
Shape Analysis in a Functional Language by Using
Regular Languages ∗

Manuel Montenegro
Dpto. de Sistemas

Informáticos y Computación
Univ. Complutense de Madrid

C/ Prof. José García
Santesmases s/n

28040, Madrid, Spain
montenegro@fdi.ucm.es

Ricardo Peña
Dpto. de Sistemas

Informáticos y Computación
Univ. Complutense de Madrid

C/ Prof. José García
Santesmases s/n

28040, Madrid, Spain
ricardo@sip.ucm.es

Clara Segura
Dpto. de Sistemas

Informáticos y Computación
Univ. Complutense de Madrid

C/ Prof. José García
Santesmases s/n

28040, Madrid, Spain
csegura@sip.ucm.es

ABSTRACT
Shape analysis is concerned with the compile-time determi-
nation of the ‘shape’ the heap may take at runtime, mean-
ing by this the pointer chains that may happen within, and
between, the data structures built by the program. This
includes detecting alias and sharing between the program
variables.

Functional languages facilitate somehow this task due to
the absence of variable updating. Even though, sharing and
aliasing are still possible. We present an abstract interpre-
tation-based analysis computing precise information about
these relations. In fact, the analyis gives an information
more precise than just the existence of sharing. It informs
about the paths through which this sharing takes place. This
information is critical in order to get a modular analysis
and not to lose precision when calling an already analysed
function.

The main innovation with respect to the literature is the
use of regular languages to specify the possible pointer paths
from a variable to its descendants. This additional informa-
tion makes the analysis much more precise while still being
affordable in terms of efficiency. We have implemented it
and give convincing examples of its precision.

Keywords: functional languages, abstract interpretation,
shape analysis, points-to analysis, regular languages.

1. MOTIVATION
Shape analysis is concerned with statically determining

the connections between program variables through pointers
in the heap that may occur at runtime. As particular cases
it includes sharing and alias between variables. To know
the shape of the heap for every possible program execution

∗Work partially funded by the projects TIN2008-06622-C03-
01/TIN (STAMP), and S2009/TIC-1465 (PROMETIDOS).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP ’13, September 16 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-2154-9/13/09 ... $15.00.
http://dx.doi.org/10.1145/2505879.2505893.

is undecidable in general, but the analysis computes an over-
approximation of this shape. This means that it may include
relations that will never happen at runtime.

Much work has been done in imperative languages (see
Sec. 7), specially for C. There, the sharing detection is ag-
gravated by the fact that variables are mutable, and they
may point to different places at different times. We have
addressed the problem for a first order functional language.
This simplifies some of the difficulties since variables do not
mutate. A consequence is that the inferred relations are
immutable considering different parts of the program text.
Another consequence is that the heap is never updated. It
can only be increased with new data structures, or decreased
by the garbage collector. But the latter cannot produce ef-
fects in its live part.

Our analysis puts the emphasis on three properties: (1)
modularity; (2) precision; and (3) efficiency. For the sake of
scalability, it is important for the analysis to be modular.
The results obtained for a function should summarize the
shape information so that the user functions should be able
to compute all the sharing produced when calling it. Looked
at from outside, and given that the language is functional,
a function may only create sharing between its result and
its arguments, or between the results themselves, but it can
never create new sharing between the arguments. The in-
ternal variables become dead after the call, so the result of
analysing a function only contains its input-output sharing
behaviour. Differently from previous works, we compute the
paths through which this sharing may occur in a precise way.
This information is used to propagate to the caller the shar-
ing created by a call. In this way, large programs can be
analysed with a cost linear in the number of functions.

The motivation for our analysis is a type system we have
developed for a functional language with explicit memory
disposal [10]. This feature may create dangling pointers at
runtime. The language also provides automatically allocated
and deallocated heap regions, instead of having a runtime
garbage collector. This feature can never create dangling
pointers, so it plays no role in the current work and we will
not mention it anymore. We have proved that passing suc-
cessfully the type inference phase gives total guarantee that
there will not be such dangling pointers. For typechecking
a function, it is critical to know at compile time which vari-
ables may point to the disposed data structures, and for
this a precise sharing analysis was needed. Nevertheless,

unshuffle [] = ([],[])
unshuffle (x:xs) = (x:ys2, ys1)

where (ys1,ys2) = unshuffle xs
merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys
msort [] = []
msort [x] = [x]
msort xs = merge (msort xs1) (msort xs2)

where (xs1, xs2) = unshuffle xs

Figure 1: mergesort algorithm in Full-Safe

prog → datai; decj ; e {Core-Safe program}
dec → f xi = e {recursive, polymorphic}
e → c {literal of a basic type}

| x {variable}
| f ai {function application}
| C ai {constructor application}
| let x1 = e1 in e2 {non-rec., monomorphic}
| case x of alti {case expression}

alt → C xi → e {case alternative}

Figure 2: Simplified Core-Safe syntax

we believe that the sharing analysis presented here could be
equally useful for other purposes, since it provides precise
information about the heap shape. Note that some shapes,
such as cyclic or doubly chained lists, cannot be created by
a functional language, so they are out of the scope of our
analysis. But, in some cases, the analysis is capable of as-
serting that a given structure is a tree, i.e. it does not have
internal sharing.

Our prior prototype shape analysis done in [12] was cor-
rect but imprecise, specially in function applications and
case expressions. The reason for this is that it does not
suffice knowing that two variables share a common descen-
dant. We should more precisely know through which paths
this sharing occurs.

The main contribution of this paper with respect to [12]
is the incorporation of regular languages to our abstract do-
main. Each word of the language defines a pointer path
within a data structure. Having regular languages intro-
duces additional problems such as how to combine them
during the analysis, how to compare them, and specially
how to guarantee that a fixpoint will be reached after a fi-
nite number of iterations. We show that we have increased
the precision of our prior analysis, and that the new prob-
lems can be tackled with a reasonable efficiency.

The plan of the paper is as follows: Sec. 2 provides a mild
introduction to the analysis via a small example. Then, Sec-
tions 3, 4 and 5 contain all the technical material about the
abstract domain, abstract interpretation rules, correctness,
widening, decidability, and cost of the operations done on
regular expressions. Sec. 6 presents our implementation and
gives more examples. Finally, Sec. 7 concludes and discuss
some related work.

2. SHAPE ANALYSIS BY EXAMPLE
Our reference language Safe is a first-order eager language

with a syntax similar to Haskell’s. Fig. 1 shows a mergesort
algorithm written in Full-Safe. The compiler’s front-end
processes Full-Safe and produces a bare-bones functional

language called Core-Safe. This transformation desugars
pattern matching into case expressions, transforms where
clauses into let expressions, collapses several function-defi-
ning equations into a single one, and ensures unique names
for the variables. In Fig. 2 we show a simplified Core-Safe’s
syntax. A program prog is a sequence of possibly recur-
sive polymorphic data and function definitions followed by
a main expression e whose value is the program result. The
abbreviation xi stands for x1 · · ·xn, for some n. In Fig. 3
we show the translation to Core-Safe of the msort function
of Fig. 1.

