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Abstract

Shape analysis is concerned with the compile-time determination of the
‘shape’ the heap may take at runtime, meaning by this the pointer chains that
may happen within, and between, the data structures built by the program.
This includes detecting alias and sharing between the program variables.

Functional languages facilitate somehow this task due to the absence of
variable updating. Even though, sharing and aliasing are still possible. We
present an abstract interpretation-based analysis computing precise informa-
tion about these relations. In fact, the analysis gives an information more
precise than just the existence of sharing. It informs about the paths through
which this sharing takes place. This information is critical in order to get a
modular analysis and not to lose precision when calling an already analysed
function.

The motivation for the analysis in our case is the need of knowing at
compile time which variables are at risk of containing dangling pointers at
runtime, in a language with explicit memory disposal primitives.

The main innovation with respect to the literature is the use of regular
languages to specify the possible pointer paths from a variable to its descen-
dants. This additional information makes the analysis much more precise
while still being affordable in terms of efficiency. We have implemented it
and give convincing examples of its precision.
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1. Motivation

Shape analysis is concerned with statically determining the connections
between program variables through pointers in the heap that may occur at
runtime. As particular cases, it includes sharing and alias between variables.
To know the shape of the heap for every possible program execution is un-
decidable in general, but the analysis computes an over-approximation of
this shape. This means that it may include sharing relations that will never
happen at runtime.

Much work has been done in imperative languages (see Section 7), spe-
cially for C. There, the sharing detection is aggravated by the fact that
variables are mutable, and they may point to different places at different
times. We have addressed the problem for a first-order functional language.
This simplifies some of the difficulties since variables do not mutate. A con-
sequence is that the inferred relations are immutable considering different
parts of the program text. Another consequence is that the heap is never
updated. It can only be increased with new data structures, or decreased by
the garbage collector. But the latter cannot produce effects in its live part.

Our analysis puts the emphasis on three properties: (1) modularity; (2)
precision; and (3) efficiency. For the sake of scalability, it is important for
the analysis to be modular. The results obtained for a function should sum-
marise the shape information so that the user functions should be able to
compute all the sharing produced when calling it. Looked at from outside,
and given that the language is functional, a function may only create sharing
between its result and its arguments, or between the results themselves, but
it can never create new sharing between the arguments. The internal vari-
ables become dead after the call, so the result of analysing a function only
contains its input-output sharing behaviour. Differently from previous works,
we compute the paths through which this sharing may occur in a precise way.
This information is used to propagate to the caller the sharing created by a
call. In this way, large programs need not to be analysed globally, but just a
function at a time.

The motivation for our analysis is a safety type system we have developed
for a functional language, called Safe, with explicit memory disposal [1]. This
feature may create dangling pointers at runtime. The language also provides
automatically allocated and deallocated heap regions, instead of having a
runtime garbage collector. This feature can never create dangling pointers,
so it plays no role in the current work and we will not mention it anymore.
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unshuffle []! = ([],[])

unshuffle (x:xs)! = (x:ys2, ys1)

where (ys1,ys2) = unshuffle xs

merge []! ys! = ys

merge (x:xs)! []! = x:xs

merge (x:xs)! (y:ys)! | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

msort []! = []

msort [x]! = [x]

msort xs! = merge (msort xs1) (msort xs2)

where (xs1, xs2) = unshuffle xs

Figure 1: mergesort algorithm in constant heap space

The explicit memory disposal is achieved by means of a destructive pat-
tern matching, denoted with symbol !, or a case! expression. By applying
any of them, we can reuse the cell corresponding to the parameter or variable
affected by it. This feature may be used in our language to implement data
structures whose updating needs no additional heap space or constant heap
space functions over data structures, see [2] for examples. As an example, in
Figure 1 we show an implementation of the mergesort algorithm for sorting
a list in constant heap space. Each cell of the original list is disposed by
unshuffle; lists xs1 and xs2 are disposed by the recursive calls to msort ; and
finally the results of the recursive calls are disposed by merge.

The type inference algorithm [3] assigns the program variables safety
marks: d for disposed, s for safe and r for in-danger variables. Each time a
variable is marked as disposed, all those variables that may point to cells be-
longing to its recursive substructure are marked as in-danger, because they
can potentially contain dangling pointers. The type rules propagate the
marks and control how the variables are used. For instance, in a let expres-
sion in-danger and already disposed variables in the let-bound expression
cannot be mentioned in the main expression. We have proved that passing
successfully the type inference phase gives total guarantee that there will not
be dangling pointers.

So, for typechecking a function, it is critical to know at compile time which
variables may point to the disposed data structures, and for this we need a
sharing analysis. Our prior prototype shape analysis done in [4] was correct
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but imprecise at some points. In particular, the type system rejected the
mergesort algorithm shown in Figure 1, due to the imprecision of the sharing
analysis results. As we will see in more detail in the following section, the
reason for this is that it does not suffice knowing that two variables share
a common descendant, but we should more precisely know through which
paths this sharing occurs, and that is why in this work we introduce regular
languages representing paths in the heap.

We believe that the sharing analysis presented here could be equally use-
ful for other purposes, since it provides precise information about the heap
shape. Note that some shapes, such as cyclic or doubly linked lists, cannot be
created by a functional language, so they are out of the scope of our analysis.
But, in some cases, the analysis is capable of asserting that a given structure
is a tree, i.e. it does not have internal sharing (see Section 6 for an example).

The main contribution of this paper with respect to [4] is the incorpora-
tion of regular languages to our abstract domain. Each word of the language
defines a pointer path within a data structure. Having regular languages
introduces additional problems such as how to combine them during the
analysis, how to compare them, and specially how to guarantee that a fix-
point will be reached after a finite number of iterations. We show that we
have increased the precision of our prior analysis, and that the new problems
can be tackled with a reasonable efficiency.

The plan of the paper is as follows: Section 2 provides a mild introduction
to the analysis via a small example. Then, Sections 3, 4 and 5 contain all the
technical material about the abstract domain, abstract interpretation rules,
correctness, implementation, widening, and cost of the operations done on
regular languages. Section 6 gives abundant examples of the sharing results
obtained by our analysis and their corresponding running times. Finally,
Section 7 concludes and discuss some related work.

This paper is an extended version of [5]. The additional material here
mainly concerns sections 4, 5, and 6. In the first one, a much detailed proof
of correctness is given. In the second one, we compare two alternative im-
plementations (instead of the single one presented in [5]) in which regular
languages are represented either by nondeterministic automata or by regular
expressions. Section 6 provides more examples than [5], and additionally the
detailed running times of the analysis. It compares three different implemen-
tations: the one using regular expressions, and other two based on automata
but written in Haskell or C.
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prog → data; dec; e {Core-Safe program}
{function definition}

dec → f x = e {recursive, polymorphic}
{expressions}

e → c {basic type literal}
| x {variable}
| f a {function application}
| C a {constructor application}
| let x1 = e1 in e2 {non-rec., monomorphic}
| case x of alt {case expression}

{application argument}
a → c {basic type literal }

| x {variable}
alt → C x→ e {case alternative}

Figure 2: Simplified Core-Safe syntax

2. Shape Analysis by Example

Our reference language Safe is a first-order eager language with a syntax
similar to Haskell’s. The destruction facilities explained in the previous sec-
tion are not relevant to the shape analysis so we will not consider them in
the rest of the paper.

The compiler’s front-end processes Full-Safe and produces a bare-bones
functional language called Core-Safe. This transformation desugars pattern
matching into case expressions, transforms where clauses into let expres-
sions, collapses several function-defining equations into a single one, and en-
sures unique names for the variables. In Figure 2 we show a simplified Core-
Safe’s syntax. A program prog is a sequence of possibly recursive polymorphic
data and function definitions followed by a main expression e whose value
is the program result. The abbreviation x stands for a sequence x1 · · ·xn,
and we denote its length n as |x|. In Figure 3 we show the translation to
Core-Safe of the msort function of Figure 1 without including the destructive
pattern matching.

Our shape analysis infers for each function a sharing signature which
captures the sharing generated by the function definition between the result
of the function, represented as res , and its parameters. A signature is a set
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msort xs = case xs of

[] -> []

x:xx ->

case xx of

[] -> x:[]

_:_ -> let p = unshuffle xs in

let y1 = case p of (s1,s2) -> s1 in

let y2 = case p of (w1,w2) -> w2 in

let z1 = msort y1 in

let z2 = msort y2 in

merge z1 z2

Figure 3: Function msort in Core-Safe

of pairs like the following:

{res
2∗1−→ • 2∗1←− xs1, res

2−→ • 2←− xs2}

If the function has three parameters, xs1, xs2 and xs3, this signature says that
the result of the function may share with the first and the second parameters,
but not with the third one.

The sharing information is represented by means of regular languages,
here shown as regular expressions, that approximate all the possible paths
in the heap through which two variables may point to the same heap cell. In
order to write the paths we use natural numbers representing the positions in
the constructor cell that point to the following cell in the path. For example,
when considering list cells, number 1 represents the path leading to the first
element of the list, while number 2 represents the path leading to the tail
of the list. So, a regular expression 2∗1 represents all the paths that take
the tail of the list any number of times and then take the head, i.e. all the
paths leading to the elements of the list. So, the example signature above
represents that the result shares its elements with the parameter xs1 and its
tail with the parameter xs2.

Consider now, the msort example shown in Figure 1. Our shape analy-
sis infers the following sharing information for the functions unshuffle and
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Figure 4: Heap state before executing unshuffle [x1, x2, x3, x4]

merge:

Σ(unshuffle) = {res
12∗1+22∗1−→ • 2∗1←− xs}

Σ(merge) = {res
2∗1−→ • 2∗1←− xs, res

2∗1−→ • 2∗1←− ys,

res
2∗−→ • 2∗←− xs, res

2∗−→ • 2∗←− ys}

The meaning for unshuffle is depicted in Figures 4 and 5. The resulting tuple
res of calling the function with an input list xs , may share the elements of
this list. Moreover, the path reaching a common descendant, in the case of
res , begins either with a 1 or a 2 (this should be understood as descending
to the left or to the right element of the tuple), and then follows by the path
2∗1, by this meaning that we should take the tail of the (left or right) list
a number of times, and then take the head. From xs ’s point of view of, the
common descendant can be reached by a similar path 2∗1.

The meaning for merge is quite precise: the resulting list res may share
its elements with any of the input lists xs and ys , and additionally one or
more tails of res may be shared with one or more tails of both xs and ys .
This is what the path 2∗ means.

When analysing msort’s code of Figure 3, we have the information about
unshuffle and merge available. By substituting the actual arguments for the
formal ones, we get the following relations:

R1 = {p 12∗1+22∗1−→ • 2∗1←− xs}
R2 = {res

2∗1−→ • 2∗1←− z1 , res
2∗1−→ • 2∗1←− z2 ,

res
2∗−→ • 2∗←− z1 , res

2∗−→ • 2∗←− z2}

The case and let expressions in msort introduce more relations:

R3 = {x ε−→ • 1←− xs , y1
ε−→ • 1←− p, y2

ε−→ • 2←− p}
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Figure 5: Heap state after executing unshuffle [x1, x2, x3, x4]

From these relations, we can derive others by reflexivity, symmetry and tran-
sitivity, such as:

R4 = {y1
2∗1−→ • 2∗1←− xs , y2

2∗1−→ • 2∗1←− xs , y1
2∗1−→ • 2∗1←− y2}

In the first iteration of msort’s analysis, the only relation that can be in-

ferred between its result and its argument is xs
1−→ • 1←− res . This is due

to the singleton list case. The rest of the code gives us sharing information
between the internal variables, but this cannot be propagated to the argu-
ments, because in the internal recursive calls to msort we have nothing to
start with. But, by interpreting the internal calls with the sharing informa-

tion Σ1(msort) = {xs
1−→ • 1←− res}, we get the following bigger result:

Σ2(msort) = {xs
21+1−→ • 21+1←− res}. By interpreting the code a third time

by using this information when interpreting the internal calls, we get a still

bigger result: Σ3(msort) = {xs
221+21+1−→ • 221+21+1←− res}. At this point, the

analysis makes the following conjecture: Σ(msort) = {xs
2∗1−→ • 2∗1←− res}. By

interpreting once more the code with this signature for msort , the analysis
gets this same result for the msort ’s body. So, a fixed point has been reached,
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and we consider this result as a correct approximation of the sharing created
by msort.

Advantages of using paths. The rules of our safety type inference algorithm
[3] demand sharing information at function applications and case expressions,
so the sharing analysis not only infers sharing signatures for the functions
involving only the result and the parameters of the function, but it also
annotates the function definitions with information involving intermediate
variables. In [2, Section 5.3] we presented 34 functions as case studies for the
safety algorithm. Many of them are destructive versions of the case studies
shown in Section 6. The sharing information used there was obtained from
our previous work [4]. Two of them were rejected by the safety algorithm
due to the imprecision of the sharing analysis results:

• A destructive version of function msort shown here.

• A destructive version of the function joinAVL shown in Section 6, used
to perform AVL trees updates in constant heap space.

The same happens with a destructive version of quicksort algorithm, cor-
responding to the function qsort shown in Section 6. However, they were
accepted by the algorithm if we manually removed the spurious sharing in-
formation. The shape analysis shown in this paper generates the appropriate
sharing information for these three examples, shown in Figures 14 and 15,
allowing them to be accepted by the safety analysis.

