
EPiC Series in Computing
Volume 57, 2018, Pages 515–533

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Polymorphic success types for Erlang∗

Francisco J. López-Fraguas, Manuel Montenegro, and Gorka Suárez-García
1 Universidad Complutense de Madrid, Madrid, Spain

fraguas@ucm.es
2 Universidad Complutense de Madrid, Madrid, Spain

montenegro@fdi.ucm.es
3 Universidad Complutense de Madrid, Madrid, Spain

gorka.suarez@ucm.es

Abstract
Erlang is a dynamically typed concurrent functional language of increasing interest in

industry and academia. Official Erlang distributions come equipped with Dialyzer, a useful
static analysis tool able to anticipate runtime errors by inferring so-called success types,
which are overapproximations to the real semantics of expressions. However, Dialyzer
exhibits two main weaknesses: on the practical side, its ability to deal with functions that
are typically polymorphic is rather poor; and on the theoretical side, a fully developed
theory for its underlying type system –comparable to, say, Hindley-Milner system– does not
seem to exist, something that we consider a regrettable circumstance. This work presents
a type derivation system to obtain polymorphic success types for Erlang programs, along
with correctness results with respect to a suitable semantics for the language.

1 Introduction
Erlang is a concurrent functional language arousing increasing interest in industry and academia
for its strength in producing robust, easy to build and maintain, scalable fault tolerant systems.
As is typical with dynamically typed languages, it offers a remarkable flexibility to the task of
programming. The price to pay for dynamic types is that many program errors will manifest
only as runtime errors, in contrast to the static compilation time errors obtained by type systems
à la Hindley-Milner [6] adopted by other functional languages like ML or Haskell.

This explains the interest of developing static analysis tools that anticipate to compilation
time as many runtime errors as possible. In the case of Erlang, after some attempts [15],
the Typer [11] and Dialyzer tools [10, 12, 9] were proposed and are currently into the official
distribution of Erlang. They can be used to extract the implicit type information contained
in the programs, both for documentation purposes and for finding errors at compile time.
In order to respect the actual flexibility of Erlang, an essential design principle of Dialyzer
was that it should neither require type annotations from the programmer nor produce false

∗Work partially supported by the Spanish MINECO project CAVI-ART-2 (TIN2017-86217-R), Madrid re-
gional project N-GREENS Software-CM (S2013/ICE-2731).

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 515–533

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

positives. The latter means that signalling a type error should only happen in situations where
it is certain that a runtime error will occur1. As said in [20], the lemma ‘well-typed programs
never go wrong’ of Hindley-Milner types is replaced in the Dialyzer approach by ‘ill-typed
programs always fail’2. To achieve that, Dialyzer infers so-called success types [12], that are
overapproximations to the real semantics of expressions, so that if a success type representing
the empty set of possible values –the type none(), in Dialyzer– is inferred for a given expression,
this implies that no possible computation for that expression can end successfully producing
a value. Notice that we must speak of ‘possible computation’ because of the non-determinism
introduced by concurrency. Expressions having a success type none() are the closest analog to
ill-typed expressions in standard type systems.

Being a great tool, Dialyzer exhibits however some weaknesses. Its ability to deal with
polymorphically typed functions is rather poor. It is not designed to infer by itself polymorphic
types. To overcome that, user-given polymorphic type specifications were considered in [9]. But
Dialyzer takes those specifications in such a way that most of polymorphism is lost.

A first contribution to address that problem was made in [14], where given an Erlang
program with user-given polymorphic type specifications, a new one is synthesized such that
Dialyzer, when run over the transformed program, infers more precise types for expressions
that use polymorphic functions. However, this approach is limited by its tight dependence of
Dialyzer. Any change made to the tool, could affect and even invalidate the transformations
proposed. Moreover, proving any theoretical result rely on trusting on non rigorously proved
properties of Dialyzer. This is a second relevant weakness of Dialyzer, the lack of a rigorous for-
malization and a well developed theoretical framework upon which one can justify the technical
correctness of the proposals.

The main motivation of this work is to develop a full type system, independent of Dialyzer,
with associated type checking and type inference mechanisms that follows the philosophy of
success types, coping appropriately with the issues of polymorphism and having at the same
time rigorous theoretical foundations. This work presents a polymorphic type system as first
step towards this aim. Concretely, we propose a set of typing rules for deriving polymorphic
success types for (Core) Erlang programs, and we prove correctness results with respect to a
suitable semantics of programs.

The considered semantics is set-valued due to the nondeterministic behaviour of message
passing-based concurrency. One problem to face –within the success types view– was that
having an ill-typed subexpression does not imply that the whole expression is also ill-typed3,
e.g. functional abstractions have always a non-empty type, even if the body is ill-typed, but
their application may have type none(). We had to take this into account in our typing rules.

The rest of the paper is organized as follows: Section 2 contains an informal introduction
to success types. Section 3 contains some preliminaries about the language considered in this
paper, its syntax and its semantics, covering the case of expressions with free variables. Sections
4 and 5 present the type system and its derivation rules, which are exemplified in Section 6.
Correctness results are given in Section 7, and Section 8 concludes the paper.

2 An informal introduction to success types
In this section we give a general overview of success types, and highlight their particularities.
Throughout this paper we use variables τ , τ1, etc. to denote success types. Their syntax and

1To be more precise, this can only be ensured for terminating computations.
2Again, this strictly applies only to terminating computations.
3Well-typed expressions in Hindley-Milner systems, requires all their pieces to be also well-typed.

516

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

semantics will be formally introduced in Section 4, but for the purposes of this overview we shall
say in advance that the types supported by Dialyzer include, among others, basic types (such
as integer(), number(), atom(), etc.), singleton types (for instance, 0, foo or []), union types
(written τ1 ∪ . . . ∪ τn), any() and none(). The type any() represents all the Erlang values,
whereas none() represents the empty set, that is, the absence of values. Dialyzer also supports
the type maybe_improper_list(τ1, τ2), which contains those lists whose elements are of type
τ1 and their continuation (i.e. its “innermost tail”) is of type τ2. For example, the list [1 |
[2 | b]] belongs to maybe_improper_list(integer(), atom()). If the continuation is an
empty list, we shall write [τ] instead of maybe_improper_list(τ, []).

As explained in Section 1, success types are overapproximations of the set of values that an
expression may evaluate to. For instance, assume the following Erlang definition:

f(0) -> foo;
f(1) -> bar.

The function f accepts (0 ∪ 1)→ foo ∪ bar as a success type, but (integer())→ atom() and
(any())→ any() are valid success types as well. Although these three types overapproximate
the semantics of f, the first one is more accurate than the others, and allows Dialyzer to report
that an application such as f(2) fails to evaluate.

Sometimes Dialyzer infers success types that, although correct, are somewhat counterintu-
itive in comparison with standard Hindley-Milner types. For instance, assume the following
function nth that, given a number N and a list Xs, returns the N-th element of Xs, or false if
N is greater than the length of the list:

nth(_, []) -> false;
nth(1, [X | Xs]) -> X;
nth(N, [_ | Xs]) -> nth(N - 1, Xs).

In a standard type setting one would expect a type such as (number(), [any()]) → any()
for this function. However, this is not a success type, since it excludes the application nth(foo,
[]), which is evaluated to false. Moreover, this type would demand Xs to be a proper list
(i.e. with [] as a continuation), even when an application such as nth(1, [a, [b | c]])
succeeds. A suitable success type for this function is (any(), maybe_improper_list(any(),
any())) → any(). In fact, if we define a function nth’ with the same clauses as nth but
excluding the first one, this function will fail in case N is longer than the input list, as it is
actually done in Erlang’s standard library. As a consequence, we obtain the type (number(),
maybe_improper_list(any(), any())) → any() for nth’, which rules out applications such
as nth’(foo, []).