Our shape analysis infers the following sharing informa-
tion for the functions unshuffle and merge:

Σ(unshuffle) = {res
12∗1+22∗1−→ • 2∗1←− xs}

Σ(merge) = {res
2∗1−→ • 2∗1←− xs, res

2∗1−→ • 2∗1←− ys,

res
2∗−→ • 2∗←− xs, res

2∗−→ • 2∗←− ys}

The meaning for unshuffle is the following: the resulting
tuple res of calling the function with an input list xs, may
share the elements of this list. Moreover, the path reaching
a common descendant, in the case of res, begins either with
a 1 or a 2 (this should be understood as descending to the
left or to the right element of the tuple), and then follows by
the path 2∗1, by this meaning that we should take the tail of
the (left or right) list a number of times, and then take the
head. From xs’s point of view of, the common descendant
can be reached by a similar path 2∗1.

The meaning for merge is quite precise: the resulting list
res may share its elements with any of the input lists xs and
ys, and additionally one or more tails of res may be shared
with one or more tails of both xs and ys. This is what the
path 2∗ means.

When analysing msort’s code of Fig. 3, we have the infor-
mation about unshuffle and merge available. By substituting
the actual arguments for the formal ones, we get the follow-
ing relations:

R1 = {p 12∗1+22∗1−→ • 2∗1←− xs}
R2 = {res

2∗1−→ • 2∗1←− z1 , res
2∗1−→ • 2∗1←− z2 ,

res
2∗−→ • 2∗←− z1 , res

2∗−→ • 2∗←− z2 }

The case and let expressions in msort introduce more rela-
tions:

R3 = {x ε−→ • 1←− xs, y1
ε−→ • 1←− p, y2

ε−→ • 2←− p}

From these relations, we can derive other by reflexivity, sym-
metry and transitivity, such as:

R4 = {y1
2∗1−→ • 2∗1←− xs, y2

2∗1−→ • 2∗1←− xs, y1
2∗1−→ • 2∗1←− y2}

In the first iteration of msort’s analysis, the only relation
that can be inferred between its result and its argument is

xs
1−→ • 1←− res. This is due to the third line. The rest of

the code gives us sharing information between the internal
variables, but this cannot be propagated to the arguments,
because in the internal recursive calls to msort we have noth-
ing to start with. But, by interpreting the internal calls with

the sharing information Σ1(msort) = {xs
1−→ • 1←− res},

we get the following bigger result: Σ2(msort) = {xs
2∗1+1−→

• 2∗1+1←− res}. If we interpret the code a third time by using
this information when interpreting the internal calls, we get

msort xs = case xs of

[] -> []

x:xx -> case xx of [] -> x:[]

: -> let p = unshuffle xs in

let y1 = case p of (s1,s2) -> s1 in

let y2 = case p of (w1,w2) -> w2 in

let z1 = msort y1 in

let z2 = msort y2 in

merge z1 z2

Figure 3: Function msort in Core-Safe

again the same result. So, a fixed point has been reached,
and we consider this result as a correct approximation of the
sharing created by msort.

It is worthwhile to remark that our prior analysis [12] of
the same program gave us the additional spurious sharing
information {z2 −→ • ←− z1}, meaning that a descendant
of z2 is shared by z1 (the regular languages were absent in
that analysis). Having spurious relations is not incorrect,
but just imprecise. Since we used this analysis to type a de-
structive version of msort, using in turn a destructive version
of merge, our type system rejected the function because of
this additional sharing. The cause of this imprecision was a
worse analysis of case expressions and function applications
due to the absence of the paths represented by the regular
languages.

3. THE ANALYSIS
We formally define here the analysis approximating the

runtime sharing relations between the program variables.
At this point, types have already been inferred, so the anal-
ysis can ask for type-related issues, such as the positions of
constructor descendants, their types, and the like.

3.1 Sharing relation
In order to capture sharing, we define a binary relation

between variables:

Definition 1. Given two variables x and y, in scope in
an expression, a sharing relation is a set of two pairs {(x, p1),
(y, p2)} specifying that x and y share a common descendant.
Moreover, the regular languages denoted by p1 and p2 re-
spectively define the possible pointer chains through which x
and y reach their common descendant. We shall denote this

sharing relation either by x
p1−→ • p2←− y or y

p2−→ • p1←− x.

For the sake of readability, we shall assume in the following
p1 and p2 to be regular expressions that denote regular lan-
guages, but the actual implementation does not use them,
though. Notice that, if p1 = ε, then x is a descendant of y,
and symmetrically for p2.

The regular languages have pairs iC as alphabet symbols,
where i is a natural number starting at 1, and C is a data
constructor. The symbol iC denotes a singleton pointer path
in the heap passing through the i-th argument of constructor

C. For instance, x
2∗:−→ •

1(,)←− y indicates that a tail of the
list x is pointed-to by the first element of the tuple y. In the
examples, we shall usually omit the constructor.

The relation
p1−→ • p2←− is symmetric by definition and re-

flexive by writing p1 = p2 = ε. But the transitivity does not

hold, i.e. x
p1−→ • p2←− y and y

p3−→ • p4←− z, with p2 6= ε,

does not necessarily imply x
p1−→ • p4←− z. However, the

transitivity holds in some cases, for example when y reaches
its common descendant with x through the same path as
it reaches its common descendant with z, as shown in Fig-
ure 4a.

More generally, we can investigate the languages denoted
by p2 and p3, and decide whether a path in p2 coincides
with, or is a prefix of, a path in p3 (as shown in Figure 4b),
or the other way around. In these cases, there may exist a
sharing path through y between x and z. Notice that both
p2 and p3 are upper approximations to the actual runtime
paths, so the risk of imprecision is still there, but if there
are no such paths we are certain that there will not be paths
at runtime either, and we can safely omit a tuple relating
x and z from the sharing relation. The rules computing
the sharing derived by transitivity are explained in detail in
Section 3.4.

3.2 The abstract interpretation
Based on the above considerations, we define an abstract

interpretation S (meaning sharing) which, given an expres-
sion e and a set R containing an upper approximation to
the sharing relations between the variables in scope in e, de-
livers another set Rres (res stands for result) containing (an
upper approximation to) all the relations between the result
of evaluating e, named res, and its variables in scope. To
be precise, R and Rres must record at least the minimum
information needed in order to compute all possible sharing,

i.e. if we have x
p1−→ • p2←− y in R or Rres , and p3 denotes

all possible paths inside the data structure pointed-to by x

and y, then we understand that x
p1·p3−→ • p2·p3←− y is implicitly

included in the relation.
Notice that this means that:

• If two variables x and y share a substructure in the
heap as in Figure 5a, there must exist a sharing rela-

tion x
p1−→ • p2←− y containing at least the paths w1

and w2, leading to the first point of confluence. Their
extensions with a common path w need not.

• In case a variable x has internal sharing, as shown

in Figure 5b, there must exist a sharing relation x
p1−→

• p2←− x containing at least the paths w1 and w2 leading
to the first point of confluence.

In order to achieve a modular analysis, it is very impor-
tant to reflect the result of the analysis of a function f in
a function signature environment, so that when the analysis
finds calls to f in the body of another function g, it uses

x y z

w
1

w
2
= w

3
w

4

(a)

x y

z

w
1

w
2

w
4

w
2

w
3

(b)

Figure 4: Particular cases of transitivity

this knowledge to compute the sharing relations for g. We
keep function signatures in a global environment Σ, so that
Σ(f) is a set Rres containing the sharing relations between
the result of calling f and its arguments. The interpretation
S[[e]] R Σ gives us the relations between (the normal form
of) e and its variables in scope, provided Σ gives us cor-
rect approximations to the sharing relations of the functions
called from e.

