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Abstract

In this paper we summarize Safe, a first-order functional language for pro-
gramming small devices and embedded systems with strict memory require-
ments, which has been introduced elsewhere. It has some unusual memory
management features such as heap regions and explicit cell deallocation. It
is targeted at a Proof Carrying Code environment, and consistently with
this aim the Safe compiler provides machine checkable certificates about im-
portant safety properties such as absence of dangling pointers and bounded
memory consumption.

The kernel of the paper is devoted to developing part of the Safe compiler’s
back-end, by deriving an appropriate abstract machine from the language se-
mantics, by providing the code generation functions, and by formally proving
that the translation is sound, both in the semantic and in the memory con-
sumption senses.
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1. Introduction

The first-order functional language Safe has been developed in the last
few years as a research platform for analysing and formally certifying proper-
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ties of programs related to memory usage. It was introduced for investigating
the suitability of functional languages for programming small devices and em-
bedded systems with strict memory requirements. One of its aims is to infer
and certify —at compile time— safe upper bounds on memory consumption
by following a Proof Carrying Code (PCC) approach [1]. The Safe compiler
produces as target language Java bytecode, so that Safe programs can be
executed in most mobile devices and web browsers.

Several features make Safe different from conventional functional lan-
guages:

1. A region based memory management system, so that a garbage collector
is not needed.

2. A programmer facility for explicit destruction of memory cells. These
could be immediately reused by the program, so reducing its memory
requirements.

3. The type system of the language guarantees that well-typed programs
will be free of dangling pointers at runtime.

The compiler also includes an abstract interpretation-based inference al-
gorithm computing upper bounds to the heap and stack consumed by a pro-
gram. The latter two properties (absence of dangling pointers and memory
bounds) are certified by the compiler.

In most functional languages, memory management is delegated to the
runtime system: fresh heap memory is allocated during program evaluation
as long as there is enough free memory available. When there is not, the
garbage collector interrupts program execution in order to copy or mark the
live part of the heap, and the remaining memory is considered to be free. The
main advantage of this approach is that programmers do not bother about
low level memory management details.

But there are also some drawbacks: the time delay introduced by garbage
collection may prevent the program from providing an answer in a required
reaction time, memory exhaustion in safety critical systems may provoke an
unacceptable damage to users, and it is difficult to predict at compile time
the data structure lifetimes, and to reason about memory consumption.

There has been some work on on-the-fly garbage collectors which try to
compact memory during the idle time of the time-critical threads, but this
approach does not guarantee either to recover enough memory in the available
time, or to meet the real-time constraints. In [2] it is claimed to guarantee
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both things at the same time by calling the memory recovery operations
within the critical threads, and by guaranteeing a worst-case execution time
for these operations. The penalty appears to be having a rather complex
system.

As said above, Safe is targeted to programming small devices, safety
critical and soft real time systems, where memory requirements are rather
strict, and naive garbage collectors are a burden in service availability. The
constant time Safe memory management primitives, and the above certified
properties, make Safe suitable for these purposes.

Much work has been done on Safe up to now:

• A battery of static analyses has been developed and implemented in the
Safe compiler. In [3, 4, 5] we describe different parts of the type system
and of the type inference algorithms which, as a whole, determine the
regions, allocate data structures into them, and guarantee that the
destruction facilities do not create dangling pointers.

• A further analysis is presented in [6] for inferring safe memory bounds.
For each Safe function, these bounds consist of multivariate symbolic
functions relating the sizes of its input arguments to the number of
cells consumed in the heap, and of words consumed in the stack.

• In [7, 8] we explain how to certify the above properties inferred by the
compiler, i.e. the absence of dangling pointers, and the correctness of
the memory consumption upper bounds 1.

• Finally, in [9, 10] we certify the translation to the JVM target code.
The above analyses and certificates are carried on at the compiler inter-
mediate language called Core-Safe, which is still functional. The com-
piler’s back-end translates Core-Safe to JVM bytecode in two phases:
from Core-Safe to the Safe’s virtual machine (SVM), and from there to
JVM. In a PCC framework, it is mandatory to certify that the proper-
ties holding at the Core-Safe level still hold at the JVM level.

This paper is an extended version of the work described in [11] and ad-
ditionally it is intended as a reference of the Safe project. For that reason

1At http://dalila.sip.ucm.es/safe/certifdangling and .../safe/bounds the
reader can find the Isabelle/HOL theories related to these certificates.
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it includes an extensive introduction to Safe’s features and their motivation.
It also includes some implementation aspects of the Safe runtime system.
The focus of the paper is on the first phase of Safe’s compiler back-end, i.e.
the design of the Safe Virtual Machine and the translation algorithms from
Core-Safe to the SVM language. Then, we formally prove that the semantics
are preserved across the translation. Originally, the design of the SVM was
done by a derivation consisting of three succesive refinements: from Core-
Safe’s big-step operational semantics to a small-step semantics, from there
to an intermediate machine called M2, and from this one to the SVM. We
omit the intermediate steps here which the interested reader can find in [11].

An original contribution of [11] (and hence of this extended version) is
that we also formally prove the memory consumption correctness. To this
aim, we previously enrich both the big-step semantics and the SVM semantics
with additional information expressing the memory consumption at each of
the levels. The correctness proof contained in the paper is hand-written, but
a more involved one including all the details was done by using the proof-
assistant Isabelle/HOL [12] and published in [9]. It is remarkable that the
actual Haskell code of the Safe compiler performing the translation from
Core-Safe to SVM has been extracted from the Isabelle/HOL code on which
the formal proof was performed. The same strategy was followed in the
translation from SVM to JVM.

More information about the Safe project, including the publications and
also the Isabelle/HOL theories used for certification, is available at
http://dalila.sip.ucm.es/safe. There also exists a web-based interface for
the compiler at http://dalila.sip.ucm.es/~safe.

Firstly, by means of examples we present in Section 2 a high-level view
of Safe features, and how its memory facilities are implemented. Then, its
desugared variant Core-Safe is defined. Its semantics is given in Section 3.
In Section 4 we present the SVM abstract machine on which Safe programs
are run, while the translation process between Core-Safe programs and the
code being executed by the SVM abstract machine is detailed in Section
5. The SVM will serve as a reference implementation, which allows us to
determine the memory consumption of a Core-Safe program. This will be
made apparent in Section 6 by enriching the Core-Safe semantics with a
resource vector specifying how much memory is needed by a program in order
to be run. A formal proof of correctness of this translation, showing both
semantic and resource preservation, is done in Section 7. Finally, Section 8
surveys related work and concludes.
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2. Language concepts: Safe by example

Safe is a first-order polymorphic functional language, whose syntax is
similar to that of (first-order) Haskell or ML, but with some facilities to
manage memory. Polymorphic data types are defined in the same way as in
Haskell. As an example, we have the following data declarations of binary
search trees and lists:

data BSTree α = Empty | Node (BSTree α) α (BSTree α)
data [α] = [ ] | (α : [α])

Safe’s memory model is based on heap regions. Regions are disjoint parts
of the heap where data structures are built. A region can be created and
disposed of in constant time.

A cell is a piece of memory big enough to hold a data constructor with its
parameters. In implementation terms, a cell contains the identifier of a data
constructor, and a representation of the values to which this constructor is
applied. These values can be either basic (integers or booleans), or point-
ers to other cells. With the term “big enough” we mean that a cell being
disposed of the heap may be immediately reused by the runtime system. A
naive implementation would define this size as the space taken by the biggest
constructor (i.e. with the highest number of parameters). In a more efficient
approach we would have a fixed number of cell sizes, all of them multiples of
the smallest one.

Cells are combined in order to build data structures. A data structure
(DS in the following) is the set of cells that results from taking a particular
cell (the root) and following the transitive closure of the relation C1 → C2,
which denotes that C1 and C2 are cells of the same type, and there is a pointer
in C1 to C2. For instance, if we have a list of lists (type [[α]]), the cells that
make up the recursive spine of the outer list constitute a DS, to which the
inner lists do not belong, even when there are pointers from the outer list to
them. Each one of the inner lists constitutes a separate DS on its own.

During the design of the language several decisions were taken. The first
one involves the correspondence between DSs and regions.

Axiom 1. A DS completely resides in a single region.

This decision poses a constraint on the data constructors: the recursive
children of a cell (i.e. those with the same type) must belong to the same
region as the father.
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Axiom 2. A DS can be part of another DS, and two DSs may share a third
DS.

Node      4   

Node      2   Empty

Empty Empty

As an example, consider the binary tree on
the right-hand side. The left and the right sub-
trees of the root are separate DSs, which belong
to the whole binary tree, which is another DS.

Axiom 3. Basic values (integers and booleans) occurring in the heap do not
belong to any region by themselves. They are contained within cells.

2.1. Region-based memory management in Safe

A distinctive aspect of Safe is the way in which regions are created and
destroyed:

Axiom 4. Allocation of regions takes place at function calls. Deallocation of
regions takes place when a function call finishes.

This implies that new regions are created as functions are called, so there
exists a correspondence between the function call stack and regions, which
are also created and disposed of in a stack-like fashion. Since function calls
have nested lifetimes, regions also have nested lifetimes. That is why they
are stored in a stack-like fashion: the last region being created is the first
being destroyed. The region associated to a given function call f is called
its working region. The function may create DSs in this region, provided
these DS are not accessed outside the function’s context, since they will be
destroyed when the function finishes. A function may also access the working
regions of the function calls situated below it in the call stack. These regions
must be passed as parameters by the functions calling f . Each region existing
at a given execution point is uniquely identified by a natural number ranging
from 0 (which identifies the stack bottom region) to the number k of active
regions minus one (which identifies the topmost one).

An important point is the fact that regions are not handled directly by the
Safe programmer. The compiler determines which DSs will be created in the
working region and which regions should be passed as parameters between
functions. However, in order to get an idea on how regions are inferred,
we will consider a syntactically-extended version of Safe, which we call Safe
with regions. In this version regions become apparent. The main syntactical
additions of Safe with regions include the following:

6



• A function definition may have additional region parameters r1 . . . rm
separated by a @ from the rest of formal parameters. As an example,
we may have the following function definition:

f x1 x2 x3 @ r1 r2 = . . .

These region parameters will contain, at runtime, the identifiers (nat-
ural numbers) of the actual regions they refer to.

• The working region is referred to by the identifier self .

• When calling a function with these extra parameters, the region argu-
ments are also separated from the rest of arguments by the @ symbol.
For example:

f 4 x z @ self r1

where r1 is a region variable in scope.

• To each constructor expression, a region variable is attached which
contains, at runtime, the identifier of the region where the resulting
cell will be built. For example:

[ ] @ r2 (4 : [ ] @ self ) @ self

In the latter example, the outermost self annotates the application of
the list constructor (:).

Example 5. Consider a function append for appending two lists. The fol-
lowing is Safe code, as written by the programmer:

append :: [α]→ [α]→ [α]
append [ ] ys = ys
append (x : xs) ys = x : append xs ys

This function is annotated by the compiler as follows:

append [ ] ys @ r = ys
append (x : xs) ys @ r = (x : append xs ys @ r) @ r

There is a new region parameter r, which is used to build the resulting list,
and is passed to the subsequent recursive calls. Figure 1 shows the execution
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1: 2: []

3: []1: 2: 3: []
append xs ys

1: 2: []

ys

xs xs

ys
Before After

Figure 1: Regions of the arguments before and after evaluating append xs ys .
The result of the function application is created in the region of ys .

of append xs ys , being xs = [1, 2] and ys = [3]. Notice that the result is
forced to be built in the same region as the list passed as second parameter.
This is because this parameter is reused in the base case of append , and a
DS must be contained within a single region. The compiler takes this into
account when annotating the call to append .

The working region self of a function is used to build temporary DSs
which are not part of the result. An example of a function with this kind of
behaviour is treesort .

Example 6. Consider the following implementation of the Treesort algo-
rithm:

treesort :: [α]→ [α]
treesort xs = inorder (mkTree xs)

where mkTree builds a binary search tree from the list given as parameter,
and inorder performs an inorder traversal of a binary search tree by adding
the visited elements to a list that is returned as result. Now we show the
Safe code with regions:

treesort xs @ r = inorder (mkTree xs @ self ) @ r

Both functions inorder and mkTree receive a region parameter specifying
where to build the resulting list (resp. tree). The mkTree function is given
the self identifier, so the tree will be built in the working region. The inorder
function receives the parameter given to treesort , which is the output region
in which the sorted list will be built (Figure 2). When treesort finishes, its
working region will disappear from the heap, together with the temporary
tree.
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2: []5: 9: 3: 9: []2: 3: 5: 

Node      5   

Node      3   

EmptyNode      2   

Empty Empty

Node      9   

Empty Empty

Input Output

Working
region

xsxs treesort xs

Figure 2: DSs involved in the treesort function. The working region contains
the intermediate representation of the list as a binary tree.