Now, we explain in more detail msort in order to show the advantages of
using paths. Our prior analysis [4] of msort gave us the additional spurious
sharing information {z2 −→ • ←− z1}, meaning that a descendant of z2 is
shared by z1 (the regular languages were absent in that analysis).

Having spurious relations is not incorrect, but just imprecise. Since we
used this analysis to typecheck a destructive version of msort, using in turn
a destructive version of merge, our type system rejected the function because
of this spurious sharing information. One of the reasons of this imprecision
was a worse analysis of case expressions:

• The analysis of the let bound variable y1 yields the fact that it is a
child of the pair p.

• The analysis of the let bound variable y2 yields the fact that it is a
child of the pair p. But, as the analysis does not distinguishes through
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which paths, it is mandatory to infer that y1 and y2 may share some
substructure in the heap.

• This information is propagated to the first recursive call of msort giving
us that y1 and y2 may share a descendant with z1.

• Then, in the second call to msort we obtain that z1 and z2 may share
a recursive descendant, which makes the safety analysis fail when the
merge call is analysed: there is a risk that a recursive substructure is
destroyed twice.

The current analysis of case expressions is more precise: the use of paths
allows to avoid spurious relations between the variables pointing to separated
substructures of a closure. So, the current analysis does not infer any relation
between y1 and y2 , only between them and p through different paths, i.e.

{p 1−→ • ε←− z1, p
2−→ • ε←− z2}. Also, the analysis of function applications

is more precise because the use of paths improves the application of a sharing
signature to the actual arguments.

3. The Analysis

We formally define here the analysis approximating the runtime sharing
relations between the program variables. At this point, types have already
been inferred, so the analysis can ask for type-related issues, such as the
positions of constructor descendants, their types, and the like.

3.1. Sharing relation

In order to capture sharing, we define a binary relation between variables:

Definition 1. Given two variables x and y, in scope in an expression, a
sharing relation is a set of two pairs {(x, p1), (y, p2)} specifying that x and y
share a common descendant. Moreover, the regular languages denoted by p1

and p2 respectively define the possible pointer chains through which x and y
reach their common descendant. We shall denote this sharing relation either
by x

p1−→ • p2←− y or y
p2−→ • p1←− x.

For the sake of readability, we shall assume in the following p1 and p2

to be regular expressions that denote regular languages; although the actual
implementation could represent the regular languages in other ways, as we
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Figure 6: Particular cases of transitivity

will see in Section 5. Notice that, if p1 = ε, then x is a descendant of y, and
symmetrically for p2. If both p1 = p2 = ε, then x and y are said to be aliases.

The regular languages have pairs iC as alphabet symbols, where i is a
natural number starting at 1, and C is a data constructor. The symbol
iC denotes a singleton pointer path in the heap passing through the i-th

argument of constructor C. For instance, x
2∗:−→ •

1(,)←− y indicates that a tail
of the list x is pointed-to by the first element of the tuple y. In the examples,
we shall usually omit the constructor.

The relation
p1−→ • p2←− is symmetric by definition and reflexive by writing

p1 = p2 = ε. But the transitivity does not hold, i.e. x
p1−→ • p2←− y and

y
p3−→ • p4←− z, with p2 6= ε, does not necessarily imply x

p1−→ • p4←− z.
However, the transitivity holds in some cases, for example when y reaches its
common descendant with x through the same path as it reaches its common
descendant with z, as shown in Figure 6a.

More generally, we can investigate the languages denoted by p2 and p3,
and decide whether a path in p2 coincides with, or is a prefix of, a path in
p3 (as shown in Figure 6b), or the other way around. In these cases, there
may exist a sharing path through y between x and z. Notice that both p2

and p3 are over-approximations to the actual runtime paths, so the risk of
imprecision is still there, but if there are no such paths we are certain that
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Figure 7: At least paths w1 and w2 must be recorded in a sharing relation
x

p1−→ • p2←− y (a) or x
p1−→ • p2←− x (b)

there will not be paths at runtime either, and we can safely omit a tuple
relating x and z from the sharing relation. The rules computing the sharing
derived by transitivity are explained in detail in Section 3.4.

3.2. The abstract interpretation

Based on the above considerations, we define an abstract interpretation
S (meaning sharing) which, given an expression e and a set R containing an
over-approximation to the sharing relations between the variables in scope
in e, delivers another set Rres (res stands for result) containing (an over-
approximation to) all the relations between the result of evaluating e, named
res , and its variables in scope. To be precise, R and Rres must record at least
the minimum information needed in order to compute all possible sharing,
i.e. if we have x

p1−→ • p2←− y in R or Rres , and p3 denotes all possible paths
inside the data structure pointed-to by x and y, then we understand that
x
p1·p3−→ • p2·p3←− y is implicitly included in the relation.

Notice that this means that:

• If two variables x and y share a substructure in the heap as in Figure 7a,
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S [[c]] R Σ = R

S [[x]] R Σ = R ]∗res {res
ε−→ • ε←− x}

S [[C a]] R Σ = R ]∗res {res
jC−→ • ε←− aj | j ∈ {1..|a|}, var(aj)}

S [[f a]] R Σ = R ]∗res Σ(f)[a/x]

S [[let x1 = e1 in e2]] R Σ = (S [[e2]] R1 Σ)\{x1}
where R1 = (S[[e1]] R Σ)[x1/res ]

S [[case x of alt ]] R Σ =
⋃
i(S [[ei]] Ri Σ)\{xij}

where alti = Ci xi → ei

Ri = R []∗xij{x
jCi−→ • ε←− xij} | j ∈ {1..|xi|}]

Figure 8: Definition of the abstract interpretation S

there must exist a sharing relation x
p1−→ • p2←− y containing at least

the paths w1 and w2, leading to the first point of confluence. Their
extensions with a common path w need not.

• In case a variable x has internal sharing, as shown in Figure 7b, there
must exist a sharing relation x

p1−→ • p2←− x containing at least the
paths w1 and w2 leading to the first point of confluence.

In order to achieve a modular analysis, it is very important to reflect the
result of the analysis of a function f in a function signature environment, so
that when the analysis finds calls to f in the body of another function g, it
uses this knowledge to compute the sharing relations for g. We keep function
signatures in a global environment Σ, so that Σ(f) is a set Rres containing
the sharing relations between the result of calling f and its arguments. The
interpretation S[[e]] R Σ gives us the relations between (the normal form
of) e and its variables in scope, provided Σ gives us correct approximations
to the sharing relations of the functions called from e, and R is a correct
approximation to the sharing relations between the variables in scope in
expression e.

The rules for expressions will be explained in detail in Section 3.3. The
interpretation Sd of a function definition f x1 . . . xn = ef consists of the
interpretation of its body ef . It is straightforward to extract the signature of
the function, which just describes the relations between the result of ef and
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its formal arguments xi, which are the only variables in scope in ef . In case
f is recursive, the interpretation is run several times, by starting with an
empty signature for f and then computing the least fixpoint. Each iteration
updates f ’s signature in the signature environment:

Sd[[f x1 . . . xn = ef ]] Σ = fix (λΣ . Σ[f → S[[ef ]] R0 Σ]) Σ0

where Σ0 = Σ[f → ∅]
R0 = {xi

ε−→ • ε←− xi | i ∈ {1..n}}

where Σ[f → R] either adds signature R for f or replaces it in case there was
already one for it. Notice that the right hand side of the function definition
is analysed starting with a initial relation R0 in which each argument is only
related to itself. This means that the signatures are computed assuming that
all the parameters are disjoint and they do not present internal sharing in
addition to the trivial sharing relation given by R0. When they are not, the
function caller knows the additional sharing of the actual arguments and the
rule for application merges both information, as we will see in Section 3.3.
In this way, the signatures only contain the information known at function
definition while the whole sharing information can be computed when it is
available, i.e. at function application. This makes the analysis modular. As
function S is monotonic over a lattice, the least fixpoint exists and could be
computed using Kleene’s ascending chain if the chain were finite. We come
back to this issue in Section 5.

3.3. Interpretation of expressions

The interpretation defined in Figure 8 does a top-down traversal of a
function definition, accumulating these relations as soon as bound variables
become free variables.

The notation R[y/x] means the substitution of the variable y for the
variable x in the relation R. In order to avoid name capture, y must be fresh
in R. The operator R\{x} removes from R any tuple containing the variable
x. The union operator ∪ is the usual set union. The closure operation
R1 ]∗x R2 takes a relation R1 and completes it by adding R2 and the tuples
involving x that can be derived by transitivity. This operation also generates
the reflexive relation x

ε−→ • ε←− x. We explain this operator in detail in
Section 3.4.

In order to express a sequence of closure operations like:

R ]∗x1 R1 ]∗x2 R2 . . . ]∗xn Rn
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we use the following notation:

R []∗xiRi]

If we want to add conditions Ci to define the Ri we will write R []∗xiRi | Ci].
An important invariant of the rules presented in Figure 8 is that, in each

occurrence of S [[e]] R Σ, the set R contains an over-approximation of all
the sharing relations that at runtime may happen between the variables in
scope in e. This is the reason why the closure operator is defined in terms
of a highlighted variable (]∗x), which in most of the rules is variable res .
The set of relations is incrementally calculated: if set R already contains
the sharing information for the variables in scope, we do not need to add
any other spurious information between them; we just need to add the new
relations between them and res which are generated by the expression being
evaluated.

So, the set Rres returned by S [[e]] R Σ contains an over-approximation of
all the sharing relations that at runtime may happen between the variables in
scope in e, and the relations between those and res . It is easy to check that
if the property holds for the original call S [[ef ]] R0 Σ, where R0 = {xi

ε−→
• ε←− xi | i ∈ {1..n}}, then the rules preserve it. We recall that, according to
the interpretation of a function, this means that the signature of a function
contains an over-approximation of all the sharing relations that at runtime
may happen between the result of the function and the parameters, assuming
that the latter are disjoint. As we will see below, the function application
rule deals with the additional sharing that may exist between the actual
arguments.

The rule for a constant c introduces no new sharing. The rule of a variable
x specifies that the result is an alias of x, and ]∗res propagates to the result
the variables to which x is related.

When a constructor application C a is returned as a result, parent-child
sharing relations are created with the constructor’s children. These are added
to the current set R, and then the closure computes all the derived sharing.

As an example, consider the following functions:

data BST a = Empty | Node (BST a) a (BST a)

doubleE x = Node (Empty) x (Node (Empty) x (Empty))

doubleT x t = Node t x t
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The signature1 of doubleE is:

{res
2−→ • 32←− res , res

2−→ • ε←− x , res
32−→ • ε←− x}

saying that the argument element x is the root of the resulting tree and also
the root of its right child, and consequently there is internal sharing in the
result of the function. This signature can be transformed as follows (see
Section 6):

{res
2−→ • 32←− res , res

2+32−→ • ε←− x}

In the following examples we shall apply directly this transformation when-
ever we have two sharing relations involving the same pair of variables. The
signature of doubleT is:

{res
1−→ • 3←− res , res

2−→ • ε←− x , res
1+3−→ • ε←− t}

saying that the argument element x is in the root of the tree; and the argu-
ment tree t is shared between its left and right children, and consequently
there is also internal sharing.

When a function application f a is returned as a result, first we get
from f ’s signature the sharing relations between f ’s result and its formal
arguments. These are copied by replacing the formal arguments by the actual
ones, and then added to the current set. As before, the closure computation
does the rest.

As an example, consider the following function:

swap l x r = Node r x l

whose signature is

{res
3−→ • ε←− l, res

2−→ • ε←− x, res
1−→ • ε←− r}

An application swap t z t first replaces in the signature the actual argu-
ments:

{res
3−→ • ε←− t, res

2−→ • ε←− z, res
1−→ • ε←− t}

and then the closure operator additionally generates the relation res
3−→

• 1←− res by combining res
3−→ • ε←− t and res

1−→ • ε←− t by transitivity.

1In most of the examples we will omit relation res
ε−→ • ε←− res.
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The let rule is almost self-explanatory: first e1 is analysed and the sharing
computed for e1’s result is assigned to the new variable in scope x1. Using
this enriched set R1 as assumption, the main expression e2 is analysed, and its
result is the result of the whole let expression. After that, the tuples involving
x1 are removed, since this variable is not in scope in the let expression.

The following two functions illustrate let expressions:

doubleDoubleSh x t = let aux = doubleT x t in Node aux x aux

doubleDouble x t = Node (doubleT x t) x (doubleT x t)

Both functions call doubleT, but in the first case the result of such ap-
plication is shared in the result, while in the second case it is not. In fact,
the second function is translated into two lets with different variables. The
signature of doubleDoubleSh is:

{res
1+11+13+31−→ • 3+13+31+33←− res , res

2+12−→ • 2+32←− res ,

res
2+12+32−→ • ε←− x, res

1(1+3)+3(1+3)−→ • ε←− t}

which shows that t is shared at the second level of the resulting tree, and
also that the left and right children of the resulting tree are shared (through
variable aux, though this does not appear in the signature). The signature of

doubleDouble is almost the same, but the sharing relation res
1−→ • 3←− res

is not contained.
Finally, a case expression introduces the pattern variables xij in the scope

of a branch ei. Their sharing relations are derived from the parent x’s ones
by first adding the child-parent relation between each xij and x, and then
computing the closure. After analysing the branches, the least upper bound
of all the analyses must be computed, expressing the fact that at compile
time it is not known which branch will be taken at runtime. Finally, the
tuples involving the patterns xij are removed, since these variables are not
in scope in the case.