The rules for expressions are explained in detail in Sec-
tion 3.3. The interpretation Sd of a function definition
f x1 . . . xn = ef begins with the interpretation of its body.
It is straightforward to extract the signature of the function,
which just describes the relations between the result of ef
and its formal arguments xj

n, which are the only variables
in scope. In case f is recursive, the interpretation is run
several times, by starting with an empty signature for f and
then computing the least fixpoint. Each iteration updates
f ’s signature in the signature environment:

Sd[[f x1 . . . xn = ef]] Σ = fix (λΣ . Σ[f → S[[ef]] R0 Σ]) Σ0

where Σ0 = Σ[f → ∅]
R0 = {xi

ε−→ • ε←− xi | i ∈ {1..n}}

where Σ[f → R] either adds signature R for f or replaces it
in case there was already one for it. Notice that the right
hand side of the function definition is analysed starting with
a neutral initial relation R0 in which each argument is only
related to itself. This means that the signatures are com-
puted assuming that all the parameters are disjoint and they
do not present internal sharing in addition to the trivial shar-
ing relation given by R0. When they are not, the function
caller knows the additional sharing of the actual arguments
and the rule for application merges both information, as we
will see in Section 3.3.

As function S is monotonic over a lattice, the least fix-
point exists and could be computed using Kleene’s ascend-
ing chain if the chain were finite. We come back to this issue
in Section 5.

3.3 Interpretation of expressions
The interpretation defined in Figure 6 does a top-down

traversal of a function definition, accumulating these rela-
tions as soon as bound variables become free variables.

The notation R[y/x] means the substitution of the vari-
able y for the variable x in the relation R. In order to avoid
name capture, y must be fresh in R. The operator R\{x}
removes from R any tuple containing the variable x. The
union operator ∪ is the usual set union. The closure op-
eration R1]∗x R2 takes a relation R1 and completes it by
adding R2 and the tuples involving x that can be derived
by transitivity. This operation also generates the reflexive
relation x

ε−→ • ε←− x. We explain this operator in detail
in Section 3.4.

An important invariant of the rules presented in Figure 6
is that, in each occurrence of S [[e]] R Σ, the set R contains
an upper approximation of all the sharing relations that at
runtime may happen between the variables in scope in e.
Also, the set Rres returned by S [[e]] R Σ enjoys the same
property. It is easy to check that if the property holds for
the original call S [[ef]] R0 Σ, then the rules preserve it.

The rule for a constant c introduces no new sharing. The
rule of a variable x specifies that the result is an alias of x,
and]∗res propagates to the result the variables to which x is
related.

When a constructor application C ai
m is returned as a

result, parent-child sharing relations are created with the
constructor’s children. These are added to the current set
R, and then the closure computes all the derived sharing.

When a function application g ai
m is returned as a result,

first we get from g’s signature the sharing relations between
g’s result and its formal arguments. These are copied by
replacing the formal arguments by the actual ones, and then
added to the current set. As before, the closure computation
does the rest.

The let rule is almost self-explanatory: first e1 is analysed
and the sharing computed for e1’s result is assigned to the
new variable in scope x1. Using this enriched set R1 as as-

x y

w
1

w
2

w

(a)

x

w
1

w
2

w

(b)

Figure 5: At least paths w1 and w2 must be recorded in a sharing relation x
p1−→ • p2←− y (a) or x

p1−→ • p2←− x (b)

S [[c]] R Σ = R

S [[x]] R Σ = R]∗res {res
ε−→ • ε←− x}

S [[C ai
m]] R Σ = R]∗res {res

jC−→ • ε←− aj | j ∈ {1..m}, var(aj)}

S [[g ai
m]] R Σ = R]∗res Σ(g)[aj/xj

m
]

S [[let x1 = e1 in e2]] R Σ = (S [[e2]] R1 Σ)\{x1}
where R1 = (S[[e1]] R Σ)[x1/res]

S [[case x of Ci xijni → ei]] R Σ =
⋃
i(S [[ei]] Ri Σ)\{xijni}

where Ri = R]∗xij {x
jCi−→ • ε←− xij | j ∈ {1..ni}}

Figure 6: Definition of the abstract interpretation S

sumption, the main expression e2 is analysed, and its result
is the result of the whole let expression.

Finally, a case expression introduces the pattern variables
xij

ni in the scope of a branch ei. Their sharing relations are
derived from the parent x’s ones by first adding the child-
parent relation between each xij and x, and then computing
the closure. After analysing the branches, the least upper
bound of all the analyses must be computed, expressing the
fact that at compile time it is not known which branch will
be taken at runtime.

It is important to see whether the relations inferred by
the analysis are well-typed. For instance, we could have a

relation x
px−→ •

py←− y in which the descendant reached from
x and p1 had a type t, while the descendant reached from
y and py had a different type t′. This would obviously be a
spurious relation since in well-typed programs, an ill-typed
sharing may not occur at runtime.

The expression type(t, p) returns the type computed start-
ing at the type t, and then descending through the con-
structors of the words in p according to its type and to the
child chosen at each step. In our language this type can be
statically computed. Let tx be the type computed by the
compiler for the variable x.

Definition 2. We say that the relation x
px−→ •

py←− y is
well-typed if type(tx, px) = type(ty, py).

Lemma 3. If the relations in R and Σ are well-typed, then
for every expression e, the relations in S[[e]] R Σ are well-
typed.

3.4 The closure of a relation
The closure operation]∗x is defined in terms of the simpler

one]x, which completes a relation set R with a new relation

x
p1−→ • p2←− y, where y 6= x, by adding the relations that

bind x to the variables contained in R, and are derived by
transitivity. Both operators are defined in Figure 7.

The inclusion of R and the relations x
p1−→ • p2←− y, x

ε−→
• ε←− x is self-explanatory. We shall concentrate on the
remaining relations shown in the last lines of the definition.

The second line corresponds to the case illustrated in Fig-
ure 4b, while the third one corresponds to the symmetric
case. These relations involve the derivative operator |
whose meaning is:

p1|p2 = {w3 | ∃w2 ∈ L(p2).w2w3 ∈ L(p1)}.

If p1 and p2 denote regular languages so do p1|p2 , and in

R]x {x
p1−→ • p2←− y} def=

R ∪ {x p1−→ • p2←− y} ∪ {x ε−→ • ε←− x}

∪ {x
p1·p3|p2−→ • p4←− z | y p3−→ • p4←− z ∈ R}

∪ {x p1−→ •
p4·p2|p3←− z | y p3−→ • p4←− z ∈ R}

∪ {x
p1·p3|p2−→ •

p1·p4|p2←− x | y p3−→ • p4←− y ∈ R}

R]∗x R′
def
=

R]x{{x
p1−→ • p2←− y} | x p1−→ • p2←− y ∈ R′, y 6= x}

∪ {x p1−→ • p2←− x | x p1−→ • p2←− x ∈ R′}

Figure 7: Definition of the closure operation

y

w
2

w
1

w
3

y x

w
4

Figure 8: Transitivity with internal sharing.