Safe provides a built-in facility for copying data structures: the @ nota-
tion. The expression ys@ returns a copy of the DS pointed to by ys . The
copy of the data structure will be located in a different region, if this does
not contradict Axiom 1. The copy facility is useful when the programmer
does not want to build a DS upon already existing ones.

Example 7. The append function of Example 5 forces the resulting list to
be located in the same region as the list passed as second parameter. Let us
consider the following variant in which the result is built upon a copy of the
list passed as second parameter:

appendC [ ] ys = ys@
appendC (x : xs) ys = x : appendC xs ys

The compiler annotates every copy expression with the region variable in
which the copy will be returned. In the case of appendC function, it produces
the following code with regions:

appendC [ ] ys @ r = ys @ r
appendC (x : xs) ys @ r = (x : appendC xs ys @ r) @ r

The copy of ys is created in the output region r, which may now be different
from the region of the second parameter ys . (Figure 3).
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1: 2: []

3: []1: 2: 

3: []

copy

ysxs

appendC xs ys

ys@

Figure 3: Runtime behaviour of appendC [1, 2] [3]: the list passed as second
parameter is copied, so it does not share cells with the result, which may be
built in an independent region.

Example 8. The copy of a DS might not be able to live in a region different
from that of the DS being copied. In the following example,

duplicate t = Node t 0 (t@)

the original binary tree t and its copy t@ are forced to live in the same region,
as they belong to the same DS.

2.2. Destructive pattern matching

Destructive pattern matching allows the selective disposal of a DS inside
a region, without the need of waiting for the whole region to be disposed
of. This allows the programmer to break the strict discipline imposed by the
nested lifetimes of regions.

Destructive pattern matching, denoted by (!) or a case! expression, de-
allocates the cell corresponding to the outermost constructor of the DS being
matched against. In this case we say that the DS involved in the destructive
pattern matching is condemned.

Axiom 9. A function may only read a DS which is not a condemned pa-
rameter, and it may read (before destroying) and destroy a DS which is a
condemned parameter.

As an example, we will consider a destructive variant of append .

Example 10. Assume the following definition:

appendD [ ]! ys = ys
appendD (x : xs)! ys = x : appendD xs ys
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1: 2: []

3: []1: 2: 3: []

appendD xs ys

1: 2: []

ys

xs xs

ys
Before After

Figure 4: Regions of the input parameters before and after a call to
appendD [1, 2] [3]. Every cell of the input list is removed in each recursive
call to appendD .

The (!) mark in the first parameter specifies that the cell to which the pattern
matching is done will be destroyed at runtime. The function destroys the
first cons cell of the list passed as first parameter. The remaining cells will
be destroyed in the subsequent recursive calls to appendD , until we reach the
base case in which the empty list matches the first equation, and it is also
destroyed (Figure 4). This version needs no additional heap space: a cell is
destroyed and another cell is built in each recursive call. The destruction
of the first parameter is reflected in the function’s type: appendD :: [α]! →
[α]→ [α].

Destructive pattern matching allows the programmer to define functions
requiring constant additional heap space. As we have said before, it is also
useful for breaking the restriction (imposed by regions) of having DSs with
nested lifetimes.

Example 11. Given a list of elements, the insertion sort algorithm starts
with an empty list and does successive ordered insertions in it with the ele-
ments of the input list. The insert function does the insertion of an element
in an ordered list. Here we show its Full-Safe code and the corresponding
region-annotated version:

insert x [ ] = [x]
insert x (y : ys)

| x ≤ y = x : y : ys
| x > y = y : insert x ys

insert x [ ] @ r = (x : [ ] @ r) @ r
insert x (y : ys) @ r

| x ≤ y = (x : (y : ys)@r)@r
| x > y = (y : insert x ys @ r)@r

In the equation guarded by x ≤ y the result is built upon the input ys ,
so the region of the output list must be the same as that of the input list
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9: []3: 5: 

3: 5: 8: 

xs

insert 8 xs

Figure 5: Inserting the number 8 in the list [3, 5, 9]. The part of the list
before the new cell must be reconstructed.

(Figure 5). As a result, the following inssort function,

inssort [ ] = [ ]
inssort (x : xs) =

insert x (inssort xs)

inssort [ ] @ r = [ ] @ r
inssort (x : xs) @ r =

insert x (inssort xs @ r) @ r

builds every intermediate result in the region of the empty list being created
in the base case, that is, the output region r, whereas the working regions
of the calls to inssort remain unused. This implies that the inssort function
has a O(n2) worst-case space complexity, where n is the number of elements
of the input list.

A more efficient approach is to consider a destructive version of insert :

insertD x [ ]! = [x]
insertD x (y : ys)!

| x ≤ y = x : y : ys
| x > y = y : insertD x ys

This version only needs an additional cell in memory to build the new list
node. Assuming that we replace the call to insert by insertD in the inssort
function, Figure 6 shows the state of the output region when returning from
every recursive call. We can even develop a destructive version of inssort
that also disposes of the input list.

inssortD [ ]! @ r = [ ] @ r
inssortD (x : xs)! @ r = insertD x (inssortD xs @ r) @ r

The cell of the input list being destroyed in the pattern matching can be
reused by the insertD function. Thus inssortD needs no additional heap
space for building the result.
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2: []

(a) inssort [2] finishes

2: 

4: 2: 

[]

(b) inssort [4,2] finishes

2: 

4: 2: 

4: 2: 5: 

[]

(c) inssort [5,4,2] finishes

Figure 6: Insertion sort destroying the intermediate results.

2.3. Core-Safe syntax

The functions presented in previous sections were written in Full-Safe,
which is the language in which the programmer writes his programs. Core-Safe
is a desugared version of Full-Safe in which regions are explicit.

In Figure 7 we show the syntax of Core-Safe programs and expressions.
A program prog is a sequence of data declarations, followed by a sequence of
function definitions def i and a main expression e, whose result is the result of
the program. The data declarations section follows a syntax similar to that
of Haskell and it is not described here. A function definition is a function
name f , followed by a list xi of formal parameters (which are variables), a
list rj of formal region parameters (which are called region variables) and the
body expression e of the function. The sets of variables and region variables
are respectively denoted by Var and RegVar.

We denote by Exp the set of Core-Safe expressions. Basic expressions in-
clude: atomic expressions (literals or variables), copy expressions (see Section
2.1), function and constructor applications, and a special kind of function ap-
plications that we consider to be built-in: basic operators. The set of basic
operators ⊕ is left unspecified. We only demand that applications of these
operators require no additional heap space and only two stack words for the
arguments. We assume that, for every constructor C, the set of its recur-
sive positions (denoted by RecPos(C)) is known at runtime. For instance,
RecPos(:) = {2} and RecPos(Node) = {1, 3}. Only atomic expressions (con-
stants and variables) are allowed in function and constructor applications.
Nonatomic expressions occurring inside function and constructor arguments
must be introduced via let bindings, in the style of A-normal form [13].

Core-Safe supports two kinds of pattern matching: read-only (case) and
destructive (case!). In the latter, the cell against which the patterns are

13



prog → data i ; defi ; e
def → f xi @ rj = e
e → a {atom: literal c or variable x}

| x@ r {copy}
| a1 ⊕ a2 {basic operator application}
| C ai @ r {constructor application}
| f ai @ rj {function application}
| let x1 = e1 in e2 {let declaration: nonrecursive, monomorphic}
| case x of Ci xij

ni → ei {read-only pattern matching}
| case! x of Ci xij

ni → ei {destructive pattern matching}

Figure 7: Core-Safe language definition

matched is also disposed of, so its space can be reused by the runtime sys-
tem. When translating from Full-Safe into Core-Safe, pattern matching and
destructive pattern matching are respectively translated into case and case!
expressions.

Example 12. The translation applied to the append function defined in
Example 5 yields the following result:

append xs ys @ r = case xs of

[ ]→ ys

(x : xx )→ let x1 = append xx ys @ r in (x : x1)@r

2.4. Static semantics

A part of the Safe’s compiler front-end is devoted to ensuring certain
static properties that are assumed to be true in the dynamic semantics of
Section 3.

The first one is that all bound variables are distinct within a function
definition, and even (although this is not needed by the semantics) between
different function definitions. This is ensured by systematically renaming
them during the translation from Full-Safe to Core-Safe.

Another one is that pattern matching is translated in such a way that case
expressions are exhaustive, i.e. they have an alternative for each constructor

14



Γ1 ` e1 : s1 Γ2 + [x1 : τ1] ` e2 : s utype?(τ1, s1)
∀x ∈ dom Γ1.Γ1(x) ∈ UnsafeType⇒ x /∈ fv(e2)

Γ1 t Γ2 ` let x1 = e1 in e2 : s
[LET]

∀i ∈ {1..n}.Γ(Ci) = σi utype?(Γ(x), T @ ρ) ∀i ∈ {1..n}.sijni → ρ→ T @ ρE σi
∀i ∈ {1..n}.Γ + [xij : τij

ni ] ` ei : s ∀i ∈ {1..n}.∀j ∈ {1..ni}.utype?(sij, τij)

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

Figure 8: Two typing rules of Safe’s type system

of the corresponding data type. If the programmer has chosen not to match a
particular constructor (as in e.g. head (x:xs) = x), the compiler introduces
the missing branch (in this example, head []) with an error expression.

The last one is that all running programs are well-typed, and then the
semantics cannot get stuck because of a type error. For instance, if a case
expression has a discriminant x of type T , then the value of x in the heap
will correspond to this type, and consequently it will match one of the case
patterns.

The Safe type system (see [3, 4, 5] for a full description) is an extension of
the polymorphic Hindley-Milner (H-M) type system used in many functional
languages. It has two additional features:

• Region arguments are given polymorphic type variables as types, re-
flecting the fact that these region arguments may be instantiated at
runtime to any actual region. The only restriction imposed by the type
system is that region arguments having the same type are instantianted
to the same actual region.

• Algebraic datatypes are enriched with destruction marks indicating the
safety degree of the corresponding data structure. These are safe (s),
condemned (d), and in-danger (r) marks respectively. There is a total
order between them, s ≤ d ≤ r, and a mark may be weakened if
needed to a worse one. These marks are used to control the effect of
case! expressions, avoiding that the program may access to partially
or completely destroyed structures.

We have developed inference algorithms both for regions and for destruc-
tion marks so that this type system is essentially hidden to the programmer.
In Figure 8 we show two of its rules.
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In the [LET] rule, the predicate utype?(τ1, s1) expresses that the H-M
types (i.e. the types without considering marks) of τ1 and s1 should be the
same. The set UnsafeType contains the types with marks d or r, and
Γ1 t Γ2 denotes the union of two typing environments such that the types
of the common variables are weakened to the worse mark of the two. The
rule essentially expresses that the variables becoming unsafe in expression e1
may not be referenced in e2.

In the [CASE] rule, the σi denote polymorphic type schemes, tEσ denotes
that the type t is an instantiation of σ, and ρ is the region type variable
assigned to the algebraic type T . The rule expresses that variables x having
any mark can occur in the discriminant position of a case, and that its H-
M type must be consistent with that of the constructors occurring in the
patterns.

We show below the types inferred for some of the functions presented up
to now:

append :: [α]@ρ1 → [α]@ρ2 → ρ2 → [α]@ρ2
treesort :: [α]@ρ1 → ρ2 → [α]@ρ2
appendC :: [α]@ρ1 → [α]@ρ2 → ρ3 → [α]@ρ3
duplicate :: BSTree α @ ρ→ ρ→ BSTree α @ ρ
inssortD :: [α]!@ρ1 → ρ2 → [α]@ρ2

The (!) after [α] in the latter example is the mark d, indicating that the spine
of the input list will be destroyed by inssortD .

2.5. Runtime system implementation

As we said above, the heap is implemented as a stack of regions. Each re-
gion is pushed initially empty, this action being associated to a Safe function
invocation. During function execution new cells can be added to (or removed
from) any active region as a consequence of constructor applications and de-
structive pattern matching. Upon function termination the whole topmost
region is deallocated. The Memory Management System (MMS) maintains
a pool of fresh cells, so that ‘allocating’ and ‘deallocating’ a cell respectively
mean removing it from, or adding it to the pool. The MMS operations can
be implemented in constant time by representing the regions and the pool
as circular doubly-linked lists (see Figure 9). Removing a region amounts
to joining two circular lists, which can obviously be done in constant time.
The region stack is represented by a static array of dynamic lists, so that
constant time access to each region is provided.
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Figure 9: A picture of the Safe Virtual Machine heap and fresh cells pool

3. Semantics of Safe

In this section we describe how a Core-Safe expression e is reduced to a
value (normal form). We use v, vi, . . . metavariables to denote values, which
are defined by the following grammar:

Val 3 v ::= p ∈ Loc { heap pointer }
| c ∈ Int ∪Bool { literal: integer or boolean }

Since one of the aims of the language is the inference of safety properties
regarding memory pointers and bounded memory consumption, our seman-
tics needs a model of the heap. A heap h is defined as a finite mapping
from heap pointers to construction cells. Heap pointers specify memory lo-
cations. We assume the existence of a denumerable set of pointers Loc and
use p, pi, q, . . . to denote elements from this set. A construction cell w is an
element of the form (j, C vi

n), where j is a natural number, C a constructor
symbol of arity n, and vi

n is the list of values to which C is applied. The
number j stands for the region of the heap in which the cell is located. With
this heap model the region number may be considered as a property of a cell.
This implies, on the one hand, that every cell belongs to a region and, on
the other hand, that every cell belongs to a single region (in other words,
regions are disjoint).
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The notation region(w) represents the region where w lives (that is, the
first component of the pair (j, C vi

n)), whereas freshh(p) denotes that the
pointer p is fresh in h, that is, it does not occur neither in its domain nor in
its cells.

