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Abstract

We present an abstract interpretation-based static analysis for inferring heap
and stack memory consumption in a functional language. The language,
called Safe, is eager and first-order, and its memory management system is
based on heap regions instead of the more conventional approach of having
a garbage collector. This paper begins by presenting Safe features by means
of intuitive examples, and then defines its formal semantics, including the
memory consumption of particular program executions. It continues by giv-
ing the abstract interpretation rules for non-recursive function definitions,
and then how the memory consumption of recursive ones is approximated.

An interesting property of our analysis is that, under certain reasonable
conditions, the inferred bounds are reductive, which means that by iterating
the analysis using as input the prior inferred bound, we can get tighter and
tighter bounds, all of them correct. In some cases, even the exact bound is
obtained. However, and due to lack of space, reductivity is not presented in
this paper. The complete development can however be found in a technical
report available at the authors’ site.
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case studies are presented in the fore-mentioned technical report.
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1. Introduction

Among the set of desirable properties of a program, the most decisive
ones are those related with its correctness, which ensures that a program does
what the programmer expects it to do. This class of properties is commonly
known as functional properties. Besides these, there are some other desirable
properties that are relevant to the safety of software systems. These are called
non-functional properties. An example is the fact that a program performs
its task in a given amount of time, or that its memory needs do not exceed
a given limit. These two examples become part of a broader research field,
whose name is resource analysis. In this framework, a program is conceived as
a resource consumer (resource may be understood as time, memory, energy,
etc.) and the aim is to compute an upper bound to the resources being
consumed by every possible execution of the program.

In this work, we are particularly interested in the analysis of memory
bounds. Memory consumption is specially relevant to several scenarios: for
instance, when programming embedded devices, it is necessary to make sure
that the programs running in these devices do not stop working because
they try to use more memory than it is available. It is also useful to know in
advance how much memory will be needed by the program, in order to reduce
hardware and energy costs. Although relatively new, the field of resource
analysis has gained considerable attention in the last years, mainly due to
the application of mathematical techniques (such as linear programming, or
recurrence solving) to programming languages. In particular, the inference
of memory bounds is a very complex task that involves several auxiliary
analyses, each one a challenge by itself.

The first results on memory consumption analysis were targeted towards
the functional programming paradigm. The developed techniques were sub-
sequently adapted to mainstream languages, such as Java or C++.

Hughes and Pareto introduce in [24] a first-order functional language with
a type and effect system guaranteeing termination and execution in bounded
space. This system is a combination of Tofte and Talpin’s approach to regions
and of sized types [25, 37].

The first fully automatic way to infer closed-form memory bounds is due
to Hofmann and Jost [21]. Their analysis, based on a type system with
resource annotations, can infer linear heap memory bounds on first-order
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eager functional programs with explicit deallocation. These techniques have
been applied to subsets of imperative languages, such as Java [22] and C [18].
The annotated type system also serves as a basis for a stack consumption
analysis due to Campbell [8, 9]. Hofmann and Jost’s approach is extended
in [27, 26] to higher-order programs. The latter work provides a general
framework that can accommodate different notions of cost. More recently,
Hoffmann and Hofmann have extended [21] to polynomial memory bounds
[20, 19], and Simões et al [43] have extended it in a different direction: they
provide a system computing the memory cost of functional programs with
lazy evaluation.

The classical approach to resource analysis, due to Wegbreit [47], involves
the generation of a recurrence relation from the program being analysed, and,
in a second phase, the computation of a closed-form expression (without re-
cursion) equivalent to that recurrence relation. Vasconcelos and Hammond
pursue this approach in [46], which is fully automatic in the generation of
recurrence equations, but requires the use of an external solver for obtain-
ing a closed form. The COSTA system [3] follows a similar approach, but
it provides its own recurrence relation solver, PUBS [2], which can handle
multivariate, non-deterministic recurrence relations. COSTA is an abstract
interpretation-based analyser which works at the level of Java bytecode, and
supports several notions of cost, such as the number of executed bytecode
instructions, heap consumption, and number of calls to a particular method.
Since memory management in Java is based on garbage collection, their ap-
proach to memory consumption is parametric on the behaviour of the garbage
collector [5]. The bounds computed by this system go beyond linear expres-
sions; it can compute polynomial, logarithmic, and exponential bounds.

This paper describes the automatic analysis of memory bounds for a first-
order functional language called Safe. This language has been developed in
the last few years as a research platform for analysing and formally certifying
properties of programs, with regard to memory usage. It was introduced for
investigating the suitability of functional languages for programming small
devices and embedded systems with strict memory requirements.

The absence of a notion of state makes reasoning about the functional
properties of a program easier. Due to this lack of state, functional lan-
guages are in general better suited to several static analyses. However, the
inference of memory bounds requires special attention. In most functional
languages memory management is delegated to the runtime system, which
allocates memory as it is needed by the program, provided there is enough
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space available. A garbage collector is in charge of determining, at runtime,
which parts of the memory are no longer needed, and can be safely dis-
posed of. The main advantage of this approach is that programmers do not
bother about low-level details on memory management, but there are also
some drawbacks. On the one hand, the time delay introduced by garbage
collection may prevent a program from providing an answer in a required re-
action time, which may be unacceptable in the context of real-time systems.
There has been some successful work on real-time garbage collectors. For
instance, in [42] the author guarantees a worst-case execution time by calling
the memory recovery operations within the critical threads, but the price to
be paid appears to be having a rather complex system. On the other hand,
garbage collection makes it difficult to predict at compile time the lifetimes
of data structures, specially in those cases where the runtime system does
not specify under which conditions a garbage collection takes place.

In order to compute memory bounds for Safe, we have decided to dis-
pense with the garbage collector and to have a heap structured as a region
stack in which regions are allocated and deallocated in constant time. Given
this memory model, we use abstract interpretation-based techniques [14] for
inferring non-linear, monotonic, closed-form expressions bounding the heap
and stack memory costs of a program.

Since the memory needs of a program usually depend on its input, the
bounds we obtain in our analysis are multivariate functions on the sizes of
the inputs. The bounds given by this memory consumption analysis are
considered correct if they are equal to or greater than the actual worst-case
runtime consumptions of the program being analysed.

The problem of inferring memory bounds is closely related to the inference
of size relations between data structures. The seminal work on type-based
sizes is due to Hughes, Pareto, and Sabry [25], which is restricted to type
checking. The inference problem is addressed by Chin and Khoo [11]. An-
other approach by Benoy and King [7] uses abstract interpretation-based
techniques on the domain of convex polyhedra. Abstract interpretation is
also applied in [44] to the approximation of the height1 of data structures.
All these techniques are restricted to linear size relations. The work of Shkar-
avska, van Eekelen and van Kesteren [40] is able to infer polynomial size

1The height of a data structure is the longest chain of pointers that can be followed
from the initial one.
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relations. It provides a type system, in which checking is decidable under
certain syntactic conditions, and type inference is performed by a combina-
tion of testing and polynomial interpolation-based techniques.