As an example, consider the following function:

fstSnd (x:[]) = x:[]

fstSnd (x:(y:xs)) = y:[]

From the first alternative we obtain {res
1−→ • 1←− arg} and from the

second one {res
1−→ • 21←− arg}, so the resulting signature is {res

1−→ • 1+21←−
arg}.
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R ]x {x
p1−→ • p2←− y} def

=

R ∪ {x p1−→ • p2←− y} ∪ {x ε−→ • ε←− x}

∪ {x
p1·p3|p2−→ • p4←− z | y p3−→ • p4←− z ∈ R}

∪ {x p1−→ •
p4·p2|p3←− z | y p3−→ • p4←− z ∈ R}

∪ {x
p1·p3|p2−→ •

p1·p4|p2←− x | y p3−→ • p4←− y ∈ R}

R ]∗x R′
def
=

R []x{x
p1−→ • p2←− y} | x p1−→ • p2←− y ∈ R′, y 6= x]

∪ {x p1−→ • p2←− x | x p1−→ • p2←− x ∈ R′}

Figure 9: Definition of the closure operation

3.4. The closure of a relation

As we explained in the previous section the closure of a relation is applied
incrementally along the top-down traversal of a function body. It is only
necessary to apply transitivity with respect to variable res or the case bound
variables.

The closure operation ]∗x is defined in terms of the simpler one ]x, which

completes a relation set R with a new relation x
p1−→ • p2←− y, where y 6= x,

by adding the relations that bind x to the variables contained in R, and are
derived by transitivity. Both operators are defined in Figure 9.

The inclusion of R and the relations x
p1−→ • p2←− y, x

ε−→ • ε←− x are
self-explanatory. We shall concentrate on the remaining relations shown in
the last lines of the definition.

The second line corresponds to the case illustrated in Figure 6b, while
the third one corresponds to the symmetric case. These relations involve the
derivative operator | whose meaning is:

p1|p2 = {w3 | ∃w2 ∈ L(p2).w2w3 ∈ L(p1)}.

If p1 and p2 denote regular languages so does p1|p2 , and in Section 5 we
explain how to compute it2. In the second line of the definition of ]x the
language describing p1 ·p3|p2 might be empty. In this case we can discard the

2When p2 = {a}, the language p1|a is sometimes called the derivative of L(p1) with
respect to a, and it is denoted a\L, being L = L(p1).
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Figure 10: Transitivity with internal sharing.

corresponding sharing relation from the result of the closure operation. If it
is not empty then there exists a word w2 ∈ L(p2) such that it its a prefix of
another word w3 ∈ L(p3), so we can start from x, follow a path w1 ∈ L(p1),
and then follow the path w3 without the prefix w2 (which results in a path
of L(p3|p2)) in order to reach the common descendant of x and z. The third
line of ]x is applicable when a path of p3 is a prefix of a path of p2, and
works similarly.

The fourth line deals with the case in which variable x gets internal
sharing through variable y, as shown in Figure 10. This happens when the
path w2 through which y reaches its common descendant with x is a prefix of
both paths w3 and w4 representing the internal sharing of y. Then p3|p2 and
p4|p2 are not empty, and contain respectively the paths w3 and w4 without the
prefix w2, which prepended with w1 ∈ L(p1) represent two paths of internal
sharing from variable x.

The closure operator ]∗x is defined as a sequence of applications of the
simpler one ]x, plus a simple set union which takes care of the variables with
internal sharing.

In spite of the restrictions of the ] operator, we could replace the ]∗
operator by a sequence of ] operations in all the rules of Figure 8 but in
function application, because only in the application non-trivial reflexive re-
lations may be added.
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In fact, operation R ]∗x R′ is used to define the confluence of information
happening in a function call. R represents the context of the call, while R′

represents the sharing generated by the function between the result and the
arguments.

Its definition is divided into two parts:

1. First, we take each relation in R′ of the form x
p1−→ • p2←− y such that

y 6= x and apply the previous transitivity operator incrementally. This
is well defined because operator ]x is in a sense commutative, as we
will prove in Section 4. So the order in which we add the relations of
R′ is not relevant: the final result may be different but equivalent, in
the sense that it records the same information.
This part reflects the interaction of the context with the function defi-
nition.

2. Second, we just add those reflexive relations x
p1−→ • p2←− x ∈ R′. In

the abstract interpretation, this kind of relations only appear in the
application of a function: it may happen that the result of a function
f has internal sharing, so a relation res

p1−→ • p2←− res ∈ Σ(f). It is not
necessary to apply transitivity here because the internal sharing of res
either comes from the function itself (i.e. is reflected in R′) or through
a real argument which already has internal sharing (i.e. is reflected in
R). As we will prove in Section 4, the transitivity closure would only
add redundant information.

3.5. Type correctness

It is important to see whether the relations inferred by the analysis are

well-typed. For instance, we could have a relation x
px−→ • py←− y in which

the descendant reached from x and p1 had a type t, while the descendant
reached from y and py had a different type t′. This would obviously be a
spurious relation since in well-typed programs, an ill-typed sharing may not
occur at runtime.

The expression type(t, p) returns the set of types computed starting at
the type t, and then descending through the constructors of the words in p
according to its type and to the child chosen at each step. In our language this
set can be statically computed. Let tx be the type computed by the compiler
for the variable x. For instance, if tx = [Int ], then type(tx, 1:) = {Int}. The
set may be empty as in type(tx, 1:1:), because an integer has no constructors.
Or it may yield more than one type, as in type(tx, 1: + 2:) = {Int , [Int ]}.
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Definition 2. We say that the relation x
px−→ • py←− y is well-typed if both

type(tx, px), and type(ty, py) are singleton and type(tx, px) = type(ty, py).

Lemma 3. If the relations in R and Σ are well-typed, then for every expres-
sion e, the relations in S[[e]] R Σ are well-typed.

Proof. By induction on the rules used to compute R′ = S[[e]] R Σ, we will

prove a stronger property, namely that if x
px−→ • py←− y ∈ R′, then for

all wx ∈ L(px), wy ∈ L(py) the relation x
wx−→ • wy←− y is well-typed, and

type(tx, wx) = type(tx, px), and type(ty, wy) = type(ty, py).
By inspection of the rules of Figure 8, it is easy to check that every relation

explicitly introduced there is well-typed, and that the regular languages are
just basic ones such as jC or ε. So, they satisfy the desired property. Also,
substituting a variable for another one with the same type, preserves the
property. We concentrate then on the closure operator of Figure 9.

Let us assume in line 3 that for every w1 ∈ L(p1), w2 ∈ L(p2), w3 ∈
L(p3), w4 ∈ L(p4), the relations x

w1−→ • w2←− y and y
w3−→ • w4←− z are well-

typed. Let w5 ∈ L(p3|p2). Let us assume this language to be non-empty, since
otherwise the Lemma trivially holds. Let {t1} = type(tx, p1) = type(ty, p2)
and {t2} = type(ty, p3) = type(tz, p4).

Given w5, there must exist words w2 ∈ L(p2), w3 ∈ L(p3) such that
w3 = w2 · w5. Let w1 ∈ L(p1). We have then the following equalities:

type(tx, p1 · p3|p2) = type(tx, w1 · w5) = type(t1, w5) =
type(type(ty, w2), w5) = type(ty, w3) = type(ty, p3) = type(tz, p4)

Then, for all wx ∈ L(p1 · p3|p2), wy ∈ L(p4), the relation x
wx−→ • wy←− z is

well-typed. The reasoning is very similar for the lines 4 and 5 of Figure 9.

4. Correctness

In this section we provide the main results needed to prove the analysis
is well-defined and correct. Full proofs can be found in [6].

First, in Section 4.1, we provide for some notation about paths in a heap
and prove closure preservation in Safe’s operational semantics, i.e. the im-
mutability of heap data structures along execution.

In Section 4.2 we give some auxiliary lemmas about the abstract inter-
pretation, like monotonicity and commutativity of the closure operator. We
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also prove some properties about substitutions over relations, which occur in
function applications.

Then, in Section 4.3 we define the notion of correct approximation to the
sharing in a real heap. A function signature is considered correct when it al-
lows to compute the sharing of any application of that function by combining
it with the actual arguments’ sharing relations.

Finally, in Section 4.4 we prove the correctness of the abstract interpre-
tation, i.e. that the interpretation of expressions is correct and that inter-
pretation of functions give correct signatures.

4.1. Heap properties

In what follows, we will denote by V the alphabet of our regular languages.
Its symbols are pairs (i, C), written iC , where C is a data constructor and
i is a natural number starting at 1, denoting the C’s argument taken by a
heap path when arriving at a closure having constructor C applied to its
arguments.

In order to prove the correctness of the analysis, we will need the pre-
cise meaning of executing a Core-Safe program. The Core-Safe operational
semantics can be found at [1]. It is a standard big-step operational eager
semantics: judgement E ` h, e ⇓ h′, v means that expression e, starting with
runtime environment E and initial heap h, evaluates to value v and the heap
changes to h′. Environment E maps variables in scope in e to values, heaps
map pointers to closures of the form (C v), where each vj (j ∈ {1..|v|}) is a
value, and a value is either a basic constant or a heap pointer.

Actually, we prove the correctness of our analysis with respect to a slightly
modified semantics in which destructive pattern matching is replaced by a
standard pattern matching, and then trivially the result of the analysis over-
approximates the sharing when the full semantics is considered.

Definition 4. Let h be a heap, p, q ∈ domh, and v = iC ∈ V. We say that

q is an immediate v-successor of p (written p
v

99Kh q) iff h(p) = (C v), for
some C and v, and q = vi. Analogously, assume a word w in V∗. A pointer
q ∈ domh is a w-successor of p (written p

w
=⇒h q) if there exists a sequence

of pointers p0, . . . , pn (n ≥ 0) and a sequence of positions v1, . . . , vn ∈ V such
that w = v1 · · · vn and:

p = p0
v1
99Kh p1

v2
99Kh . . .

vn
99K pn = q
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We are mostly interested in the fact that two given variables are pointing
to a common pointer p, rather than in the p itself. That is why we shall use
the notation

p1
w1=⇒ • w2⇐= p2 (in h)

to denote the existence of a pointer p such that p1
w1=⇒h p and p2

w2=⇒h p.
If in a heap h there exists an actual sharing between two variables x and

y through respective pointer paths w1 and w2, we say that there exists a
sharing condition in h and denote it by E(x)

w1=⇒ • w2⇐= E(y) (in h).
The following lemma asserts that live heap data structures do not change

along execution.

Lemma 5 (Closure preservation). Let us assume an execution E ` h, e ⇓
h′, v. For every pointer p ∈ dom h′, variable x ∈ domE, and w ∈ V∗:

E(x)
w

=⇒h p if and only if E(x)
w

=⇒h′ p

As a consequence of this, E(x)
w

=⇒h′ p implies p ∈ domh.

Proof. By induction on the ⇓-derivation, and by cases on the expression e
when the last rule is applied.

4.2. Properties of the abstract interpretation

First, we prove that the closure operator is well-defined. For this we need
two auxiliary lemmas. We start with some properties of the derivative of
regular languages.

Lemma 6. Let p1, p2 and p3 be path expressions. Then:

1. L((p1 · p2)|p3) = L(p1|p3 · p2) ∪ L(p2|(p3|p1 )).

2. L(p1|p2·p3) = L((p1|p2)|p3).

Proof. By set inclusion in both directions.

And then we prove monotonicity of the closure operation.

Lemma 7 (Monotonicity of the closure operation). Let R and R′ be two sets

of relations, and x
p1−→ • p2←− y a sharing relation such that y 6= x. If R ⊆ R′

then:
R ]x {x

p1−→ • p2←− y} ⊆ R′ ]x {x
p1−→ • p2←− y}

An immediate consequence is that R ]∗x R′′ ⊆ R′ ]∗x R′′.
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Proof. It follows trivially from the definition of ]x.

We prove now that the operator ]∗x is well defined. As we said in Section 3,
the order in which we apply transitivity to the rules belonging to R′ may lead
to different but equivalent results. First, we give the notion that two sets of
relations contain the same information in terms of the sharing paths. Then,
we prove well-definedness of the operator.

Definition 8. A set of sharing relations R is included in R′ (written R v R′)

if for every sharing relation x
p1−→ • p2←− y ∈ R and every pair of words

w1 ∈ L(p1), w2 ∈ L(p2) there exists a sharing relation x
p′1−→ •

p′2←− y ∈ R′
such that w1 ∈ L(p′1) and w2 ∈ L(p′2). Two sets of relations R and R′ are
said to be equivalent (written R ≡ R′) if both R v R′ and R′ v R hold.

Lemma 9 (Commutativity of closure operation). Let R be a set of sharing

relations and x
p1−→ • p2←− y, x′

p′1−→ •
p′2←− y′ a pair of sharing relations such

that y 6= x and y′ 6= x′. Let us define Rx,x′ and Rx′,x as follows:

Rx,x′
def
= (R ]x {x

p1−→ • p2←− y}) ]x′ {x′
p′1−→ •

p′2←− y′}
Rx′,x

def
= (R ]x′ {x′

p′1−→ •
p′2←− y′}) ]x {x

p1−→ • p2←− y}

If y′ 6= x and x′ 6= y then Rx,x′ ≡ Rx′,x.

Proof. By case distinction and using Lemmas 6 and 7.