Section 5 we explain how to compute it1. In the second line
of the definition of]x the language describing p1 ·p3|p2 might
be empty. In this case we can discard the corresponding
sharing relation from the result of the closure operation. If
it is not empty then there exists a word w2 ∈ L(p2) such
that it its a prefix of another word w3 ∈ L(p3), so we can
start from x, follow a path w1 ∈ L(p1), and then follow the
path w2 without the prefix w3 (which results in a path of
L(p3|p2)) in order to reach the common descendant of x and
z. The third line of]x is applicable when a path of p3 is a
prefix of a path of p2, and works similarly.

The fourth line deals with the case in which variable x
gets internal sharing through variable y, shown in Figure 8.
This happens when the path w2 through which y reaches
its common descendant with x is a prefix of both paths w3

and w4 representing the internal sharing of y. Then p3|p2
and p4|p2 are not empty, and contain respectively the paths
w3 and w4 without the prefix w2, which prepended with
w1 ∈ L(p1) represent two paths of internal sharing from
variable x.

In spite of the restrictions of the] operator, we could
replace the]∗ operator by a sequence of] operations in

1When p2 = {a}, the language p1|a is sometimes called the
derivative of L(p1) with respect to a, and it is denoted a\L,
being L = L(p1).

all the rules but in function application, because only in the
application non-trivial reflexive relations may be added.

In fact, operation R]∗xR′ is used to define the confluence
of information happening in a function call. R represents the
context of the call, while R′ represents the sharing generated
by the function between the result and the arguments.

Its definition is divided into two parts:

1. First, we take each relation in R′ of the form x
p1−→

• p2←− y such that y 6= x and apply the previous tran-
sitivity operator incrementally. This is well defined
because operator]x is in a sense commutative, as we
will prove in Section 4. So the order in which we add
the relations of R′ is not relevant: the final result may
be different but equivalent, in the sense that it records
the same information.

This part reflects the interaction of the context with
the function definition.

2. Second, we just add those reflexive relations x
p1−→

• p2←− x ∈ R′. In the abstract interpretation, this
kind of relations only appear in the application of a
function: it may happen that the result of a function f

has internal sharing, so a relation res
p1−→ • p2←− res ∈

Σ(f). It is not necessary to apply transitivity here
because the internal sharing of res either comes from
the function itself (i.e. is reflected in R′) or through a
real argument which already has internal sharing (i.e.
is reflected in R). Transitivity, as we will prove in
Section 4, would only add redundant information.

4. CORRECTNESS
In this section we provide the main results needed to prove

the analysis is well-defined and correct. Full proofs and aux-
iliary lemmas can be found in [11].

4.1 Properties of the abstract interpretation
First, we prove that operator]∗x is well defined. As we

said in Section 3, the order in which we apply transitivity to
the rules belonging to R′ may lead to different but equivalent
results. First, we give the notion that two sets of relations
contain the same information in terms of the sharing paths.
Then, we prove well-definedness of the operator.

Definition 4. A set of sharing relations R is included

in R′ (written R v R′) if for every sharing relation x
p1−→

• p2←− y ∈ R and every pair of words w1 ∈ L(p1), w2 ∈ L(p2)

there exists a sharing relation x
p′1−→ •

p′2←− y ∈ R′ such that
w1 ∈ L(p′1) and w2 ∈ L(p′2). Two sets of relations R and R′

are said to be equivalent (written R ≡ R′) if both R v R′

and R′ v R hold.

Lemma 5 (Commutativity of closure operation).

Let R be a set of sharing relations and x
p1−→ • p2←− y,

x′
p′1−→ •

p′2←− y′ a pair of sharing relations such that y 6= x
and y′ 6= x′. Let us define Rx,x′ and Rx′,x as follows:

Rx,x′
def
= (R]x {x

p1−→ • p2←− y})]x′ {x′
p′1−→ •

p′2←− y′}

Rx′,x
def
= (R]x′ {x′

p′1−→ •
p′2←− y′})]x {x

p1−→ • p2←− y}

If y′ 6= x and x′ 6= y then Rx,x′ ≡ Rx′,x.

Consequently, following different orders in adding the re-
lations of R′ lead to equivalent sets of relations.

4.2 Notion of correct approximation
Now we define when a set of relations correctly approxi-

mates the real sharing in a heap and the notion of correct
signature. The first definition reflects the fact that at least
the minimum sharing must be recorded in the relations, i.e.
the paths leading to the first point of confluence must be
recorded, while their extensions with a common path need
not. Notice that this means that in case of internal sharing,
each point of internal confluence must also be recorded.

A correct function signature must record enough sharing
information to be able to approximate each possible call to
that function, i.e. each possible execution of the body. The
operational semantics of Core-Safe can be found at [10]. It is
a standard big-step operational eager semantics: judgment
E ` h, e ⇓ h′, v means that expression e in a variable envi-
ronment E and initial heap h evaluates to value v and the
heap changes to h′. If in a heap h there exists an actual
sharing between two variables x and y through respective
pointer paths w1 and w2, we say that there exists a sharing

condition in h and denote it by E(x)
w1=⇒ • w2⇐=E(y) (in h).

Definition 6. A sharing relation x
p1−→ • p2←− y is said

to approximate a sharing condition E(x)
w1=⇒ • w2⇐=E(y)(in h)

iff there exists a word w such that w1 ∈ L(p1w) and w2 ∈
L(p2w).

Definition 7. Let R be a set of sharing relations, E a
runtime environment, and h a heap. We say that R is a
correct approximation of E and h, denoted R � (E, h), iff
for every pair of variables x, y ∈ domE, and pair of words

w1, w2 ∈ V∗ if the condition E(x)
w1=⇒ • w2⇐= E(y) (in h)

holds, it is approximated by a sharing relation x
p1−→ • p2←− y

in R.

Definition 8 (Correct signature). A set R of rela-
tions is a correct signature for a function definition f xi

n =
ef iff for each execution Ef ` h, ef ⇓ h′, v of the body of the
function and every set of relations R′ such that R′ � (Ef , h)
it holds that R′]∗res R � (Ef] [res 7→ v], h′). A signature
environment Σ is said to be correct iff every signature it
contains is correct.

4.3 Correctness
Correctness of the analysis is divided into two steps. First,

we prove that given correct signatures of the functions which
are called from an expression, the interpretation of the ex-
pression is correct. Then, we prove that the interpretation
of a function generates a correct signature. For both theo-
rems we need to prove that the transitive closure operator
is correct, which we show in the following two lemmas. The
second lemma concerns the case in which a variable gets
internal sharing through another variable having internal
sharing, i.e. the fourth line of operator]x definition.

Lemma 9 (Transitive closure lemma). Let us assu-
me a runtime environment E, a heap h, a set of sharing
relations R, some variables x, y, z, (with y 6= z) words wx,
wy, wz, and paths pxy, pyx, pyz, pzy such that the following
holds:

E(x)
wx=⇒ •

wy⇐= E(y) (in h), approximated by x
pxy−→ •

pyx←− y ∈ R

E(z)
wz=⇒ •

wy⇐= E(y) (in h), approximated by z
pzy−→ •

pyz←− y

Then there exists a sharing relation x
pxz−→ • pzx←− z ∈ R]z

{y
pyz−→ •

pzy←− z} approximating E(x)
wx=⇒ • wz⇐=E(z) (in h).