Even if we restrict ourselves to a first-order functional language like Safe,
the inference of safe memory bounds is a very complex task, which involves
considering several preliminary results, such as size analysis, and call-tree size
analysis. Each one of these analyses is by itself a subject of extensive research.
Therefore, we shall be modest in this work, and focus on the inference of heap
and stack memory bounds by assuming that the size and call-tree information
is given externally. As reported above, the PUBS system and the work by
Shkaravska et al., have provided respectively partial solutions to recurrence
solving and size analysis. We have contributed to the first problem in [28]
and [38], being also the latter a contribution to the second one regarding
linear size relations.

This paper is an extended and improved version of [30]. A major dif-
ference w.r.t. that paper is that here we present a method for flattening an
expression into sequences of basic expressions. This makes the algorithm sim-
pler when considering the base and recursive cases of a function definition,
and also makes the analysis more precise. We can summarize the original
contributions of [30] and this extended version as follows:

• We infer space bounds for a functional language with lexically scoped
regions. There has been previous work on region inference and on space
analysis for functional languages, but this appears to be the first work
combining both.

• We use abstract interpretation directly on the infinite domain of mul-
tivariate monotonic functions. Other works either use special type sys-
tems or use abstract interpretation in polyhedra domains for some sub-
problems such as inferring linear size relations.

• Our bounds go beyond multivariate polynomials. The shape of our
symbolic bounds partially depends on the shape of the symbolic func-
tions we receive as a result of the size and call-tree depth analyses.

• Under certain mild conditions on the externally-given call-tree infor-
mation, our bounds have the nice property of reductivity. This means
that if we use the bound as the input of a new interpretation, we get a
new bound which is not only correct but also tighter. The advantage
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insert y [ ] = [y]
insert y (x : xx )

| y ≤ x = y : x : xx
| otherwise = x : insert y xx

insSort [ ] = [ ]
insSort (x : xx ) = insert x (insSort xx )

Figure 1: Insertion sort algorithm in Safe

of having reductive bounds is that they allow us to obtain a possibly
decreasing (at least a non-increasing) sequence of bounds as a result of
iterating the analysis. For lack of space, this aspect is explained and
proved correct in a separate paper. The complete development can be
found in [34].

• We have formally proved the correctness of all the results contained in
this paper. So the analysis is correct with respect to the memory cost
model specified by the language semantics.

• We have implemented all the algorithms presented here in our Safe
compiler.

The proofs of the theorems, including the statement and proof of some aux-
iliary lemmas, are included in [35].

In order to give a flavour of the kind of results the reader will find in
the rest of the paper, let us consider the well known insertion sort algorithm
whose Safe text is given in Figure 1.

By calling xs to the size on the input list expressed in terms of the number
of constructor applications it contains, our space inference algorithm gets as
a first approximation of the heap consumption in terms of constructor cells,
and of the stack consumption in terms of words, the following functions:

µ0 = xs2 − 2xs + 3 ∀xs ≥ 5
σ0 = 14xs − 13 ∀xs ≥ 3

By iterating the interpretation using the above functions as input, our algo-
rithm gets:

µ1 = xs2 − 3xs + 6 ∀xs ≥ 6
σ1 = 14xs − 21 ∀xs ≥ 4
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which are still correct but smaller bounds. It is instructive to compare these
bounds with the exact bounds one can compute from the semantics (Sec-
tion 2.3 explains how to do this exact computation) for the worst case of the
algorithm:

µ = 1
2
xs2 + 1

2
xs ∀xs ≥ 1

σ = 8xs − 12 ∀xs ≥ 4

In this example, in a first approximation our system is able to infer the same
order of complexity as that of the exact bounds, but we lose some preci-
sion due to the over approximations made in several places of the abstract
interpretation. This loss is typical in most of the examples.

Plan of the paper

After this introduction, in Section 2 we present Safe by means of intuitive
examples, ending in a formal semantics including the memory consumption
of particular executions. Then, in Section 3 we give the abstract intepreta-
tion rules of Safe expressions, assuming that the memory consumption of the
called functions is known and is kept in a global function signature environ-
ment. We prove these rules correct with respect to the language semantics.
In Section 4 we show how the memory consumption signature of recursive
functions is approximated, and prove the inference algorithms correct. Fi-
nally, Section 5 reviews related and future work, and concludes.

2. Syntax and resource-aware semantics of Safe

2.1. Language concepts: Safe by example

Safe is a first-order polymorphic functional language, whose syntax is sim-
ilar to that of (first-order) Haskell or ML, but with some facilities to manage
memory. Polymorphic data types are defined in the same way as in Haskell.
Functions are defined as a set of equations with the same syntax as Haskell
functions. The purpose of Safe is to serve as a research platform to prove the
suitability of functional languages for programming embedded devices and
safety critical systems. One of its aims is to analyse memory consumption
and to provide formal certificates of the correctness of the inferred bounds.
The certification aspect has been presented elsewhere [15].

Safe’s memory model is based on heap regions. Regions are disjoint parts
of the heap where data structures are built. A region can be created and
disposed of in constant time.
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Figure 2: Graphical representation of cells and regions.

A cell is a piece of memory big enough to hold a data constructor with its
parameters. In implementation terms, a cell contains the identifier of a data
constructor, and a representation of the values to which this constructor is
applied. These values can be either basic (integers or booleans), or point-
ers to other cells. With the term “big enough” we mean that a cell being
disposed of the heap may be immediately reused by the runtime system. A
naive implementation would define this size as the space taken by the biggest
constructor (i.e. with the highest number of parameters). In a more efficient
approach there would be a fixed number of cell sizes, all of them multiple of
the smallest one. In any case, the aim is to reuse a cell in constant time.

We represent regions and cells as in Figure 2. A cell is depicted as a
white square which contains the constructor and the arguments to which it
is applied. Pointers are represented via arrows between cells, whereas basic
values are shown in the cell itself. Shaded rectangles correspond to regions,
which are labelled with a number identifying them (see Figure 2a). As an
example, Figure 2b shows a list of integers, in which the constructor (:) is
shown in infix form.

Cells are combined in order to build data structures. A data structure
(DS in the following) is the set of cells that results from taking a particular
cell (the root) and following the transitive closure of the relation C1 → C2,
which denotes that C1 and C2 are cells of the same type, and there is a pointer
in C1 to C2. An important thing to note is that we only consider as part of
a DS the set of cells with the same type as the root cell. For instance, if we
have a list of lists (type [[α]]), the cells that make up the recursive spine of
the outer list constitute a DS, to which the inner lists do not belong, even
when there are pointers from the outer list to them. Each one of the inner
lists constitute a separate DS on its own.
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During the design of the language several decisions (axioms) were taken:

1. A DS completely resides in a single region. The rationale behind this
is to prevent creating dangling pointers when a region is deallocated.

2. A DS can be part of another DS, and two DS may share a third DS.

3. Basic values (integers and booleans) occurring in the heap do not belong
to any region by themselves. They are contained within cells.