Consequently, following different orders in adding the relations of R′ lead
to equivalent sets of relations.

The following notion has to do with the parameter passing mechanism. In
a function application f a, the actual arguments a replace the formal ones x,
and this replacement may be no-injective, since two or more formal ones may
be replaced by the same actual one. We call this replacement a generalised
substitution.

Definition 10. A generalised substitution θ is a set of pairs of variables,
where the pair (x, y) specifies that x is going to be replaced by y. The domain
of θ (denoted dom θ) is the set of variables x such that (x, z) ∈ θ for some z.
The range of θ (denoted ran θ) is the set of variables z such that (x, z) ∈ θ
for some x. The notation [z/x] ∈ θ is defined as follows:
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[z/x] ∈ θ ⇔def (x, z) ∈ θ ∨ (x /∈ dom θ ∧ x = z)

If R is a set of sharing relations and θ is a generalised substitution, the set
Rθ is defined as follows:

Rθ = {x p1−→ • p2←− y | x′ p1−→ • p2←− y′ ∈ R, [x/x′] ∈ θ, [y/y′] ∈ θ} (1)

A generalised substitution θ is said to be injective whenever [x/z1], [x/z2] ∈ θ
implies z1 = z2. The inverse of a generalised substitution θ−1 is defined by
θ−1 = {(x, y) | (y, x) ∈ θ}.

It can be easily shown that [x/y] ∈ θ iff [y/x] ∈ θ−1. By abuse of notation
we denote [y/x] the substitution {(x1, y1), . . . , (xn, yn)}. It is easy to see that
the notation R[a/x] used above is a particular case of (1).

As an example, assume a function definition f a1 a2 a3 a4 = . . . and that
we want to analyse the function application f x x y y. The corresponding
substitution is θ = [a1/x, a2/x, a3/y, a4/y]. If we define R as follows:

R = {x p1−→ • p2←− y, y
p3−→ • p4←− z}

We obtain:

Rθ = { a1
p1−→ • p2←− a3, a2

p1−→ • p2←− a3, a1
p1−→ • p2←− a4, a2

p1−→ • p2←− a4,

a3
p3−→ • p4←− z, a4

p3−→ • p4←− z}

Lemma 11 (Properties of substitution). Let R, R1, R2 be sets of relations
and θ a generalised substitution. Then:

1. (R1 ∪R2)θ = R1θ ∪R2θ.

2. If x /∈ dom(θ) ∪ ran(θ), then (R ]∗x R′)θ = Rθ ]∗x R′θ.

3. Rθθ−1 ⊇ R.

4. If θ is injective, then Rθθ−1 = R.

Proof. (1) is proved by equational reasoning. (2) and (4) are proved by
set inclusion in both directions and by case distinction in each one. (3) is
straightforward.

Another auxiliary property we will use later says that the abstract inter-
pretation add new relations to the initial set of relations.
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Lemma 12 (Conservative abstract interpretation). Let e be an expression,
Σ a signature environment and R a set of sharing relations. Then R ⊆
S [[e]] R Σ.

Proof. By structural induction on e. All cases are straightforward.

4.3. Notion of correct approximation
Now we define when a set of relations correctly approximates the real

sharing in a heap and the notion of correct signature. The first definition
reflects the fact that at least the minimum sharing must be recorded in the
relations, i.e. the paths leading to the first point of confluence must be
recorded, while their extensions with a common path need not. Notice that
this means that in case of internal sharing, each point of internal confluence
must also be recorded.

A correct function signature must record enough sharing information to
be able to approximate each possible call to that function, i.e. each possible
execution of the body.

Definition 13. A sharing relation x
p1−→ • p2←− y is said to approximate a

sharing condition E(x)
w1=⇒ • w2⇐= E(y) (in h) iff there exists a word w such

that w1 ∈ L(p1w) and w2 ∈ L(p2w).

Definition 14. Let R be a set of sharing relations, E a runtime environ-
ment, and h a heap. We say that R is a correct approximation of E and h,
denoted R � (E, h), iff for every pair of variables x, y ∈ domE, and pair of
words w1, w2 ∈ V∗ if the condition E(x)

w1=⇒ • w2⇐= E(y) (in h) holds, it is

approximated by a sharing relation x
p1−→ • p2←− y in R.

Lemma 15 (Properties of correct approximations). For any R, R′, E, h, x,
z, v of their respective types:

1. If R � (E, h) and R ≡ R′, then R′ � (E, h).
2. If R � (E, h) and R v R′ then R′ � (E, h).

3. If R � (E ] [xi 7→ vn], h) then R[zi/xi
n
] � (E ] [zi 7→ vn], h).

4. If R � (E ] [x 7→ v], h) then R\{x} � (E, h).

Proof. All the properties trivially follow from the definition of �.

Definition 16 (Correct signature). A set R of relations is a correct signature
for a function definition f x = ef iff for each execution Ef ` h, ef ⇓ h′, v of
the body of the function and every set of relations R′ such that R′ � (Ef , h)
it holds that R′ ]∗res R � (Ef ] [res 7→ v], h′). A signature environment Σ is
said to be correct iff every signature it contains is correct.

26



4.4. Correctness

Correctness of the analysis is divided into two steps. First, we prove that
given correct signatures of the functions which are called from an expression,
the interpretation of the expression is correct. Then, we prove that the
interpretation of a function generates a correct signature. For both theorems
we need to prove that the transitive closure operator is correct, which we
show in the following two lemmas. The first one deals with the normal
case in which variables do not present internal sharing, i.e. with the first
three lines of operator ]x definition. The second lemma concerns the case
in which a variable gets internal sharing through another variable having
internal sharing, i.e. with the fourth line of operator ]x definition.

Lemma 17 (Transitive closure lemma). Let us assume a runtime environ-
ment E, a heap h, a set of sharing relations R, some variables x, y, z, (with
y 6= z) words wx, wy, wz, and paths pxy, pyx, pyz, pzy such that the following
holds:

E(x)
wx=⇒ • wy⇐= E(y) (in h), approximated by x

pxy−→ • pyx←− y ∈ R

E(z)
wz=⇒ • wy⇐= E(y) (in h), approximated by z

pzy−→ • pyz←− y

Then there exists a sharing relation x
pxz−→ • pzx←− z ∈ R ]z {y

pyz−→ • pzy←− z}
approximating E(x)

wx=⇒ • wz⇐= E(z) (in h).

Proof. It is easy to show that there exist words wyx ∈ L(pyx), wyz ∈ L(pyz),
w, and w′ such that wy = wyxw = wyzw

′, so either wyx is a prefix of wyz, or
wyz is a prefix of wyx. The proof distinguishes these two cases, and essentially
applies the definition of the ]z operator, and of the derivation of a regular
language w.r.t. another one.

Lemma 18 (Transitive self-closure lemma). Let us assume a runtime en-
vironment E, a heap h, a set of sharing relations R, some variables x, y
(with x 6= y), words wx, wy, w1, w2 and paths px1, px2, pxy, pyx such that the
following holds:

E(x)
wxw1=⇒ • wxw2⇐= E(x) (in h), approx. by x

px1−→ • px2←− x ∈ R

E(x)
wx=⇒ • wy⇐= E(y) (in h), approximated by x

pxy−→ • pyx←− y

Then there exists a sharing relation y
py1−→ • py2←− y ∈ R ]y {x

pxy−→ • pyx←− y}
approximating E(y)

wyw1
=⇒ • wyw2⇐= E(y) (in h).
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Proof. We show that there exist words w, w′, wyx ∈ L(pyx), wxy ∈ L(pxy),
wx1 ∈ L(px1), and wx2 ∈ L(px2), such that wy = wyxw

′, wxw1 = wx1w,
wxw2 = wx2w and wx = wxyw

′. So wxyw
′w1 = wx1w and wxyw

′w2 = wx2w.
The proof proceeds by distinguishing four cases: (1) wxy is a prefix of both
wx1 and wx2; (2) wx1 and wx2 are prefix of wxy; (3) wx1 is prefix of wxy and
wxy is prefix of wx2; and (4) wx2 is prefix of wxy and wxy is prefix of wx1.

So far we have used the notation R[z/x] to denote the substitution of the
xi variables appearing in each side of R by their corresponding zi. In this
context, the [z/x] will be interpreted as a generalised substitution θ.

The following theorem establishes the correctness of the abstract inter-
pretation modulo the correctness of function signatures.

Theorem 19. Assume an expression e, a set of sharing relations R and a
correct signature environment Σ. If S [[e]] R Σ = R′, then for every execution
E ` h, e ⇓ h′, v in which R � (E, h), it holds that R′ � (E ] [res 7→ v], h′).

Proof. Let us denote the environment E ] [res 7→ v] by E ′. We have to
prove that for every x, y ∈ domE ′ the runtime sharing condition E ′(x)

w1=⇒
• w2⇐= E ′(y) (in h′) implies the existence of a sharing relation x

p1−→ • p2←−
y ∈ R′ and a word w such that w1 ∈ L(p1w) and w2 ∈ L(p2w). If x and y are
distinct from res , then by Lemma 5 we know that E(x)

w1=⇒ • w2⇐=E(y)(in h),

and since R � (E, h), there exists a relation x
p1−→ • p2←− y ∈ R and a word

w satisfying the same conditions, but since R is a subset of R′ (by Lemma
12), the Theorem holds when x and y are distinct from res , so henceforth we
shall assume that at least one x and y is the res variable. We shall assume
without loss of generality that y = res . We proceed by induction on the size
of the ⇓-derivation. We distinguish cases on the structure of e. We show
only two of them:

• Case e ≡ f a

Let us assume that f y = ef is the function definition of f , and assume
the following execution:

Ef ` h, ef ⇓ h′, v
E ` h, f a ⇓ h′, v where Ef = [y 7→ E(a)]

i.e. Ef (yi) = E(ai) for each i ∈ {1..|y|}.
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Let E0 be a runtime environment such that E = E0 ] [a 7→ E(a)]. By
assumption the following relation holds:

R � (E0 ] [a 7→ E(a)], h)

By Lemma 15 we can replace each ai by its yi so as to get:

R[y/a] � (E0 ] [y 7→ E(a)], h)

Notice that [y/a] is not a standard substitution, but a generalised one.
Moreover, since all the yi are distinct, this substitution is injective. We
can leave out the E0 from this approximation relation so as to get:

R[y/a] � ([y 7→ E(a)], h)

which follows trivially from the previous one. From the definition of
correct signature, we obtain:

R[y/a] ]∗res Σ(f) � ([y 7→ E(a)] ] [res 7→ v], h′)

Now we substitute the ai for the yi in the environment of the right-hand
side by using Lemma 15:

(R[y/a] ]∗res Σ(f))[a/y] � ([a 7→ E(a)] ] [res 7→ v], h′) (2)

and we use the properties of Lemma 11 in order to transform the left-
hand side:

(R[y/a] ]∗res Σ(f))[a/y]
= {by Lemma 11 (2) as res 6= y, a}

R[y/a][a/y] ]∗res Σ(g)[a/y]
= {by Lemma 11 (4), since [y/a] is injective }

R ]∗res Σ(f)[a/y]

Therefore we can rewrite (2) so as to get:

R ]∗res Σ(f)[a/y] � ([a 7→ E(a)] ] [res 7→ v], h′)

Notice that R is a subset of the left-hand side, and R correctly approx-
imates E0, so we can add E0 to the right-hand side:

R ]∗res Σ(f)[a/y] � (E0 ] [a 7→ E(a)] ] [res 7→ v], h′)

which is equivalent to R′ � (E ′, h′).
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• Case e ≡ let x1 = e1 in e2

We get the following execution:

E ` h, e1 ⇓ h1, v1 E ] [x1 7→ v1] ` h1, e2 ⇓ h′, v
E ` h, let x1 = e1 in e2 ⇓ h′, v

Since R � (E, h) we can apply the induction hypothesis on the ⇓-
derivation of e1 and obtain:

S [[e1]] R Σ � (E ] [res 7→ v], h1)

By Lemma 15 we can substitute x1 for res in order to get:

(S [[e1]] R Σ)[x1/res ] � (E ] [x1 7→ v1], h1)

Let us denote the left-hand side by R1. Now we can apply the induction
hypothesis on the derivation of e2,

S [[e2]] R1 Σ � (E ] [x1 7→ v1] ] [res 7→ v], h′)

and apply Lemma 15 again,

(S [[e2]] R1 Σ)\{x1} � (E ] [res 7→ v], h′)

which is what we wanted to prove.

Now we prove that the interpretation of a function returns a correct signa-
ture. A signature records the sharing between the result and the arguments
of the function assuming these are disjoint and without internal sharing.
However, a real call to the function may not satisfy such assumption. Given
the real configuration (E, h), we define an hypothetical execution where both

the environment Ê and the heap ĥ contain the same information as (E, h)
but meeting the separation property. The signature of the function captures
the sharing information corresponding to this hypothetical execution.

Definition 20. Let (E, h) and (Ê, ĥ) be two configurations such that dom E =

dom Ê. A mapping γ : dom ĥ→ dom h is said to be an entanglement from
(Ê, ĥ) to (E, h), iff:
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Figure 11: Final heaps in the real execution (a), and the untangled one (b).