Lemma 10 (Transitive self-closure lemma). Let us
assume a runtime environment E, a heap h, a set of sharing
relations R, some variables x, y (with x 6= y), words wx, wy,
w1, w2 and paths px1, px2, pxy, pyx such that the following
holds:

E(x)
wxw1=⇒ • wxw2⇐= E(x) (in h), approx. by x

px1−→ • px2←− x ∈ R

E(x)
wx=⇒ •

wy⇐= E(y) (in h), approximated by x
pxy−→ •

pyx←− y

Then there exists a sharing relation y
py1−→ •

py2←− y ∈ R]y
{x

pxy−→ •
pyx←− y} approximating E(y)

wyw1
=⇒ •

wyw2⇐= E(y)(in h).

The following theorem establishes the correctness of the
abstract interpretation modulo the correctness of function
signatures.

Theorem 11. Assume an expression e, a set of shar-
ing relations R and a correct signature environment Σ. If
S [[e]] R Σ = R′, then for every execution E ` h, e ⇓ h′, v in
which R � (E, h), it holds that R′ � (E] [res 7→ v], h′).

Now we prove that the interpretation of a function returns
a correct signature. A signature records the sharing between
the result and the arguments of the function assuming these
are disjoint and without internal sharing. However, a real
call to the function may not satisfy such assumtption. Given
the real configuration (E, h), we define an hypothetical exe-

cution where both the environment Ê and the heap ĥ contain
the same information as (E, h) but meeting the separation
property. The signature of the function captures the sharing
information corresponding to this hypothetical execution.

Definition 12. Let (E, h) and (Ê, ĥ) be two configura-

tions such that dom E = dom Ê. A mapping γ : dom ĥ →
dom h is said to be an entanglement from (Ê, ĥ) to (E, h),
iff:

1. For every pointer p̂ ∈ dom ĥ, if ĥ(p̂) = C v̂1 · · · v̂n,
then h(γ(p̂)) = C γ(v̂1) · · · γ(v̂n).

2. For every variable x ∈ dom Ê, γ(Ê(x)) = E(x).

As an example, assume a function definition f x y = C y.
Its signature consists of the following relations: {res

ε−→
• ε←− res, res

1C−→ • ε←− y}. Assume we execute a call
f z z where E(z) = p, h(p) = C′ p′ p′, h(p′) = C′′ 3, i.e.
Ef = [x 7→ p, y 7→ p]. In this case x and y are not disjoint

and also contain internal sharing. We can define (Êf , ĥ) such

that Êf (x) = p1, Êf (y) = p2 , ĥ(p1) = C′ p′1 p
′′
1 , ĥ(p2) =

C′ p′2 p
′′
2 and ĥ(p′1) = ĥ(p′′1) = ĥ(p′2) = ĥ(p′′2) = C′′ 3. Then

γ(p1) = γ(p2) = p, γ(p′1) = γ(p′′1) = γ(p′2) = γ(p′′2) = p′ is

an entanglement from (Êf , ĥ) to (Ef , h).
The following lemma proves that both the hypothetical

and the real execution proceed in parallel and that the infor-
mation inside the heap is the same although with a different
shape. In Figure 9 we show the final heaps of the executions
corresponding to the previous example.

Lemma 13. Assume an execution E ` h, e ⇓ h′, v and a

configuration (Ê, ĥ). For every entanglement γ from (Ê, ĥ)

to (E, h) there exist some ĥ′, v̂′ and γ′ such that:

x y

p

p'

C'

3

C''

res

C
pres

(a)

x

p
1

C'

C'' C''

3 3

p
1

p'
1

p''
1

y

p
2

C'

C'' C''

3 3

p'
2

p''
2

res

C
pres

(b)

Figure 9: Final heaps in the real execution (a), and the untangled one (b).

1. Ê ` ĥ, e ⇓ ĥ′, v̂.

2. γ′ is a conservative extension of γ. That is, γ ⊆ γ′.

3. γ′ is an entanglement from (Ê, ĥ′) to (E, h′).

4. γ′(v̂) = v.

For the same heap several entanglements may be defined,

but we are interested in a configuration (Ê, ĥ), where every-
thing is untangled, as shown in the previous example. This
is because, then R0 = {xi

ε−→ • ε←− xi | i = 1..n} correctly
approximates its sharing.

Lemma 14. For any configuration (E, h) there exists an-

other configuration (Ê, ĥ) and an entanglement γ from (Ê, ĥ)

to (E, h) such that the set {x ε−→ • ε←− x | x ∈ dom E} is

a correct approximation of (Ê, ĥ).

In the example above, signature is R′ = S [[ef]] R0 Σ =

{res
ε−→ • ε←− res, res

1C−→ • ε←− y}. The environment of

the call is approximated by R = {x ε−→ • ε←− y, x
1C′−→ •

2C′←−
x, y

1C′−→ •
2C′←− y}. So the final sharing is approximated

by R]∗res R′ which merges the context of the call with the

signature, and contains {res
1C−→ • ε←− y, res

1C−→ • ε←−

x, res
1C ·1C′−→ •

1C ·2C′←− res, res
1C ·1′C−→ •

2C′←− x, res
1C ·1′C−→ •

2C′←−

y, res
1C ·2′C−→ •

1C′←− x, res
1C ·2′C−→ •

1C′←− y}. This happens
for each R approximating a context call, so R′ is a correct
signature for f . We prove this in the following theorem.

Theorem 15. Assume a function definition f xi
n = ef ,

a set of relations R0 = {xi
ε−→ • ε←− xi | i = 1..n}, and an

environment Σ with correct signatures. If R′ = S [[ef]] R0 Σ,
then R′ is a correct signature for f .

Proof. (Sketch) Assume a configuration (E, h) with dom
E = {xin} and a set of relations R such that R � (E, h).
If we execute ef under the configuration (E, h) we get E `
h, ef ⇓ h′, v for some h′, v. By Lemma 14 there exists

a mapping γ which entangles a configuration (Ê, ĥ) into

(E, h), where (Ê, ĥ) is correctly approximated by R0. As-
sume we execute ef under the untangled configuration so as

to get Ê ` ĥ, ef ⇓ ĥ′, v̂ for some ĥ′ and v̂. By correctness

theorem (Theorem 11) we know that R′ � (Ê′, ĥ′), where

Ê′
def
= Ê][res 7→ v̂]. Then, we prove thatR]∗resR′ � (E′, h′).

In order to prove this we need two auxiliary properties:

1. For every variable z ∈ dom E such that E(z)
wz=⇒

• wv⇐= v (in h′) there exists a variable y ∈ dom E and

a word wy such that Ê(y)
wy

=⇒ • wv⇐= v̂ (in ĥ′) and

E(z)
wz=⇒ •

wy⇐= E(y) (in h). This means, by Lemma 9,
that the sharing between the result and a variable is
captured by R]∗res R′.

2. For every w1, w2 such that v
w2=⇒ • w1⇐= v (in h′) holds,

but v̂
w2=⇒ • w1⇐= v̂ (in ĥ′) does not, either

• there exist two variables y 6= z ∈ dom E and two
words wy, wz such that:

(a) E(y)
wy

=⇒ • wz⇐= E(z) (in h).