4. Allocation of regions takes place at function calls. Deallocation of re-
gions takes place when a function call finishes.

Decision (1) poses a constraint to the data constructors: the recursive
children of a cell (i.e. those with the same type) must belong to the region of
the father. As an example of (2), consider the binary tree of Figure 2c. The
left and the right subtrees of the root are separate DSs, which belong to the
whole binary tree, which is another DS.

Regarding (4), a distinctive aspect of Safe is the way in which regions
are created and destroyed: new regions are created as functions are called,
so there exists a correspondence between the function call stack and regions,
which are also created and disposed of in a stack-like fashion. Since function
calls have nested lifetimes (for instance, if f calls to a function g, the execu-
tion of the latter begins after the execution of f has started, and it finishes
before the execution f has finished), regions also have nested lifetimes.

The region associated to a given function call f is called its working
region. The function may create DSs in this region, provided these are not
accessed outside the function’s context, since they will be destroyed when
the function finishes. A function may also access the working regions of
the function calls situated below it in the call stack. These regions must
be passed as parameters by the functions calling f . Each region existing at
a given execution point is uniquely identified by a natural number ranging
from 0 (which identifies the bottommost region in the stack) to the number
k of active regions minus one (which identifies the topmost one).

An important point is the fact that regions are not handled directly by
Safe’s programmers. The compiler determines which DSs will be created
in the working region and which regions should be passed as parameters
between functions [32]. However, in order to get an idea on how regions are
inferred, we will consider a syntactically-extended version of Safe, which we
call Safe with regions. In this version regions become apparent. The main
syntactical additions of Safe with regions include the following:
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• A function definition may have additional region parameters r1 . . . rm
separated by a @ from the rest of formal parameters. As an example,
we may have the following function definition:

f x1 x2 x3 @ r1 r2 = . . .

These extra parameters will contain, at runtime, the identifiers of the
regions in which f will build its output.

• The working region is referred to by the identifier self .

• When calling a function, the actual region arguments are also sepa-
rated from the rest of the arguments by the @ symbol. For example,
f 4 x z @ self r1, where r1 is a region variable in scope.

• Each constructor expression is attached a region variable which con-
tains, at runtime, the identifier of the region where the resulting cell
will be built. For example, [ ] @ r2, or (4 : [ ] @ self ) @ self . In the
latter example, the outermost self annotates the application of the list
constructor (:).

Example 1. Consider a function append for concatenating two lists. The
following is Safe code, as written by the programmer:

append [ ] ys = ys
append (x : xs) ys = x : append xs ys

This function is annotated by the compiler as follows:

append [ ] ys @ r = ys
append (x : xs) ys @ r = (x : append xs ys @ r) @ r

There is a new region parameter r, which is used to build the resulting list,
and is passed to the subsequent recursive calls. �

The working region self of a function is used to build temporary DSs
which are not part of the result. An example of a function with this kind of
behaviour is treesort .
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Figure 3: DSs involved in the treesort function.

Example 2. A tree sort algorithm builds a binary search tree from the input
list to be sorted. Then it does an inorder traversal of the tree, so that the
elements come out in sorted order. Assume the following implementation,

treesort xs = inorder (mkTree xs)

where mkTree builds a binary search tree from the list given as parameter,
and inorder performs an inorder traversal of a binary search tree by adding
the visited elements to a list that is returned as result. Now we show the
Safe code with regions:

treesort xs @ r = inorder (mkTree xs @ self ) @ r

Both functions inorder and mkTree receive a region parameter specifying
where to build the resulting list (resp. tree). The mkTree function is given
the self identifier, so the tree will be built in the working region of treesort .
The inorder function receives the parameter given to treesort , which is the
output region in which the sorted list will be built (see Figure 3). When
treesort finishes, its working region will disappear from the heap, together
with the temporary tree. �

Safe provides a built-in facility for copying data structures: the @ notation.
The expression ys@ returns a copy of the DS pointed to by ys . The copy of
the data structure will be located in a (possibly) different region, if this does
not contradict axiom (1). The copy facility is useful when the programmer
does not want to build a DS upon already existing ones.
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Example 3. The append function of Example 1 forces the resulting list to
be located in the same region as the list passed as second parameter. This
is because the result is linked to this parameter, so that the latter becomes
part of the former, and, by axiom (1), they must live in the same region. Let
us consider the following variant in which the result is built upon a copy of
the list passed as second parameter:

appendC [ ] ys = ys@
appendC (x : xs) ys = x : appendC xs ys

The compiler annotates every copy expression with the region variable in
which the copy will be returned. In the case of appendC function, it produces
the following code with regions:

appendC [ ] ys @ r = ys @ r
appendC (x : xs) ys @ r = (x : appendC xs ys @ r) @ r

The copy of ys is created in the output region r, which may now be different
from the region of the second parameter ys . �

2.2. Full-Safe vs Core-Safe

The functions presented previously were written in Full-Safe, which is the
language in which the programmer writes his programs. However, Full-Safe
results cumbersome when designing program analyses, since the number of
language syntactic constructs to consider becomes overwhelming. For this
reason, we have a simplified variant of Full-Safe (which is called Core-Safe),
with a fewer number of syntactic expressions. This approach is similar to
that of the translation of Haskell programs into a Core language, as done in
the GHC compiler [23]. The details of the translation phase from Full-Safe
to Core-Safe are beyond the scope of this work (see [12] for details), but this
process follows these general guidelines: (1) each function is represented by
a single equation; (2) pattern matching is translated into case expressions;
(3) region variables are made explicit in Core-Safe; and (4) only atomic ex-
pressions (constants and variables) are allowed in function and constructor
applications. Non-atomic expressions occurring inside function and construc-
tor arguments must be introduced via let bindings, in the style of A-normal
form [17]. For instance, f (2 + 4) is transformed into let z = 2 + 4 in f z.
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Prog 3 prog → data; def ; e

DecData 3 data → data T α @ ρ = altData
altData → C t @ ρ

DecFun 3 def → f x@ r = e
{Atoms}

a → c {literal constant}
| x {variable}

{Basic Expressions}
BExp 3 be → a {atom}

| x@ r {copy}
| a⊕ a {basic operator application}
| C a @ r {constructor application}
| f a @ r {function application}

{Expressions}
Exp 3 e → be {basic}

| let x = e in e {nonrecursive, monomorphic}
| case x of alt {pattern matching}

alt → C x→ e

Figure 4: Core-Safe language definition.

Example 4. The translation phase applied to the append function defined
previously yields the following result:

append xs ys @ r = case xs of

[ ]→ ys

(x : xx )→ let x1 = append xx ys @ r in (x : x1)@r

�
Since the analysis described in this paper works at the Core-Safe level,

this language is described in detail below. However, and for the sake of
clarity, we will use Full-Safe for most medium- and large-sized examples. We
shall even use region-annotated Full-Safe code, when regions are relevant.

