of
the for loop will assert also the second property, and that sortedness holds up
to the element in position i− 1. Invariant I2 is a bit more involved.

The VC generation has two phases: (1) Assertion propagation, and (2) VC ex-
traction.

Assertion propagation Let us start with a simple case, a BB having a simple
jump at its end, and the rest of the BB consisting of a let sequence in which
each bound expression is a primitive operator application, i.e. it has the form:

let x1 = e1 in . . . let xn = en in {Q} f a

where each ei represents a primitive application. Moreover, we know the assertion
Q that must hold in the output arc, i.e. the precondition Q(y) of function f .
Then, the precondition Q1 propagated to the beginning of this BB, assuming
that Dom(ei) = true for all i, is simply:

Q1 ≡ (x1 = e1)→ · · · → (xn = en)→ Q(a)

Let us assume now that the i-th bound expression of the BB is a call g a′

to an external function g for which we know its precondition Qg(y), and its
postcondition Rg(y, res). Then, the propagation is split into two parts:

Q1 ≡ (x1 = e1)→ · · · → (xi−1 = ei−1)→ Qg(a′)
R1 ≡ (xi = res)→ (xi+1 = ei+1)→ · · · → (xn = en)→ Q(a)

12

The following VC is also generated: (x1 = e1) → · · · → (xi−1 = ei−1) →
Rg(a′, res) → R1. We proceed in a similar when more than one external call is
present in the BB.

If the BB ends in a jump such as case a of true → {Q1} . . . false → {Q2} . . .,
where we know the assertions Q1 and Q2 holding at each output jump, the as-
sertion propagated just before the case is: (a → Q1) ∧ (¬a → Q2). The rest of
the backwards propagation through the BB is as above.

Finally, if the BB ends in a jump such as case a of . . . Ci x1 · · ·xn → {Qi} . . .,
where we know the assertion Qi holding at each output jump, the asssertion
propagated just before the case is:

(a = Ci x1 · · ·xn → Qi) ∧ . . . a similar conjunction for each remaining branch

If a default clause is present, the branch assertion Q at this jump is known, and
there are k prior branches, the conjunction for this clause is a bit more complex:

(a 6= C1 x11 · · ·x1n1
) ∧ · · · ∧ (a 6= Ck xk1 · · ·x1nk

)→ Q

VC extraction After the propagation phase, we get an assertion propagated just
before every BB body, and also some VCs coming from the calls to external
procedures. The remaining VCs belong to one of the two following cases:

1. The user procedure precondition QP must be stronger than or equal to the
assertion Q propagated to the single arc leaving the entry node, i.e. the
verification condition QP → Q is generated.

2. If the BB precondition is an invariant I, then this invariant must be stronger
than or equal to the assertion Q propagated just before the BB body, i.e.
the verification condition I → Q is generated for each invariant I.

Example 6. For the example of Fig. 8, the following VCs are generated:

1. Q(v,H)→ (i = 0)→ I1(v, i,H)
2. I1(v, i,H)→ (x1 = len(v))→ (b = i < x1)→ ¬b→ R(v,H,H)
3. I1(v, i,H)→ (x1 = len(v))→ (b = i < x1)→ b→

(H(v) = Array a ∧ 0 ≤ i < a.length)
4. I1(v, i,H)→ (x1 = len(v))→ (b = i < x1)→ b→ (e = get a i)→

(j = i− 1)→ I2(v, i, j, e,H)
5. I2(v, i, j, e,H)→ (b1 = j ≥ 0)→ (H(v) = Array a ∧ 0 ≤ j + 1 < a.length)
6. I2(v, i, j, e,H)→ (b1 = j ≥ 0)→ (x2 = get a j)→ (b2 = x2 > e)→

(b3 = b1 && b2)→ b3 → (x3 = get a j)→ (x4 = j + 1)→
(a1 = set a x4 x3)→ (H1 = set H v a1))→ (j1 = j−1)→ I2(v, i, j1, e,H1)

7. I2(v, i, j, e,H)→ (b1 = j ≥ 0)→ (H(v) = Array a ∧ 0 ≤ j + 1 < a.length)
8. I2(v, i, j, e,H)→ (b1 = j ≥ 0)→ (x2 = get a j)→ (b2 = x2 > e)→

(b3 = b1 && b2)→ ¬b3 → (x5 = j + 1)→ (a1 = set a x5 e)→
(H1 = set H v a1))→ (i1 = i+ 1)→ I1(v, i1,H1)

When Q, I1, I2 and R are replaced by actual predicates, the resulting VCs could
be automatically discharged by a platform such as Why3. Its gallery of verified
programs (see http://why3.lri.fr/), includes an insertion sort algorithm with
VCs very similar to ours which are easily discharged.

13

7 Conclusions and related work

Many other intermediate representations of programs have been defined with
different purposes. Restricting us to IRs for verification platforms, it has become
popular the so-called IVLs (Intermediate Verification Languages). An example
of these is Boogie2, used in Dafny [15]. Its semantics is given in terms of sets
of traces, and it is very much tied to imperative languages. Its type system is
more powerful than Hindley-Milner polymorphism, and this feature has shown
to be very convenient for modeling the OO-languages heap. But it is not clear
how functional languages could be mapped to it. The Why3 platform [10] offers
WhyML as IR. In fact, this is a high level language, a kind of Standard ML with
state and loops, but it has been used as IR for verifying C and Java programs.
Due to its lack of support, some features of these languages, notably the heap,
has been modeled in an awkward way.