In Figure 10 we show the big-step operational semantics of Core-Safe
expressions. A judgement of the form E ` (h, k), e ⇓ (h′, k), v means that
expression e is successfully reduced to a normal form v under a runtime
environment E and a heap h with k + 1 regions (ranging from 0 to k) and
that a final heap h′ with the same number of regions as the initial one is
produced as a side effect. A runtime environment E (also denoted value
environment) maps respectively program variables x to values, and region
variables r to heap region identifiers (i.e. natural numbers). We use E[x 7→ v]
to highlight a binding contained in E, and E] [x 7→ v] to denote the addition
of a new binding to environment E, which requires x 6∈ dom E in order to
be defined. The same notation is applied to heaps. We adopt the convention
that, for every value environment E, if c is a literal, E(c) = c.

We assume that, during the evaluation of an expression, a program sig-
nature Σ mapping function names to program definitions, is available. This
is an additional parameter of the evaluation relation which is left implicit
except for the rule [App]. We shall use the notation (f xi

n @ rj
m = ef ) ∈ Σ

for denoting the result of Σ(f).
The semantics of a program prog ≡ datai ; defi ; e is the result of evalu-

ating its main expression e in an environment Σ containing all the function
declarations def i, under an empty heap with a single region and a value
environment which maps the self identifier to that region:

([self 7→ 0] ` [ ], 0), e ⇓ (h′, 0), v (1)

Now, we explain in detail the semantic rules. Rules [Lit ] and [Var ] just
say that literals and heap pointers are normal forms. Rule [Copy] executes a
copy expression by copying the data structure pointed to by p and living in
a region j′ into a (possibly different) region j. The runtime system function
copy follows the pointers in recursive positions of the structure starting at
p and creates in region j a copy of all recursive cells. Some restricted type
information is assumed to be available in our runtime system (namely, the
recursive positions of each constructor) so that this function can be imple-
mented.
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E ` (h, k), c ⇓ (h, k), c
[Lit ]

E[x 7→ v] ` (h, k), x ⇓ (h, k), v
[Var ]

E ` (h, k), a1 ⊕ a2 ⇓ (h′, k), E(a1)⊕ E(a2)
[PrimOp]

j ≤ k (h′, p′) = copy(h, p, j)

E[x 7→ p, r 7→ j] ` (h, k), x@ r ⇓ (h′, k), p′
[Copy ]

E ≤ k freshh(p)

E ` (h, k), C ai
n @ r ⇓ (h ] [p 7→ (E(r), C E(ai)

n
)], k), p

[Cons ]

(g yi
n @ r′j

m
= eg) ∈ Σ

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

m
, self 7→ k + 1] ` (h, k + 1), eg ⇓ (h′, k + 1), v

E ` (h, k), g ai
n @ rj

m ⇓ (h′|k, k), v
[App]

E ` (h, k), e1 ⇓ (h1, k), v1 E ] [x1 7→ v1] ` (h1, k), e2 ⇓ (h′, k), v

E ` (h, k), let x1 = e1 in e2 ⇓ (h′, k), v
[Let ]

E ] [xri 7→ vi
nr ] ` (h, k), er ⇓ (h′, k), v

E[x 7→ p] ` (h[p 7→ (j, Cr vi
nr)], k), case x of Ci xij

ni → ei
n ⇓ (h′, k), v

[Case]

E ] [xri 7→ vi
nr ] ` (h, k), er ⇓ (h′, k), v

E[x 7→ p] ` (h ] [p 7→ (j, Cr vi
nr)], k), case! x of Ci xij

ni → ei
n ⇓ (h′, k), v

[Case! ]

Figure 10: Big-step operational semantics of Core-Safe expressions.
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Definition 13. The copy function is defined as follows:

copy(h0[p 7→ (j′, C vi
n)], p, j) = (hn ] [p′ 7→ (j, C v′i

n
)], p′)

where freshhn(p′)

∀i ∈ {1..n}.(hi, v′i) =

{
(hi−1, vi) if i /∈ RecPos(C)
copy(hi−1, vi, j) otherwise

Termination of this function is guaranteed because it is not possible to
build cyclic data structures in Safe. We have proved this invariant property
in [7]. Should copy find a dangling pointer during the traversal, then the
whole rule would fail. If there is no failure, the normal form becomes a fresh
pointer p′ pointing to the copy. The pointers in non recursive positions of all
the copied cells are kept identical in the new cells. This implies that both
data structures (the original and the copy), may share some subparts. For
instance, if the original DS is a list of lists, the structure created by copy is a
copy of the outermost list, while the innermost lists become shared between
the old and the new list.

Rule [App] shows when a new region is allocated. Notice that the body
of the function is executed in a heap with k+2 regions (from 0 to k+1). The
formal identifier self is bound to the newly created region k + 1 so that the
function body may create DSs in this region or pass this region as a parameter
to other function calls. Before returning from the function, all cells created in
region k+1 are deleted. This action is a source of possible dangling pointers.
By the notation h|k we denote the heap obtained by deleting from h those
bindings living in regions greater than k.

Rule [Cons ] generates a fresh location p pointing to the newly constructed
cell. The parameters of the corresponding constructor are looked up in the
value environment E.

Rule [Let ] shows the eagerness of the language: first, the auxiliary ex-
pression e1 is reduced to normal form and then the main expression e2 is
evaluated. In the latter evaluation the environment is extended by binding
the program variable x1 to the normal form to which e1 is reduced.

The [Case] rule is the usual one for an eager language, whereas the [Case! ]
rule expresses what happens in a destructive pattern matching: the binding
of the discriminant variable disappears from the heap. This action is another
source of possible dangling pointers.

In principle we are interested only in those value environments that map
the self identifier to the highest possible region number, and the remaining
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region variables to numbers strictly lower than the one bound to self . When
a value environment meets these requirements, it is said to be admissible.

Definition 14. A value environment E is admissible with respect to k iff
E(self ) = k and for every other region variable r ∈ dom E it holds that
E(r) < k.

The next Proposition shows that admissibility is preserved by the evalu-
ation of an expression.

Proposition 15. Let us consider a judgement E ` (h, k), e ⇓ (h′, k), v in
which E is admissible w.r.t. k. Then any value environment occurring in the
derivation of this judgement is also admissible w.r.t. its corresponding k.

Proof. The property is true at the initial judgement and is preserved in every
inductive rule. The only relevant case is rule [App].

It is easy to show that the initial value environment in the execution of
a Core-Safe program (1) is admissible and, hence, that all the value envi-
ronments taking place in the execution of the program are admissible. This
allows us to leave out the conditions j ≤ k in [Copy ] and E(r) ≤ k in [Cons ],
since they are guaranteed to hold when their corresponding judgements are
admissible.

4. The Safe Virtual Machine (SVM)

In this section we formally describe an abstract machine for executing
Safe expressions: the SVM (Safe Virtual Machine). This is an imperative
machine: the expression being evaluated is replaced by a control sequence
of imperative instructions. Correspondingly, the global code environment
Σ is replaced by a code store containing sequences of instructions. Instead
of runtime environments, the machine has a stack for storing values and
continuations. The set of instructions and instruction sequences of the SVM
are given by the following grammar:

ι ::= DECREGION | COPY | MATCH l pi | BUILDCLS C Ki K
| POPCONT | CALL p | MATCH! l pi | SLIDE m n
| PUSHCONT p | PRIMOP⊕ | BUILDENV Ki

is ::= [ ]
| ι : is
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In this section we introduce only the semantics of these instructions in the
context of the SVM machine. Their specific role will become clearer when
dealing with the translation from Core-Safe to SVM code. During the exe-
cution the code store (resulting from the compilation of program fragments)
is kept in the machine configuration. A code store maps code pointers to
instruction sequences. We use the metavariables p,pi, ... for denoting code
pointers. We assume the existence of a denumerable set PCode containing
them. The l variable occurring in the MATCH and MATCH! instructions stands
for a natural number representing a stack position (starting from the top).
Finally, the elements K occurring in BUILDENV and BUILDCLS, which will be
called keys, are generated by the following grammar:

K ::= Pos j { j ∈ N, stack position }
| Lit c { literal }
| self { working region identifier }

An SVM configuration c consists of six components (is , h, k0, k, S, cs),
where is is the instruction sequence currently being executed, and h is a
heap with k regions. The role of k0 is more subtle, since it represents a lower
watermark indicating which was the topmost region when the execution of the
latest let started. This value is kept before executing the bound expression of
that let. When this expression reaches a normal form, all the regions between
the topmost k at that time, and the original topmost k0 must be deleted,
since the main expression of the let is going to be executed afterwards, and
the operational semantic rules demand the initial and final regions to be equal
when executing every expression. As the machine starts the execution of the
bound expressions of successive nested lets, it has to store (with PUSHCONT)
the k0 corresponding to each of these expressions in the stack, and restore
those intermediate values (with POPCONT) from the stack when the execution
of their corresponding bound expressions finishes.

The cs variable denotes a code store containing all the program fragments,
whereas S denotes a stack which may contain values, region numbers and
continuations of the form (k0,p). We use the metavariable b for denoting
stack values:

b ::= j { where j ∈ N}
| v { where v ∈ Val}
| (k0,p) { continuation: k0 ∈ N, p ∈ PCode}
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Initial/final configuration Condition

(DECREGION : is , h, k0, k, S, cs) k ≥ k0
→ (is , h |k0 , k0, k0, S, cs)

([POPCONT], h, k, k, b : (k0,p) : S, cs [p 7→ is ])
→ (is , h, k0, k, b : S, cs)

(PUSHCONT p : is , h, k0, k, S, cs) p ∈ dom cs
→ (is , h, k, k, (k0,p) : S, cs)

(COPY : is , h, k0, k, p : j : S, cs) (h′, p′) = copy(h, p, j)
→ (is , h′, k0, k, p′ : S, cs) j ≤ k

([CALL p], h, k0, k, S, cs [p 7→ is ])
→ (is , h, k0, k + 1, S, cs)

(PRIMOP ⊕ : is , h, k0, k, c1 : c2 : S, cs) c = c1 ⊕ c2
→ (is , h, k0, k, c : S, cs)

([MATCH l pj
m], h[S!l 7→ (j, Cm

r vi
n)], k0, k, S, cs [pj 7→ isj

m
])

→ (isr, h, k0, k, vi
n : S, cs)

([MATCH! l pj
m], h ] [S!l 7→ (j, Cm

r vi
n)], k0, k, S, cs [pj 7→ isj

m
])

→ (isr, h, k0, k, vi
n : S, cs)

(BUILDENV Ki
n

: is , h, k0, k, S, cs)

→ (is , h, k0, k, Itemk(Ki)
n

: S, cs) (1)

(BUILDCLS Cm
r Ki

n
K : is , h, k0, k, S, cs) Itemk(K) ≤ k, freshh(p)

→ (is , h ] [p 7→ (Itemk(K), Cm
r Itemk(Ki)

n
)], k0, k, p : S, cs) (1)

(SLIDE m n : is , h, k0, k, vi
m : b′i

n
: S, cs)

→ (is , h, k0, k, vi
m : S, cs)

(1) Itemk(K)
def
=


S!j if K = Pos j
c if K = Lit c
k if K = self

Figure 11: Transition rules of the SVM abstract machine
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In Figure 11 we show the semantics of SVM instructions in terms of
transitions between configurations. By Cm

r we denote the data constructor
which is the r-th in its data definition out of a total of m data constructors.
By S!j we denote the j-th element of the stack S counting from the top
and starting at 0 (i.e. S!0 is the topmost element). The notation bi

n
: S

abbreviates the stack b1 : · · · : bn : S.
Instruction DECREGION deletes from the heap all the regions, if any, be-

tween the current region k and region k0, excluding the latter. It will be used
when a normal form is reached.