(b) Ê(y)
wy

=⇒ • w1⇐= v̂ (in ĥ′).

(c) v̂
w2=⇒ • wz⇐= Ê(z) (in ĥ′).

• or, there exists a variable z ∈ dom E and words
wv, wz, w

′
1, w′2 such that

(a) E(z)
wzw

′
1=⇒ •

wzw
′
2⇐= E(z) (in h).

(b) v̂
wv=⇒ • wz⇐= Ê(z) (in ĥ′).

(c) w1 = wvw
′
1 and w2 = wvw

′
2

This means that the internal sharing of res which is
not created inside the function, can only come from
an argument with internal sharing or from two argu-
ments sharing between them and with the result in the
appropiate way. The definition of R]∗res R′ also covers
this situations, as Lemmas 9 and 10 show.

5. IMPLEMENTATION ISSUES AND COST
The analysis presented in the previous section contains

some tests and operations that deserve a detailed comment
in order to see whether all of them are decidable, and what
their costs are.

Since the number of bound variables in a function defini-
tion is finite, so is the number of tuples in R. A relation

x
p1−→ • p2←− y may occur multiple times in R with different

p1 and p2 but, as we will see, always with different types.
Then, all the set union operations are decidable.

In the implementation, we represent regular languages by
non-deterministic finite automata (NFA). We will denote
them by A = (Σ, Q, i, F, δ). This facilitates some of the
operations needed on regular languages. These are the fol-
lowing:

1. To test whether a regular language L is empty, i.e.
L = {}.

2. Given regular languages L1 and L2, to compute its
concatenation L1.L2.

3. Given regular languages L1 and L2, to compute L1|L2 .

4. Given regular languages L1 and L2, to test whether
L1 ⊆ L2.

The emptiness test can be achieved [6] by looking for a
final state that is reachable from the initial one. If n =|Q|
is the number of states of A, the algorithm costs O(n2).

Given NFA automata A1 and A2, the automaton recog-
nizing L(A1).L(A2) can be constructed with a cost O(n),
just by connecting with ε-transitions the final states of A1

to the initial one of A2.
Given NFA automata A1 = (Σ1, Q1, i1, F1, δ1) and A2 =

(Σ2, Q2, i2, F2, δ2), the automaton recognizing L(A1)|L(A2)

is more involved. In fact, we have not found in the literature
an algorithm to compute it, and have invented our own:

1. Compute the automaton A′2 by adding to A2 transi-
tions with every symbol in Σ = Σ1 ∪ Σ2, from every
final state of A2 to itself. It is clear that A′2 recognizes
L(A2).Σ∗.

2. Compute A3 = A1 ∩ A′2. It recognizes the words of
L(A1) beginning with a word of L(A2). The construc-
tion implies that the states of A3 are all the pairs of
Q1 ×Q2.

3. Build an automaton A4 with a fresh state q0 as the
initial one. If L(A1) ∩ L(A2) is empty, then add ε-
transitions from q0 to every state (qi, pj) ∈ A3 such
that qi is a non-final state of A1 and pj is a final state of
A′2. If L(A1)∩L(A2) is not empty, then qi in (qi, pj) ∈
A3 can be any state of A1.

4. Remove from A4 all the states non-reachable from q0.
The resulting automaton exactly recognizes L(A1)|L(A2).

The dominant costs of the algorithm are the cartesian
product and the state reachability computation, both in
O(n2).

Given NFA automata A1 and A2, L(A1) ⊆ L(A2) if and
only if L(A1) ∩ L(A2) = L(A1), so inclusion is a particular
case of equality. Unfortunately, equality cannot be directly

computed on NFA’s. They must be converted to determin-
istic finite automata (DFA), and then their equality tested
with the well-known table-filling algorithm [6], which has a
cost O(n2). But the conversion from NFA to DFA has a
worst-case cost in O(n32n). This is because the number of
states of the DFA are subsets of the NFA set of states, and
can in theory be up to 2n. As we will see, the equality of
languages must be tested once every fixpoint iteration.

When interpreting the body of a recursive function f , we
start by setting an empty signature for f , i.e. Σ(f) = ∅. It
is easy to show that the interpretation is monotonic in the
lattice:

〈M(Varf × P(Σ∗)× P(Σ∗)×Varf), ∅,>,v,∪,∩〉

where M stands for ‘multiset of’, Varf are the bound vari-
ables of f , Σ∗ is the top regular language, and > is the
maximum relation. We need to ensure that no two tuples
with the same type exist relating the same variables. So,
at the end of each iteration, the following collapsing rule is
used:

x
p1−→ • p2←− y ∈ R x

p3−→ • p4←− y ∈ R
type(x, p1) = type(x, p3)

replace in R the two tuples by x
p1+p3−→ • p2+p4←− y

OR

Should not we use this rule, the abstract domain, regard-
ing only the relations between program variables, would be
infinite. The order relation between two tuples relating the
same pair of variables, and having the same type, is as fol-
lows:

x
p1−→ • p2←− y v x

p′1−→ •
p′2←− y

if L(p1) ⊆ L(p′1) and L(p2) ⊆ L(p′2). Let us call If Σ to the
interpretation of ef with current signature environment Σ,
returning Σ with f ’s signature updated. By monotonicity,
we have:

∅ v If ∅ v If (If ∅) v . . . v (If)i ∅ v . . .

Disregarding the regular languages, this chain is finite be-
cause so is Varf , and the number of different types of the
program. Then, the least fixpoint can be reached after a
finite number of iterations. If n is the number of f ’s for-
mal arguments, then at most n iterations are needed. This
is because functional languages have no variable updates,
and then there never may arise sharing relations between
the formal arguments as a consequence of the function body
actions. The only possible relations will be between the
function’s result and its arguments.

Considering now the regular languages, infinite ascending
chains are possible, i.e. one can obtain infinite chains L1 ⊆
L2 ⊆ L3 ⊆

The least upper bound of such a sequence of regular lan-
guages needs not to be a regular one. But, at least, there
always exists the regular language Σ∗ greater than any other
one. In order to ensure termination of the fixpoint compu-
tation, we use the following widening technique [3]:

1. Based on the form of the automata denoting the in-
creasing language sequence, and by using some heuris-
tics, we guess an automaton A such that

⋃
i Li ⊆ L(A).

Then, we iterate the interpretation by using this au-
tomaton as an assumption in f ’s signature.

2. If A is a fixpoint or a post-fixpoint, then we are done.
Otherwise, we use Σ∗ as the upper bound of the se-

quence. In terms of precision, x
Σ∗−→ • Σ∗←− y is com-

pletely uninformative about the paths through which
x and y share their common descendant.

The heuristic consists of comparing the automata sequence

obtained for a given relation x
p1−→ • p2←− y in the succes-

sive iterations, and discovering growing sequences reaching
three or more states related by the same alphabet symbol.
For example q1, q2, q3, with (q1, a, q2), (q2, a, q3) ∈ δ. These
sequences are collapsed into a single state class q, with a sin-
gle iterative transition (q, a, q) ∈ δ. The resulting automata
is compared with the non-widened one, to ensure that they
are equivalent regarding the remaining transitions. In all the
examples we have tried, this heuristic appears to be enough
to reach a fixed point.