In the current version of Dialyzer, a type specification may contain variables that re-
late the input and output of a function. For instance, given the nth function shown above,
the specification (any(), maybe_improper_list(α, any())) → α ∪ false states that nth
yields a value having the same type as the elements of the input list. From this specifica-
tion we would expect Dialyzer to infer the type b ∪ c ∪ false for the expression nth(2,
[b | [c | []]]), but unfortunately it infers any(). This is because Dialyzer does not di-
rectly use the polymorphic type given above, but a specific monomorphic instance: (any(),
maybe_improper_list(any(), any())) → any() ∪ false, so the connection between input
and output is lost. The aim of this paper is to devise a set of typing rules in order to obtain a
more accurate type for an application such as nth(2, [b | [c | []]]). Moreover, with our
typing rules we can also derive a polymorphic type for nth.

517

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

Success typings bring several particularities not occurring in standard Hindley-Milner sys-
tems. Firstly, every expression has at least one success type, which is any(). Secondly the
notion of τ being a success type of an expression e, which will be formally defined in Section 4,
is semantic rather than being directed by a set of rules. Therefore, no algorithm can, in gen-
eral, compute the set of all success types of an expression. For example, assume the following
expression:

e ≡ case b of true -> 1; false -> 2 end (1)

in which b is a complex expression that is always evaluated to true. In this case, 1 is a success
type of e but, in order to infer this type, an algorithm needs to know whether b is always
evaluated to true, which is an undecidable problem. Thirdly, there are some expressions
lacking a minimal success type. For example, given the following function:

g() -> receive
0 -> 0
1 -> [g() | []]

end

we can find an infinite strictly decreasing chain of success types:

0 ∪ [any()] ⊇ 0 ∪ [0 ∪ [any()]] ⊇ 0 ∪ [0 ∪ [0 ∪ [any()]]] ⊇ . . .

The set of typing rules introduced in Section 5 allows one to obtain success types for a given
expression. As we shall prove later, every type obtained by these rules is a success type, but not
every success type of e can be derived by applying them, as the example in (1) shows. Moreover,
every expression is well-typed according to our typing rules, since we can always derive the type
any() for every expression. Therefore, in a strict sense, there are no ill-typed expressions in our
system, although some of them can be inferred to have none() as a success type, which entails
that their evaluation will always fail at runtime. Lastly, the notion of polymorphism is subtler
in the context of success types than in Hindley-Milner type systems. In Hindley-Milner, any
instance of a valid polymorphic type scheme for an expression is a valid type for that expression.
For example, if ∀.(α)→ α is a valid Hindley-Milner type for the identity function, then so are
(bool()) → bool() and (int()) → int(). This is not true when considering success types,
since these two monomorphic success types are incompatible for the same expression (they
correspond to disjoint function graphs). In fact, the first monomorphic type would forbid the
application of the identity function to an integer, which is an expression that always succeeds.

3 Preliminaries

3.1 Language syntax
This work is focused on a subset of Core Erlang [4] —a simpler version of Erlang—shown in
Figure 1. There are some differences between the subset chosen in this paper and Core Erlang,
which are meant to simplify the typing rules without losing generality.

This subset has literals, variables, lists, tuples, lambda abstractions, let expressions to intro-
duce new variables, letrec expressions to introduce new recursive functions, case expressions to
branch the execution, receive expressions to branch the execution when a message is received,
and function calls. The variable in the after clause of a receive expression can be an integer
or the atom ’infinity’. In this last case the after clause will never be reached.

518

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

var ::= VariableName exp ::= var | lit | fun | [exp1|exp2] | {expin}

lit ::= Atom | Integer | Float | [] | var(var in) | let var = exp1 in exp2

pat ::= var | lit | [pat1|pat2] | {pati
n} | letrec var i = funi

n in exp

cls ::= pat when exp1 → exp2 | case var of clsi
n end

fun ::= fun(var in)→ exp | receive clsi
n after var → exp

Figure 1: Subset of the Core Erlang syntax

Exceptions are supported in Erlang, but the programming philosophy of the language dis-
courages its use. Thus we choose to leave try/catch and exceptions as a future goal. In the
chosen subset, we only allow variables in case discriminants and application parameters in or-
der to simplify the typing rules.4 This allows us to attach type information to the discriminant
when typing the branches. We also assume that, in the context of function applications, the
function being applied and the arguments are variables, so that their types can be stored in a
typing environment when analysing a function application.

3.2 Semantics of language expressions
In previous work [14] the semantics of a closed expression is defined as a subset of DVal, where
DVal represents all the possible values that can be reached with the language expressions. To
represent functions inside DVal we use graphs, which are sets of tuples ((args), value) where a
sequence of values args (the arguments) is related to a result value. Due to the nondeterministic
nature of concurrent Erlang, a tuple args may be related to more than one result inside a function
graph. In this sense, the semantics of a function is a mathematical relation. To represent data
structures inside DVal we also use tuples (ctor , args), where ctor is the constructor of the
structure and args is a sequence of values taken by the constructor. The constructors we have
in our language are:

• {
n· · ·} an Erlang tuple with n elements whose values are args.

• [_|_] an Erlang list constructor, where the first value of args is the head value of the list,
and the second is the tail. We also use the notation ([_|_], v1, . . . , vn−1, vn) to denote
n− 1 nested list constructors.

To extend these concepts to expressions with free variables we need to consider substitutions
that give values to variables. A substitution θ is a total function Var → DVal, where Var is
the set of all variables. Subst denotes the set of all substitutions. The notation [] is used to
assign the default value 0 to all variables (any default value other than 0 would serve). The
notation [x1/v1, . . . , xn/vn] is used to represent the substitution that assigns the value vi to the
variable xi and 0 to the other variables.

The semantics E JeK of an expression e is defined as a relation E JeK ⊆ Subst×DVal. The
idea is that if (θ, v) ∈ E JeK then v is one of the possible values to which eθ can be reduced. The
complete definition of E JeK is given in Figure 2.

4Using only variables in arguments is no loss of generality, because we can use (possibly nested) let-bindings
to introduce non-variable arguments.

519

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

E JcK = {(θ, c) | θ ∈ Subst} E JxK = {(θ, θ(x)) | θ ∈ Subst} E Jf(xin)K =
{

(θ, v) | ((θ(xi)
n), v) ∈ θ(f)

}
E J{ein}K =

{(
θ,
(

{
n· · ·}, vin

))
| ∀i ∈ {1..n} : (θ, vi) ∈ E JeiK

}
E J[e1 | e2]K = {(θ, ([_|_], v1, v2)) | (θ, v1) ∈ E Je1K , (θ, v2) ∈ E Je2K}

E Jfun(xin)→ eK =
{(
θ,
{

((vin), v) | (θ[xi/vi], v) ∈ E JeK
})
| θ ∈ Subst

}
E Jlet x1 = e1 in e2K = {(θ, v) | (θ, v1) ∈ E Je1K , (θ[x1/v1], v) ∈ E Je2K}

E
r

case x of clsi
n
z

=
n⋃
i=1

{
(θ, v) | vjm ∈ DVal, (θ[xij/vj], v) ∈ C JclsiK{θ(x)} ,(
∀k < i.∀vj ′.∀v′.(θ[xkj/v′j], v′) /∈ C JclskK{θ(x)}

)}
where ∀i ∈ {1..n} : clsi = (pi when ei → e′i) and vars(pi) = {xij}

E
r

receive clsi
n after et → e

z
=

n⋃
i=1

{
(θ, v) | vjm ∈ DVal, (θ[xij/vi], v) ∈ C JclsiKDVal ,(
∀k < i.∀vj ′.∀v′.(θ[xkj/v′j], v′) /∈ C JclskKDVal

)
,

(θ, vt) ∈ E JetK , vt ∈ integer() ∪ {infinity}}
∪ {(θ, v) | (θ, v) ∈ E JeK , (θ, vt) ∈ E JetK , vt ∈ integer()}

where ∀i ∈ {1..n} : clsi = (pi when ei → e′i) and vars(pi) = {xij}

E Jletrec xi = ei
n in eK =

{
(θ, v) | (vin) = lfp Fθ, (θ[xi/vi], v) ∈ E JeK

}
where Fθ(vin) = (v′i

n) and ∀k ∈ {1..n}. {v′k} =
{
v | (θ[xi/vi], v) ∈ E JekK

}
C Jp when eg → eKV = {(θ, v) | (∀v′ ∈ V.(θ, v′) ∈ E JpK), (θ, true) ∈ E JegK , (θ, v) ∈ E JeK}

Figure 2: Denotational semantics of expressions

4 Type system
In this section we describe the syntax and semantics of the types that can be derived from the
typing rules introduced in the next section. We assume the existence of a set B of basic types
such as integer(), atom(), number(), etc. each one denoting a set of Erlang values. For each
basic type B ∈ B the notation B JBK represents the set of values denoted by this type. For
instance, B Jinteger()K includes the set of integer numbers, whereas B Jatom()K denotes the
set of Erlang atoms (i.e. symbolic constants).