1. For every pointer p̂ ∈ dom ĥ, if ĥ(p̂) = C v̂1 · · · v̂n, then h(γ(p̂)) =
C γ(v̂1) · · · γ(v̂n).

2. For every variable x ∈ dom Ê, γ(Ê(x)) = E(x).

As an example, assume a function definition f x y = C y. Its signature

consists of the following relations: {res
ε−→ • ε←− res , res

1C−→ • ε←− y}.
Assume we execute a call f z z where E(z) = p, h(p) = C ′ p′ p′, h(p′) = C ′′ 3,
i.e. Ef = [x 7→ p, y 7→ p]. In this case x and y are not disjoint and also contain

internal sharing. We can define (Êf , ĥ) such that Êf (x) = p1, Êf (y) = p2 ,

ĥ(p1) = C ′ p′1 p
′′
1, ĥ(p2) = C ′ p′2 p

′′
2 and ĥ(p′1) = ĥ(p′′1) = ĥ(p′2) = ĥ(p′′2) =

C ′′ 3. Then γ(p1) = γ(p2) = p, γ(p′1) = γ(p′′1) = γ(p′2) = γ(p′′2) = p′ is an

entanglement from (Êf , ĥ) to (Ef , h).
The following lemma proves that both the hypothetical and the real ex-

ecution proceed in parallel and that the information inside the heap is the
same although with a different shape. In Figure 11 we show the final heaps
of the executions corresponding to the previous example.

Lemma 21. Assume an execution E ` h, e ⇓ h′, v and a configuration (Ê, ĥ).

For every entanglement γ from (Ê, ĥ) to (E, h) there exist some ĥ′, v̂′ and
γ′ such that:

1. Ê ` ĥ, e ⇓ ĥ′, v̂.
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2. γ′ is a conservative extension of γ. That is, γ ⊆ γ′.

3. γ′ is an entanglement from (Ê, ĥ′) to (E, h′).

4. γ′(v̂) = v.

Proof. By induction on the ⇓-derivation of e.

For the same heap several entanglements may be defined, but we are
interested in a configuration (Ê, ĥ), where everything is untangled, as shown
in the previous example. This is because, then R0 = {xi

ε−→ • ε←− xi | i =
1..n} correctly approximates its sharing.

Lemma 22. For any configuration (E, h) there exists another configuration

(Ê, ĥ) and an entanglement γ from (Ê, ĥ) to (E, h) such that the set {x ε−→
• ε←− x | x ∈ dom E} is a correct approximation of (Ê, ĥ).

Proof. (Sketch) We define the following function ψ(v, h) = (v̂, ĥ, γ) which
untangles the closure of a pointer p in a heap h and yields the corresponding
entanglement γ:

ψ(c, h) = (c, ∅, ∅)
ψ(p, h) = (p̂, [p̂ 7→ C v̂1 . . . v̂n] ] ĥ1 ] · · · ] ĥn, [p̂ 7→ p] ] γ1 ] · · · ] γn)

where C v1 . . . vn = h(p)

(v̂i, ĥi, γi) = ψ(vi, h) for all i ∈ {1..n}
p̂ is a fresh pointer

And we define (Ê, ĥ) as

ĥ =
⊎

x∈dom E

ĥx Ê = [x 7→ v̂x | x ∈ dom E] γ =
⊎

x∈dom E

γx

where (v̂x, ĥx, γx)
def
= ψ(E(x), h). Then, we prove the lemma by induction on

the length of the longest pointer chain that can be followed starting from
v.

In the example above, signature is R′ = S [[ef ]] R0 Σ = {res
ε−→ • ε←−

res , res
1C−→ • ε←− y}. The environment of the call is approximated by

R = {x ε−→ • ε←− y, x
1C′−→ • 2C′←− x, y

1C′−→ • 2C′←− y}. So the final sharing
is approximated by R ]∗res R′ which merges the context of the call with the
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signature, and contains {res
1C−→ • ε←− y, res

1C−→ • ε←− x, res
1C ·1C′−→ • 1C ·2C′←−

res , res
1C ·1′C−→ • 2C′←− x, res

1C ·1′C−→ • 2C′←− y, res
1C ·2′C−→ • 1C′←− x, res

1C ·2′C−→ • 1C′←− y}.
This happens for each R approximating a context call, so R′ is a correct
signature for f . We prove this in the following theorem.

Theorem 23. Assume a function definition f x = ef , a set of relations

R0 = {xi
ε−→ • ε←− xi | i = 1..n}, and an environment Σ with correct

signatures. If R′ = S [[ef ]] R0 Σ, then R′ is a correct signature for f .

Proof. (Sketch) Assume a configuration (E, h) with dom E = {x} and a set
of relations R such that R � (E, h). If we execute ef under the configuration
(E, h) we get E ` h, ef ⇓ h′, v for some h′, v. By Lemma 22 there exists a

mapping γ which entangles a configuration (Ê, ĥ) into (E, h), where (Ê, ĥ)
is correctly approximated by R0. Assume we execute ef under the untangled

configuration so as to get, by Lemma 21, that Ê ` ĥ, ef ⇓ ĥ′, v̂ for some ĥ′

and v̂. By correctness theorem (Theorem 19) we know that R′ � (Ê ′, ĥ′),

where Ê ′
def
= Ê] [res 7→ v̂]. Then, we prove that R]∗resR′ � (E ′, h′). In order

to prove this we need two auxiliary properties:

1. For every variable z ∈ dom E such that E(z)
wz=⇒ • wv⇐= v (in h′) there

exists a variable y ∈ dom E and a word wy such that Ê(y)
wy

=⇒ • wv⇐=

v̂ (in ĥ′) and E(z)
wz=⇒ • wy⇐= E(y) (in h). This means, by Lemma 17,

that the sharing between the result and a variable is captured by R]∗res
R′.

2. For every w1, w2 such that v
w2=⇒ • w1⇐= v (in h′) holds, but v̂

w2=⇒ • w1⇐=

v̂ (in ĥ′) does not, either

• there exist two variables y 6= z ∈ dom E and two words wy, wz
such that:

(a) E(y)
wy

=⇒ • wz⇐= E(z) (in h).

(b) Ê(y)
wy

=⇒ • w1⇐= v̂ (in ĥ′).

(c) v̂
w2=⇒ • wz⇐= Ê(z) (in ĥ′).

• or, there exists a variable z ∈ dom E and words wv, wz, w
′
1, w′2

such that

(a) E(z)
wzw′1=⇒ •

wzw′2⇐= E(z) (in h).

(b) v̂
wv=⇒ • wz⇐= Ê(z) (in ĥ′).

(c) w1 = wvw
′
1 and w2 = wvw

′
2
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This means that the internal sharing of res which is not created inside
the function, can only come from an argument with internal sharing or
from two arguments sharing between them and with the result in the
appropiate way. The definition of R ]∗res R′ also covers this situations,
as Lemmas 17 and 18 show.

5. Implementation Issues and Cost

The analysis presented in Section 3 contains some tests and operations on
regular languages that deserve a detailed comment in order to see whether all
of them are decidable, and what their costs are. An efficient implementation
of these operations is crucial, as the abstract interpretation function makes
intensive use of them. We need the following operations:

1. To test whether a regular language L is empty, i.e. L = ∅. This is
necessary in order to discard those relations x

p1−→ • p2←− y where p1 or
p2 are empty.

2. Given regular languages L1 and L2, to compute their concatenation
L1.L2.

3. Given regular languages L1 and L2, to compute their derivation L1|L2 .

4. Given regular languages L1 and L2, to test whether L1 ⊆ L2. This is
used to check whether a fixpoint has been reached.

5. Given regular languages L1 and L2, to compute their union L1 + L2.
This is needed at the end of each analysis iteration (see Section 5.3).

For our implementation we have explored two alternatives for representing
regular languages: nondeterministic finite automata with ε transitions and
regular expressions. The next two sections are devoted to each of these. A
detailed comparison of their respective execution times for some case studies
is deferred to Section 6.

5.1. Regular languages via non-deterministic finite automata

In this section we represent regular languages by non-deterministic finite
automata with ε transitions (in what follows, NFA). We will denote them
by A = (Σ, Q, i, F, δ), where, as usual, Σ is the alphabet (V in our setting),
Q is the set states, i is the initial state, F contains the final states, and
δ ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation. As usual in automata
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theory, we denote by δ∗ the extension of δ to a subset of Q × Σ∗ × Q. In
order to achieve efficiency, we do not convert NFAs to other representations
unless it becomes unavoidable. As we will see, this happens when checking
whether a fixpoint has been reached. There we convert the NFAs to DFAs
(deterministic finite automata). The rest of operations needed by the analysis
are performed in the NFA ’world’. Trying to use DFAs for them would result
in a less efficient implementation. In particular, concatenation and derivation
of regular languages would be much more expensive with DFAs than with
NFAs.

The emptiness test in a NFA can be achieved [7] by looking for a final
state that is reachable from the initial one. If n =|Q| is the number of states
of A, the algorithm costs O(n2).

Given NFA automata A1 and A2, the computation of the automaton
recognising L(A1).L(A2) can be constructed with a cost O(n), just by con-
necting with ε-transitions the final states of A1 to the initial state of A2.

Given NFA automata A1 = (Σ, Q1, i1, F1, δ1) and A2 = (Σ, Q2, i2, F2, δ2),
the automaton recognising L(A1)|L(A2) is more involved. In fact, we have not
found in the literature an algorithm to compute it and have invented our
own, which involves a parallel traversal of A1 and A2 whilst collecting a set
I of states of Q1 that will be the initial states of the resulting automaton.
The algorithm Derivative is described informally as follows:

1. Start with an empty set I and an empty queue Q.

2. Insert the pair (i1, i2) into Q.

3. While Q is not empty:

(a) Take the first element (q1, q2) of Q.
(b) If q2 ∈ F2 then add q1 to I.
(c) For each v ∈ Σ, let Q′1 denote the set of q′1 ∈ Q1 such that

(q1, v, q
′
1) ∈ δ∗1 and Q′2 the set of q′2 ∈ Q2 such that (q2, v, q

′
2) ∈ δ∗2.

Insert at the end of Q those elements of Q′1 × Q′2 that have not
been inserted in Q before.

4. Return (Σ, Q1 ∪ {q0}, q0, F1, δR), being δR = δ1 ∪ {(q0, ε, q) | q ∈ I}

Lemma 24. The automaton returned by Derivative recognises the language
L(A1)|L(A2).

Proof. (Sketch) It is easy to see that whenever we insert a pair (q1, q2) into
Q there exists a word w ∈ Σ∗ such that (i1, w, q1) ∈ δ∗1 and (i2, w, q2) ∈ δ∗2.
In particular, when q2 ∈ F2 it holds that w ∈ L(A2). Reciprocally, for every
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word w such that (i1, w, q1) ∈ δ∗1 and (i2, w, q2) ∈ δ∗2 then (q1, q2) is inserted
in Q.

Given this invariant, assume that w ∈ L(A1)|L(A2), implying the existence
of w1 ∈ L(A1) and w2 ∈ L(A2) such that w1 = w2w. Therefore there exists
some q2 ∈ F2 such that (i2, w2, q2) ∈ δ∗2. Since w2 is a prefix of w1 there must
exist a q1 ∈ Q1 and a q′1 ∈ F1 such that (i1, w2, q1), (q1, w, q

′
1) ∈ δ∗1. As a

consequence of this, the pair (q1, q2) is inserted into Q during the algorithm.
Moreover, since q2 ∈ F2 it holds that q1 ∈ I. From the fact (q1, w, q

′
1) ∈ δ∗1 it

follows that w is recognised by the resulting automaton.
Reciprocally, if w is recognised by the automaton returned by Derivative

there exists some q′ ∈ F1 and q ∈ I such that (q, w, q′) ∈ δR. Therefore, there
exists a q2 ∈ F2 such that (q2, q) is inserted intoQ, which implies the existence
of a word w2 ∈ L(A2) such that (i2, w2, q2) ∈ δ∗2, and (i1, w2, q) ∈ δ∗1 ⊆ δR.
With the fact that (q, w, q′) ∈ δR and q′ ∈ F1 it holds that w2w ∈ L(A1).
Therefore, w ∈ L(A1)|L(A2).

The algorithm Derivative inserts, in the worst case, the whole set Q1×Q2

into the queue. For each element (q1, q2) in the queue it tries to insert Q′1×Q′2
into the queue, which may be equal to Q1×Q2. Therefore, the overall worst-
case cost of Derivative is in O(n4), although this case corresponds to an
automaton in which all the states are directly interconnected. These kind of
automata are seldom generated in our analysis.

Given NFA automata A1 and A2, L(A1) ⊆ L(A2) if and only if L(A1) ∩
L(A2) = L(A1), so inclusion is a particular case of equality. Unfortunately,
equality cannot be directly computed on NFA’s. They must be converted
to DFA, and then their equality tested with the well-known table-filling al-
gorithm [7], which has a cost O(n2). But the conversion from NFA to DFA
has a worst-case cost in O(n32n). This is because the states of the DFA are
subsets of the NFA set of states, and can in theory be up to 2n. In practice,
however, the DFA has about the same number of states than the NFA it
comes from.