In Figure 4 we show the syntax of Core-Safe programs and expressions.
We use the abbreviation s to denote the item sequence s1, . . . , sn. We will
refer to each of such items as si or sj. When the sequence length n is
important, we will write |s| = n.
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A program prog is a sequence data of data declarations, followed by a
sequence def of function definitions and a main expression e, whose result is
the result of the program.

2.2.1. Data types declarations

In a data declaration α denotes a polymorphic type variable, ρ a poly-
morphic region type variable and t a type. A data declaration follows a
syntax similar to that of Haskell, with the addition of the region type vari-
ables. When extending the Hindley-Milner type system to Core-Safe, one
must assign a type to region variables. For this purpose we have defined a
new category of types: region type variables. The type of a region variable is
a region type variable (abbreviated as RTV in the following). These RTVs,
which will be denoted by ρ, ρ1, . . ., act as ordinary polymorphic variables in
Haskell. However, only region variables are allowed to have a RTV as its
type. The set of RTVs is denoted as RegType.

Algebraic data types are annotated with RTVs, which always coincide
with the types of the region variables used in the creation of the corresponding
DS. For example, if r has type ρ, the expression [ ] @ r has type [α]@ρ. We
have these kind of annotations with the aim of stating a connection between
data structures and region variables, and connections among different data
structures. For example, if two variables have [α]@ρ and [β]@ρ as their
respective types, their corresponding lists must live in the same region at
runtime. Moreover, if there exists another region variable r′ with type ρ,
every DS being constructed with this variable at runtime will also live in the
same region as these two lists. It is important to have a way to determine
these connections at compile time, because it allows us to know, in particular,
whether a given data structure resides in the temporary region self , which
is the only region variable of type ρself .

Algebraic data types can be associated with more than one RTV. For
example, the following definition

data TBL α β @ ρ1 ρ2 ρ3 = TBL [(α, β)@ρ1]@ρ2 @ ρ3

defines a concrete implementation of the table abstract data type, represented
as a list of (key , value) pairs. Data structures of this type may spread up to
three different regions: one for the TBL constructor, another for the spine of
the list containing the pairs, and another one for the pairs themselves. The
last RTV of the list ρ is the type of the region where the data structures of
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this type are built. This RTV is called the outermost region. In our example,
the outermost region of the TBL data type is ρ3.

2.2.2. Functions and expressions

A function definition consists of a global name f , followed by a list of
formal parameters x (which are variables), a list of formal region parameters
r (which are region variables) and the function body e. The sets of function
symbols, variables and region variables are respectively denoted by Fun, Var
and RegVar.

We denote by Exp the set of Core-Safe expressions. Basic expressions
BExp include: atomic expressions (literals or variables), copy expressions,
function and constructor applications, and a special kind of function appli-
cations that we consider to be built-in: basic operator applications. The set
of basic operators ⊕ is left unspecified. We only demand that applications of
these operators require no additional heap space and only two stack words
for the arguments.

We assume the existence of a set Cons of data constructor names, and
that, for every constructor C, the set of its recursive positions (denoted by
RecPos(C)) is known at runtime. For instance,

RecPos([ ]) = ∅ RecPos(:) = {2}
RecPos(Empty) = ∅ RecPos(Node) = {1, 3}

We also assume that there is no mutual recursion between functions. This
is done for the sake of simplicity. Everything can be adapted with relative
ease in order to support mutual recursion.

The let construct allows having non-recursive, monomorphic intermediate
declarations. Throughout this paper we use the terms auxiliary and main
expression to refer to its component expressions e1 and e2, and we will usually
write let x1 = e1 in e2.

Pattern matching is supported via case expressions.

2.3. Resource-aware semantics

In Figure 5 we show the resource-aware big-step operational semantics of
Core-Safe expressions.

2.3.1. Judgements

A judgement E ` h, k, td, e ⇓ h′, k, v, (δ,m, s) means that expression e
successfully reduces to a value v under a runtime environment E and a heap
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E ` h, k, td, c ⇓ h, k, c, ([ ], 0, 1)
[Lit ]

E(x) = v

E ` h, k, td, x ⇓ h, k, v, ([ ], 0, 1)
[Var ]

E ` h, k, td, a1 ⊕ a2 ⇓ h, k, E(a1)⊕ E(a2), ([ ], 0, 2)
[PrimOp]

E(x) = p E(r) = j j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)

E ` h, k, td, x @ r ⇓ h′, k, p′, ([j 7→ m],m, 2)
[Copy ]

(g y @ r′ = eg) ∈ FD |y| = n |r′| = l
[y 7→ E(a), r′ 7→ E(r), self 7→ k + 1] ` h, k + 1, n+ l, eg ⇓ h′, k + 1, v, (δ,m, s)

E ` h, k, td, g a @ r ⇓ h′ |k, k, v, (δ |k,m,max {n+ l, s+ n+ l − td}) [App]

E(r) = j j ≤ k freshh(p)

E ` h, k, td, C a @ r ⇓ h ] [p 7→ (j, C E(a)], k, p, ([j 7→ 1], 1, 1)
[Cons ]

E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1,m1, s1)
E ] [x1 7→ v1] ` h′, k, td+ 1, e2 ⇓ h′′, k, v, (δ2,m2, s2)

E ` h, k, td, let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2,max{m1, ||δ1||+m2},max{2 + s1, 1 + s2})
[Let ]

E(y) = p h(p) = (j, C v) |v| = n E ] [x 7→ v] ` h, k, td+ n, e ⇓ h′, k, v′, (δ,m, s)
E ` h, k, td, case y of {. . . ;C x→ e; . . .} ⇓ h′, k, v′, (δ,m, s+ n)

[Case]

Figure 5: Resource-aware operational semantics of Core-Safe expressions.

h with k + 1 regions (ranging from 0 to k) and that a final heap h′ with the
same number k + 1 of regions2 is produced as a side effect.

The triple (δ,m, s) is a resource vector. It represents the resource con-
sumption of e, and can be conceived as a side effect of evaluating the expres-
sion. Core-Safe is translated to the code of an imperative machine called Safe
Virtual Machine (SVM). The resource vector is formally derived [31, 33] from
this translation and describes the memory needs of each syntactical construc-
tion of the language in terms of the SVM heap and stack. Components δ and
m respectively represent the incremental and peak heap consumption, while
s represents the peak stack consumption. The concrete values this resource
vector may take are explained below.