We also assume the existence of a set TypeVar of type variables, each of which are repre-
sented by α, β, etc. Type variables are used to obtain polymorphic types in our system and,
depending on the context in which they appear, they can denote a single value or a set of values.

4.1 Syntax of polymorphic types
We denote by Type the set of types respectively generated by the following syntax rules:

τ ::= none() | any() | B | v | {τin} | τ1 ∪ τ2 | nelist(τ1,τ2) | (τin) C−→ τ | α | σ
C ::= {τ1 ⊆ τ ′1, . . . , τn ⊆ τ ′n}
σ ::= ∀α1 ⊆ τ1, . . . , αn ⊆ τn.τ

520

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

where B ∈ B, v ∈ DVal, and α ∈ TypeVar.
The type none() denotes the absence of values. If an expression has none() as a success

type, then it does not evaluate to any value, that is, its evaluation will either fail or diverge.
On the contrary, the type any() denotes the set DVal containing all values, so this type always
overapproximates the set of values to which an expression is evaluated. In other words, any()
is a success type of every expression. The type system also features singleton types, in the sense
that for every value v ∈ DVal there is a type v denoting the set {v}.

The tuple type {τ1, . . . , τn} denotes those tuples whose i-th component is contained within
the type τi for each i ∈ {1..n}. The type nelist(τ1,τ2) represents those nonempty lists whose
elements are within the type τ1 and their continuations (i.e. their innermost tails) belong to the
set denoted by the type τ2. In Erlang we can make distinction between proper and improper
lists. A list is proper if its innermost tail is the empty list, and it is improper otherwise. For
instance, the expression [1|[2|[3|[]]]] evaluates to a proper list, whereas [a|[b|[c|d]]]
does not, since its innermost tail (d) is not the empty list. Nonempty proper lists whose
elements have type τ can be represented by the type nelist(τ,[]), where [] is the singleton
type denoting the empty list. The proper list shown before is usually shortened to [1,2,3].

The union type τ1 ∪ τ2 denotes the set of values contained in τ1, τ2, or both. For instance,
the type nelist(τ,[]) ∪ [] represents all the (possibly empty) proper lists whose elements
have type τ . In the following we use [τ] as a shorthand for this type. Note that the type
maybe_improper_list(τ1, τ2) used in the examples of Section 2 is actually a shorthand for
nelist(τ1,τ2) ∪ [].

The type (τ1, . . . , τn) C−→ τ denotes the set of n-ary functions that accept values in (τ1, . . . , τn)
and yield a result in τ . The C lying above the arrow is a sequence of constraints on the type
variables occurring in the functional type and/or the typing context. These constraints pose
necessary conditions for the evaluation of the function described by this type. Their role will
be detailed in Section 4.3.

A type variable α is a placeholder which may denote a single value or a set of values. If a
type variable appears more than once in a type or type environment, all its occurrences will be
“related” in some way that will be more accurately described later in this section. For example,
according to the semantic definitions given later, it turns out that the type {α, α} denotes the
set of pairs whose components are the same, and the type {nelist(α,[]), α} represents those
pairs made up of a nonempty list and a value such that the latter is contained within the list.
In the following we use ftv (τ) to denote the set of free type variables occurring in τ .

A type scheme ∀α1 ⊆ τ1, . . . , αn ⊆ τn.τ denotes a polymorphic type τ where the α1, . . . , αn
are bound type variables, each of which must satisfy the restriction αi ⊆ τi, denoting that αi
is a subtype of τi. If τi is omitted, it is assumed to be any().

4.2 Type instantiations
In order to figure out the set of values denoted by a given type τ (i.e. the semantics of τ) we
have to address the case in which τ contains free type variables. The first step is to determine
what these variables stand for. In a standard Hindley-Milner setting, type variables can be
instantiated by types, so an instance of a polymorphic type is a substitution that maps type
variables to types. Since a type denotes a set of values, in this paper we take a slightly more
generic approach: a type variable is directly replaced by a set of values, rather than by a type.
That is why define a type instantiation as a mapping from type variables to sets of values. We
use the variables π, π1, etc. to denote type instantiations, so we get π : TypeVar→ P (DVal).
We say that a type variable α is instantiated by π iff π(α) 6= ∅. We denote by dom π the set of

521

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

type variables instantiated by π.
We denote by [] the instantiation π such that dom π = ∅ and by [αi 7→ Vi

n] the instan-
tiation in which αi is instantiated to Vi for every i ∈ {1..n} and the other variables are left
uninstantiated. Moreover, the notation π\{α1, . . . , αn} denotes the same instantiation as π but
with the variables α1, . . . , αn uninstantiated.

An order relation ⊆ is defined between type instantiations in a pointwise basis, i.e. π1 ⊆ π2
iff π1(α) ⊆ π2(α) for every α ∈ TypeVar. We similarly define the union and intersection of
type instantiations, respectively denoted by π1 ∪ π2 and π1 ∩ π2. When defining the semantics
of a type, we shall need to check whether a type variable is instantiated to different non-disjoint
sets in its several occurrences. Hence we say that two instantiations π1 and π2 are compatible iff
for every variable α instantiated by both π1 and π2 it holds that π1(α)∩π2(α) 6= ∅. Given this,
the notation π1 ⊕ π2 denotes the intersection of π1 and π2 whenever these type instantiations
are compatible; otherwise the result of π1 ⊕ π2 is undefined. More generally, the intersection
π1 ⊕ . . .⊕ πn is defined provided

⋂
i∈{1..n},α∈dom πi

πi(α) 6= ∅ for every α.

4.3 Type environments
In a Hindley-Milner type system, a type environment contains the type of every variable in
scope. The type environments introduced in this section take on the same role but, in addition,
they contain information constraining the type variables. Therefore, we define a type environ-
ment Γ as a pair 〈γ,C〉, in which γ is a total function from variables to types and C is a set
of constraints. Although γ is total, we assume that γ assigns a type different from any() to
a finite subset of variables. Throughout the paper we use the following notation to represent
type environments [x1 : τ1, . . . , xn : τn | τ ′1 ⊆ τ ′′1 , . . . , τ ′m ⊆ τ ′′m], which denotes the environment
Γ = 〈γ,C〉 such that γ(xi) = τi for every i ∈ {1..n}, γ(z) = any() for every other variable,
and C = {τ ′1 ⊆ τ ′′1 , . . . , τ

′
m ⊆ τ ′′m}. As a particular case, [] denotes the environment mapping

every variable to any() with an empty set of constraints, whereas ⊥ will be used to describe
the environment that maps one of its variables to none()5. If we want to refer to a specific
component of an environment Γ, we use Γ|γ and Γ|C to denote the first and second components
of Γ, respectively. For the sake of clarity, we use Γ(x) to denote γ(x). Given a type Γ and a set
X of variables, the notation Γ\X stands for the environment that results from replacing the
types of the variables of X by any(). For the sake of conciseness, in the case in which X is the
singleton set {x}, we leave out the curly braces so as to get Γ\x.

The role of type variables in environments is the same as in types: they denote relations
between the different variables in scope. For example, according to the definition that will be
given in Section 4.4, the environment [X : α, Y : α] specifies that the values of X and Y must be
equal, whereas the environment [Xs : nelist(α,[]), Z : {α, int()} | α ⊆ atom()] specifies that
Xs must contain a nonempty list of atoms, and that the first component of the tuple contained
in Z must be one of the elements of that list.