Instruction POPCONT pops a continuation from the stack or stops the ex-
ecution if there is none. It is always assumed to be the last element of the
current instruction sequence (the notation [POPCONT] stands for POPCONT : []).
Notice that b (which is usually a value) is left in the stack so that it can be
accessed by the continuation. Instruction PUSHCONT pushes a continuation
onto the stack. It is used in the translation of a let.

The COPY instruction just mimics the [Copy] rule of the big-step opera-
tional semantics, while leaving the result at the top of the stack.

Instruction CALL jumps to a new instruction sequence and creates a new
region. It will be used in the compilation of a function application.

Instruction PRIMOP operates two basic values located in the stack and
replaces them by the result of the operation.

Instruction MATCH performs a vectored jump depending on the construc-
tor of the matched closure. The vector of sequences pointed to by the pj
corresponds to the compilation of a set of case alternatives. The MATCH!
instruction additionally destroys the matched cell.

The BUILDENV instruction receives a list of keys Ki and creates a portion
of environment on top of the stack: If a key K is a natural number j, the
item S!j is copied and pushed onto the stack; if it is a basic constant c, it
is directly pushed onto the stack; if it is the identifier self , then the current
region number k is pushed onto the stack.

Instruction BUILDCLS allocates fresh memory and constructs a new cell in
the style of the [Cons] rule in the big-step semantics. Similarly to BUILDENV,
it receives a list of keys and uses the same conventions. It also receives the
constructor Cm

r of the cell being created.
Finally, instruction SLIDE removes some parts of the stack. It will be

used to remove environments when they are no longer needed.
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5. Translating Core-Safe into SVM code

A major difference of the big-step operational semantics with respect to
the SVM is the lack of a value environment E in the latter. The values of
E are assumed to live in the stack S. In order to perform the translation
from Core-Safe into SVM instructions, we need to set up a correspondence
between program variables (which are no longer present during the execution
of a SVM program) and the positions of the stack which contain the values
of these variables.

E(x)
E(y)
E(z)

Stack (S)

S!0

S!1

S!2

The main idea of the translation is to keep a compile-
time environment ρ mapping program variables to stack
positions. As the stack grows dynamically, a first idea
is to assign numbers to the variables from the bottom of
the environment to the top. In this way, if the current
environment occupies the top m positions of the stack and
ρ(x) = 1, then S!(m − 1) will contain the runtime value
corresponding to x.

A second idea is to reuse the current environment when pushing a continu-
ation onto the stack. A continuation should contain the values of the variables
that are in scope at the moment in which the continuation is pushed onto
the stack. A naive implementation would create, from some of the elements
of the stack, a value environment corresponding to the current context, and
include that environment in the continuation. This leads to redundancies,
as some of the elements in the current environment are located in the stack
by themselves (i.e. outside continuations), while also being part of a contin-
uation. Our aim is to share the current environment, instead of duplicating
it, so that only two elements are kept in the continuation: the k0 explained
in Section 4, and a code pointer containing the expression which will be
executed after popping the continuation.

ρ1

ρ2

ρ3

n3

m3

l3

In order to carry out this sharing between runtime en-
vironments, we split the whole compile-time environment
ρ into a list of smaller environments [ρ1, . . . , ρn], each one
topped with a continuation, except the topmost one (ρ1).
Each individual block ρi consists of a triple (∆i, li, ni) with
the actual environment ∆i mapping variables to numbers
in the range (1 . . .mi), its length li = mi + ni, and an
indicator ni whose value is 2 for all the blocks except for
the first one, whose value is n1 = 0. This value stands for
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the length of the continuation (k0,p): we assume that a continuation needs
two words in the stack and that the remaining items need one word. The po-
sitions given by the smaller environments ∆i are relative to the bottommost
position of their block in the stack.

Given this definition of a compile-time environment, we can compute the
offset w.r.t. the top of the stack of a given variable x, defined in the k-th
block. We use the notation ρ(x) to denote this offset.

ρ(x)
def
=

k∑
i=1

li −∆k(x)

We assume by convention that ρ(self ) = self . As soon as we introduce
new variables in scope, we need to update the environment ρ accordingly.
Only the topmost environment can be extended with new bindings. We
define the following operations and functions on compile-time environments:

1. Operator +. It adds new bindings to the compile-time environment:

((∆,m, 0) : ρ) + [xi 7→ ji
n
]
def
= (∆ ] [xi 7→ m+ ji

n
],m+ n, 0) : ρ

2. Operator ++. It finishes the topmost block, and starts a new one above
it:

((∆,m, 0) : ρ)++
def
= ([ ], 0, 0) : (∆,m+ 2, 2) : ρ

3. Function topDepth. It returns the length of the topmost block. Its
result is undefined when applied to empty environments.

topDepth((∆,m, 0) : ρ)
def
= m

Given these conventions, in Figure 12 we show the translation functions
trE and trF for translating expressions and function definitions, respectively.
The trE function receives a Core-Safe expression, a compile-time environ-
ment ρ, and a function map F , which maps function names to code pointers.
The latter specifies the SVM code to be executed when a call to a given func-
tion is done. The translation function returns list of SVM instructions and
a code store. The expression NormalForm ρ is a compilation macro defined
as follows: NormalForm ρ = SLIDE 1 (topDepth(ρ)) : DECREGION : POPCONT.
This macro is used when the expression being translated gives rise to a normal
form (i.e. no additional evaluations are needed). This is the case of literal,
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trE c ρ F = (BUILDENV [c] : NormalForm ρ , [ ])

trE x ρ F = (BUILDENV [ρ(x)] : NormalForm ρ , [ ])

trE (x@ r) ρ F = (BUILDENV [ρ(x), ρ(r)] : COPY : NormalForm ρ , [ ])

trE (a1 ⊕ a2) ρ F = (BUILDENV [ρ(a1), ρ(a2)] : PRIMOP⊕ : NormalForm ρ , [ ])

trE (g ai
n @ rj

m) ρ F = (BUILDENV [ρ(ai)
n
, ρ(rj)

m
] : SLIDE (n+m) td : CALL p , [ ])

where p = F (g)
td = topDepth(ρ)

trE (Cm
l ai

n @ r) ρ F = (BUILDCLS Cm
l [ρ(ai)

n
] (ρ(r)) : NormalForm ρ , [ ])

trE (let x1 = e1 in e2) ρ F = (PUSHCONT p : is1 , cs1 ] cs2 ] [p 7→ is2 ])
where (is1, cs1) = trE e1 ρ

++ F
(is2, cs2) = trE e2 (ρ+ [x1 7→ 1]) F

trE (case x of alt i
n
) ρ F = (MATCH (ρ(x)) pi

n , (
⊎n
i=1 cs i) ] [pi 7→ is i

n
])

where ∀i ∈ {1..n}.(is i, cs i) = trA alt i ρ F

trE (case! x of alt i
n
) ρ F = (MATCH! (ρ(x)) pi

n , (
⊎n
i=1 cs i) ] [pi 7→ is i

n
])

where ∀i ∈ {1..n}.(is i, cs i) = trA alt i ρ F

trA (C xi
n → ei) ρ F = trE ei (ρ+ [xi 7→ n− i+ 1

n
]) F

trF (f xi
n @ rj

m = ef ) F = (cs ] [p 7→ is ], F ′)
where F ′ = F ] [f 7→ p]

(is , cs) = trE ef [([rj 7→ m− j + 1
m
, xi 7→ n− i+m+ 1

n
], n+m, 0)] F ′

Figure 12: Translation from Core-Safe expressions to SVM instructions
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Figure 13: Evaluation of a let expression in the SVM. First, a continuation
is inserted (1). Then, the evaluation of the auxiliary expression takes place
until a normal form is reached and it is placed at the top of the stack (2).
The previous environment is discarded (3) and the topmost continuation is
removed, and the evaluation of the main expression begins.

variables, copy and constructor expressions, and also the case of primitive
operators.

When evaluating a let expression (see Figure 13), a continuation is in-
serted before evaluating the auxiliary expression e1. During translation, every
binding added to the compile-time environment ρ will be added to a sepa-
rate block, which is now the topmost one, until the translation of e1 finishes.
This corresponds to the removal of the topmost block and the continuation
at runtime, so that the evaluation of the main expression e2 begins.

An interesting case is that of function application. Firstly, the actual
parameters are inserted into the stack. Since the execution of the function
being called occurs in a different context, the previous environment can be
discarded before the evaluation of the body of the function. The removal
of the previous environment allows us to obtain constant stack space for
tail-recursive functions, as the following example shows.

Example 16. Let us consider the following tail-recursive function definition
for adding the elements of a list:

sumAc xs ac = case xs of
[ ]→ ac
(x : xx )→ let x1 = x+ ac in sumAc xx x1
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The translation function trE applied to the body of sumAc and the func-
tion map [sumAc 7→ psumAc] returns the following SVM code:

1 psumAc : MATCH 0 [p1,p2] 8 PRIMOP +
2 p1 : BUILDENV [1] 9 SLIDE 1 0
3 SLIDE 1 2 10 DECREGION

4 DECREGION 11 POPCONT

5 POPCONT 12 p3 : BUILDENV [2, 0]
6 p2 : PUSHCONT p3 13 SLIDE 2 5
7 BUILDENV [2, 5] 14 CALL psumAc

Let us assume we execute sumAc with the list [5, 7] and the initial accu-
mulator 0 given as input. In other words, we execute the SVM code starting
from the psumAc label, with an initial heap h = [p1 7→ (1, (:) 5 p2), p2 7→ (1, (:
) 7 p3), p3 7→ (1, [ ])], and assuming p1 and 0 at the top of the evaluation
stack. Figure 14 shows how the stack evolves during the execution of sumAc.
The arrows between stacks contain the number of the SVM instruction being
executed in each step (as labelled in the code above). In tail-recursive func-
tions there are no continuations left in the stack when doing a recursive call.
This means we can discard the whole environment in the current function
call before proceeding to the next recursive call. As a result, sumAc runs in
constant stack space.

The trF function of Figure 12 deals with the translation of function defi-
nitions. It returns a code store and an updated function map with the code
pointer of the definition being translated. This new binding is also passed to
trE , in order to handle recursive calls. One may expect that the function map
F given as input to trF associates the functions being called from ef with the
code pointers in a code store resulting from trF applied to these functions.
This fact, which is crucial for proving the soundness of the translation, is
given by the following definition.

Definition 17. A pair (F, cs) is said to be generated from Σ iff for every
binding [f 7→ p] ∈ F , there exist n, m, xi

n, rj
m, ef , cs ′ ⊆ cs , and F ′ ⊆ F

such that:

1. (f xi
n @ rj

m = ef ) ∈ Σ.

2. trF (f xi
n @ rj

m = ef ) F
′ = (cs ′, F ′ ] [f 7→ p]) for some F ′ ⊆ F .
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Figure 14: Contents of the stack during the execution of sumAc.
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Figure 15: Intuitive meaning of δ and m components in the resource vector.
The y coordinate represents the number of cells in the heap.

6. Resource-aware semantics

Once the resource consumption of each instruction of the SVM is known,
we enrich the big-step semantics given in Section 3 with a resource vector
(δ,m, s), which can be conceived as a side effect of evaluating e. The first
component is a partial function δ : N → Z giving, for each region k, the
signed difference between the number of cells after and before evaluating the
expression. A positive difference means that more cells have been created
than destroyed. A negative one describes the opposite situation. The com-
ponent m is a natural number describing the minimum number of fresh cells
in the heap needed to successfully evaluate e. This number corresponds to
the maximum amount of cells existing simultaneously in memory during the
evaluation of this expression. The component s is a natural number whose
meaning is analogous to that of the m component. The s component de-
scribes the minimum size of stack (in words) needed for the evaluation of the
expression.