We now explain in detail the other elements of the operational semantics.
We use v, v1, . . . metavariables to denote values, which are defined by the

2Actually, the latter k is redundant, as the final heap always has the same number
of regions as the initial one. However, in this paper we shall make the k of the final
configuration explicit.
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following grammar:

Val 3 v ::= p ∈ Loc { heap pointer }
| c ∈ Int ∪Bool { literal: integer or boolean }

A heap h is defined as a finite mapping from heap pointers to construction
cells. Heap pointers specify memory locations. We assume the existence of a
denumerable set of pointers Loc and use p, p1, q, . . . to denote elements from
this set. A construction cell w is an element of the form (j, C v), where j is
a natural number, C ∈ Cons a constructor symbol of arity n, and v is the
n-list of values to which C is applied. The number j stands for the region
of the heap in which the cell is located. With this heap model the region
number may be considered as a property of a cell. This implies, on the one
hand, that every cell belongs to a region and, on the other hand, that every
cell belongs to a single region (in other words, regions are disjoint). For
example, the following mapping h0 models the heap shown in Figure 2b:

h0 =

 p1 7→ (2, 5 : p2)
p2 7→ (2, 7 : p3)
p3 7→ (2, [ ])


The notation freshh(p) denotes that the pointer p is fresh in h, that is, it

does not occur neither in its domain nor in their cells.
A runtime environment E (also called value environment) is a partial

function mapping program variables x to values, and region variables r to
actual regions (i.e. natural numbers) in the heap. We adopt the convention
that, for every value environment E, if c is a literal, E(c) = c. Also, by E(x)
we denote the sequence E(x1), . . . , E(xn).

We assume that, during the evaluation of an expression, an environment
FD of program function definitions is propagated through the ⇓ judgements.
This environment maps function names to function definitions.

The semantics of a program prog ≡ data; def ; e is the result of evaluat-
ing its main expression e in an environment FD containing all the function
declarations def , under an empty heap with a single region 0 and a value
environment which maps the self identifier to that region:

[self 7→ 0] ` [ ], 0, e ⇓ h′, 0, v, (δ,m, s) (1)

2.3.2. Resource consumption

The resource vector (δ,m, s) captures the following information:
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time

y

evaluation of e

|| ||δ

m

Figure 6: Intuitive meaning of δ and m components in the resource vector. The y coordi-
nate represents the number of cells in the heap.

• The first component is a partial function δ : N → N giving, for each
region k, the difference between the number of cells after and before
evaluating the expression. This difference can only be positive or zero.
In an extended version of Core-Safe in which we allow explicit deallo-
cation of cells [29], this difference could be also negative.

• The component m is a natural number describing the minimum num-
ber of fresh cells needed in a heap to successfully evaluate e, i.e. the
maximum heap memory consumed by e. Some authors refers to this
maximum value as the peak heap memory of e.

• The component s is a natural number whose meaning is analogous to
that of the m component. The s component describes the minimum
number of words needed in the stack for the evaluation of expression
e. We could also refer to it as the peak stack memory of e.

Figure 6 gives an intuition on the meaning of the first two components.
Assume the evaluation of an expression e. The figure represents the global
amount of cells in memory as the evaluation of e proceeds. In this case, the
evaluation of e reclaims memory until some time point, from which memory is
disposed of. The m value represents the maximum amount of memory taken
during the evaluation of e, whereas δ represents the difference of memory
amount between the initial and final heaps. Notice, however, that the δ
contains this difference for every region in the heap. What is represented in
Figure 6 is the global balance ||δ|| of heap cells between the final and initial
heaps, formally defined below. Also notice that both values m and δ are
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relative to the memory consumption level at the beginning of the evaluation
of e (dashed line in Figure 6).

The domain of δ is the set {0..k}, where k is the number of regions in the
heap to which the δ refers. The notation [ ] stands for the function [i 7→ 0 |
i ∈ {0..k}], where the value of k is assumed to be clear from the context. The
notation [i 7→ n] abbreviates the function [i 7→ n] ] [j 7→ 0 | j ∈ {0..k}\{i}].
The total balance of cells, denoted by ||δ||, is the sum of the balances obtained
in each region:

||δ|| def
=

∑
i∈dom δ

δ(i) (2)

The notation δ1 + δ2 represents the component-wise addition of δ1 and δ2,
provided that they have the same domain.

Regarding the resource vector’s third component s, if we represented the
stack consumption in the style of Figure 6, the s component would take the
role of the m component in the heap consumption. The final stack contains
the same elements of the initial one and, in addition, the result of evaluating
the expression at the top, so the difference between them is always 1.

Stack is mainly consumed in function application and pattern matching.
When a function application is executed, first the actual parameters are
stacked. Since the execution of the function being called occurs in a different
context, the previous environment is partially discarded before the evaluation
of the function body. This feature allows us having constant stack space for
tail-recursive functions. In the semantics, we use a component td (named
so after top depth) representing the number of stack words of the previous
environment which can be discarded at this function application. It influences
the stack consumption (see the App rule), since td words are removed from
the stack before entering the function body.

2.3.3. Semantic rules

Now we explain in detail the semantic rules. Rules [Lit ] and [Var ] just
say that literals and heap pointers are normal forms. Their evaluation does
not consume heap, but it requires a stack word to push the result into. The
evaluation of a primitive operator application requires two stack words, since
the operands have to be pushed into the stack before computing the result.

Rule [Copy] copies the data structure pointed to by p and living in a
region j′ into a (possibly different) region j. The runtime system function
copy follows the pointers in recursive positions of the structure starting at p
and creates in region j a copy of all recursive cells. The normal form becomes
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Figure 7: Stack consumption while evaluating a function application

a fresh pointer p′ pointing to the copy. The pointers in non recursive positions
of all the copied cells are kept identical in the new cells. This implies that
both data structures (the original and the copy), may share some subparts.

The evaluation of a copy expression [Copy ] requires as many heap cells
as the size of the recursive spine of the structure being copied. The size
function, formally defined in Section 3, captures this amount of cells.

Rule [App] shows when a new region is allocated. Notice that the function
body is executed in a heap with k + 2 regions (from 0 to k + 1). The formal
identifier self is bound to the newly created region k+ 1 so that the function
body may create DSs in this region or pass this region as a parameter to
other function calls. Before returning from the function, all cells created in
region k + 1 are deleted. This action could be a source of dangling pointers,
but our region inference algorithm [32] decorates programs with regions in
such a way that they never arise for this reason. By the notation h |k we
denote the heap obtained by deleting from h those bindings living in regions
greater than k:

h |k
def
= h |P (k,h) where P (k, h) = {p ∈ dom h | region(h(p)) ≤ k}

By δ|k we mean a function like δ but restricted to the domain {0..k}.
The computation max{n+l, s+n+l−td} of fresh stack words reflects the

actions taking place at function application, as depicted in Figure 7: (1) The
function arguments are inserted at the top of the stack; (2) The td topmost
words of the prior environment are discarded, while the n + l arguments
are slid down. Then, the function body is executed, needing s fresh words.
Hence the above computation.

Rule [Cons ] generates a fresh location p pointing to the newly constructed
cell in the corresponding region. It also requires a stack word to push p.
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Figure 8: Heap consumption while evaluating a a let expression

Rule [Let ] shows the eagerness of the language: first, the auxiliary ex-
pression e1 is reduced to normal form and then the main expression e2 is
evaluated. In the latter evaluation the environment is extended by binding
the program variable x1 to the normal form to which e1 is reduced.