4.4 Semantics of polymorphic types
Having introduced all the concepts in the previous sections, our next step is to put all the pieces
together and provide a semantics for types and environments. In principle, a type denotes a
set of values, so we need a function T J_K that, given a type τ , it returns a set T JτK ⊆ DVal
containing the values of the language abstracted by τ . However, types might contain type
variables, so we need a type instantiation π that tells us the values denoted by each of them.

5We assume that this particular variable has been fixed in advance.

522

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

Tπ Jnone()K = ∅ Tπ Jτ1 ∪ τ2K = Tπ Jτ1K ∪ Tπ Jτ2K

Tπ Jany()K =
{

DVal if π = []
∅ otherwise

Tπ JBK =
{
B JBK if π = []
∅ otherwise

Tπ JvK =
{
{v} if π = []
∅ otherwise

Tπ JαK =
{
{v} if π = [α 7→ {v}]
∅ otherwise

Tπ J{τin}K =
{(

{
n· · ·}, vin

) ∣∣∣∣∣π =
n⊕
i=1

πi,∀i ∈ {1..n} .vi ∈ Tπi JτiK

}

Tπ Jnelist(τ1,τ2)K =
{

([_|_], vin, v′)
∣∣∣∣∣n ≥ 1, π =

n⋃
i=1

πi ⊕ π′,∀i ∈ {1..n} .vi ∈ Tπi Jτ1K , v′ ∈ Tπ′ Jτ2K

}

Tπ
r

(τin) C−→ τ
z

=

f
∣∣∣∣∣∣π =

⋃
w∈f

πw, f ⊆

{
((vin) , v)

∣∣∣∣∣πw � C, πw �ftv(τin)=
n⊕
i=1

πi,

∀i ∈ {1..n} .vi ∈ Tπi JτiK , v ∈ Tπ′
w

JτK , π′w ⊆ πw
}}

T πEnv JΓK =
{
θ ∈ Subst

∣∣∣∣∣π �ftv(Γ|γ)=
⊕
x∈Var

πx,∀x ∈ Var.θ(x) ∈ Tπx JΓ(x)K , π � Γ|C

}
Sπ

q
∀αi ⊆ τi

n
.τ

y
=
{
v
∣∣∣∀i ∈ {1..n} .Vi ⊆ DVal, π′ = π

[
αi 7→ Vi

n
]
, π′ �

{
αi ⊆ τi

n}
,

π′ �ftv(τ)= π′′, v ∈ Tπ′′ JτK
}

Figure 3: Semantics of polymorphic types, type environments and type schemes

Therefore, instead of T JτK we write Tπ JτK to denote the semantics of the type τ under a type
instantiation π.

The notation π �{α1,...,αn} denotes that the type instantiation π is restricted to a set of type
variables {α1, . . . , αn}, this means any other type variables instantiated will be removed from
π.

The definition of Tπ JτK is shown in Figure 3. Notice that in the cases any(), v, and B, we
demand the type instantiation π to be empty in order to obtain a non-empty semantics, whereas
in the case of a type variable we demand π to instantiate only this variable with a singleton set.
In general, the definition of Tπ JτK, will demand π to be a minimal instantiation that makes v
belong to the semantics of τ . If τ does not contain type variables, such an instantiation will be
empty. If we want a value v to belong to the semantics of a type variable α, then [α 7→ {v}] is the
minimal instantiation that will make this possible. The choice of having minimal instantiations
throughout our semantics is justified by the case of tuple types, in which the type instantiation
π is decomposed into several instantiations (one for each component), all of which must be
compatible. Without the minimal instantiation requirement we would have, for instance, that
{4, a} belongs to {α, α} under the instantiation π = [α 7→ {4, a}], which would render type
variables useless, since saying that v ∈ Tπ J{α, α}K for some π would be the same as saying
that v ∈ Tπ J{any(), any()}K. On the contrary, with the minimal instantiation requirement we
are able to express the intended meaning of {α, α}, that is, whenever {v1, v2} ∈ Tπ J{α, α}K, it
must hold that v1 = v2 and π = [α 7→ {v1}].

The semantics of nelist(τ1,τ2) is the set of nonempty lists containing elements from τ1
and a continuation in τ2. In this case π is decomposed into a union

⋃n
i=1 πi for the list elements

523

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

and π′ for the continuation. Unlike the case of tuples, the different πi need not be compatible.
If they were forced to be compatible, the type nelist(α,[]) would only contain those lists
containing the same element repeated (e.g. [v, v, . . . , v]), which is not the intended meaning. On
the contrary, with our actual definition we get that [v1, . . . , vn] ∈ Tπ Jnelist(α,[])K whenever
π = [α 7→ {v1, . . . , vn}]. In fact, one can prove that {[v1, . . . , vn], v} ∈ Tπ J{nelist(α,[]), α}K
implies v = vi for some i ∈ {1..n}.

In the case of functional types (τin) C−→ τ , we obtain the set of functions f that map
arguments from τi to values from τ . For each function f we must be able to decompose π into
several πw, one for each tuple of the graph of f . Each πw is decomposed into the instantiations
π1, . . . , πn for the arguments (in a similar way to tuple types), and the instantiation of the result
must be a subset of this πw. The latter restriction tries to capture the notion of parametricity
as in Reynold’s abstraction theorem [19] and Wadler’s free theorems [24]. For instance, we can
prove that if f belongs to the semantics of α → α then f must be a subset of the identity
function, and that if g belongs to [α] → α ∪ false, then the result of g(Xs) must be either one
of the elements of the list Xs or the atom false. If a variable does not get instantiated in the
left-hand side of a functional type, it must not get instantiated in the right-hand side. Hence
g([]) must be evaluated to false in the previous example.

In the definition of the semantics of functional types we demand that the instantiation πw
corresponding to each tuple w satisfies the set C of constraints specified in the arrow of the
type. This is denoted by π � C. In order to give a proper notion of satisfiability we have to
take the semantics of the types in both sides of each equation into account, but dropping the
minimality requirement on type instantiations. Given a type τ and an instantiation we define
T JτπK as follows: T JτπK =

⋃
π′⊆π Tπ′ JτK. Therefore, we say that π � {τ1 ⊆ τ ′1, . . . , τn ⊆ τ ′n}

iff T J{τ1, . . . , τn}πK ⊆ T J{τ ′1, . . . , τ ′n}πK. As an example, we get that [α 7→ {1, 2}] satisfies
{α ⊆ int()}, but [α 7→ {1, 2, a}] does not.

In order to motivate the existence of sets of constraints above the arrows of functional types,
let us consider the following expression e = fun(X)→ fun(Y)→ {X,X + Y }. A success type
of e would be number() → number() → {number(), number()}. However, this type does not
capture the fact that the first component of the result is the parameter X bound in the outer
λ-abstraction. A more accurate success type of e would be ∀α.α→ number()→ {α, number()}.
Moreover, since the addition operator only succeeds when applied to numeric arguments,
we would be tempted to give the following type for e: ∀α ⊆ number().α → number() →
{α, number()}. However, this is not a success type for e, as this type forbids any instanti-
ation of α with non-numeric arguments, while we could, for example, apply e to a list and
successfully obtain a closure. The execution of this closure would fail when applied to any
value, but the application of the outer λ-abstraction has been evaluated successfully, even
if it yields a function that always fails when applied. If we want to convey that α must
be instantiated by a numeric type only when applying the inner abstraction, we could use
∀α.α→ (number()) α⊆number()−−−−−−−→ number(), which is a success type of e.

The semantics of an environment Γ (written T πEnv JΓK) is the set of substitutions θ such
that one can decompose the π into several instantiations πx (one for each variable x), so that
θ(x) ∈ Tπx JΓ(x)K for every x and π satisfies the constraints in Γ. Otherwise T πEnv JΓK is empty.
This definition is formalized in Figure 3. If we are only concerned about the existence of a π
rather than the π itself, we can leave out the instantiation from T πEnv J_K:

TEnv JΓK = {θ ∈ Subst | θ ∈ T πEnv JΓK for some π}

The semantic definition of type environments induces a pre-order between them: we say that

524

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

Γ1 ⊆ Γ2 iff TEnv JΓ1K ⊆ TEnv JΓ2K, and we use Γ1 ≡ Γ2 to denote the conjunction of Γ1 ⊆ Γ2
and Γ2 ⊆ Γ1. Although the pair (Γ,⊆) is not a complete lattice, we can prove the existence of
an operator u such that TEnv JΓ1 u Γ2K ⊇ TEnv JΓ1K ∩ TEnv JΓ2K for every Γ1,Γ2 ∈ Env. More
details on this operator will be given in Section 7.1.