A third related IR is LLVM2. Its purpose is to serve as IR for both impera-
tive and functional languages in order to promote portability of these languages
to different machines, interoperability between different paradigms, and to take
profit of common static analyses targeted towards runtime performance. At first,
we considered LLVM as IR for out platform, but we did not like the way in which
functional languages can be translated into it. For instance, the case distinction
provided by our case is closer to the pattern matching translation of Haskell
(based on data types) and can be subsequently translated into a Why3 theory
in a straightforward way. In the LLVM, however, we would need to perform
a case distinction (switch) on the tag of the constructor and then assign the
variables bound by each pattern in each branch. In addition, the LLVM pro-
vides a considerable amount of low level operations, whereas our purpose was
quite the opposite: provide a reduced set of language dependent primitive func-
tions whose behaviour will be specified in a language dependent theory. This
allows us to express their properties in a way that is closer to the source lan-
guage. The same applies to array indexing, which is built in the LLVM IR via
the getelementptr/extractvalue instructions, whereas in our approach is an-
other language dependent primitive whose behaviour may vary between different
languages, especially when indexing beyond the array bounds.

A last related formalism is that of Constrained Horn Clauses (CHC) [13, 12].
They have been successfully used to express properties that a program must
satisfy, such as termination or functional correctness. There are sophisticated
algorithms which may decide, whenever this is possible, whether a CHC set is
satisfiable or not, and hence whether the desired property holds. In this sense,
CHC can be seen as a machinery complementary to that of SMT solvers, in
order to automatically verify properties. It is more questionable whether CHC
can play the role of our IR. In [6] it is shown how to encode the semantics of
a subset of C into CHC programs, and how to transform a C program into a
semantically equivalent CHC one by specializing the semantics with respect to
the C source. For our purposes, however, this kind of representation is too low
level and introduces many details which obscure the generation of verification
conditions based on assertions and weakest preconditions.

2 LLVM stands for Low Level Virtual Machine. See http://llvm.org/

14

Our IR supports most features of imperative and functional languages, in-
cluding all varieties of control statements, exceptions, recursion, object orienta-
tion, heap modeling, arrays, algebraic data types, pattern matching, polymor-
phism, and higher-order. Moreover, the VCs we generate are very much adapted
to what current SMTs expect. For the moment, we do not support concurrency
and reflection in the sense of languages such as Java.

References

1. W. Ahrendt et al. The KeY platform for verification and analysis of Java programs.
In VSTTE 2014, volume 8471 of LNCS, pages 1–17. Springer-Verlag, 2014.

2. F. E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler
Optimization, pages 1–19, New York, NY, USA, 1970. ACM.

3. A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java. Cam-
bridge University Press, New York, NY, USA, 2nd edition, 2003.

4. R. Carlsson. An introduction to core erlang. In Proceedings of the PLI01 Erlang
Workshop, 2001.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

6. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-based
generation of verification conditions by program specialization. In PPDP 2015,
pages 91–102. ACM, 2015.

7. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, pages
337–340. Springer, 2008.

8. M. Deters, A. Reynolds, T. King, C. W. Barrett, and C. Tinelli. A tour of CVC4:
how it works, and how to use it. In FMCAD 2014, page 7. IEEE, 2014.

9. J.-C. Filliâtre. One logic to use them all. In M. P. Bonacina, editor, 24th Interna-
tional Conference on Automated Deduction, CADE-24, volume 7898, pages 1–20.
Springer, 2013.

10. J.-C. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In ESOP
2013, volume 7792 of Lecture Notes in Computer Science, pages 125–128. Springer,
2013.

11. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling
with continuations. In PLDI 1993, pages 237–247. ACM, 1993.

12. J. P. Gallagher and B. Kafle. Analysis and transformation tools for constrained
horn clause verification. CoRR, abs/1405.3883, 2014.

13. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI 2012, pages 405–416. ACM, 2012.

14. G. Klein and T. Nipkow. A machine-checked model for a java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst., 28(4):619–695, 2006.

15. K. R. M. Leino. Developing verified programs with dafny. In B. Brosgol, J. Boleng,
and S. T. Taft, editors, HILT, pages 9–10. ACM, 2012.

16. S. L. Peyton Jones and D. R. Lester. Implementing functional languages. Prentice
Hall international series in computer science. Prentice Hall, Impr., New York, 1992.

17. D. Rémy. Using, Understanding, and Unraveling the OCaml Language From Prac-
tice to Theory and vice versa. In Applied Semantics, volume 2395 of LNCS, pages
413–536. Springer, 2002.

18. G. Team. Glasgow Haskell Compiler core Language. https://ghc.haskell.org/trac/
ghc/wiki/Commentary/Compiler/CoreSynType, Online; accessed 30-April-2015.

15