We have developed two different implementations of each of these opera-
tions (see Section 6 for a performance comparison). The first implementation
manages automata in a purely functional fashion. That is, each automata is
represented as a tuple (Σ, Q, i, F, δ), and whenever we apply one of the oper-
ators explained above we still preserve the original automaton to which the
operator is applied. This implies that, given two automata A1 and A2, the
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computation of L(A1)·L(A2) may generate a copy of A1 before computing the
result. In order to avoid this duplication we have developed an alternative
implementation of automata, in which we have a single state space shared
by all automata. In this case, an automaton is represented as a tuple (i, F )
containing only the initial state and the accepting states, whereas the states
themselves and their transitions are represented in the shared state space. By
using this implementation we can avoid generating copies of automata when-
ever we apply an operator on them, but this is an ‘impure’ implementation
in the sense that the application of these operators may partly mutate the
operands. In the example above, assume that A1 = (i1, F1) and A2 = (i2, F2)
if we want to compute L(A1).L(A2) we just have to add ε-transitions in the
shared state space from the accepting states of A1 to the initial state of A2,
and the result would be represented by (i1, F2). This comes, however, at the
cost of modifying the operand A1. As another example, given an automa-
ton A3, the concatenation of L(A3) with itself would yield L(A3)∗. We can
ensure that the concatenation of the languages of two automata in a shared
state space is sound provided their respective initial states do not reach a
common state. Fortunately, each iteration of our abstract interpretation
function only applies the concatenation operator to automata satisfying this
disjointness property. Between iterations (see Section 5.3) the simplification
operation builds a new state space from scratch, so the automata resulting
from different iterations of the abstract interpretation are pairwise disjoint
as well.

5.2. Regular languages via regular expressions

As an alternative to finite automata, we assume that the analysis manages
regular expressions for representing regular languages. In this section we
consider the set of regular expressions given by the following grammar:

p ::= ∅ | ε | v ∈ V | p · p | p+ p | p∗

With this representation the operations of language concatenation and
union are straightforward. The emptiness of the language given by a regular
expression can be checked as follows:

• L(∅) = ∅, L(ε) 6= ∅, and L(v) 6= ∅ for any v ∈ V .

• L(p1 · p2) = ∅ iff L(p1) = ∅ or L(p2) = ∅.

• L(p1 + p2) = ∅ iff L(p1) = ∅ and L(p2) = ∅.
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• L(p∗) = ∅ iff L(p) = ∅.

As in the case of finite automata the derivation operation is more involved.
Assume we have two expressions p1, p2 and we want to compute a regular
expression representing the language L(p1)|L(p2). The case in which p2 is a
symbol v ∈ V is widely covered in the literature [8, 9, 10]:

∅|v = ∅
ε|v = ∅
v|v = ε
v′|v = ∅ if v′ 6= v

(p1 · p2)|v = p1|v · p2 + p2|v if ε ∈ L(p1)
(p1 · p2)|v = p1|v · p2 if ε /∈ L(p1)
(p1 + p2)|v = p1|v + p2|v
(p∗)|v = p|v · p∗

The rest of the cases, except when p2 = p∗ for some p, can be deduced
from the definition of the derivative operator:

p|∅ = ∅ p|ε = p p|p1+p2 = p|p1 + p|p2 p|p1·p2 = (p|p1)|p2

In order to derive with respect to an expression p∗ we take advantage of the
fact that p∗ and ε+ pp∗ denote the same language. Therefore:

p1|p∗ = p1|ε+pp∗
= p1 + (p1|p)|p∗
= p1 + p1|p + ((p1|p)|p)|p∗
= . . .

Let us define q0 = p1, and qi = (qi−1)|p for i > 0. We can rewrite p1|p∗ as
follows:

p1|p∗ =
∞∑
i=0

qi (3)

Brzozowski proved [8] that the set of languages {L(qi)}i∈N is finite when
p is a letter of the vocabulary, but this does not necessarily imply that the
set {qi}i∈N of regular expressions is finite. However, if we consider equality
of regular expressions modulo the following equations,

p+ p = p p1 + p2 = p2 + p1 (p1 + p2) + p3 = p1 + (p2 + p3) (4)

it is proved in [8] that we can get a finite number of distinct qi. This result
can be extended by structural induction so as to include the case in which p
is a regular expression not containing the closure operator (∗). Moreover, by
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induction on the number of nested (∗)-expressions we can extend this result
to the case in which p is an arbitrary regular expression. As a consequence of
this, the number of terms in the sum (3) is finite, and we can stop generating
qi terms as soon we reach some qj which is equal (modulo (4)) to some qk

(k < j) computed previously.
In our implementation we use a larger number of equality rules owed to

Owens et al. [9]. This set of rules leads, in many cases, to minimal expres-
sions. In the worst case the application of the derivative operator as defined
in (3) may yield an expression which is exponentially larger than p1, espe-
cially when dealing with expressions with several nested closure operations in
p2. Fortunately, these kind of regular expressions are hardly ever generated
in the context of our shape analysis.

The only operation remaining is subset inclusion. Given two expressions
p1 and p2 we check whether L(p1) ⊆ L(p2) by transforming these expressions
to DFA by using derivative-based techniques [9], which directly lead to min-
imal automata in many cases. The inclusion of these automata is checked as
done in the previous section. Another approach consists in finding a simula-
tion between the states of the generated DFA (see [11]).

5.3. Analysing function definitions

When interpreting the body of a recursive function f we start by set-
ting an empty signature for f , i.e. Σ(f) = ∅. It is easy to show that the
interpretation is monotonic in the lattice:

〈M(Var f × P(Σ∗)× P(Σ∗)× Var f ), ∅,>,v,∪,∩〉

where M stands for ‘multiset of’, Var f are the bound variables of f , Σ∗ is
the top regular language, and > is the maximum relation. We need to ensure
that no two tuples with the same type exist relating the same variables. So,
at the end of each iteration, the following collapsing rule is used:

x
p1−→ • p2←− y ∈ R x

p3−→ • p4←− y ∈ R
type(x, p1) = type(x, p3)

replace in R the two tuples by x
p1+p3−→ • p2+p4←− y

OR

Should not we use this rule, the abstract domain, regarding only the relations
between program variables, would be infinite.
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For pragmatic reasons, in the actual implementation we do not keep the
tuples x

p1−→ • p2←− y separated by types. During the interpretation, we
keep at most one single tuple for each pair of variables (x, y), and we use
the collapsing rule OR even if type(x, p1) and type(x, p3) are different. This
means that, in general, type(x, p1) and type(y, p2) may contain more than one
type. We do not lose precision by doing this because we can always separate
the different languages by types and remove the ill-typed sublanguages. In
fact, we do this when presenting the signatures to the user. Having at most
one tuple per variable pair has advantages from the efficiency point of view,
and it also makes our algorithms simpler.

The order relation between two tuples relating the same pair of variables,
and having the same type, is as follows:

x
p1−→ • p2←− y v x

p′1−→ •
p′2←− y

if L(p1) ⊆ L(p′1) and L(p2) ⊆ L(p′2). Let us denote by If Σ the interpretation
of ef with current signature environment Σ, returning Σ with f ’s signature
updated. By monotonicity, we have:

∅ v If ∅ v If (If ∅) v . . . v (If )i ∅ v . . .

Disregarding the regular languages, this chain is finite because so is Var f ,
and the number of different types of the program. Then, the least fixpoint
can be reached after a finite number of iterations. If n is the number of f ’s
formal arguments, then at most n iterations are needed. This is because
functional languages have no variable updates, and then there never may
arise sharing relations between the formal arguments as a consequence of
the function body actions. The only possible relations will be between the
function’s result and its arguments.

Considering now the regular languages, infinite ascending chains are pos-
sible, i.e. one can obtain infinite chains L1 ⊆ L2 ⊆ L3 ⊆ . . ..

The least upper bound of such a sequence of regular languages needs not
to be a regular one. But, at least, there always exists the regular language
Σ∗ greater than any other one. In order to ensure termination of the fixpoint
computation, we use the following widening technique [12]:

1. Based on the form of the automata or regular expression denoting the
increasing language sequence, and by using some heuristics, we guess
a regular language L such that

⋃
i Li ⊆ L. Then, we iterate the inter-

pretation by using this automaton as an assumption in f ’s signature.
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2. If A is a fixpoint or a post-fixpoint, then we are done. Otherwise, we
use Σ∗ as the upper bound of the sequence. In terms of precision,

x
Σ∗−→ • Σ∗←− y is completely uninformative about the paths through

which x and y share their common descendant.

In the case of finite automata, the heuristic consists of comparing the au-
tomata sequence obtained for a given relation x

p1−→ • p2←− y in the suc-
cessive iterations, and discovering growing sequences reaching three or more
states related by the same alphabet symbol. For example q1, q2, q3, with
(q1, a, q2), (q2, a, q3) ∈ δ. These sequences are collapsed into a single state
class q, with a single iterative transition (q, a, q) ∈ δ. The resulting automata
is compared with the non-widened one, to ensure that they are equivalent
regarding the remaining transitions. In all the examples we have tried this
heuristic appears to be enough to reach a fixed point.

We pay now attention to the asymptotic cost of the whole interpretation.
We choose the size n of a function to be its number of bound variables. This
figure is linearly related to the size of its abstract syntax tree, and to the
number of lines of its source code. How is n related to the size of the inferred
automata in terms of their number of states? It is easy to check that every

bound variable y introduces a relation x
jC−→ • ε←− y with a prior bound

variable x. This increases by one the number of states of the y relations
with respect to those of the x relations. So, the automata number of states
grow from one to the abstract syntax tree height, when going from the initial
expression to the deepest ones. Assuming a reasonably balanced syntax tree,
we consider log n to be an accurate bound to the automata size.

If a function definition has n bound variables, and considering as a con-
stant the number of different types, in the worst case there can be up to
O(n2) tuples in the current relation R. The computation of a single closure

operation R ]x {x
p1−→ • p2←− y} (see Figure 9) introduces as many relations

x
px−→ • pz←− z as prior relations y

py−→ • pz←− z are there in R, i.e. O(n) in
the worst case. A single iteration of the abstract interpretation will compute
one such closure for every bound variable, giving an upper bound of O(n2)
new relations per iteration. For each one, two languages A1|A2 . A3 must be
computed, giving a total cost of O(n2 log4 n) per iteration.

It has been said that the number of iterations is at most the function’s
number of arguments, which is usually small. Even if it is not, in practice
it suffices to perform only three iterations of the analysis before applying
the widening, and then an additional iteration in order to check that the
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last xs = case xs of

x:xx -> case xx of

[] -> {* R1 *} x

y:yy -> {* R2 *} last xx

Figure 12: Definition of the function last

fixpoint has been reached. This checking is the most expensive operation of
the analysis. A maximum of O(n2) languages are tested for equality, giving a
total theoretical cost of O(n22logn log3 n) in the worst case, i.e. O(n3 log3 n).
This is bigger than the prior cost of O(n2 log4 n) per iteration.

A worst-case theoretical cost of O(n3 log3 n) is by no means a low one, but
we consider it to be rather pessimistic. We remark that we are assuming each
variable to be related to each other, and all conversions from NFA to DFA
to produce an exponential blow-up of states. This leads us to think that this
theoretical cost is almost never reached. Also, in functional programming it
is common to write small functions. So, the number n of bound variables
can be expected to remain below 20 for most of the functions (the reader is
invited to check this assertion for the functions presented in this paper).

In practice, our analysis is affordable for medium-sized functions. More
importantly, it is modular, because even if analysing a single function of size
n takes a time in O(n3 log3 n), once it is analysed all its relevant information
is recorded in the signature environment. Hence, analysing a big program
just costs the addition of the costs of analysing each individual function.

5.4. A Small Example

In order to illustrate the analysis, we present in Figure 12 the code of a
function last computing the last element of a non-empty list. By iterating
once the interpretation, and in the places marked in the text, we get the
following two sets:

R1 = {xs
ε−→ • ε←− xs} ]x {xs

1−→ • ε←− x}]xx
{xs

2−→ • ε←− xx}
R2 = R1 ]y {xx

1−→ • ε←− y} ]yy {xx
2−→ • ε←− yy}
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Then Σ1 = Ilast {last 7→ ∅} = {res
ε−→ • 1←− xs}, where we omit the

reflexive relations. By applying again the interpretation, we get:

Σ2 = Ilast {last 7→ Σ1} = {res
ε−→ • 21←− xs} ∪

{res
ε−→ • 1←− xs}

= {res
ε−→ • 21+1←− xs}

The language 21 is obtained by the transitive closure {res
ε−→ • 1←− xx}]res

{xs
2−→ • ε←− xx}. In the next round, we get Σ3 = {res

ε−→ • 2(21+1)+1←− xs}
Applying now the widening step, we get Σ3 = {res

ε−→ • 2∗1+21+1←− xs}, and
by applying the interpretation once more:

Ilast {last 7→ Σ3} = {res
ε−→ • 2(2∗1+21+1)←− xs} ∪

{res
ε−→ • 1←− xs}

= {res
ε−→ • 2(2∗1+21+1)+1←− xs}

The final test is 2(2∗1+21+1)+1 ⊆ 2∗1+21+1 which returns true because
all the words in the left language are also in the right one. Notice that
both expressions could be further simplified to 2∗1. This language clearly
expresses that the result of last is a descendant of the argument list that
can be reached by taking the tail of the list a number of times and then by
taking the head.

6. Case Studies

We have implemented the analysis presented in this paper as a part of
our Safe compiler, written in Haskell [13]. While the implementation of
the abstract interpretation rules of Figure 8 was rather straightforward, the
closure operation defined in Figure 9 was much more involved. Regarding
the manipulation of regular languages, we started by extending HaLeX [14],
a Haskell library for automata manipulation, with new operations such as
language intersection, derivation and equality. Since this library was targeted
towards educational purposes, the obtained performance measures were poor,
so we have considered three alternative implementations of the operations on
regular languages:

[NFA pure] A rewrite of HaLeX with more efficient underlying data struc-
tures, such as Data.Map and Data.Set from Haskell’s Hierarchical Li-
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braries. This is a purely functional library. The application of an
operation may generate a copy of its operands.