Regarding memory consumption, when a let expression is evaluated, a
continuation is stacked before evaluating e1 so that execution can proceed
later with e2. Those continuations are counted in the stack consumption as
two words. So, two words are stacked before evaluating e1, and the evaluation
leaves a 1-word value in the stack before evaluating e2. That is why we
obtain max{2 + s1, 1 + s2} as stack consumption. With regard to the heap
consumption, the δ component is clearly additive, as depicted in Figure 8.
The execution of the first expression leaves ||δ1|| cells in the heap. This point
is the reference level on which we measure the memory needs m2 of the second
expression. Hence, the peak memory needs of the whole sequence is given by
max{m1, ||δ1||+m2}, as Figure 8 shows.

The [Case] rule is the usual one for an eager language. Besides the con-
sumption of the executed alternative, the pattern matching requires n addi-
tional stack positions, being n the number of arguments of the corresponding
constructor.

Example 5. In the following table we show the resource vector correspond-
ing to the execution of some examples in this section:

xs = [1, 2, 3] (4 cells) ys = [4, 5] (3 cells) zs = [5, 4, 3, 2, 1] (6 cells)
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t = Node (Node Empty 2 Empty) 4 (Node Empty 7 Empty) (7 cells)

Expression δ m s
append xs ys @ r [E(r) 7→ 3] 3 23

appendC xs ys @ r [E(r) 7→ 6] 6 24
mkTree zs @ r [E(r) 7→ 26] 26 49
inorder t @ r [E(r) 7→ 4] 4 19

treesort zs @ r [E(r) 7→ 6] 32 53

Function append creates as many cells in the output region as the number
of cons cells in the list passed as first parameter. In appendC we need three
additional cells for copying the list passed as second parameter. Function
treesort leaves in the output region as many cells as the input list. However,
more cells are needed in order to build the intermediate tree. �

3. Analysis of nonrecursive definitions by abstract interpretation

Our space consumption analysis is expected to compute, given an ex-
pression e, upper bounds to each component of the resource vector (δ,m, s)
resulting from its evaluation, which will be called (∆, µ, σ). First we identify
the elements of our abstract domain that can be used to express an upper
bound to each component. After this, we explain how to infer such elements
from the expressions of the program via an abstract interpretation function.
Finally, we state some correctness results on the latter.

3.1. Abstract domain of function signatures

Assume a function definition of n data parameters and m region param-
eters:

f :: t1 → · · · → tn → ρ1 → · · · → ρm → t
f x@ r = ef

(3)

The space consumption of f does not solely depend on the body of the
function ef , but also on the input parameters x, which will be abstracted by
their sizes.

Our first step is to define a suitable notion of size which reflects how easy
or difficult is to process an input parameter. The memory costs of a Safe
function are described as a function on this size.
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Example 6. As an example, function append defined in Example 1 creates
as many heap cells (all of them in the region argument r) as list elements has
its first argument xs , because once the list xs is traversed the list ys becomes
the tail of the result, so no nil constructor is built. It also consumes seven
stack words per list constructor, both cons and nil, of xs . If we use the same
name xs to represent its number of list constructors, the heap consumption
is xs − 1 (only the cons) while the stack consumption is 7xs . �

Following the idea shown in the example, the size function, when applied
to a pointer, takes into account the cells of the recursive spine of the cor-
responding DS. For instance, if p points to a list of integers, the size of p
is the number of integers plus one, not the sum of the integers themselves.
In general, the size of a list with n elements is n + 1, since it is made of n
cells with the (:) constructor plus an additional cell with the [ ] constructor.
Analogously, the size of a binary search tree (as defined in Section 2.1) with
n elements is always 2n+1 (n cells with the Node constructor and n+1 cells
with the Empty constructor).

Definition 1. Given a heap h and a value v, the size function is defined as
follows. If v is an integer literal c ∈ Int then size(h, c) = c. If it is a boolean
c ∈ Bool then size(h, c) = 0. If it is a pointer p then:

size(h[p 7→ (j, C v)], p)
def
= 1 +

∑
i∈RecPos(C )

size(h, vi)

3.1.1. Upper bounds for m and s

Upper bounds to cost and sizes are represented by numbers in R+
∞

def
=

R+ ∪ {+∞}. The special value +∞ denotes the absence of upper bounds
(either because there are no such bounds, or because the algorithm is not
able to infer them).

Our space consumption analysis bounds the m and s components of the
resource vector by means of functions that depend on the size of the input.
So, memory heap and stack needs are represented as members of the following
set, where n denotes the number of parameters of the function being analysed:

F def
= {ξ : ((R+

∞)⊥)n → (R+
∞)⊥ | ξ is monotonic and strict}

The notation D⊥ denotes the set D ∪ {⊥}. Throughout this work we use
the special value ⊥ to make undefinedness of functions explicit. If ξ ∈ F, we
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say that ξ is undefined for some sizes x if and only if ξ x = ⊥. Hence, the
domain of a function ξ ∈ F is defined as dom ξ = {x ∈ (R+

∞)
n | ξ x 6= ⊥}.

The intuitive meaning of a cost function returning ⊥ for a given size is that
the function whose cost is being inferred does not evaluate to any value for
that size. The strictness condition of space cost functions demands that the
result is undefined if at least one of the arguments is undefined.

For instance, the memory needs of the function definition head (x : xx ) =
x are zero when the size of the input list is greater than two (the size of
the singleton list) and undefined otherwise. For the sake of clarity, we shall
use curried notation when dealing with functions in F, and λ-notation when
defining them. We assume that the functions defined in this way are strict,
so λx.x + 1 should be read as a function giving ⊥ when x = ⊥, and x + 1
otherwise. We use ξ, ξ1, . . . to denote a generic element of F. If we use an
element of F for bounding heap memory needs (that is, the m in (δ,m, s)) we
shall use µ, µ1, . . . as metavariables, whereas in the context of stack memory
needs (the s component) we use σ, σ1, . . .

The following guarded notation will be convenient in what follows. Given
a boolean function G and ξ ∈ F, the notation [G→ ξ] denotes the following:

[G→ ξ] = λx.

{
ξ x if G x holds

⊥ otherwise

By abuse of notation we factor out the λx prefix in both G and ξ. For
instance, we write ξ = λxs .[xs ≥ 2 → 0] for defining the memory needs of
the head function given above.

The usual ordering in R+ can be extended to (R+
∞)
⊥

by taking ⊥ as the
bottommost element and +∞ as the topmost one. Similarly, the arithmetic
operations + and ∗ can also be extended to (R+

∞)⊥ by assuming that x +
(+∞) = x ∗ (+∞) = +∞ for all x ∈ R+

∞, and that y+⊥ = y ∗⊥ = ⊥ for all

y ∈ (R+
∞)
⊥

.
We shall also need two different operators for denoting least upper bounds

in (R+
∞)
⊥

: t and ·t. The first one ignores undefined values, whereas the
second one returns ⊥ if at least one of the elements to which it is applied is
⊥. For example, t{2, 5,⊥, 1} = 5, but ·t{2, 5,⊥, 1} = ⊥.