4.5 A generalization of success types
According to previous work [14] a type τ is said to be a success type of e if the set of values
obtained from E JeK (disregarding substitutions) is a subset of T JτK. However, this definition
only applies to closed expressions (i.e. without free variables) and monomorphic types. It does
not pose any constraints on the free variables of e. For instance, we can say that number() is a
success type for X + 1, since the values of E JX + 1K are a subset of T Jnumber()K, but we also
want to convey that θ(X) must be a number in order to evaluate this expression successfully.
The latter restriction can be expressed as θ ∈ TEnv J[X : number()]K, so in this case there is a
pair 〈number(); [X : number()]〉 which overapproximates the semantics of X + 1. In general,
we can approximate the semantics of expressions by pairs 〈τ ; Γ〉, where τ is a type and Γ is a
type environment. Given that τ and Γ might have type variables in common, we can relate the
type variables in τ to those in Γ just in the same way as one relates the type variables of the
right-hand side of a functional type to those in the left-hand side: by demanding that the type
instantiation used in τ is a subset of the type instantiation used in Γ. Therefore, the semantics
of a pair 〈τ ; Γ〉 is defined as follows:

Tπ Jτ ; ΓK = {(θ, v) | θ ∈ T πEnv JΓK , v ∈ Tπ′ JτK , π′ ⊆ π}
T Jτ ; ΓK = {(θ, v) | (θ, v) ∈ Tπ Jτ ; ΓK for some π}

so we say that the pair 〈τ ; Γ〉 overapproximates the expression e whenever E JeK ⊆ T Jτ ; ΓK.
The semantic definition of pairs 〈τ ; Γ〉 also induces a pre-order between them: 〈τ1; Γ1〉 ⊆

〈τ2; Γ2〉 iff T Jτ1; Γ1K ⊆ T Jτ2; Γ2K. Similarly to type environments, we can also prove the
existence of an operator u on pairs such that T J〈τ1; Γ1〉 u 〈τ2; Γ2〉K ⊇ T Jτ1; Γ1K∩T Jτ2; Γ2K for
any τ1,Γ1, τ2, and Γ2.

5 Typing judgements
The definition of success types given in [9] states that τ1 → τ2 is a success type of the function
f if and only if, for all v, v′ ∈ DVal, such that f(v) evaluates to v′, then v is contained in τ1
and v′ is contained in τ2. In other words, if the graph of the function denoted by f is contained
within the semantics of τ1 → τ2.

With the type rules shown in this section we shall obtain, for each expression e, a type and an
environment, the latter expressing necessary conditions for the evaluation of e. However, it will
be convenient to add to our judgements another environment which will reflect some (already
known) assumptions on the free variables of the expression e. Therefore, our judgements will
be of the form Γ ` e : τ,Γ′, with the following meaning: assuming that the values of the
free variables in e are contained within their corresponding types in Γ, if e is evaluated to
a value v, then the values of the free variables in e are contained within the types in Γ′ for
some π and v is of type τ for π′ ⊆ π. More precisely, if θ ∈ TEnv JΓK and (θ, v) ∈ E JeK then
θ ∈ T πEnv JΓ′K for some π and v ∈ Tπ′ JτK for some π′ ⊆ π. This can be expressed more succinctly
as E JeK �TEnvJΓK⊆ T Jτ ; Γ′K. In the following we use the terms assumption environment and final
environment to refer to Γ and Γ′ respectively.

525

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

Γ1 ` e : τ,Γ2 Γ′1 ⊆ Γ1

Γ′1 ` e : τ,Γ2
[SUB-1]

Γ1 ` e : τ,Γ2 〈τ ; Γ2〉 ⊆ 〈τ ′; Γ′2〉
Γ1 ` e : τ ′,Γ′2

[SUB-2]

Γ1 ` e : τ,Γ2 Γ2 ` e : τ ′,Γ3

Γ1 ` e : τ ′,Γ3
[TRANS] Γ ` c : c,Γ [CONS] Γ ` x : Γ(x),Γ [VAR]

Γ ` ei : τi,Γ′i
〈τ1; Γ′1〉 ⊗ · · · ⊗ 〈τn; Γ′n〉 = 〈τ ; Γ′〉

Γ ` {ein} : τ,Γ′ [TUPLE]

Γ ` e1 : τ1,Γ1 Γ ` e2 : τ2,Γ2
〈τ1; Γ1〉 ⊗ 〈τ2; Γ2〉 = 〈{τ1, τ2}; Γ′〉
Γ ` [e1 | e2] : nelist(τ1,τ2),Γ′ [LIST]

Γ u [f :
(

any()
n
)
→ any()] ⊆ Γ0 Γ0(f) = ∀αj ⊆ any()

m
. (τin) C−→ τ ′

〈τ ′; [xi : τin | C]〉 u 〈any(); Γ0〉 ⊆ 〈τ ; Γ′〉
Γ ` f(xin) : τ,Γ′ [APP-1]

Γ ` e : τ,Γ′ Γ′ = [xi : τin, yi : βi
m | C]

ftv (τi) ∩ {βi} = ∅ {αi} = ftv (Γ′) \{βi}〈(
∀αi. (τin) C−→ τ

)
, [yi : βi

m]
〉
u 〈any(); Γ〉 ⊆ 〈τ ′,Γ′′〉

Γ ` fun(xin)→ e : τ ′,Γ′′ [ABS]
Γ u [f :

(
any()

n
)
→ any()] ≡ ⊥

Γ ` f(xin) : none(),⊥
[APP-2]

Γ ` e1 : τ1,Γ1
Γ1[x : τ1[αi/α′i] | α′i ⊆ αi] ` e2 : τ2,Γ2

{αi} = ftv (τ1) {αi′} ∩ (ftv (τ1) ∪ ftv (Γ1)) = ∅
Γ ` let x = e1 in e2 : τ2,Γ2\x

[LET]

clsi = (pi when e′i → e′′i)
Γ {x} clsi : τi,Γi

〈τi; Γi\vars(pi)〉 ⊆ 〈τ ; Γ′〉
Γ ` case x of clsi

n : τ,Γ′
[CASE]

clsi = (pi when e′i → e′′i)
Γ u [xt : integer() ∪ ’infinity’] ∅ clsi : τi,Γi

Γ u [xt : integer()] ` e : τ,Γ′ 〈τi; Γi\vars(pi)〉 ⊆ 〈τ ; Γ′〉
Γ ` receive clsi

n after xt → e : τ,Γ′
[RECEIVE]

Γ0 ≡ Γ u [xj : τjn] Γ0 ` fi : τi,Γ0 Γ0 ` e : τ,Γ′

Γ ` letrec xi = fi
n in e : τ,Γ′\ {xjn}

[LREC]

Γ ` p : τp,Γp Γp u [X : τp] ` eg : τg,Γg
Γg u [’true’ ⊆ τg] ` e : τ,Γ′

Γ X p when eg → e : τ,Γ′ [CLS]

Γ1 X cls : τ,Γ2
Γ2 X cls : τ ′,Γ3

Γ1 X cls : τ ′,Γ3
[CLS-TRANS]

Figure 4: Typing rules for expressions and clauses.

The typing rules are shown in Figure 4. The rule [SUB-1] specifies that we can replace
the assumption environment Γ1 by a stronger (i.e. more restrictive) one, whereas rule [SUB-2]
allow us to weaken the type τ and the final environment Γ2 accordingly.

The [TRANS] rule specifies that, whenever we have a judgement Γ1 ` e : τ,Γ2 we can re-
evaluate the type of e, this time under the assumptions given in Γ2. This re-evaluation might
allow us to further refine the type of e.