[NFA C] An implementation of NFA written in C and its corresponding
Haskell bindings. In this version our automata are represented in a
shared state space (as described at the end of Section 5.1), so purity is
sacrificed for efficiency.

[RegExp] A small purely functional library for regular expression manipu-
lation, as described in Section 5.2.

Besides the examples already shown in the paper we have applied our
analysis to some case studies that involve list and binary tree manipulations.
The following functions show how our analysis can also detect internal sharing
in the data structure given as a result. This is useful to know whether a given
data structure is laid out in memory without overlapping.

buildTree x 0 = Empty

buildTree x n = Node (buildTree x (n-1)) x (buildTree x (n-1))

buildTreeSh x 0 = Empty

buildTreeSh x n = let t = buildTreeSh x (n-1) in Node t x t

The shape analysis yields the following results:

buildTree x n : {res
(1+3)∗2−→ • ε←− x

, res
(1+3)∗2−→ • (1+3)∗2←− res}

buildTreeSh x n : {res
(1+3)∗2−→ • ε←− x

, res
(1+3)∗2−→ • (1+3)∗2←− res

, res
(1+3)∗−→ • (1+3)∗←− res}

These two functions are included in a set basic of small functions that
generate, in a somewhat artificial way, sharing between the results of the
function and its parameters. Some of them have been already shown in this
paper. We have also tried our analysis with several medium-sized examples,
such as implementations of Quicksort (quicksort), Mergesort (mergesort),
libraries for dealing with balanced binary trees (AVLTrees), bitmap images
represented by quad trees (quadTrees) and priority queues implemented with
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Module F/L NFA pure (ms) NFA C (ms) RegExp (ms)

basic 15/47 53.6 24.8 19.2
qsort 3/14 209.4 107.8 96.4
mergesort 3/15 424.0 94.2 75.6
AVLTrees 10/57 5981.0 274.2 145.2
quadTrees 9/48 212.0 56.9 33.5
priorityQueues 6/33 1178.6 85.2 32.8
compiler 30/278 36786.3 7921.0 5741.7

CPU: Intel(R) Quad CoreTM i7-2640M CPU @ 2.80GHz 64-bit / Mem: 7.7GB

Compiled with GHC 7.4.2

Figure 13: Execution times with the three implementations.

leftist trees (priorityQueues). We have included, as a more complex exam-
ple, a compiler for a a simple imperative language (compiler). The running
time of the shape analysis for each of these examples is shown in Figure 13.
The column F/L respectively contains the number of functions and lines of
code in each example. Figures 14 and 15 contain the results of the analysis
when applied to the most relevant functions of each case study. The numbers
in the right hand side of each sharing relation denote parameter positions.
For the sake of clarity we have omitted the name of the constructors in the
sharing paths. The AVLTree a type is defined as follows:

data AVLTree a = Empty | Node Int (AVLTree a) a (AVLTree a)

where the Int parameter in the Node constructor contains the height of the
tree. The joinAVL function builds a tree from its parameters while main-
taining the balancedness properties. The result points to both the structure

and the elements of the input trees. The relations res
(2+4)∗−→ • (2+4)∗←− 1 and

res
(2+4)∗−→ • (2+4)∗←− 3 report that any of the subtrees in the first and third

parameters may share with any of the subtrees in the result. These relations
may actually occur at runtime, as a consequence of the rotations that are
performed on the input trees. For instance, a subtree of the left child of the
tree passed as first parameter might be part of the right child of the result of
joinAVL. With the functions insertAVL and deleteAVL we obtain similar
results.

The quadTrees module defines the following data type:
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mergesort

unshuffle :: [a] -> ([a],[a])

{res
12∗1+22∗1−→ • 2∗1←− 1}

merge :: [a] -> [a] -> [a]

{res
2∗1−→ • 2∗1←− 1, res

2∗−→ • 2∗←− 1, res
2∗1−→ • 2∗1←− 2, res

2∗−→ • 2∗←− 2}
msort :: [a] -> [a]

{res
2∗1−→ • 2∗1←− 1}

AVLTrees

joinAVL :: AVLTree a -> a -> AVLTree a -> AVLTree a

{res
(2+4)∗−→ • (2+4)∗←− 1, res

(2+4)∗3−→ • (2+4)∗3←− 1, res
(2+4)∗3−→ • ε←− 2,

res
(2+4)∗−→ • (2+4)∗←− 3, res

(2+4)∗3−→ • (2+4)∗3←− 3}
insertAVL :: a -> AVLTree a -> AVLTree a

{res
(2+4)∗3−→ • ε←− 1, res

(2+4)∗−→ • (2+4)∗←− 2, res
(2+4)∗3−→ • (2+4)∗3←− 2}

deleteAVL :: a -> AVLTree a -> AVLTree a

{res
(2+4)∗−→ • (2+4)∗←− 2, res

(2+4)∗3−→ • (2+4)∗3←− 2}

quadTrees

consQTree :: QTree -> QTree -> QTree -> QTree -> QTree

{res
1−→ • ε←− 1, res

2−→ • ε←− 2, res
3−→ • ε←− 3, res

4−→ • ε←− 4}
rotate :: QTree -> QTree

No sharing detected

flipH :: QTree -> QTree

No sharing detected

overlay :: QTree -> QTree -> QTree

{res
(1+2+3+4)+−→ • (1+2+3+4)+←− 1, res

(1+2+3+4)∗−→ • (1+2+3+4)∗←− 2}

Figure 14: Analysis results of some of the case studies.
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priorityQueues

cons :: Leftist a -> a -> Leftist a -> Leftist a

{res
(2+4)(2+4)−→ • (2+4)←− 1, res

(2+4)3−→ • 3←− 1, res
3−→ • ε←− 2,

res
(2+4)−→ • ε←− 3}

join :: Leftist a -> Leftist a -> Leftist a

{res
(2+4)∗−→ • (2+4)∗←− 1, res

(2+4)∗3−→ • (2+4)∗3←− 1, res
(2+4)∗−→ • (2+4)∗←− 3,

res
(2+4)∗3−→ • (2+4)∗3←− 3}

minPQueue :: Leftist a -> a

{res
ε−→ • 3←− 1}

delMinPQueue :: Leftist a -> Leftist a

{res
(2+4)∗−→ • (2+4)∗←− 1, res

(2+4)∗3−→ • (2+4)∗3←− 1}

qsort

append :: [a] -> [a] -> [a]

{res
2∗1−→ • 2∗1←− 1, res

2∗−→ • ε←− 2}
partition :: a -> [a] -> ([a],[a])

{res
(1+2)2∗1−→ • 2∗1←− 2}

qsort :: [a] -> [a]

{res
2∗1−→ • 2∗1←− 1}

compiler

constantFold :: Stm a -> Stm a

{res
S∗SEE

∗O−→ • S
∗SEE

∗O←− 1, res
S∗SEE

∗DE−→ • S
∗SEE

∗DE←− 1, res
S∗DS−→ • S

∗DS←− 1}
typeCheck :: Env -> Stm a -> (Env, Stm (Maybe Type))

{res
2S∗(DS+SEE

∗DE)V−→ • 2S∗(DS+SEE
∗DE)V←− res , res

2S∗(DS+SEE
∗DE)V−→ • V←− 1,

res
2S∗SEE

∗O−→ • 2S∗SEE
∗O←− 2}

translate :: Stm a -> ([PInst Label], Table Label Int)

No sharing detected

patch :: Table Label Int -> [PInst Label] -> [PInst Int]

No sharing detected

Figure 15: Analysis results of some of the case studies.
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data QTree = White | Black | Node QTree QTree QTree QTree

This representation provides a space efficient way to store bitmap images.
The rotate, and flipH functions are used to perform transformations in the
input image that construct the result from scratch, so no sharing is reported
in the result of the analysis. The overlay function produces a result that
might share with the images being overlaid. With respect to our last example
priorityQueues, the data type Leftist a is defined in a similar way as
AVLTree a but, in this case, the constructor function cons builds a height-
biased leftist tree which is not balanced, in general.

The compiler module implements a small compiler that translates an
imperative language into a sequence of P-machine instructions. The source
and target languages are given by the data definitions in Figure 16. Notice
that the elements of the source language abstract syntax tree (AST) are dec-
orated with an additional parameter (of type a) that may hold additional
information, such as types. The resulting machine instructions are paramet-
ric on the type of the jump addresses: firstly these are symbolic labels and
then a patching phase translates them into integer program locations. A
detailed description of the compiler is beyond the scope of this paper, so we
give a brief description of the results of the main functions performing the
four phases of the compiler (constant propagation, type checking, translation,
and patching). These are shown in Figure 15, in which we use the following
abbreviations:

E = 2AppBinArithOp + 3AppBinArithOp + 2AppUnArithOp + 2AppRelOp + 3AppRelOp+
2AppBinBoolOp + 3AppBinBoolOp + 2AppUnBoolOp

O = 1AppBinArithOp + 1AppUnArithOp + 1AppRelOp + 1AppBinBoolOp + 1AppUnBoolOp
DE = 4AppBinArithOp + 4AppUnArithOp + 4AppRelOp + 4AppBinBoolOp + 4AppUnBoolOp+

2Const + 2Var
S = 1Seq + 2Seq + 2If + 3If + 2While
SE = 2Assign + 1If + 1While
DS = 1Skip + 3Assign + 3Seq + 4If + 3While

Besides this, we use V to denote the path leading to the types in the typ-
ing environments of type Env. The results show that, after the constant
folding phase, the result may share the operators and the decorations of
the input AST. These sharing relations may actually occur at runtime, as
the constantFold function reconstructs the structure of the program, but
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Source language:

data Exp a = Const Int a | Var Int a -- constants and variables

| AppBinArithOp BinArithOp (Exp a) (Exp a) a -- binary arithmetic ops

| AppUnArithOp UnArithOp (Exp a) a -- unary arithmetic ops

| AppRelOp RelOp (Exp a) (Exp a) a -- relational ops

| AppBinBoolOp BinBoolOp (Exp a) (Exp a) a -- binary logic ops

| AppUnBoolOp UnBoolOp (Exp a) a -- unary logic ops

data Stm a = Skip a

| Assign Int (Exp a) a -- variable assignment

| Seq (Stm a) (Stm a) a -- sequence

| If (Exp a) (Stm a) (Stm a) a -- conditional

| While (Exp a) (Stm a) a -- loops

Target language:

data PInst a = Push Int | Load | Store | Jmp a | Jfalse a | Add | Sub | ...

Figure 16: Source and target languages of the compiler example.

it reuses the operators and the decorations of the AST given as input. Re-
garding the type checking phase, the typeCheck function also rebuilds the
input program in order to include the type decorations. However, there is
a type environment that stores the type of each variable in scope. When-
ever a variable is found during the AST traversal, the typeCheck function
updates the decoration of this variable with a reference to a type stored in
the environment. As a consequence of this, there may be sharing between
the decorations and the type environment given as input, and also between
the decoration themselves (e.g. when the same variable occurs twice in a
program, both occurrences share the same type decoration). That is why
the analysis reports internal sharing between the decorations of the result,
and sharing between these decorations and the input environment.

The results of Figures 14 and 15 show that, given the current choice
of the abstract domain (i.e. sets of sharing relations), accuracy is hardly
lost due to the application of the abstract interpretation function. However,
we could achieve better results by considering other abstract domains. For
instance, when analysing the merge function, the analysis returns, among

others, the relations res
2∗−→ • 2∗←− 1 and res

2∗−→ • 2∗←− 2, meaning that the
result may share with the tails of the input lists. However, only one of these

49



tails is actually shared at runtime, so we can refine our abstract domain by
allowing disjunctions of sharing relations. Whilst this would result in a more
precise analysis, it would come at the cost of efficiency. Another example
of innaccuracy is the append function, which reports the sharing relation

res
2∗1−→ • 2∗1←− 1, meaning that the first elements of the result are the same

that those of the list given as first parameter. This can be improved by

considering relations such as res
2n1−→ • 2n1←− 1 (where n ranges over natural

numbers) implying that the elements of the result are also in the same order
as the elements of the input list. It is, however, unclear how the widening
strategy should be modified in order to include these constraints.

From Figure 13 it follows that the use of regular expressions instead of
NFAs lead to better execution times, even if we consider a specific highly-
optimized automata library such as NFA C. Moreover, the functions manip-
ulating regular expressions are simpler than their counterparts in NFAs and
lead to more readable results.

7. Related Work and Conclusions

There exist many different analyses dedicated to extracting information
about the heap, mainly in imperative languages where pointers are explicitly
used and may be reassigned. Alias analysis is one of the most studied. It
tries to detect program variables that point to the same memory location.
Pointer analysis aims at determining the storage locations a pointer can point
to, so it may be also used to detect aliases in a program. These analyses are
used in many different applications such as live variable analysis for register
allocation and constant propagation. In [15, 16, 17] we can find surveys about
pointer analysis applied to imperative languages from the 80’s. Related to
these analyses, an escape analysis tries to determine statically the dynamic
scope of the data structures that will be created at runtime, whereas shape
analysis [18, 19, 20] tries to approximate the ‘shape’ of the heap-allocated
structures. That information has been used, for example, for binding time
optimisations.