The +, ∗, t and ·t operators can be trivially extended to (R+
∞)
⊥

-valued
functions in the usual way, as well as the ≤ relation. It is easy to see that
these operators are ≤-monotonic on their arguments, and hence the F set is
closed under these operators. The partially ordered set of space cost functions
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(F,v) turns out to be a complete lattice, whose bottommost element is λx.⊥
and the topmost one is λx.+∞.

3.1.2. Upper bounds for δ

The δ component deserves special attention, since it is not a single num-
ber, but a mapping from heap region identifiers (natural numbers) to integers.
We cannot know, at compile time, which region identifiers are used to build
DSs during the execution of an expression, since this information is only
known at runtime by means of the value environment E, which associates
region variables with actual region identifiers. We have to abstract the region
identifiers by their abstract counterparts: region type variables.

Assuming the function definition of (3), let us define Rf = {ρ1, . . . , ρm}
and R∗f = Rf ∪ {ρfself }. The function’s body can only charge space costs to
the regions whose type belongs to Rf and to the working region self (of type

ρfself ).

Example 7. Given the following function:

consPair x xs ys @ r1 r2 r3 = ((x : xs)@r1, (x : (ys@r2))@r2)@r3

where ri :: ρi, an upper bound to its δ component is

∆ = λx xs ys .

 ρ1 7→ 1
ρ2 7→ ys + 1
ρ3 7→ 1


The function builds a pair in region r3 :: ρ3 and prepends element x to list
xs in region r1 :: ρ1, so it respectively consumes one constructor cell in each
region. It also copies list ys in region r2 :: ρ2 and then prepends x to it so it
consumes ys + 1 cells in that region. �

Hence, a function that bounds the memory charges in each region belongs
to the following set,

D∗ def
= {∆ : ((R+

∞)⊥)n → (R∗f → R+
∞)⊥ | ∆ is monotonic and strict}

whose elements are called abstract heaps. We use variables ∆,∆1, . . . to
denote functions in this set.

When calling a given function, the charges to its self region are not visible
from the caller’s point-of-view. In these cases we define D as in the definition
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D∗ above, but substituting Rf for R∗f . Moreover, given an abstract heap
∆ ∈ D∗, we denote by b∆c the function λx.(∆ x)|Rf

, which discards the
information regarding the self region, so that the result belongs to D.

The +, and t operators and the v relation on abstract heaps are defined
componentwise, as usual. The same applies to the guarded notation [G→ ∆].
Slightly different is a multiplication operator ∗ we will use later, which is
defined in F× D.

ξ ∗∆ = λx.[∆ x 6= ⊥ → λρ ∈ Rf .(ξ x) ∗ (∆ x ρ)]

Finally, we introduce the || · || operator, which adds the charges made to all
region types into a single cost function:

||∆|| = λx.

∆ x 6= ⊥ →
∑
ρ∈Rf

∆ x ρ


Notice the similarity with ||δ|| notation defined in (2) (in page 19). Let us
illustrate these definitions with some examples.

Example 8. Given the set Rf = {ρ1, ρ2, ρ3}, let us define

∆1 = λx.

 ρ1 7→ x+ 1
ρ2 7→ 2
ρ3 7→ x2 + 3

 ∆2 = [x ≥ 2→ ∆1] ξ = λx.2x

Then ∆2 v ∆1 holds, but ∆1 v ∆2 does not. Moreover:

∆1 + ∆2 = λx.

x ≥ 2→

 ρ1 7→ 2x+ 2
ρ2 7→ 4
ρ3 7→ 2x2 + 6



ξ ∗∆1 = λx.

 ρ1 7→ 2x2 + 2x
ρ2 7→ 4x
ρ3 7→ 2x3 + 6x

 ||∆2|| = λx.[x ≥ 2→ x2 + x+ 6]

�

In a similar way to cost functions, the ordered set of abstract heaps (D,v)
is a complete lattice, having λx.⊥ and λx.λρ ∈ Rf .+∞ as its bottom- and
topmost elements, respectively.
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3.1.3. Function signature

Note that all these sets (F, D, and D∗) are parametric with respect to the
function definition being analysed. In particular, they depend on its number
of data parameters, and the set Rf of region types in its type signature. At
some points we shall make the name of the function explicit when referring
to these sets, for instance, as in Ff .

These definitions allow us to set up a correspondence between the actual
memory consumption of a function, given by a resource vector (δ,m, s), and
the results of our analysis:

Definition 2. A function signature for f is a triple (∆, µ, σ), where ∆ be-
longs to Df , and µ, σ belong to Ff .

The ∆ is meant to be an upper bound to δ, where as µ and σ are upper
bounds to m and s, respectively. In order to simplify the notation and the
examples, from now on we will omit the λ bindings and we will consider them
as implicit in the cost expressions, e.g. we will write n instead of λx.n.

3.2. Abstract interpretation

So far we have defined what a signature is. In this section we show
how to infer a correct signature for a given function definition. Given an
expression e, our aim is to find a tuple (∆, µ, σ) which is an upper bound to
its memory consumption, provided we know the signatures of the functions
that are invoked from this expression.

3.2.1. Basic expressions

We define an abstract interpretation as a set of rules in Figure 9. The
interpretation of a basic expression [[be]] Σ Γ td receives a signature environ-
ment Σ, which maps each function name g appearing in e to its signature
(∆g, µg, σg). It also receives a typing environment Γ, giving the type of each
region variable in scope, and the statically determined length td of the run-
time environment when calling a function application. The latter has the
same meaning as in the resource-aware semantics of Figure 5. The interpre-
tation is also parametric on the function definition f being inferred. However,
and to avoid excessive subscripting, we consider this definition fixed, so it is
left out in the rules.

If x is a variable, the notation |x| denotes the size function associated with
x, which belongs to F and is assumed to have been inferred by an external
size analysis.
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[[a]] Σ Γ td = ([ ], 0, 1)

[[a1 ⊕ a2]] Σ Γ td = ([ ], 0, 2)

[[x @ r]] Σ Γ td = ([Γ(r) 7→ |x|], |x|, 2)

[[C a @ r]] Σ Γ td = ([Γ(r) 7→ 1], 1, 1)

Σ(g) = (∆g, µg, σg) θ = unify(Γ, g, r) yi = |ai| x
G = (∆g y 6= ⊥ ∧ µg y 6= ⊥ ∧ σg y 6= ⊥) l = |a| q = |r|

∆ = [G→ θ ↓y ∆g] µ = [G→ µg y] σ = [G→ σg y]

[[g a @ r]] Σ Γ td = (∆, µ, ·t{l + q, l + q − td+ σ})

Figure 9: Abstract interpretation for basic expressions.

If Rf is the set of the context function’s region parameters, the [ ] notation
stands for the abstract heap λx.λρ.0 where ρ ∈ Rf , and whenever none of
the xi is ⊥. Similarly, the binding [ρ′ 7→ ξ] denotes the abstract heap that
yields ξ x for ρ′ and 0 for every ρ 6= ρ′.