We pay now attention to the asymptotic cost of the whole
interpretation. We choose the size n of a function to be its
number of bound variables. This figure is linearly related
to the size of its abstract syntax tree, and to the number
of lines of its source code. How is n related to the size of
the inferred automata in terms of their number of states?
It is easy to check that every bound variable y introduces a

relation x
jC−→ • ε←− y with a prior bound variable x. This

increases by one the number of states of the y relations with
respect to those of the x relations. So, the automata number
of states grow from one to the abstract syntax tree height,
when going from the initial expression to the deepest ones.
Assuming a reasonably balanced syntax tree, we consider
logn to be an accurate bound to the automata size.

If a function definition has n bound variables, and con-
sidering as a constant the number of different types, in the
worst case there can be up to O(n2) tuples in the current
relation R. The computation of a single closure operation

R]x {x
p1−→ • p2←− y} (see Fig. 7) introduces as many rela-

tions x
px−→ • pz←− z as prior relations y

py−→ • pz←− z are there
in R, i.e. O(n) in the worst case. A single iteration of the ab-
stract interpretation will compute one such closure for every
bound variable, giving an upper bound of O(n2) new rela-
tions per iteration. For each one, two languages A1|A2 . A3

must be computed, giving a total cost of O(n2 log2 n) per
iteration.

It has been said that the number of iterations is at most
the function’s number of arguments, which is usually small.
Even if it is not, in practice it suffices to perform only three
iterations of the analysis before applying the widening, and
then an additional iteration in order to to check that the
fixpoint has been reached. This checking is the most ex-
pensive operation of the analysis. A maximum of O(n2)
languages are tested for equality, giving a total theoretical
cost of O(n22logn log3 n) in the worst case, i.e. O(n3 log3 n).

A worst-case cost of O(n3 log3 n) is by no means a low
one, but we consider it to be rather pessimistic. We remark
that we are assuming each variable to be related to each
other, and all conversions from NFA to DFA to produce an
exponential blow-up of states. This leads us to think that
this theoretical cost is almost never reached. Also, in func-
tional programming it is common to write small functions.
So, the number n of bound variables can be expected to
remain below 20 for most of the functions (the reader is in-
vited to check this assertion for the functions presented in

last xs = case xs of
x:xx -> case xx of

[] -> {* R1 *} x
y:yy -> {* R2 *} last xx

Figure 10: Definition of the function last

this paper).
In practice our analysis is affordable for medium-size func-

tions. More importantly, it is modular, because once a func-
tion definition is analysed, all its relevant information is
recorded in the signature environment. Hence, the com-
pilation of a big program is still linear in the program size,
even if analysing each individual function of size n takes a
time in O(n3 log3 n).

We have implemented the analysis presented here, which
has been integrated into our Safe compiler, written in Haskell.
We have extended the HaLeX library [17], which manipu-
lates regular languages, with new operations such as lan-
guage intersection, derivation and equality. While the im-
plementation of the abstract interpretation rules of Fig. 6
is straightforward, the closure operation defined in Fig. 7 is
much more involved.

Even though the automata library is not particularly effi-
cient and there is much space for optimization, our prototype
implementation is able to analyse a file with 40 small func-
tions similar to msort, in less than ten seconds in a standard
laptop computer.

In order to illustrate the analysis, we present in Fig. 10
the code of a function last computing the last element of a
non-empty list. By iterating once the interpretation, and in
the places marked in the text, we get the following two sets:

R1 = {xs
ε−→ • ε←− xs}]x {xs

1−→ • ε←− x}]xx
{xs

2−→ • ε←− xx}
R2 = R1]y {xx

1−→ • ε←− y}]yy {xx
2−→ • ε←− yy}

Then Σ1 = Ilast {last 7→ ∅} = {res
ε−→ • 1←− xs}, where we

omit the reflexive relations. By applying again the interpre-
tation, we get:

Σ2 = Ilast {last 7→ Σ1} = {res
ε−→ • 21←− xs} ∪

{res
ε−→ • 1←− xs}

= {res
ε−→ • 21+1←− xs}

The language 21 is obtained by the closure {res
ε−→ • 1←−

xx}]res {xs
2−→ • ε←− xx}. In the next round, we get

Σ3 = {res
ε−→ • 2(21+1)+1←− xs} Applying now the widening

step, we get Σ3 = {res
ε−→ • 2∗1+21+1←− xs}, and by applying

the interpretation once more:

Ilast {last 7→ Σ3} = {res
ε−→ • 2(2∗1+21+1)←− xs} ∪

{res
ε−→ • 1←− xs}

= {res
ε−→ • 2(2∗1+21+1)+1←− xs}

The final test is 2(2∗1 + 21 + 1) + 1 ⊆ 2∗1 + 21 + 1 which
returns true because all the words in the left language are
also in the right one. Notice that the right expression could
be further simplified to 2∗1. This language clearly expresses
that the result of last is a descendant of the argument list
that can be reached by taking the tail of the list a number
of times and then by taking the head.

6. CASE STUDIES
Besides the examples already shown in the paper, we have

applied our analysis to some additional ones involving list
and binary tree manipulations. The following functions show
how our analysis can also detect internal sharing in the data
structure given as a result. This is useful to know whether
a given data structure is laid out in memory without over-
lapping.

buildTree x 0 = Empty
buildTree x n = Node (buildTree x (n-1)) x (buildTree x (n-1))

buildTreeSh x 0 = Empty
buildTreeSh x n = let t = buildTree x (n-1) in Node t x t

The shape analysis yields the results given below. We also
include the inferred sharing relations of the append, parti-

tion and qsort functions that make up a typical Quicksort
implementation:

buildTree x n : {res
(1+3)∗2−→ • ε←− x

, res
(1+3)∗2−→ • (1+3)∗2←− res}

buildTreeSh x n : {res
(1+3)∗2−→ • ε←− x

, res
(1+3)∗2−→ • (1+3)∗2←− res

, res
(1+3)∗−→ • (1+3)∗←− res}

append xs ys : {res
2∗1−→ • 2∗1←− xs, res

2∗−→ • ε←− ys}
partition p xs : {res

12∗1+22∗1−→ • 2∗1←− xs}
qsort xs : {res

2∗1−→ • 2∗1←− xs}

7. RELATED WORK AND CONCLUSIONS
There exist many different analyses dedicated to extract-

ing information about the heap, mainly in imperative lan-
guages where pointers are explicitly used and may be reas-
signed. Alias analysis is one of the most studied. It tries
to detect program variables that point to the same memory
location. Pointer analysis aims at determining the storage
locations a pointer can point to, so it may be also used to
detect aliases in a program. These analyses are used in many
different applications such as live variable analysis for reg-
ister allocation and constant propagation. In [13, 5, 14] we
can find surveys about pointer analysis applied to impera-
tive languages from the 80’s. Related to these analyses, an
Escape Analysis tries to determine statically the dynamic
scope of the data structures that will be created at runtime,
whereas Shape analysis [16, 9, 15] tries to approximate the
‘shape’ of the heap-allocated structures. That information
has been used, for example, for binding time optimizations.