The [CONS] and [VAR] rules specify that the final environment poses no further constraints
besides those in the assumption environment, whereas [TUPLE] and [LIST] merge the types
and final environments of each subexpression with the operator ⊗. This operator, when applied
to a sequence of pairs 〈τ1; Γ1〉, . . . , 〈τn; Γn〉 joins all the τi into a tuple type while applying the
u operator to the Γi, since a substitution θ must belong to the semantics of every Γi in order to
evaluate the whole expression under θ. Although a concrete definition of ⊗ will be given later,
for now it is enough to assume that this operator satisfies the following condition for every

526

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

substitution θ and values v1, . . . , vn:

∀i ∈ {1..n}.(θ, vi) ∈ T Jτi; ΓiK =⇒ (θ, ({ n· · ·}, vin)) ∈ T J〈τ1; Γ1〉 ⊗ . . .⊗ 〈τn; Γn〉K

With respect to the [ABS] rule, the final environment is the same as the assumption envi-
ronment, since the evaluation of a λ-abstraction always succeeds. We use the type variables βi
to denote the types of the free variables in the λ-abstraction. The functional type has to be
generalized with the type variables αi appearing in Γ′ except those of βi, since the latter relate
the functional type to the context in which the λ-abstraction appears. The constraints C of
final environment Γ′ are only relevant when executing the function, so these are placed above
the arrow in the functional type.

We have two rules for function applications: [APP-1] only makes sense when the type
assumed for f is compatible with a functional type, whereas [APP-2] specifies that the evaluation
of the expression will fail otherwise. In the first case, the final environment demands the values
passed as arguments to be of the corresponding types τ1, . . . , τn, taking the constraints C above
the arrow into account.

In the [LET] rule we obtain a pair 〈τ1; Γ1〉 for the bound expression. According to the
semantics of this pair (see Section 4.5) the instantiation of the free variables in τ1 must be a
subset of the instantiation of the same variables in Γ1. We reflect this condition by introducing
a fresh variable α′i for each type variable in αi in τ1 and specifying the constraint α′i ⊆ αi in
the initial environment that will be used to analyse the main expression e2.

In order to derive a type for a case or a receive expression, we have to derive one for each
of its clauses. With the rules [CLS] and [CLS-TRANS] rules we obtain judgements of the form
Γ X cls : τ,Γ′, where X may be a singleton set (containing the discriminant variable of a case
expression) or an empty set (in the case of receive expressions). If X is a singleton set {x}
the notation [X : τ] abbreviates [x : τ], whereas if X is empty, this notation abbreviates the
empty environment. The rule [CLS] handles those cases in which the type of the discriminant
is compatible with the type of the pattern and the type of the guard contains the atom true to
evaluate the body expression. Having derived the typing judgements relative to every clause in
a case or in a receive, the rule [CASE] takes the type and final environment of each clause and
removes the pattern variables, since these are no longer free. The rule [RECEIVE], in order to
evaluate the clauses, demands the variable xt to have a type inside integer() ∪ ’infinity’,
but, in order to evaluate the body of the after expression, the variable xt must be a subtype
of integer().

Our first result states that we can always find a type derivation for a given expression:

Proposition 1. Given any expression e and initial environment Γ, there exist τ and Γ′ such
that Γ ` e : τ,Γ′. In particular, Γ ` e : any(), []

Proof. Straightforward, by inspection of the typing rules. Side-conditions involving the inclu-
sion relation ⊆ between environments or pairs 〈τ ; Γ〉 can always be satisfied by choosing []
and 〈any(); []〉 respectively on the right-hand side of these conditions. If the remaining side
condition of [APP-1] does not hold, then the rule [APP-2] can be applied. With respect to
[LET] rule, the side condition {αi′} ∩ (ftv (τ1)∪ ftv (Γ1)) = ∅ can always be satisfied by forcing
αi
′ to be a vector of zero length.
Once we prove have derived the judgement Γ ` e : τ,Γ′ for some τ and Γ′, and given that

〈τ ; Γ′〉 ⊆ 〈any(); []〉, we can use rule [SUB-2] in order to obtain Γ ` e : any(), [].

527

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

6 Examples
6.1 A simple function
In this example6 we use the symbol + as the variable that represents the function ’erlang’:’+’,
whose type is τ+ = (number(), number())→ number() and it will be given in the initial envi-
ronment Γ0 = [+ : τ+]. The code is the following:

fun(A)→ let B = 1 in {A,A+B}

The type ∀. (α) α⊆number()−−−−−−−→ {α, number()} is obtained with the following derivation:

Γ1 u [+ : (any(), any())→ any()] ⊆ Γ1
〈number(), [A : number(), B : number()]〉 u 〈any(),Γ1〉 ⊆ 〈number(),Γ3〉

Γ3 = [+ : α+, A : αA, B : αB | αA ⊆ number(), αB ⊆ 1, α+ ⊆ τ+]
Γ1 ` A+B : number(),Γ3

[APP-1]

Γ2 ` A : αA,Γ2 Γ1 ⊆ Γ2
Γ2 = [+ : τ+, A : αA, B : 1]

Γ1 ` A : αA,Γ2
[SUB-1]

Γ1 ` A : αA,Γ2
Γ1 ` A+B : number(),Γ3

Γ1 ` {A,A+B} : {αA, number()},Γ3
[TUPLE]

Γ0 ` 1 : 1,Γ0 Γ1 ` {A,A+B} : {αA, number()},Γ3 Γ1 = [+ : τ+, B : 1]
Γ4 = Γ3\B = [+ : α+, A : αA | αA ⊆ number(), αB ⊆ 1, α+ ⊆ τ+]

Γ0 ` let B = 1 in {A,A+B} : {αA, number()},Γ4
[LET]

Γ0 ` let B = 1 in · · · : {αA, number()},Γ4

Γ0 ` fun(A)→ · · · : ∀. (α) α⊆number()−−−−−−−→ {α, number()},Γ0

[ABS]

This type is semantically different from, for instance, the type ∀. (α) α⊆number()−−−−−−−→ {α, α}
which is not a success type for this example, since this type only accepts to return tuples whose
both components are equal to the input value. On the other hand, the type (number()) →
{number(), number()} is a success type for the expression, since its semantics contains the
semantics of the type obtained in the derivation. But this larger type is less refined and it has
no polymorphism, due to the lack of type variables to connect the parameters of the function
with the type of the result.

6.2 Functions on lists
In this section we will show the types obtained for some functions involving lists, such as Foldl,
Reverse, Filter , and Nth; some of them are higher-order functions. The code of these functions
and a full derivation of an additional example (Map) can be found at [13].

The type ∀α.∀β.∀γ. ((α, β)→ γ, β′, [α′]) α′⊆α−−−→ γ ∪ β′ is obtained for Foldl from a deriva-
tion with our type system, where the first parameter F is the function that mixes the received
accumulated value in the second parameter A with the head of the third parameter L. The
type ∀α.∀β.∀γ. ((α, γ)→ β, γ′, [α′]) α′⊆α,γ′⊆γ−−−−−−−→ β is not a success type of this function, because
when L is an empty list the parameter A need not be related to the type of F ’s result, since
the mixer function is not going to be called. For this reason, when L is an empty list, the result
obtained from the [CLS] rule is the pair 〈β′1; [F : (α1, β1) → γ1, A : β′1, L : []]〉 while in the
clause handling nonempty lists, we obtain 〈γ2; [F : (α2, β2) → γ2, A : β′2, L : nelist(α′2,[]) |
α′2 ⊆ α2, β

′
2 ⊆ β2]〉. When these pairs are merged in the final result of the [CASE] rule, the con-

nection between the variable A and the function F is lost since the union of β′1 and β′2 is any().
6To keep the examples shorter, the use of [CONS] and [VAR] is not shown because their use is trivial.

528

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

On the other hand, L does not collapse to any() since the union of [] and nelist(α′2,[]) is
[α′2], and the constraint α′2 ⊆ α2 is not lost.