Figure 15a gives an intuition on the meaning of the first two components.
Assume the evaluation of an expression e. The figure represents the global
amount of cells in memory as the evaluation of e proceeds. In this case,
the evaluation of e reclaims memory until some point in time, after which
memory is disposed of. The m value represents the maximum amount of
memory taken during the evaluation of e, whereas δ represents the difference
of memory amount between the initial and final heaps. Notice, however,
that the δ contains this difference for every region in the heap. What is
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E ` (h, k), td, c ⇓ (h, k), c, ([ ]k, 0, 1)
[Lit ]

E[x 7→ v] ` (h, k), td, x ⇓ (h, k), v, ([ ]k, 0, 1)
[Var ]

E ` (h, k), td, a1 ⊕ a2 ⇓ (h′, k), E(a1)⊕ E(a2), ([ ]k, 0, 2)
[PrimOp]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)

E[x 7→ p, r 7→ j] ` (h, k), td, x @ r ⇓ (h′, k), p′, ([j 7→ m]k,m, 2)
[Copy ]

(g yi
n @ r′j

l
= eg) ∈ Σ

[yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1] ` (h, k + 1), n+ l, e ⇓ (h′, k + 1), v, (δ,m, s)

E ` (h, k), td, g ai
n @ rj

l ⇓ (h′ |k, k), v, (δ |k,m,max {n+ l, s+ n+ l − td})
[App]

E(r) = j j ≤ k freshh(p)

E ` (h, k), td, C ai
n @ r ⇓ (h ] [p 7→ (j, C E(ai)

n
)], k), v, ([j 7→ 1]k, 1, 1)

[Cons ]

E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1)
E ∪ [x1 7→ v1] ` (h′, k), td+ 1, e2 ⇓ (h′′, k), v, (δ2,m2, s2)

δ = δ1 + δ2 m = max{m1, |δ1|+m2} s = max{2 + s1, 1 + s2}
E ` (h, k), td, let x1 = e1 in e2 ⇓ (h′′, k), v, (δ,m, s)

[Let ]

C = Cr E ] [xri 7→ vi
nr ] ` (h, k), td+ nr, er ⇓ (h′, k), v, (δ,m, s)

E[x 7→ p] ` (h[p 7→ (j, C vi
nr)], k), td, case x of Ci xij

ni → ei
n ⇓ (h′, k), v, (δ,m, s+ nr)

[Case]

C = Cr E(x) = p E ] [xri 7→ vi
nr ] ` (h, k), td+ nr, er ⇓ (h′, k), v, (δ,m, s)

δ′ = δ + [j 7→ −1]k m′ = max{0,m− 1}
E ` (h ] [p 7→ (j, C vi

nr)], k), td, case! x of Ci xij
ni → ei

n ⇓ (h′, k), v, (δ′,m′, s+ nr)
[Case! ]

Figure 16: Resource-aware operational semantics of Core-Safe expressions
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represented in Figure 15a is the global balance |δ| of heap cells between the
final and initial heaps, which will be formally defined below. Also notice that
both values m and δ are relative to the memory consumption level at the
beginning of the evaluation of e (dashed line in Figure 15a).

If we represented the stack consumption in the style of Figure 15a, the
s component of the resource vector would take the role of the m component
in the heap consumption. There is no component for denoting the difference
in stack words between the final and initial heaps, because the final stack
contains the same elements of the initial stack with an additional element at
the top, which is the result of evaluating the expression, so this difference is
always 1.

The domain of δ is the set {0..k}, where k is the number of regions in
the heap to which the δ refers. The notation [ ]k stands for the function
[i 7→ 0 | i ∈ {0..k}], whereas [i 7→ n]k abbreviates the function [i 7→ n]] [j 7→
0 | j ∈ {0..k}\{i}]. The total balance of cells (denoted by |δ|) is the sum of
the balances obtained in each region:

|δ| def=
∑

i∈dom δ

δ(i)

The notation δ1 + δ2 represents the componentwise addition of δ1 and δ2,
provided these have the same domain:

δ1 + δ2
def
= [δ1(i) + δ2(i) | i ∈ dom δ1 ∩ dom δ2]

The enriched semantic rules are shown in Figure 16. In addition to the
resource vector (δ,m, s), we need a new component td in order to simulate the
topDepth function of compile time environments. This component represents
the number of stack words inserted after the topmost continuation, and it
influences the s, since an amount td of words are removed from the stack
before function calls.

The evaluation of an atom (rules [Lit ] and [Var ]) does not require memory
consumption, and it requires a stack word space to push the result onto. The
evaluation of a copy expression [Copy ] requires as many heap cells as the size
of the recursive spine of the structure being copied. The size function defines
this notion of size:

size(h[p 7→ (j, C vi
n)], p)

def
= 1 +

∑
i∈RecPos(C )

size(h, vi)
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(1) evaluation
of eg

(2)

s

v

n+l

td

Figure 17: Stack consumption while evaluating a function application: we
have to take the maximum between the number of arguments pushed onto
the stack (1) and the maximum stack level reached during evaluation of the
function’s body, assuming that the arguments are already in the stack and
the previous environment has been discarded (2).

x1

x1 x1

(1) evaluation
of e1

(2)

v

evaluation
of e2

s1 s2

Figure 18: Stack consumption while evaluating a let expression: we have to
take the maximum between the execution of e1 assuming that a continuation
has been pushed before onto the stack (1), and the execution of e2 assuming
that the value of x1 has been pushed after discarding the continuation (2).
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In rule [App], by δ|k we mean a function like δ but restricted to the domain
{0..k}. The computation max{n + l, s + n + l − td} of fresh stack words
takes into account that the first n + l words are needed to store the actual
arguments, then the current environment of length td is discarded, and then
the function body is evaluated (Figure 17).

In rule [Let ], a continuation (2 words) is stacked before evaluating e1, and
this leaves a value in the stack before evaluating e2. That is why we obtain
max{2 + s1, 1 + s2} as stack consumption (see Figure 18). With respect to
the heap consumption, we take the maximum between the memory needs of
e1 and those of e2, but taking the balance |δ1| into account.

Example 18. In Figure 19 we show the resource vector corresponding to
the execution of every example in this paper. The concrete input DSs are
shown above the table. We assume that these DSs have been created before
evaluating each function call, so their building costs are not reflected in the
table.

Function append creates as many cells in the output region as the number
of cons cells in the list passed as first parameter. In appendC we need three
additional cells for copying the list passed as second parameter. Function
appendD destroys four cells of the input list and builds three in the output
region. Its execution needs no additional heap space. The heap cost of
insert and inssort is proportional to the length of the input list, whereas in
insertD and inssortD this cost is constant. In the case of insertD we need
an additional cell for storing the new element. Function treesort leaves in
the output region as many cells as the input list. However, more cells are
needed in order to build the intermediate tree. Finally, the calls to sumAc
produce no heap costs and a constant stack cost.

7. Correctness of the translation into SVM

Now, we show that the pair translation-abstract machine is sound and
complete with respect to the semantics defined in the last section. First, we
note that both the semantics and the SVM machine rules are syntax driven,
and that their computations are deterministic (up to fresh names generation).

Lemma 19. Given a value environment E, an initial heap h0 with k regions,
a natural number td, and a Core-Safe expression e, if E ` (h0, k), td, e ⇓
(h, k), v, (δ,m, s) and E ` (h0, k), td, e ⇓ (h′, k), v′, (δ′,m′, s), then h = h′ (up
to pointer renaming), v = v′, and (δ,m, s) = (δ′,m′, s′)
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xs = [1, 2, 3] (4 cells) ys = [4, 5] (3 cells) zs = [5, 4, 3, 2, 1] (6 cells)

t = Node (Node Empty 2 Empty) 4 (Node Empty 7 Empty) (7 cells)

Expression δ m s
append xs ys @ r [E(r) 7→ 3]k 3 23

appendC xs ys @ r [E(r) 7→ 6]k 6 24
appendD xs ys @ r [E(r) 7→ −1]k 0 23

insert 10 xs @ r [E(r) 7→ 5]k 5 32
insertD 10 xs @ r [E(r) 7→ 1]k 1 32

inssort zs @ r [E(r) 7→ 21]k 21 41
inssortD zs @ r [E(r) 7→ 0]k 0 41
mkTree zs @ r [E(r) 7→ 11]k 11 50
inorder t @ r [E(r) 7→ 4]k 5 29

treesort zs @ r [E(r) 7→ 6]k 18 62
sumAc xs 0 [ ]k 0 6
sumAc zs 0 [ ]k 0 6

Figure 19: Memory consumption results. The table shows, for each expres-
sion, the resource vector (δ,m, s) resulting from its evaluation.

Proof. By induction on the ⇓- derivation. All cases are straightforward.

Lemma 20. Given an initial SVM configuration cinit such that cinit → c1
and cinit → c′1. Then c1 = c′1 (modulo pointer renaming).

Proof. This can be proved by case distinction on the rule being applied. All
cases are straightforward.

The main difference between the big-step operational semantics of Sec-
tion 3 and the SVM machine is the way in which value environments are
represented. In the big-step semantics we have a mapping E from variables
to values, whereas in the SVM we have a stack. The correspondence between
variables and positions of the stack is given by the ρ environment used in the
translation (see Section 5).

Obviously, we cannot ensure the equivalence of big-step semantics and
SVM if their starting points (i.e. mapping E in big-step semantics, stack S
in the SVM) denote different value environments. This is the motivation for
the following:
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Definition 21. We say that the environment E and the pair (ρ, S) are equiv-
alent, denoted E ≡ (ρ, S), if dom E = dom ρ, and ∀x ∈ dom ρ\{self }.E(x) =
S!(ρ(x)).

A stack S ′ is said to be a suffix of S if there exists a number n ≥ 0 of
stack elements bi such that S = bi

n
: S ′. Given a SVM configuration c0 =

(is , h, k0, k, S, cs) and S ′ a suffix of S, we denote by c0 →∗S′ cn a derivation in
which all the stacks in intermediate configurations have S ′ as a suffix. Should
the top instruction of a configuration create a stack smaller than S ′, then the
machine would stop at that configuration.

Now, we follow with some definitions regarding the maximum memory
consumption produced by a SVM program.

Definition 22. The function sizeST , which returns the size (in words) of a
stack, is defined as follows:

sizeST ([ ]) = 0
sizeST (v : S) = 1 + sizeST (S) if v is not a continuation.
sizeST ((k0,p) : S) = 2 + sizeST (S)

Analogously, the size (in cells) of a heap is given by the function sizeH :

sizeH (h) = |dom h|

We shall extend the notation of these functions to configurations, so
sizeST (c) (resp. sizeH (c)) will be used to denote the size of the stack (resp.
heap) of the given configuration c.

Given c0 = (is , h, k0, k, S, cs) and a derivation c0 →S′ · · · →S′ cn, the max-
imum number of fresh cells of the derivation, denoted maxFreshCells (c0 →∗S′

cn), is the highest difference in cells between the heaps of the configurations
c0, . . . cn and the initial heap h. Likewise, we define the maximum number of
fresh words created in the stack S, denoted maxFreshWords(c0 →∗S′ cn). Fi-
nally, by diff (k, h, h′) we denote a function giving for each region in {0, . . . , k}
the signed difference in cells between h′ and h.

Definition 23. Given a derivation c0 →S′ . . . ci . . .→S′ cn, we define:

maxFreshCells(c0 →∗S′ cn) = max {sizeH (ci)− sizeH (c0) | 0 ≤ i ≤ n}
maxFreshWords(c0 →∗S′ cn) = max {sizeST (ci)− sizeST (c0) | 0 ≤ i ≤ n}
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From these definitions the following properties can be easily obtained:

maxFreshCells(c0 →∗S′ ci →∗S′ cn) = max{ maxFreshCells(c0 →∗S′ ci),
maxFreshCells(ci →∗S′ cn)

+ sizeH (ci)− sizeH (c0) }

maxFreshWords(c0 →∗S′ ci →∗S′ cn) = max{ maxFreshWords(c0 →∗S′ ci),
maxFreshWords(ci →∗S′ cn)

+ sizeST (ci)− sizeST (c0) }

Definition 24. Given two heaps h and h′ and a number k of regions, we
denote by diff (k, h, h′) a function δ such that dom δ = {0..k} and for all
i ∈ {0..k}:

δ(i) = |{p ∈ dom h′ | region(h′(p)) = i}| − |{p ∈ dom h | region(h(p)) = i}|

The definitions of diff and sizeH are related by the following property,
which is easy to establish from the corresponding definitions. Let h and h′

be two heaps with k regions. Then:

sizeH (h′)− sizeH (h) =
k∑
i=0

diff (i, h, h′)

The next Lemma shows some properties of the copy function. In partic-
ular, that the size of the copy and the DS being copied are the same.

Lemma 25. If (h′, p′) = copy(h, p, j) then:

1. h ⊆ h′

2. size(h′, p′) = size(h, p)

3. sizeH (h′)− sizeH (h) = size(h′, p′)

4. ∀k ≥ j, diff (k, h, h′) = [j 7→ size(h′, p′)]k

Proof. Straightforward induction on the size of the DS pointed by p.

The following theorem establishes the correctness of the translation, show-
ing that the computed value and the resource consumption of a given expres-
sion e in the big-step semantics are the same as those obtained by executing
in the SVM the translation of e.

We denote by drop n S the stack resulting from removing the n topmost
elements of S. That is, drop n (bi

n
: S) = S and undefined in case the

number of elements in the input stack is less than n.
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Theorem 26. For all S, S ′, E, h, h′, td , k0, k, e, v, δ,m, s, ρ, cs , cs ′, F , and Σ
of their respective types, if

E admissible w.r.t. k (F, cs ′) generated from Σ
E ≡ (ρ, S) (is , cs) = trE e ρ F td = topDepth(ρ)
S ′ = drop td S cs ′ ⊇ cs k0 ≤ k

then E ` (h, k), td , e ⇓ (h′, k), v, (δ,m, s) if and only if

1. (is , h, k0, k, S, cs ′)︸ ︷︷ ︸
cinit

→∗S′ ([POPCONT], h′ |k0 , k0, k0, v : S ′, cs ′)︸ ︷︷ ︸
cfinal

2. δ = diff (k, h, h′)

3. m = maxFreshCells(cinit →∗S′ cfinal)

4. s = maxFreshWords(cinit →∗S′ cfinal)

Proof. The (⇒) direction is shown by induction on the ⇓-derivation. The
(⇐) direction of the theorem can be proved by induction on the length of
the →∗S′ derivation. In both proofs we distinguish cases depending on the
expression being translated. Here we show only two representative cases.
The complete proof can be found in the Appendix.