The level of detail of all these analyses mainly depends
on the user of the analysis. Our analysis tries to capture
a kind of sharing information more refined than alias and
pointer analysis may provide, and in fact both are sub-
sumed in our relations: if x

ε−→ • ε←− y, then, x and y

are aliases; if x
j−→ • ε←− y, then x points to y (i.e. y

is the j-th child of the data structure x). In the area of
escape analysis, Blanchet [2] applies the concept of paths
in order to determine which pointers in a data structure
survive the current execution scope. The sets of paths are
subsequently abstracted by integer numbers denoting escape
contexts, whereas in this work we use regular expressions for
abstracting those sets. Moreover, our analysis aims to infer
sharing relations between our structures. That is why shape
analysis is nearer to our needs.

Jones and Muchnick [9] associate sets of k-limited graphs
to each program point in order to approximate the sharing
relations between variables. The k limits the length of the
paths in the graphs modeling the heap in order to make the
domain finite and obtain the minimal fixpoint by iteration.
The graphs obtained after the abstract execution of a pro-
gram instruction must be transformed in order to maintain
themselves k-limited. Our widening operator ressembles this
operation. Our path relations are in general uncomparable
in precision to these sets of limited graphs. First, having
sets of graphs may provide more precision because our union

operation loses information: adding x
p1+p3−→ • p2+p4←− y intro-

duces combinations of paths x
p1−→ • p4←− y and x

p3−→ • p2←−
y which did not exist previously. Second, paths longer than

k may be more precise that k-limited graphs: x
2221−→ • ε←− y

indicating that y is the fifth element of the list x is more
precise than saying in a 2-limited graph that y shares in an
unknown way with x after the path 22. Additionally, the
cost of having sets of graphs is doubly exponential in the
number of variables.

In order to reduce the cost to polinomial, Reps [15] for-
mulated the analysis as a graph-reachability problem over
the dependence graph generated from the program. The
reachability is defined in terms of those (context-free) paths
one is interested in. The fixpoint calculation in this case is
also finite because he just records the information about the
variables, not the exact paths. We need the paths in order
to make the analysis more precise as shown in the merge-
sort example, that is why we need the widening. The use of
context-free paths in our framework would make undecid-
able most of our tests.

Other related works are those devoted to compile-time
garbage collection, such as [7, 8]. The first one tries to save
creating a new array when updating an array that is only
referenced once. The second one provides an analysis also
detecting when a cell is referenced at most once by the sub-
sequent computation. Its aim is to destroy the cell after its
last use so that it can be reused by the runtime system. Both
analyses are done on a first-order eager functional language.
After these ones, there have been many similar analyses,
usually known as usage analyses (e.g. [18, 1, 19, 4]) whose
aim is to detect when a cell is used at most once and then,
either to recover or to avoid to update it, when the language
is lazy. These analyses do not try to know which other data
structures points to a particular cell, but rather how many
of them do it, and in this sense they are simpler. The nearer
to our problem is [8] since it pursues an aim similar to that
of Safe: to save memory. The main difference is that, in
our case, it is the programmer who decides to destroy a cell
and the compiler just analyses whether doing this is safe or
not. So, the programmer may have destructive and non-
destructive versions of the same function and uses the first
one in contexts where it is safe to do it. In [8] it is the
compiler who decides to destroy the cell, when it is safe to
do it in all the contexts in which the function is called. A
single unsafe context will avoid to recover the cell in all the
safe ones. Another important difference is that our analysis
is modular, while theirs need to analyse the program as a
whole. This makes it unpractical for big programs.

8. REFERENCES
[1] E. Barendsen and S. Smetsers. Uniqueness typing for

functional languages with graph rewriting semantics.

Mathematical Structures in Computer Science,
6(6):579–612, Dec. 1996.

[2] B. Blanchet. Escape analysis for JavaTM: Theory and
practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, Nov. 2003.

[3] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction of approximation of fixed points. In Proc.
4th ACM Symp. on Principles of Prog. Languages,
pages 238–252. ACM, 1977.

[4] J. Gustavsson and J. Sveningsson. A Usage Analysis
with Bounded Usage Polymorphism and Subtyping. In
Selected Papers of the 12th International Workshop on
Implementation of Functional Languages, IFL’00,
volume 2011 of LNCS, pages 140–157.
Springer-Verlag, 2001.

[5] M. Hind. Pointer analysis: Haven‘t we solved this
problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
For Software Tools and Engineering, PASTE’01, pages
54–61. ACM Press, 2001.

[6] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 2nd edition, 2001.

[7] P. Hudak. A Semantic Model of Reference Counting
and its Abstraction (Detailed Summary). In ACM
Symposium on Lisp and Functional Programming,
pages 351–363. ACM, 1986.

[8] T. P. Jensen and T. A. Mogensen. A Backwards
Analysis for Compile-Time Garbage Collection. In
European Symposium on Programming, pages 227–239.
LNCS 432, Springer, 1990.

[9] N. D. Jones and S. S. Muchnick. Flow analysis and
optimization of lisp-like structures. In Proceedings of
the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’79,
pages 244–256. ACM, 1979.

[10] M. Montenegro, R. Peña, and C. Segura. A Type
System for Safe Memory Management and its Proof of
Correctness. In ACM Principles and Practice of
Declarative Programming, PPDP’08, Valencia, Spain,
July. 2008, pages 152–162, 2008.

[11] M. Montenegro, R. Peña, and C. Segura. Shape
Analysis in a Functional Language by Using Regular
Languages (Extended Version). Technical report,
TR-8-13. Dpto. de Sistemas Informáticos y
Computación. Universidad Complutense de Madrid,
2013. Available at:
http://federwin.sip.ucm.es/sic/investigacion/

publicaciones/informes-tecnicos.

[12] R. Peña, C. Segura, and M. Montenegro. A Sharing
Analysis for SAFE. In Selected Papers Trends in
Functional Programming, TFP’06, pages 109–128.
Intellect, 2007.

[13] V. Raman. Pointer analysis – a survey. CS203 UC
Santa Cruz, http://www.soe.ucsc.edu/~vishwa/
publications/Pointers.pdf, 2004.

[14] D. Rayside. Points–to analysis.
http://www.cs.utexas.edu/~pingali/CS395T/

2012sp/lectures/points-to.pdf, 2005.

[15] T. Reps. Shape analysis as a generalized path
problem. In Proceedings of the 1995 ACM SIGPLAN

symposium on Partial evaluation and semantics-based
program manipulation, PEPM ’95, pages 1–11. ACM,
1995.

[16] J. C. Reynolds. Automatic computation of data set
definitions. In IFIP Congress (1), pages 456–461, 1968.

[17] J. Saraiva. HaLeX: A Haskell Library to Model,
Manipulate and Animate Regular Languages. In Proc.
ACM Workshop on Functional and Declarative
Programming in Education, University of Kiel. Tech.
Report 0210, pages 133–140, 2002.

[18] D. N. Turner, P. L. Wadler, and C. Mossin. Once upon
a type. In 7’th International Conference on Functional
Programming and Computer Architecture, pages 1–11,
La Jolla, California, June 1995. ACM Press.

[19] K. Wansbrough and S. L. P. Jones. Once upon a
polymorphic type. In The Twenty-sixth ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, Texas, January
1999.