The type ∀α. ([α])→ [α] is obtained for Reverse from a derivation with our type system,
where the only parameter L is a list. The list reversal is done through an auxiliary function
R2 with two parameters, where the first parameter LS is a list and the second parameter A
is an accumulator. Since the type we obtain for R2 is ∀α.β. ([α], β) → β ∪ nelist(α,β), a
derivation for R2(L, []) yields the following pair as result: 〈β ∪ nelist(α,β); [L : αL,K :
αK | αL ⊆ [α], αK ⊆ [], αK ⊆ β]〉. For any element belonging to this pair, the corresponding
instantiation will map both β and αk to singleton sets, so β must be mapped to the empty list
according to the constraints. Therefore, we can simplify the result of Reverse to [α].

The type ∀α.∀β. ((α)→ any(), [β]) β⊆α−−−→ [β] is obtained for Filter from a derivation with
our type system, where the first parameter P is a predicate function and the second parameter
a list L. The type ∀α.∀β. ((α)→ bool(), [β]) β⊆α−−−→ [β] cannot be a success type for this
function because P is not called when L is an empty list. When L is not an empty list, we
know that the type of P is (α) → α′ and variable B ends up with the following restrictions:
αB ⊆ α′ and αB ⊆ ’true’∪’false’. Since α′ can be instantiated to a single value, the output
of the predicate function must contain the bool() type to succeed in this path of execution. If
L is empty, there is no restriction for α′ and for that reason this information is discarded when
both clauses are joined in the [CASE] rule.

The type ∀α. (number(), nelist(α,any())) → α is obtained for Nth. Since the function
might return even when the input list is not traversed completely, we cannot ensure that the
continuation of this list is []. This is why we obtain nelist(α,any()).

7 Correctness
In this section we introduce the theorem that states that the types derived by the set of rules
are success types. Detailed proofs can be found at [13].

7.1 Greatest lower bounds on type environments
In Section 4.3 we assumed the existence of an operator u on typing environments such that,
for every Γ1 and Γ2, TEnv JΓ1 u Γ2K ⊇ TEnv JΓ1K ∩ TEnv JΓ2K. In this subsection we shall prove
this assumption by defining an operator that satisfies this property.

Firstly we are going to define a restricted notion of greatest lower bound which is only
applicable to a pair of compatible environments. We say that Γ1 and Γ2 are compatible if they
have the following form

Γ1 = [x1 : α1, . . . , xn : αn | C1] Γ2 = [x1 : α1, . . . , xn : αn | C2]
and the only free variables common to Γ1 and Γ2 are {α1, . . . , αn}. Given a pair of compatible
environments, we define GLB(Γ1,Γ2) as the environment [x1 : α1, . . . , xn : αn | C1 ∪ C2], and
we prove that GLB satisfies our desired property:

Lemma 1. Let Γ1 and Γ2 be two compatible environments. It holds that TEnv JGLB(Γ1,Γ2)K =
TEnv JΓ1K ∩ TEnv JΓ2K.

In order to extend this notion to non-compatible environments, we need to transform the
latter into compatible environments. This process is called normalization. Given an environ-
ment Γ and a finite set X = {x1, . . . , xn} containing all the variables x such that Γ(x) 6= any(),
we define the normalization of Γ with respect to X (denoted by norm(X,Γ)) as follows:

529

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

norm(X,Γ) = [xi : αin | {α1 ⊆ Γ(x1), . . . , αn ⊆ Γ(xn)} ∪ Γ|C]
where α1, . . . , αn are fresh type variables not occurring in Γ. It is easy to show that the nor-
malization of an environment gives an equivalent one:

Lemma 2. Assume an environment Γ and a finite set X of variables such that {x ∈ Var |
Γ(x) 6= any()} ⊆ X. Then TEnv JΓK ⊆ TEnv Jnorm(X,Γ)K.

As a consequence of this, we can define the greatest lower bound operator u on environments
in terms of the normalization and GLB operators:

Γ1 u Γ2
def= GLB(norm(X,Γ1),norm(X,Γ2))

where X = {x ∈ Var | Γ1(x) 6= any() ∨ Γ2(x) 6= any()}

Since we are using the same X for normalizing both Γ1 and Γ2, the resulting environments
are compatible and hence we can apply the GLB operator on them. Moreover, the resulting
u operator satisfies the following: TEnv JΓ1 u Γ2K = TEnv JGLB(norm(X,Γ1),norm(X,Γ2))K =
TEnv Jnorm(X,Γ1)K ∩ TEnv Jnorm(X,Γ2)K ⊇ TEnv JΓ1K ∩ TEnv JΓ2K.

So far we have applied the notion of normalization to type environments. Now we shall
extend this notion to pairs 〈τ ; Γ〉. Assume that ftv (τ) = {β1, . . . , βm}. Given a finite set X of
variables we define norm(X, 〈τ ; Γ〉) as the pair 〈α; Γ′〉, being Γ′ the following environment:

[x1 : α1, . . . , xn : αn | {αi ⊆ Γ(xi)
n
, α ⊆ τ [βi/β′i

m], β′i ⊆ βi
m
} ∪ Γ|C]

where X = {x1, ..., xn}, and {α1, ..., αn, β
′
1, . . . , β

′
m, α} do not appear in Γ.

Lemma 3. For any set of variables X and any pair 〈τ ; Γ〉 such that {x ∈ Var | Γ(x) 6=
any()} ⊆ X, it holds that T Jτ ; ΓK ⊆ T Jnorm(X, 〈τ ; Γ〉)K.

We can take advantage of the normalization on pairs 〈τ ; Γ〉 to give a proper definition for the
⊗ operator. Given n pairs, each one of the form 〈τi; Γi〉, let us denote by X the set of variables
x such that Γi(x) 6= any() for some i ∈ {1..n}. Let us denote the result of norm(X, 〈τi; Γi〉) by
〈αi; Γ′i〉 for each i ∈ {1..n}. Then the environments Γ′1, . . . ,Γ′n are pairwise compatible, so we
define the product 〈τ1; Γ1〉 ⊗ . . .⊗ 〈τn; Γn〉 as follows:

〈τ1; Γ1〉 ⊗ . . .⊗ 〈τn; Γn〉
def= 〈{α1, . . . , αn}; Γ′1 u . . . u Γ′n〉

This allows us to show the property we had assumed in Section 5, which states that a
collection of pairs 〈τ1; Γ1〉, . . . , 〈τn; Γn〉 can be used to build a tuple type:

Lemma 4. Assume a substitution θ, a finite set of values v1, . . . , vn, types τ1, . . . , τn and
environments Γ1, . . . ,Γn. Assume that (θ, vi) ∈ T Jτi; ΓiK for each i ∈ {1..n}. Then it holds
that (θ, ({ n· · ·}, v1, . . . , vn)) ∈ T J〈τ1; Γ1〉 ⊗ · · · ⊗ 〈τn; Γn〉K.

7.2 Soundness results
Given a judgement Γ ` e : τ,Γ′, the main correctness result states that, given a substitution
θ ∈ TEnv JΓK such that eθ evaluates to a value v, the latter is contained within the semantics of τ
under a substitution π′, and θ is contained within the final environment Γ′ under a substitution
π, where π′ ⊆ π.

Theorem 1. Let us assume some typing environments Γ and Γ′, a type τ , an expression e, a
clause cls and a set X of variables. If Γ ` e : τ,Γ′, then E JeK �TEnvJΓK⊆ T Jτ ; Γ′K.

530

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

The following corollary shows that, in the particular case of closed expressions, our rules
derive indeed success types in the sense of [14], which was in turn a generalization of [12]:

Corollary 1. If e is a closed expression and [] ` e : τ, [], then E JeK ⊆ T JτK .

8 Conclusions and Related Work
We have presented a set of typing rules for a significant subset of Core Erlang. Formally, the
type judgements derived by our rules obtain, under a given type environment, a type for an
expression e together with a new type environment expressing conditions for the free variables
in e that are necessary for the successful evaluation of e, and a set of type constraints for the
type variables of the given type. When the rules are applied to closed expressions, they derive
success types, i.e., overapproximations of the semantics.