• Case [Var ]: e ≡ x

Let (is, cs) = trE e ρ F be the SVM code generated, where cs = [ ]
and:

is = BUILDENV [ρ(x)] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

(⇒) Assume E[x 7→ v] ` (h, k), td , x ⇓ (h, k), v, ([ ]k, 0, 1) holds.

For any cs′ such that cs′ ⊇ cs, the code generated leads to the
following SVM derivation:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(x)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(x)) = E(x) = v}
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(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, v : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is3, h, k0, k, v : drop td S, cs′)
→S′

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

Consequently, property (1) holds. Property (2) holds because
diff (k, h, h) = [i 7→ 0 | 0 ≤ i ≤ k] = δ. Property (3) and (4) hold
because maxFreshCells(cinit →∗S′ cfinal) = 0 and maxFreshWords
(cinit →∗S′ cfinal) = 1.

(⇐) Given any cs′, the only possible derivation is the one above. Triv-
ially, by rule [Var ], E[x 7→ v] ` (h, k), td , x ⇓ (h, k), v, ([ ]k, 0, 1).
Properties (2), (3) and (4) hold for the same reasons as in the
opposite implication.

• Case [Let ]: e ≡ let x1 = e1 in e2

Assume (is1, cs1) = trE e1 ρ
++ F and (is2, cs2) = trE e2 ρ1 F where

ρ1 = ρ + [x1 7→ 1]. On the other hand, we get cs ⊇ cs1, cs ⊇ cs2
and is = PUSHCONT p : is1, in which [p 7→ is2] ∈ cs ⊆ cs ′. Hence
cs ′(p) = is2.

(⇒) Given cs′ ⊇ cs, the trace corresponding to the execution of e
starts as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0,p) : S, cs′) ≡ c1

By rule [Let ] we get:

E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1)
E1 ` (h′, k), td + 1, e2 ⇓ (h′′, k), v, (δ2,m2, s2)

where E1 = E ] [x1 7→ v1]. In order to apply the induction hy-
pothesis on the ⇓-derivation of e1 we have to check that E ≡
(ρ++, (k0,p) : S), which trivially holds from the hypothesis E ≡
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(ρ, S) and because dom ρ = dom ρ++. The rest of the assumptions
hold trivially.

In this case td = 0, so by applying i.h. we obtain:

c1
→∗(k0,p):S

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0,p) : S), cs′[p 7→ is2]) ≡ c2

which trivially implies c1 →∗S′ c2.

Consequently:
cinit︷ ︸︸ ︷

(PUSHCONT p : is1, h, k0, k, S, cs′)
→S′

(is1, h, k, k, (k0,p) : S, cs′) ≡ c1
→∗S′ { since cs ′(p) = is2 }

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0,p) : S), cs′[p 7→ is2]) ≡ c2
→S′

(is2, h′|k, k0, k, v1 : S, cs′) ≡ c3
→∗S′ { by i.h. (see below) }

([POPCONT], h′′|k0 , k0, k0, v : drop (td+ 1) (v1 : S), cs′)
≡

([POPCONT], h′′|k0 , k0, k0, v : S ′, cs′)︸ ︷︷ ︸
cfinal

In order to apply the induction hypothesis on the ⇓-derivation of
e2 in the last step we have to check that E1 ≡ (ρ1, v1 : S). Let x ∈
dom E1: if x = x1 then (v1 : S)!(ρ1(x)) = (v1 : S)!0 = v1 = E1(x).
If x 6= x1 then (v1 : S)!(ρ1(x)) = (v1 : S)!(ρ(x) + 1) = S!(ρ(x)) =
E(x) = E1(x). Additionally, drop (td+ 1) (v1 : S) = drop td S =
S ′. The rest of the assumptions hold trivially.

Hence (1) holds. With respect to (2), let i ∈ {1..k}

(diff (k, h, h′′))(i)
= |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h′ | region(h′(p)) = i}|

+ |{p ∈ h′ | region(h′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= (diff (k, h, h′))(i) + (diff (k, h′, h′′))(i)
= δ1(i) + δ2(i)
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Therefore diff (k, h, h′′) = δ1+δ2. Properties (3) and (4) are proven
as follows:

maxFreshCells(cinit →∗S′ c2) = m1

maxFreshCells(c2 →∗S′ cfinal) = m2

maxFreshCells(cinit →∗S′ cfinal)
= max{m1,m2 + sizeH (c2)− sizeH (cinit)}
= max{m1,m2 +

∑k
i=0(diff (k, h, h′))(i)}

= max{m1,m2 + |δ1|}

maxFreshWords(cinit →∗S′ c1) = 2
maxFreshWords(cinit →∗S′ c2)

= max {2, 2 + s1} = 2 + s1
maxFreshWords(cinit →∗S′ c2 →∗S′ c3)

= max {2 + s1, 1} = 2 + s1
maxFreshWords(cinit →∗S′ c3 →∗S′ cfinal)

= max {2 + s1, 1 + s2}

(⇐) Given cs′ ⊇ cs, the trace corresponding to the execution of e must
be as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0,p) : S, cs′) ≡ c1
→∗S′ {by Lemma 27 (see Appendix)}

([POPCONT], h′, k, k, v1 : (k0,p) : S), cs′[p 7→ is2]) ≡ c2
→S′

(is2, h′, k0, k, v1 : S, cs′) ≡ c3
→∗S′

([POPCONT], h′′, k0, k0, v : S ′, cs′)︸ ︷︷ ︸
cfinal

Notice that c1 contains a continuation (k0,p) on top of the stack.
The only machine instruction which removes such continuation
from the stack is POPCONT. So, in order to reach cf inal an inter-
mediate configuration c2 ≡ ([POPCONT], h′, k′, k′, v1 : (k0,p) :
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S), cs′[p 7→ is2]) must be reached so that the execution can pro-
ceed. By Lemma 27 in Appendix A, k′ = k.

In fact, it holds that c1 →∗(k0,p):S c2, so we can apply i.h. to

obtain E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1), as (k0,p) : S =
drop 0 ((k0,p) : S).

Notice also that E ] [x1 7→ v1] ≡ (ρ + [x1 7→ 1] , v1 : S) and that
drop (td + 1) (v1 : S) = drop td S = S ′, so we can also apply
i.h. to c3 →∗S′ cf inal to obtain E ] [x1 7→ v1] ` (h′, k), td + 1, e2 ⇓
(h′′, k), v, (δ2,m2, s2). The reasoning about resources consumption
is the same as the opposite implication.

8. Related Work and Conclusions

The motivation for this work has been to show part of the implementation
of Safe. One contribution is a systematic method for refining operational
semantics and abstract machines in order to find the way from an abstract
view of the language to an efficient implementation. Other contributions
include a semantics enriched with memory costs, and the proof of correctness
of these costs when translating Safe to imperative code. This resource-aware
semantics is the basis for proving correct the memory consumption static
analysis presented in [6], and for certifying these bounds, done in [8].

8.1. Regions and Deallocation of Cells

The use of regions in functional languages to avoid garbage collection is
not new. Tofte and Talpin [14] introduced in MLKit (a variant of ML) the use
of nested regions by means of a letregion construct. A lot of work has been
done on this system [15, 16, 17]. Their main contribution is a region inference
algorithm adding region annotations at the intermediate language level. A
small difference with these approaches is that, in Safe, region allocation and
deallocation are synchronized with function calls instead of being introduced
by a special language construct. This simplifies the process of inferring re-
gions, as explained in [5]. However, this comes at the cost of granularity
for determining the region scopes: MLKit allows several lexically-scoped re-
gions in the same function. A more relevant difference is that Safe has an
additional mechanism allowing the programmer to selectively destroy data
structures inside a region.
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A difficulty with Tofte and Talpin’s original system is the fact that re-
gions have nested lifetimes. There exist a few programs (such as the inssort
function shown in Example 11) that may result in memory leaks due to
this restriction. In [18] this problem is alleviated by defining a variant of
λ-calculus with type-safe primitives for creating, accessing and destroying
regions, which are not restricted to have nested lifetimes. Programs are writ-
ten in a C-like language called Cyclone having explicit memory management
primitives, then they are translated into this variant of λ-calculus, and then
type checked. So, the price of this flexibility is explicit region control. In our
language Safe, regions also suffer from the nested lifetimes constraint, since
both region allocation and deallocation are bound to function calls, which are
necessarily nested. However, the destructive pattern matching facility com-
pensates for this, since it is possible to dispose of a data structure without
deallocating the whole region in which it resides. Allocation and destruction
of distinct data structures are not necessarily nested, and the type system
presented in [3, 4] protects the programmer against missuses of this feature.
Again, the price of this flexibility is explicit deallocation of cells. Allocation
is implicit in constructions and the target region of the allocation is inferred
by the compiler. It is arguable whether it is better to explicitly manage re-
gions or cells. In [19, 20] a more detailed comparison with all these works
can be found.

The destructive pattern matching features of the language have been
inspired by Hofmann and Jost’s match construct [21], whose operational be-
haviour is similar to that of Safe’s case!. The main difference is that they
lack a compile time analysis guaranteeing the safe use of this dangerous fea-
ture, since it is beyond the scope of their work.

8.2. Semantics and Abstract Machines

There have been other successful derivations of abstract machines starting
from high level descriptions of the semantics. For instance, in [22] and [23] a
number of such derivations are done. Well known abstract machines for the
λ-calculus such as SECD, Krivine’s, CLS and CAM are derived and proved
correct. These papers propose general schemes for achieving this kind of
derivations. The differences with the present work are the following:

• They concentrate on the pure λ-calculus and they consider neither shar-
ing nor heaps. Algebraic types, case and let expressions are not con-
sidered either.
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• In the second paper, the starting point is a denotational meaning of the
source language, while here we start from an operational semantics.

• In order to refine their machines they use predefined correct transfor-
mations such as closure conversion, transformation into continuation
passing style, defunctionalization and inlining.

• They ignore the compilation issues from the source language to machine
instructions, and also resource consumption.

In [24] a broad survey of both abstract and virtual machines for the λ-
calculus and for practical functional languages is done. The author presents
in detail some well-known and other less known abstract machines. When the
machines execute compiled code, also the translation schemes are provided.
The aim of the book is to serve as a text for a graduate course and no
attempt is done to provide proofs of correctness either of the machines or of
the compilation schemes.

We have found inspiration in Sestoft’s derivation of abstract machines
for a lazy λ-calculus [25]. One of the authors has reported some previous
experience in [26], but in that occasion the destination machine was known
in advance. The present work represents a ‘real’ derivation in the sense that
the destination machine has been invented from scratch.

Compared to other eager machines such as Landin’s SECD machine [27],
it is an added value of our abstract machine that the standard translation
yields constant stack space for tail recursion, as we have shown in Example
16. For instance, in the G-machine the compiler needs to explicitly identify
tail recursion and to do a special translation in this case, i.e. it is consid-
ered as an optimization of the code generation phase. The same happens
in other compiled virtual machines such as π-RED [28]. Additionally, our
SVM machine does not need an additional garbage collector and all memory
allocation/deallocation actions have been implemented in constant time.

For the semantics enriched with a resource vector, we have found inspira-
tion in [29]. Some other resource-enriched semantics have been proposed. See
for example [30, 31] for a big-step semantics of a simple functional language
with some information about the number of cells needed by an expression,
while [32] extends the same idea to a higher-order language. In [33] Shkar-
avska et al. develop a type-based analysis for inferring information about
polynomial input-output size dependencies. At runtime, the size of the data
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structures can be obtained from the heap in a similar way to our size func-
tion. However, in our resource semantics we need to carry around additional
information. In particular, the m and s components depend on the history
of the execution, and not only on the final state.

Using some form of formal verification to ensure the correctness of compil-
ers has been a hot topic for many years. An annotated bibliography covering
up to 2003 can be found in [34]. Most of the papers reflected there propose
techniques whose validity is established by formal proofs made and read by
humans. Using machine-assisted proofs for compilers starts around the sev-
enties, with an intensification at the end of the nineties.

Related to our work are [35] which certifies the translation of a Lisp
subset to a stack language by using PVS, and [36] which uses Isabelle/HOL
to formalise the translation from a small subset of Java (called µ-Java) to
a stripped version of the Java Virtual Machine (17 bytecode instructions).
Both specify the translation functions, and prove correctness theorems similar
to ours. The latter work can be considered as a first attempt on Java, and it
was considerably extended by Klein, Nipkow, Berghofer, and Strecker himself
in [37, 38, 39].