The level of detail of the information about the heap that these analyses
provide mainly depends on the needs of the “user” of the analysis. Our
analysis tries to capture a kind of sharing information more refined than
alias and pointer analysis may provide, and in fact both are subsumed in

our relations: if x
ε−→ • ε←− y, then, x and y are aliases; if x

j−→ • ε←− y,
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then x points to y (i.e. y is the j-th child of the data structure x). In the
area of escape analysis, Blanchet [21] applies the concept of paths in order to
determine which pointers in a data structure survive the current execution
scope. The sets of paths are subsequently abstracted by integer numbers
denoting escape contexts, whereas in this work we use regular expressions for
abstracting those sets. Moreover, our analysis aims to infer sharing relations
between our structures. That is why shape analysis is nearer to our needs.

Jones and Muchnick [19] associate sets of k-limited graphs to each pro-
gram point in order to approximate the sharing relations between variables.
The k limits the length of the paths in the graphs modelling the heap in order
to make the domain finite and obtain the minimal fixpoint by iteration. The
graphs obtained after the abstract execution of a program instruction must
be transformed in order to maintain themselves k-limited. Our widening op-
erator resembles this operation. Our path relations are in general uncompa-
rable in precision to these sets of limited graphs. First, having sets of graphs
may provide more precision because our union operation loses information:

adding x
p1+p3−→ • p2+p4←− y introduces combinations of paths x

p1−→ • p4←− y and
x

p3−→ • p2←− y which did not exist previously. Second, paths longer than k

may be more precise that k-limited graphs: x
2221−→ • ε←− y indicating that

y is the fifth element of the list x is more precise than saying in a 2-limited
graph that y shares in an unknown way with x after the path 22. Addition-
ally, the cost of having sets of graphs is doubly exponential in the number of
variables.

In order to reduce the cost to polynomial, Reps [20] formulated the anal-
ysis as a graph-reachability problem over the dependence graph generated
from the program. The reachability is defined in terms of those (context-
free) paths one is interested in. The fixpoint calculation in this case is also
finite because he just records the information about the variables, not the
exact paths. We need the paths in order to make the analysis more precise
as shown in the mergesort example, that is why we need the widening. The
use of context-free paths in our framework would make undecidable most of
our tests.

The logic programming field has produced plenty of analyses in which
sharing plays an important role. A pioneering one is [22], whose aim is to
approximate the set of terms a logic variable may be bound to at runtime. To
this purpose, it introduces the so-called type graphs, whose power is similar
to that of context free languages. The abstract domain is made finite by
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introducing a depth restriction, limiting the number of times a functor may
occur in any graph path. Sharing information is kept in abstract substitutions
by an environment mapping variables to specific nodes of the type graphs.
This corresponds to our internal sharing. The nodes are selected by selector
paths very similar to our paths. The sharing property is of a must type,
meaning that all the concrete substitutions represented by the abstract one
must share these sub-terms. Ours is a may sharing, meaning that the actual
property we are seeking for is the absence of sharing.

In [23], the above analysis is made practical for bigger programs. Instead
of the depth restriction, they use a widening operator in an infinite domain
of type graphs. To prevent that the graphs keep growing while computing
the fixpoint, a cycle is introduced in the graph type. This resembles our
widening operator.

Other related works are those devoted to compile-time garbage collection,
such as [24] whose aim is to detect dead cells in Prolog programs, and to
produce code to reuse them. This analysis reduces the number of runtime
garbage collections. In this case, the sharing property sought for is, as in
our case, the absence of sharing. The abstract domain consists, as in [22], of
depth-restricted type graphs, and the sharing information is also kept as a
mapping from variables to specific nodes in the type graphs. In a sense, this
representation is dual to ours: their type graphs abstract away infinite sets
of terms, while the sharing decoration points to precise nodes of this abstract
structure. By contrast, we do not explicitly represent the terms, and sharing
is expressed as abstract paths, usually denoting an infinite number of them,
through the concrete terms. All the examples of sharing shown in [24] could
also be expressed with our formalism but, in general, it is difficult to assess
which representation gives a more precise sharing information.

In [25] these ideas are applied to Mercury, a typed and annotated logic
language. In this framework, the compiler has more information about types,
instantiation modes, and deterministic behaviour, so a more precise sharing
information can be obtained than in Prolog. Also selector paths are used
here in order to denote specific nodes inside a term. What they call an alias
(a pair of paths), corresponds to what we call sharing in this paper. They do
not try to manipulate these paths as we do. When the number of detected
pairs grows too much, the compiler triggers a widening operator. Its effect
is to collapse many pairs in a more compact and less precise information.

A final set of works [26, 27] try to detect at compile time which cells
are dead at a program point, but in this case the cells live in disjoint heap
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regions, and all the cells in a region are deallocated at the same time. The
abstract interpretation domain are points-to graphs, a sort of type graphs
enriched with more information. Nodes in the graph represent local variables,
and edges represent the subterm relation. An edge is just a selector, i.e. a
pair 〈functor name, argument position〉. Additionally, a node keeps a set of
variables that will be allocated in the same region, and may share a subterm
with the node variable. So, while the internal sharing recorded in the graph
seems to be precise enough, this is not the case with the sharing between
variables living in a region.

In the functional field, there are also some works devoted to compile-time
garbage collection such as [28, 29]. The first one tries to save creating a new
array when updating an array that is only referenced once. The second one
provides an analysis also detecting when a cell is referenced at most once by
the subsequent computation. Its aim is to destroy the cell after its last use
so that it can be reused by the runtime system. Both analyses are done on a
first-order eager functional language. After these ones, there have been many
similar analyses, usually known as usage analyses (e.g. [30, 31, 32, 33]) whose
aim is to detect when a cell is used at most once and then, either to recover or
to avoid to update it, when the language is lazy. These analyses do not try to
know which other data structures points to a particular cell, but rather how
many of them do it, and in this sense they are simpler. The problem closer to
ours is treated in [29] since it pursues an aim similar to that of Safe: to save
memory. The main difference is that, in our case, it is the programmer who
decides to destroy a cell and the compiler just analyses whether doing this is
safe or not. So, the programmer may have destructive and non-destructive
versions of the same function and uses the first one in contexts where it is
safe to do it. In [29] it is the compiler who decides to destroy the cell, when
it is safe to do it in all the contexts in which the function is called. A single
unsafe context will avoid to recover the cell in all the safe ones. Another
important difference is that our analysis is modular, while theirs needs to
analyse the program as a whole. This makes it impractical for big programs.

Our analysis is done at the Core-Safe level, our internal representation of
source programs. That means that small changes in the source may produce
big changes in its Core-Safe representation, and hence big changes in its
sharing properties. This implies that programs rejected by our type system
due to excessive sharing, could be admitted after a slight change in the source,
and the other way around. We have not done enough experimentation in
order to learn which changes are beneficial and which ones are not. This
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issue remains an open question for future work.
The extension of this analysis to higher-order functions maintaining mod-

ularity can be done by applying the standard techniques shown in [34, 35], in
which the signature of a higher-order function is an abstract function (also
called suspension) whose argument is a function signature which is unknown
until function application occurs. This means that, if the functional argu-
ment is applied inside the function body, the substitution and closure process
cannot happen until the higher-order function is applied to a concrete func-
tion, i.e. it is symbolically kept in the abstract function. This is not a
problem if the analysis is implemented in a lazy language such as Haskell.
However, in order to extend the full development of our language Safe, we
would have to extend some other, probably more involved, features such as
region inference and safe types inference.
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putación. Universidad Complutense de Madrid, 2013. Available at:
http://federwin.sip.ucm.es/sic/investigacion/

publicaciones/informes-tecnicos.

[7] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, 2nd ed., Addison Wesley, 2001.

[8] J. A. Brzozowski, Derivatives of regular expressions, Journal of the
ACM 11 (1964) 481–494.

[9] S. Owens, J. Reppy, A. Turon, Regular-expression derivatives re-
examined, Journal of Functional Programming 19 (2009) 173–190.

[10] A. Krauss, T. Nipkow, Proof pearl: Regular expression equivalence and
relation algebra, Journal of Automated Reasoning 49 (2012) 95–106.

[11] J. Rutten, Automata and coinduction (an exercise in coalgebra), in:
D. Sangiorgi, R. Simone (Eds.), CONCUR’98 Concurrency Theory, vol-
ume 1466 of Lecture Notes in Computer Science, Springer Berlin Hei-
delberg, 1998, pp. 194–218.

[12] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points, in: Proc. 4th ACM Symp. on Principles of Prog. Languages,
ACM, 1977, pp. 238–252.

[13] S. L. Peyton Jones, J. Hughes (Eds.), Report on the Programming Lan-
guage Haskell 98, URL http://www.haskell.org, 1999.

[14] J. Saraiva, HaLeX: A Haskell Library to Model, Manipulate and Ani-
mate Regular Languages, in: Proc. ACM Workshop on Functional and
Declarative Programming in Education, University of Kiel. Tech. Report
0210, 2002, pp. 133–140.

55



[15] V. Raman, Pointer analysis – a survey, CS203 UC Santa Cruz, http:
//www.soe.ucsc.edu/~vishwa/publications/Pointers.pdf, 2004.

[16] M. Hind, Pointer analysis: Haven‘t we solved this problem yet?, in:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis For Software Tools and Engineering, PASTE’01, ACM
Press, 2001, pp. 54–61.

[17] D. Rayside, Points–to analysis, http://www.cs.utexas.edu/

~pingali/CS395T/2012sp/lectures/points-to.pdf, 2005.

[18] J. C. Reynolds, Automatic computation of data set definitions, in: IFIP
Congress (1), 1968, pp. 456–461.

[19] N. D. Jones, S. S. Muchnick, Flow analysis and optimization of lisp-
like structures, in: Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’79, ACM,
1979, pp. 244–256.

[20] T. Reps, Shape analysis as a generalized path problem, in: Proceed-
ings of the 1995 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, PEPM ’95, ACM, 1995, pp. 1–
11.

[21] B. Blanchet, Escape analysis for JavaTM: Theory and practice, ACM
Transactions on Programming Languages and Systems 25 (2003) 713–
775.

[22] G. Janssens, M. Bruynooghe, Deriving Descriptions of Possible Values
of Program Variables by Means of Abstract Interpretation, J. Log.
Program. 13 (1992) 205–258.

[23] P. V. Hentenryck, A. Cortesi, B. L. Charlier, Type Analysis of Prolog
Using Type Graphs, J. Log. Program. 22 (1995) 179–209.

[24] A. Mulkers, W. H. Winsborough, M. Bruynooghe, Live-Structure
Dataflow Analysis for Prolog, ACM Trans. Program. Lang. Syst. 16
(1994) 205–258.

[25] N. Mazur, P. Ross, G. Janssens, M. Bruynooghe, Practical Aspects for
a Working Compile Time Garbage Collection System for Mercury, in:

56



P. Codognet (Ed.), ICLP, volume 2237 of Lecture Notes in Computer
Science, Springer, 2001, pp. 105–119.

[26] Q. Phan, G. Janssens, Towards Region-Based Memory Management for
Mercury Programs, in: S. Etalle, M. Truszczynski (Eds.), ICLP, volume
4079 of Lecture Notes in Computer Science, Springer, 2006, pp. 433–435.

[27] Q. Phan, G. Janssens, Z. Somogyi, Region-based memory management
for Mercury programs, TPLP 13 (2013) 959–1024.

[28] P. Hudak, A Semantic Model of Reference Counting and its Abstraction
(Detailed Summary), in: ACM Symposium on Lisp and Functional
Programming, ACM, 1986, pp. 351–363.

[29] T. P. Jensen, T. A. Mogensen, A Backwards Analysis for Compile-Time
Garbage Collection, in: European Symposium on Programming, LNCS
432, Springer, 1990, pp. 227–239.

[30] D. N. Turner, P. L. Wadler, C. Mossin, Once upon a type, in: 7’th In-
ternational Conference on Functional Programming and Computer Ar-
chitecture, ACM Press, La Jolla, California, 1995, pp. 1–11.

[31] E. Barendsen, S. Smetsers, Uniqueness typing for functional languages
with graph rewriting semantics, Mathematical Structures in Computer
Science 6 (1996) 579–612.

[32] K. Wansbrough, S. L. P. Jones, Once upon a polymorphic type, in:
The Twenty-sixth ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, Texas, 1999.

[33] J. Gustavsson, J. Sveningsson, A Usage Analysis with Bounded Usage
Polymorphism and Subtyping, in: Selected Papers of the 12th Interna-
tional Workshop on Implementation of Functional Languages, IFL’00,
volume 2011 of LNCS, Springer-Verlag, 2001, pp. 140–157.

[34] G. L. Burn, C. L. Hankin, S. Abramsky, The Theory of Strictness Anal-
ysis for Higher Order Functions, in: H. Ganzinger, N. D. Jones (Eds.),
Programs as Data Objects, volume 217 of LNCS, Springer-Verlag, 1986,
pp. 42–62.

57



[35] G. L. Burn, The abstract interpretation of higher-order functional
languages: From properties to abstract domains, in: R. Heldal,
C. H. Kehler, P. Wadler (Eds.), Glasgow functional programming
workshop, 91, pp. 56–72. URL: http://theory.doc.ic.ac.uk/tfm/

papers/BurnGL/Glasgow91.ps.gz.

58