The syntax of types presented in this paper involves the existence of universally quantified
types nested inside other types, as in System F [8]. Although type inference in System F is
undecidable, in our context this problem becomes trivial, as we can always derive a type for
an expression. In fact, we can always derive the any() type, as stated in Proposition 1. The
problem of finding an accurate type for a given expression is more involved, and hence left as
future work.

A significant amount of research has been carried out in order to apply type-based static
analysis to dynamically typed languages. A well-known example is Typescript [3], which is a
superset of Javascript that provides static typing and class-based objects. These techniques
have also been applied to other languages, such as Ruby [7, 1] and Python [2]. Although the
latter is oriented towards the translation of Python into JVM and CLI primitive instructions
(instead of emulating the Python model on top of the corresponding virtual machine), these
systems allow the programmer to catch type errors at compile time. However, they follow
the traditional approach of ensuring the absence of type errors at runtime, even if some false
positives are reported. The type system introduced in this paper follows the opposite goal
introduced by success types [12], that is, to avoiding false positives. Our goal is to assist the
programmer in detecting as many definite errors as possible. Although some other subtler type
errors may be left unreported, this approach can be combined with the variety of mechanisms
that Erlang provides (such as supervision trees) for reporting and restarting the program state
in the event of crashes.

Another approach to apply type-based static analysis is soft typing [5], which is a technique
to find those places in a program where type consistency is not guaranteed, in order to insert
run-time type checks. This approach shares Dialyzer’s philosophy insofar it does not require
type annotations from the programmer. A soft type checker does not reject programs with
potential type errors, but unlike success typing, it is conservative in the sense that it inserts
type checks whenever in doubt. Some implementations of soft type systems have been developed
for Scheme [25] and Erlang [16], the latter introducing a specification language for specifying the
interface of Erlang modules. As acknowledged by its author, the latter system might produce
false positives such as in function lists:nth/2 when there is no guarantee that the list is
accessed within its bounds. Another difference of our system with respect to soft typing is the
addition of type environments in functional types, which capture the necessary conditions for
the evaluation of the function. This information is taken into account in order to precisely
catch type errors when analysing function applications, while maintaining modularity.

Another area of research related to the integration of static typing into dynamically typed
languages is that of gradual typing [21, 22]. Unlike the all-or-nothing approach provided by

531

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

traditional languages, a gradual type system allows programmers to partially annotate their
programs with types, while the unannotated parts of the program have implicitly a dynamic
type, which roughly corresponds to the any() type in this work. Gradual type systems have
also been studied in the context of imperative languages [18, 23]. There exists an inference
algorithm for gradual types [17] which consists in constraining the types of variables from their
definitions and assignments (inflows) and from the context in which they appear (outflows).
The latter bound the set of values which a variable may contain at runtime, in a similar way
as our type environments represent an upper bound of the values of all the variables in scope.
However, the goal of the gradual typing inference is not to detect type discrepancies, but to
carry out performance optimizations, in the same way as soft type systems. In this sense, we
can say that the type system presented here is closer to the notion of success types which we
extend in order to obtain polymorphic types.

The set of rules presented in this paper provides a solid foundation that will allow us to
design and implement an algorithm for inferring polymorphic success types, which is left as
future work. Other additional line of future work would be to support overloaded function
specifications in the sense of [9] which can capture the semantics of a function in more accurate
way. Another future direction of this research is to adapt these ideas to other dynamically-typed
mainstream languages, such as Javascript or Python.

References
[1] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dynamic inference

of static types for ruby. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 459–472, New York, NY, USA, 2011.
ACM.

[2] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: A step
towards reconciling dynamically and statically typed OO languages. In Proceedings of the 2007
Symposium on Dynamic Languages, DLS ’07, pages 53–64, New York, NY, USA, 2007. ACM.

[3] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In Richard E.
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala,
Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in Computer Science,
pages 257–281. Springer, 2014.

[4] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nyström,
Mikael Pettersson, and Robert Virding. Core Erlang 1.0.3 language specification, november 2004.

[5] Robert Cartwright and Mike Fagan. Soft typing. In David S. Wise, editor, Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI),
Toronto, Ontario, Canada, June 26-28, 1991, pages 278–292. ACM, 1991.

[6] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
207–212. ACM, 1982.

[7] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static type inference
for ruby. In Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages
1859–1866, New York, NY, USA, 2009. ACM.

[8] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45:159 – 192, 1986.

[9] Miguel Jimenez, Tobias Lindahl, and Konstantinos F. Sagonas. A language for specifying type
contracts in erlang and its interaction with success typings. In Simon J. Thompson and Lars-
Åke Fredlund, editors, Proceedings of the 2007 ACM SIGPLAN Workshop on Erlang, Freiburg,
Germany, October 5, 2007, pages 11–17. ACM, 2007.

532

Polymorphic success types for Erlang López-Fraguas, Montenegro and Suárez-García

[10] Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in telecom applications
through lightweight static analysis: A war story. In Programming Languages and Systems, pages
91–106. Springer, 2004.

[11] Tobias Lindahl and Konstantinos Sagonas. Typer: a type annotator of erlang code. In Proceedings
of the 2005 ACM SIGPLAN workshop on Erlang, pages 17–25. ACM, 2005.

[12] Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on success typings. In
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP ’06, pages 167–178, New York, NY, USA, 2006. ACM.

[13] Francisco J. López-Fraguas, Manuel Montenegro, and Gorka Suárez-García. Polymorphic success
types for erlang (extended version). Technical report, Number 03/18. Dpto. de Sistemas Infor-
máticos y Computación, 2018. Available at https://federwin.sip.ucm.es/sic/investigacion/
publicaciones/informes-tecnicos.

[14] Francisco Javier López-Fraguas, Manuel Montenegro, and Juan Rodríguez-Hortalá. Polymorphic
types in erlang function specifications. In Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings, pages 181–197, 2016.

[15] Simon Marlow and Philip Wadler. A practical subtyping system for erlang. In Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, ICFP ’97, pages
136–149, New York, NY, USA, 1997. ACM.

[16] Sven-Olof Nyström. A soft-typing system for erlang. In Bjarne Däcker and Thomas Arts, editors,
Proceedings of the 2003 ACM SIGPLAN Workshop on Erlang, Uppsala, Sweden, August 29, 2003,
pages 56–71. ACM, 2003.

[17] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type inference. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’12, page 481, 2012.

[18] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe &
efficient gradual typing for TypeScript. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages 167–180, New
York, NY, USA, 2015. ACM.

[19] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages
513–523, 1983.

[20] Konstantinos F. Sagonas. Using static analysis to detect type errors and concurrency defects in
erlang programs. In Functional and Logic Programming, 10th International Symposium, FLOPS
2010, Sendai, Japan, April 19-21, 2010. Proceedings, volume 6009 of Lecture Notes in Computer
Science, pages 13–18. Springer, 2010.

[21] J Siek and W Taha. Gradual typing for functional languages. In Scheme and Functional Program-
ming, pages 81–92, 2006.

[22] Jeremy Siek and Walid Taha. Gradual Typing for Objects. ECOOP 2007 - Object-Oriented
Programming, pages 2–27, 2007.

[23] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and evaluation of
gradual typing for python. In Proceedings of the 10th ACM Symposium on Dynamic Languages,
DLS ’14, pages 45–56, New York, NY, USA, 2014. ACM.

[24] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth international
conference on Functional programming languages and computer architecture, FPCA 1989, London,
UK, September 11-13, 1989, pages 347–359. ACM, 1989.

[25] Andrew K. Wright and Robert Cartwright. A practical soft type system for scheme. In LISP and
Functional Programming, pages 250–262, 1994.

533

https://federwin.sip.ucm.es/sic/investigacion/publicaciones/informes-tecnicos
https://federwin.sip.ucm.es/sic/investigacion/publicaciones/informes-tecnicos

	Introduction
	An informal introduction to success types
	Preliminaries
	Language syntax
	Semantics of language expressions

	Type system
	Syntax of polymorphic types
	Type instantiations
	Type environments
	Semantics of polymorphic types
	A generalization of success types

	Typing judgements
	Examples
	A simple function
	Functions on lists

	Correctness
	Greatest lower bounds on type environments
	Soundness results

	Conclusions and Related Work