A realistic C compiler for programming embedded systems has been built
and verified in [40, 41, 42]. The source is a small C subset called Cminor
to which C is informally translated, and the target is Power PC assembly
language. The compiler runs through six intermediate languages for which
the semantics are defined and the translation pass verified. The authors use
the Coq proof-assistant and its extraction facilities to produce Caml code.
This is perhaps the biggest project on machine-assisted compiler verification
done up to now.

The current implementation of Safe generates either C or Java bytecode
as a result. A strong point of the Java virtual machine is that it is avail-
able in many software and hardware platforms. However, it is somewhat
restrictive with regard to memory management. As a consequence of this,
the explicit destruction of a cell is handled by linking that cell to a free list.
This cell is reused by the runtime system when a subsequent allocation takes
place. Moreover, the statically typed nature of the JVM makes the process
of translation awkward. It is convenient to target the bytecode generation to
other virtual machines and compilation frameworks which allow more flex-
ibility in memory management. A notable example of this is the LLVM
(Low Level Virtual Machine) compilation framework [43], which provides a
language-independent instruction set. Programs written in this language can
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be further translated into machine code.
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Appendix A. Proofs

Lemma 27. For all S, S ′, h, h′, td , k0, k, e, v, ρ, cs , cs ′ of their respective types,
such that

td = topDepth(ρ) (is , cs) = trE e ρ F
S ′ = drop td S cs ′ ⊇ cs
k0 ≤ k

If (is , h, k0, k, S, cs ′)︸ ︷︷ ︸
cinit

→∗S′ ([POPCONT], h′, k′, k′, v : S ′, cs ′)︸ ︷︷ ︸
cfinal

then k′ = k0.

Proof. This can be trivially proved by induction on the length of →∗S′ and
by cases over the expression e whose translation is executed.

Theorem 26. For all S, S ′, E, h, h′, td , k0, k, e, v, δ,m, s, ρ, cs , cs ′, F , and Σ
of their respective types, if

E admissible w.r.t. k (F, cs ′) generated from Σ
E ≡ (ρ, S) (is , cs) = trE e ρ F td = topDepth(ρ)
S ′ = drop td S cs ′ ⊇ cs k0 ≤ k

then E ` (h, k), td , e ⇓ (h′, k), v, (δ,m, s) if and only if

1. (is , h, k0, k, S, cs ′)︸ ︷︷ ︸
cinit

→∗S′ ([POPCONT], h′ |k0 , k0, k0, v : S ′, cs ′)︸ ︷︷ ︸
cfinal

2. δ = diff (k, h, h′)

3. m = maxFreshCells(cinit →∗S′ cfinal)

4. s = maxFreshWords(cinit →∗S′ cfinal)

Proof. The (⇒) direction is shown by induction on the ⇓-derivation. We
distinguish cases depending on the last ⇓ rule applied.

• Case [Lit ]: e ≡ c

Let (is, cs) = trE e ρ F be the SVM code generated, where cs = [ ]
and:
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is = BUILDENV [c] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

By the rule [Lit ] we have E ` (h, k), td , c ⇓ (h, k), c, ([ ]k, 0, 1). For all
cs′ we get the following derivation:

cinit︷ ︸︸ ︷
(BUILDENV [c] : is1, h, k0, k, S, cs′)

→S′

(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, c : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is3, h, k0, k, c : drop td S, cs′)
→S′

([POPCONT], h|k0 , k0, k0, c : drop td S, cs′)︸ ︷︷ ︸
cfinal

Because of the assumption S ′ = drop td S the property (1) holds.
Moreover, we get diff (k, h, h) = [i 7→ 0 | 0 ≤ i ≤ k] = δ, so property
(2) holds. Properties (3) and (4) hold because maxFreshCells(cinit →∗S′

cfinal) = 0 and maxFreshWords(cinit →∗S′ cfinal) = 1.

• Case [Var ]: e ≡ x

The proof is similar to the case e ≡ c. Now E[x 7→ v] ` (h, k), td , x ⇓
(h, k), v, ([ ]k, 0, 1) holds and the code generated is as follows:

is = BUILDENV [ρ(x)] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

From which the following derivation is obtained:
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cinit︷ ︸︸ ︷
(BUILDENV [ρ(x)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(x)) = E(x) = v}
(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, v : S, cs′)

→S′ {since td = topDepth(ρ)}
(DECREGION : is3, h, k0, k, v : drop td S, cs′)

→S′

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

Hence property (1) holds. The proof of (2), (3) and (4) is analogous to
the case e ≡ c.

• Case [Copy ]: e ≡ x @ r

On the one hand, by using the [Copy ] rule we know that:

E ` (h, k), td , x @ r ⇓ (h′, k), p′, ([j 7→ size(h, p)]k , size(h, p), 2)

where E(x) = p, E(r) = j ≤ k and (h′, p′) = copy(h, p, j). On the
other hand, we obtain (is, [ ]) = trE e ρ F where:

is = BUILDENV [ρ(x), ρ(r)] :

is1︷ ︸︸ ︷
COPY :

is2︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is4︸ ︷︷ ︸
is3

For any cs′, the first step of the →∗S′ derivation is as follows:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(x), ρ(r)] : is1, h, k0, k, S, cs′)

→S′ { since E(x) = p = S!(ρ(x)) }
(COPY : is2, h, k0, k, p : Itemk(ρ(r)) : S, cs′)
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Let us proceed by case distinction: on one hand, if r 6= self then
Itemk(ρ(r)) = S!(ρ(r)) = E(r) = j. On the other hand, if r = self
then we have Itemk(ρ(r)) = Itemk(self ) = k, but since E(self ) = k
(by Proposition 15) and E(self ) = j (by rule [Copy ]), we have that
Itemk(ρ(r)) = j). Hence the current machine configuration can be
rewritten as (COPY : is2, h, k0, k, p : j : S, cs′).

We shall now resume the →∗S′ derivation:

(COPY : is2, h, k0, k, p : j : S, cs′)
→S′ { since (h′, p′) = copy(h, p, j) and j ≤ k}

(SLIDE 1 (topDepth(ρ)) : is3, h′, k0, k, p′ : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is4, h′, k0, k, p′ : drop td S, cs′)
→S′

([POPCONT], h′|k0 , k0, k0, p′ : drop td S, cs′)︸ ︷︷ ︸
cfinal

Therefore (1) holds, because of the assumption S ′ = drop td S. Proper-
ties (2) and (3) follow from Lemma 25. With respect to (4), from the re-
sulting→∗S′ derivation it can be easily shown that maxFreshWords(cinit

→∗S′ cfinal) = 2.

• Case [PrimOp]: e ≡ a1 ⊕ a2
The translation yields the following instruction sequence:

is = BUILDENV [ρ(a1), ρ(a2)] :

is1︷ ︸︸ ︷
PRIMOP ⊕ :

is2︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is4︸ ︷︷ ︸
is3

By executing it, we obtain the following derivation:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(a1), ρ(a2)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(ai)) = E(ai) for every i ∈ {1..2}, see below }
(PRIMOP ⊕ : is2, h, k0, k, E(a1) : E(a2) : S, cs′)

55



→S′

(SLIDE 1 (topDepth(ρ)) : is3, h, k0, k, (E(a1)⊕ E(a2)) : S, cs′)
→S′

(DECREGION : is4, h, k0, k, (E(a1)⊕ E(a2)) : drop td S, cs′)
→S′

([POPCONT], h|k0 , k0, k0, (E(a1)⊕ E(a2)) : drop td S, cs′) ≡ cfinal

Hence, property 1 holds. From the initial and final configurations we
obtain diff (k, h, h) = [i 7→ 0 | 0 ≤ i ≤ k] = δ, so property (2) holds.
Properties (3) and (4) hold because maxFreshCells(cinit →∗S′ cfinal) = 0
and maxFreshWords(cinit →∗S′ cfinal) = 2.

• Case [Cons ]: e ≡ C ai
n @ r

In the big-step semantics E ` (h, k), e ⇓ (h][p 7→ (E(r), C E(ai)
n
)], k),

p, ([E(r) 7→ 1]k, 1, 1) where p is a fresh pointer. The translation yields
the following instruction sequence:

is = BUILDCLS C [ρ(ai)
n
] ρ(r) :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

By executing this, we obtain the following derivation:

cinit︷ ︸︸ ︷
(BUILDCLS C [ρ(ai)

n
] ρ(r) : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(ai)) = E(ai) for every i ∈ {1..n}, see below }
(SLIDE 1 (topDepth(ρ)) : is2, h ] [p 7→ (E(r), C E(ai)

n
)],

k0, k, p : S, cs′)
→S′ {since td = topDepth(ρ)}

(DECREGION : is3, h ] [p 7→ (E(r), C E(ai)
n
)],

k0, k, p : drop td S, cs′)
→S′

([POPCONT], (h ] [p 7→ (E(r), C E(ai)
n
)])|k0 ,

k0, k0, p : drop td S, cs′) ≡ cfinal
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In the first step we have assumed that Itemk(ρ(r)) = E(r). The proof
of this is similar to that seen in the [Copy ] rule. Thus (1) holds. From
the initial and final configurations we obtain:

diff (k, h, h ] [p 7→ (E(r), C E(ai)
n
)]) = [E(r) 7→ 1]k

maxFreshCells(cinit →∗S′ cfinal) = 1

maxFreshWords(cinit →∗S′ cfinal) = 1

from which (2), (3) and (4) follow trivially.

• Case [App]: e ≡ g ai
n @ rj

l

We assume, by rule [App] that Eg ` (h, k + 1), n + l, eg ⇓ (h′, k +
1), v, (δ,m, s), where Eg is defined as follows:

Eg = [yi 7→ E(ai)
n
, r′j 7→ E(rj)

l
, self 7→ k + 1]

and (g yi
n @ r′j

l
= eg) ∈ Σ. Moreover, there is a code pointer p

such that the binding [g 7→ p] belongs to F , as specified by the trE
function. Since (F, cs ′) is generated from Σ (by assumption), we know

(by Definition 17) that there exist some n′, l′, x′i
n′

, rj
l′ , e′g e

′
g, csg ⊆ cs ′,

and F ′ ⊆ F such that the following conditions hold:

(g x′i
n′

@ r′j
m′

= e′g) ∈ Σ

trF (g x′i
n′

@ r′j
m′

= e′g) F
′ = (csg, F

′ ] [g 7→ p])

However, a function definition can only appear once in the Σ environ-

ment, hence we know that n = n′, l = l′, xi
n = x′i

n′

, rj
l = r′j

l′

, and
eg = e′g. Hence we can rewrite the last equation above as follows:

trF (g xi
n @ rj

m = eg) F
′ = (csg, F

′ ] [g 7→ p])

which implies, by the definition of trF , the existence of an instruction
sequence isg and a code store cs ′g such that

(isg, cs ′g) = trE eg ρg F
′

where csg = cs ′g ] [p 7→ isg], and ρg is the following:

ρg = [([r′j 7→ (l − j) + 1
l
, yi 7→ (n− i) + (l + 1)

n
], n+ l, 0)]
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Since csg ⊆ cs ′, we know that cs(p) = isg. Now, let us translate the
function application: we obtain (is, cs) = trE e ρ F , where:

is = BUILDENV [ρ(ai)
n
, ρ(rj)

l
] :

is1︷ ︸︸ ︷
SLIDE (n+ l) (topDepth(ρ)) : [CALL p]︸ ︷︷ ︸

is2

For any cs′ such that cs′ ⊇ cs, the code generated leads to the following
SVM derivation:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(ai)

n
, ρ(rj)

l
] : is1, h, k0, k, S, cs′)

→S′

(SLIDE (n+ l) (topDepth(ρ)) : is2, h, k0, k,

S!(ρ(ai))
n

: S!(ρ(rj))
l
: S, cs′)

→S′ { since td = topDepth(ρ) }
([CALL p], h, k0, k, S!(ρ ai)

n
: S!(ρ r′j)

l
: drop td S, cs′)

→S′ { since cs′(p) = cs(p) = isg }
(isg, h, k0, k + 1, S!(ρ ai)

n
: S!(ρ r′j)

l
: drop td S, cs′) ≡ cf

→∗S′ { by i.h. (see below) and k0 ≤ k }
([POPCONT], h′|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸

cfinal

where S ′ = drop td S. In order to apply the induction hypothesis in
the last step, we prove that every assumption of the theorem holds
for the ⇓ derivation corresponding to ef . We know that, if (F, cs ′)
is generated from Σ, then so is (F ′, cs ′), since F ′ ⊆ F . The only
nontrivial assumption left to prove is that Eg ≡ (ρg, Sg), denoting by

Sg the result from pushing the actual parameters S!(ρ ai)
n

and S!(ρ r′j)
l

onto S. Firstly, let x ∈ dom ρg. We prove that Sg!(ρg(x)) = Eg(x). On
the one hand, if x = yi for some i ∈ {1..n}, we get ρg(x) = n+ l− [(n−
i) + (l + 1)] = i− 1. Hence:

Sg!(ρg(x)) = Sg!(i− 1) = S!(ρ(ai)) = E(ai) = Eg(yi)
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On the other hand, if x = r′j for some j ∈ {1..l} then we get ρg(x) =
n+ l − [(l − j) + 1] = n+ j − 1 and:

Sg!(ρg(x)) = Sg!(n+ j − 1) = S!(ρ(rj)) = E(rj) = Eg(r
′
j)

So Eg ≡ (ρg, Sg), and the induction hypothesis can be applied on the
derivation of eg, which proves property (1) since drop (n + l) Sg =
drop td S.

The proof for (2) can be easily established from the fact that diff (k, h, h′) =
diff (k + 1, h, h′)|k and that δ = diff (k + 1, h, h′) by induction hypoth-
esis. Property (3) also follows trivially from the induction hypothesis.
With respect to (4), let us denote:

S1 = S!(ρ(ai))
n

: S!(ρ(rj))
l
: S

S2 = S!(ρ(ai))
n

: S!(ρ(rj))
l
: drop td S

S3 = v : drop td S

maxFreshWords(cinit →∗S′ cf ) = max{sizeST (S1)− sizeST (S),
sizeST (S2)− sizeST (S)}

= {n+ l, n+ l − td}
= n+ l

On the other hand, maxFreshWords(cf →∗S′ cfinal) = s by induction
hypothesis. Therefore:

maxFreshWords(cinit →∗S′ cf →∗S′ cfinal)
= max{maxFreshWords(cinit →∗S′ cf ),

maxFreshWords(cf →∗S′ cfinal)
+sizeST (S2)− sizeST (S)}

= max{n+ l, s+ n+ l − td}

• Case [Let ]: e ≡ let x1 = e1 in e2

By rule [Let ] we get:

E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1)
E1 ` (h′, k), td + 1, e2 ⇓ (h′′, k), v, (δ2,m2, s2)
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where E1 = E][x1 7→ v1]. In addition, we assume (is1, cs1) = trE e1 ρ
++ F

and (is2, cs2) = trE e2 ρ1 F where ρ1 = ρ + [x1 7→ 1]. On the other
hand, we get cs ⊇ cs1, cs ⊇ cs2 and is = PUSHCONT p : is1, in which
cs1(p) = is2 . Given cs′ ⊇ cs, the trace corresponding to the execution
of e starts as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0,p) : S, cs′) ≡ c1

In order to apply induction hypothesis on e1 we have to check that
E ≡ (ρ++, (k0,p) : S), which trivially holds from the hypothesis E ≡
(ρ, S) and because dom ρ = dom ρ++. The rest of the assumptions hold
trivially.

In this case td = 0, so by applying i.h. we obtain:

c1
→∗(k0,p):S

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0,p) : S), cs′[p 7→ is2]) ≡ c2

which trivially implies c1 →∗S′ c2.

Consequently:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0,p) : S, cs′)
→∗S′

([POPCONT], h′|k, k, k, v1 : drop 0 ((k0,p) : S), cs′[p 7→ is2]) ≡ c2
→S′

(is2, h′|k, k0, k, v1 : S, cs′) ≡ c3
→∗S′ { by i.h. (see below) }

([POPCONT], h′′|k0 , k0, k0, v : drop (td+ 1) (v1 : S), cs′)
≡

([POPCONT], h′′|k0 , k0, k0, v : S ′, cs′)︸ ︷︷ ︸
cfinal
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In order to apply the induction hypothesis on e2 in the last step we
have to check that E1 ≡ (ρ1, v1 : S). Let x ∈ dom(E1): if x = x1
then (v1 : S)!(ρ1(x)) = (v1 : S)!0 = v1 = E1(x). If x 6= x1 then
(v1 : S)!(ρ1(x)) = (v1 : S)!(ρ(x) + 1) = S!(ρ(x)) = E(x) = E1(x).
Additionally drop (td + 1) (v1 : S) = drop td S = S ′. The rest of the
assumptions hold trivially.

Hence (1) holds. With respect to (2), let i ∈ {1..k}

(diff (k, h, h′′))(i)
= |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= |{p ∈ h′′ | region(h′′(p)) = i}| − |{p ∈ h′ | region(h′(p)) = i}|

+ |{p ∈ h′ | region(h′(p)) = i}| − |{p ∈ h | region(h(p)) = i}|
= (diff (k, h, h′))(i) + (diff (k, h′, h′′))(i)
= δ1(i) + δ2(i)

Therefore diff (k, h, h′′) = δ1 + δ2. Properties (3) and (4) are proven as
follows:

maxFreshCells(cinit →∗S′ c2) = m1

maxFreshCells(c2 →∗S′ cfinal) = m2

maxFreshCells(cinit →∗S′ cfinal)
= max{m1,m2 + sizeH (c2)− sizeH (cinit)}
= max{m1,m2 +

∑k
i=0(diff (k, h, h′))(i)}

= max{m1,m2 + |δ1|}

maxFreshWords(cinit →∗S′ c1) = 2
maxFreshWords(cinit →∗S′ c2) = max {2, 2 + s1} = 2 + s1
maxFreshWords(cinit →∗S′ c2 →∗S′ c3) = max {2 + s1, 1} = 2 + s1
maxFreshWords(cinit →∗S′ c3 →∗S′ cfinal) = max {2 + s1, 1 + s2}

• Case [Case]: e ≡ case x of Ci xij
ni → ei

n

We assume that the r-th case alternative is executed under an envi-
ronment Er

def
= E ] [xri 7→ vi

nr ], where the values vi are the parameters
of the data construction pointed to by E(x).

Er ` (h, k), td + nr, er ⇓ (h′, k), v, (δ,m, s)
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In addition, let us denote ρr
def
= ρ+ [xri 7→ nr − i− 1

nr
]. If (isr, csr) =

trE er ρr F then it holds that cs ⊇ csr. Moreover, we get is =
MATCH (ρ(x)) pj

m with cs(pr) = isr for each r ∈ {1..n}. The SVM
derivation corresponding to is results as follows:

cinit︷ ︸︸ ︷
(MATCH (ρ(x)) pj

m, h[p 7→ (j, Cr vi
nr)], k0, k, S, cs′[pr 7→ isr])

→S′ { since S!(ρ(x)) = E(x) = p }
(isr, h, k0, k, vi

nr : S, cs′) ≡ c1
→∗S′ { by i.h. (see below) }

([POPCONT], h|k0 , k0, k0, v : drop (td + nr) (vi
nr : S), cs′)

≡
([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸

cfinal

In the same way as in the previous cases, we have to ensure that Er ≡
(ρr, vi

nr : S). Let z ∈ dom ρr. We made the following case distinction:
on one hand, if z = xri for some i ∈ {1..nr} then ρr(z) = i − 1 and
hence:

(vi
n
r : S)!(ρr(z)) = (vi

n
r : S)!(i− 1) = vi = Er(xri) = Er(z)

On the other hand, if z 6= xri for all i ∈ {1..nr} then ρr(z) = ρ(x) +nr.
Therefore:

(vi
n
r : S)!(ρr(z)) = (vi

n
r : S)!(ρ(x) + nr) = S!(ρ(x)) = E(z) = Er(z)

Hence we get Er ≡ (ρr, vi
nr : S) and (1) holds by applying i.h. since

drop (td + nr) Sg = drop td S.

Properties (2) and (3) follow trivially from the induction hypothesis.
With respect to (4) we get:

maxFreshWords(cinit →∗S′ c1) = nr
maxFreshWords(c1 →∗S′ cfinal) = s
maxFreshWords(cinit →∗S′ cfinal) = max {nr, s+ nr} = s+ nr
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• Case [Case! ]: e ≡ case! x of Ci xij
ni → ei

n

The proofs of (1) and (4) are similar to those seen for the nondestructive
case. Property (2) follows trivially from the induction hypothesis and
the definition of diff . With respect to (3), let c1 denote the SVM state
prior to the execution of the branch er. Then:

maxFreshCells(cinit →∗S′ c1) = 0
maxFreshCells(c1 →∗S′ cfinal) = m
maxFreshCells(cinit →∗S′ cfinal) = max {0,m− 1}

which proves the desired result.

The (⇐) direction of the theorem can be proved by induction on the length
of the →∗S′ derivation. Since this proof is mostly standard, we only describe
it briefly: since it is known that the SVM is deterministic, we prove that,
given a Safe program, if the SVM eventually halts then a corresponding ⇓-
derivation can be built. We distinguish cases depending on the expression
e being evaluated. The base cases e ≡ c, e ≡ x, e ≡ x @ r, e ≡ a1 ⊕ a2,
and e ≡ C ai

n @ r are straightforward: if the SVM machine halts with the
corresponding result on the top of stack, this result can be used with rules
[Lit ], [Var ], [Copy ] and [Cons ].

As an example, let us consider e ≡ x. Let (is, cs) = trE e ρ F be the
SVM code generated, where cs = [ ] and:

is = BUILDENV [ρ(x)] :

is1︷ ︸︸ ︷
SLIDE 1 (topDepth(ρ)) : DECREGION : [POPCONT]︸ ︷︷ ︸

is3︸ ︷︷ ︸
is2

Given any cs′, the only possible derivation is the following one:

cinit︷ ︸︸ ︷
(BUILDENV [ρ(x)] : is1, h, k0, k, S, cs′)

→S′ {since S!(ρ(x)) = E(x) = v}
(SLIDE 1 (topDepth(ρ)) : is2, h, k0, k, v : S, cs′)

→S′ {since td = topDepth(ρ)}
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(DECREGION : is3, h, k0, k, v : drop td S, cs′)
→S′

([POPCONT], h|k0 , k0, k0, v : drop td S, cs′)︸ ︷︷ ︸
cfinal

Trivially, by rule [Var ], E[x 7→ v] ` (h, k), td , x ⇓ (h, k), v, ([ ]k, 0, 1).
Property (2) holds because diff (k, h, h) = [i 7→ 0 | 0 ≤ i ≤ k] = δ. Prop-
erties (3) and (4) hold because maxFreshCells(cinit →∗S′ cfinal) = 0 and
maxFreshWords (cinit →∗S′ cfinal) = 1.

With respect to the remaining cases, the→∗S′ execution sequence is made
up of a set of preliminary actions (building the variable environment in the
case of function application, pushing a continuation in the case of let ex-
pression or executing a MATCH/MATCH! at the beginning of a case/case!)
followed by the evaluation of the corresponding subexpressions (i.e, either
the function being called or the main/auxiliary expressions of a let or the
case/case! branch). The induction hypothesis can be applied to these (→∗)-
subderivations in order to get the required assumptions of the corresponding
⇓ rule.

As an example, consider e ≡ let x1 = e1 in e2. Assume (is1, cs1) =
trE e1 ρ

++ F and (is2, cs2) = trE e2 ρ1 F where ρ1 = ρ + [x1 7→ 1]. Then
is = PUSHCONT p : is1, in which cs1(p) = is2 . Given cs′ ⊇ cs, the trace
corresponding to the execution of e must be as follows:

cinit︷ ︸︸ ︷
(PUSHCONT p : is1, h, k0, k, S, cs′)

→S′

(is1, h, k, k, (k0,p) : S, cs′) ≡ c1
→∗S′ {by Lemma 27}

([POPCONT], h′, k, k, v1 : (k0,p) : S), cs′[p 7→ is2]) ≡ c2
→S′

(is2, h′, k0, k, v1 : S, cs′) ≡ c3
→∗S′

([POPCONT], h′′, k0, k0, v : S ′, cs′)︸ ︷︷ ︸
cfinal

Notice that c1 contains a continuation (k0,p) on top of the stack. The
only machine instruction which removes such continuation from the stack
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is POPCONT. So, in order to reach cf inal an intermediate configuration c2 ≡
([POPCONT], h′, k′, k′, v1 : (k0,p) : S), cs′[p 7→ is2]) must be reached so
that the execution can proceed. By Lemma 27, k′ = k.

In fact, it holds that c1 →∗(k0,p):S c2, so we can apply i.h. to obtain

E ` (h, k), 0, e1 ⇓ (h′, k), v1, (δ1,m1, s1), as (k0,p) : S = drop 0 ((k0,p) : S).
Notice also that E ] [x1 7→ v1] ≡ ρ+ [x1 7→ 1] and that drop (td+ 1) (v1 :

S) = drop td S = S ′, so we can also apply i.h. to c3 →∗S′ cf inal to obtain
E][x1 7→ v1] ` (h′, k), td +1, e2 ⇓ (h′′, k), v, (δ2,m2, s2). The reasoning about
resources consumption is the same as the opposite implication.
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