Notice the similarity between the results of the abstract interpretation
in Figure 9 and the resource vectors of the semantic rules in Figure 5. The
only rule worth explaining is that of function application. Given a function
definition g y @ r′ = eg, assume we want to infer a particular function
application g a @ r. Firstly, we retrieve the signature of g from the signature
environment Σ, so let (∆g, µg, σg) = Σ(g). Each component is a function
which depends on the sizes of its parameters y, so we have to pass the sizes
of the actual arguments |ai|, which, in turn, are functions of the sizes x of the
parameters of the caller (that is why we have |ai| x). The guard G discards
those values x leading to sizes |ai| x not belonging to the domain of ∆g, µg
or σg.

Notice also that, with regard to the computation of ∆, the type of the
arguments in the function application are instances of the most general func-
tion’s type. This means that if several RTVs of g’s type are mapped to the
same RTV ρ, the charges done to ρ are the sum of the charges made by g to
the former RTVs.

Example 9. Recall function consPair defined in Example 7, where ∆ =
[ρ1 7→ 1, ρ2 7→ ys + 1, ρ3 7→ 1]. The application consPair y us zs@r r r′,
where r :: ρ and r′ :: ρ′, would consume [ρ 7→ |zs|+ 2, ρ′ 7→ 1]. �

Hence we have to find a correspondence between the region types of g
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and the region types of the particular instance used in the call. That is what
the function unify does.

Definition 3. Given a type environment Γ, a function name g ∈ Fun and
a sequence of region variables r, we say that θ = unify(Γ, g, r), iff Γ(g) =
∀αρ.t→ ρ→ t, and ∀j ∈ {1..|ρ|}.θ(ρj) = Γ(rj).

If there are several RTVs of g’s type being mapped to the same RTV ρ
in the function application, then the charges done to the region of type ρ are
the sum of the charges made by g to the RTVs ρ′ such that θ(ρ′) = ρ. The
↓ operator does this computation. It is defined as follows

θ ↓y ∆ = λρ.
∑

ρ′∈θ−1(ρ)

∆ y ρ′

where ρ ∈ Rf ∪ {ρself }.

Example 10. In Example 9, we obtain θ = [ρ1 7→ ρ, ρ2 7→ ρ, ρ3 7→ ρ′]. If,
for example, the size of the third argument were |zs| = vs − 1, being vs an
argument of the caller, the application would consume: [ρ 7→ (vs−1)+2, ρ′ 7→
1], i.e. [ρ 7→ vs + 1, ρ′ 7→ 1]. �

Back to our abstract interpretation rule for function applications, so far
we have obtained a tuple (θ ↓y ∆g, µ y, σ y), which is an upper bound to
the memory costs of executing the function’s body. From these we can easily
compute the costs of the function application itself: we just have to proceed
as in rule [App] of Figure 5.

In the following we shall use the notation [[be]]∆ Σ Γ td, [[be]]µ Σ Γ td and
[[be]]σ Σ Γ td to refer to the first, second and third components of [[be]] Σ Γ td
respectively. We shall omit the td, Γ and Σ when they are not relevant, or
can be deduced from the context.

3.2.2. Compound expressions

Our next goal is the inference of heap space consumption of compound
expressions (let and case). This works as follows: an expression e is trans-
formed into a set of sequences of basic expressions. Each sequence represents
a possible execution flow of the expression, and the whole set of sequences
captures all the possible execution flows that may arise when executing this
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expression. This transformation destroys the structure of the program: in-
stead of having nested expressions, the result comprises all the basic ex-
pressions being executed into a single “level” of nesting (that is why this
transformation will be called flattening). However, this does not affect heap
space consumption, since the latter does not depend on the structure of the
expression. The following example provides an intuition on this fact.

Example 11. Given the following expressions,

e ≡ let x1 = be1 in (let x2 = be2 in be3)
e′ ≡ let x2 = (let x1 = be1 in be2) in be3

let (δi,mi, si) the resource vector associated to the execution of be i for i ∈
{1..3}. If x1 /∈ fv(be3) and we can execute e, we can also execute e′. If we
compare the δ components of each, we obtain δ1 + (δ2 + δ3) and (δ1 + δ2) + δ3

respectively. These are trivially equal. If we compare the m component of
their resource vectors, it can be shown (by using that ||δ1 + δ2|| = ||δ1||+ ||δ2||)
that both are equal to the following expression:

t{m1, ||δ1||+m2, ||δ1||+ ||δ2||+m3} (4)

In both e and e′, the expression be1 is the first to be executed, then be2 and
be3 come in the last place. That is why we can represent both expressions as
a single sequence [be1, be2, be3]. �

When considering sequences of expressions we lose the pattern guards of
the case expressions. Nevertheless, these guards provide useful information
on the size of the DS being matched against. For instance, assume the
expression case x of (x : xx )→ e2. If the branch e2 is executed, we know for
sure that the size of x must be greater or equal than 2. In general, this size
information will be included in the execution sequences as guards , specifying
under which sizes of the case discriminant the execution of each sequence
may take place. This motivates the following definition.

Definition 4. A sequence is a list of basic expressions be1, . . . , ben preceded
by a boolean function G. We use [G→ be1, ...ben] to denote sequences. The
notation [be1, . . . , ben] stands for the sequence [true → be1, . . . , ben].

We define the concatenation (++) of sequences as follows:

[G1 → be1, . . . , ben] ++[G2 → be ′1, . . . , be ′m] = [G1 ∧G2 → be1, . . . , ben, be ′1, . . . , be ′m]
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seqs be = {[be]}
seqs (let x1 = e1 in e2) = {seq1 ++ seq2 | seq1 ∈ seqs e1, seq2 ∈ seqs e2}
seqs (case x of alt) =

⋃n
r=1(|x| ≥ 1 + |RecPos(Cr)| → seqs er)

where n = |alt |
altr = Cr xr → er

Figure 10: Definition of seqs.

insert :: Int → [Int ]@ρ1 → ρ2 → [Int ]@ρ2

insert y zs @ r =
case zs of

[ ]→ let x1 = [ ] @ r in (y : x1)@r
(x : xx )→ let b = y ≤ x

in case b of
True → let x2 = (x : xx )@r in (y : x2)@r
False → let x3 = insert y xx @ r in (x : x3)@r

insSort :: [Int ]@ρ1 → ρ2 → [Int ]@ρ2

insSort zs @ r =
case zs of

[ ]→ [ ] @ r
(x : xx )→ let xx ′ = insSort xx @ r in insert x xx ′ @ r

Figure 11: Core-Safe code of insertion sort algorithm.

If seq is a sequence, we can strengthen its guard with the notation G→ seq ,
which stands for G→ [G1 → be1, . . . , ben] = [G ∧G1 → be1, . . . , ben], and is
extended to sets of sequences in the trivial way.

The function seqs , shown in Figure 10, transforms an expression into a
set of sequences representing all the possible execution paths. In order to
transform a let expression, seqs gathers all the sequences of the auxiliary
expression e1 and the main expression e2 and considers all the combinations.
With respect to case expressions, it collects the sequences of each branch
and adds the corresponding size guard imposed by the recursive positions
of the pattern: the size of the discriminant must be one plus the number of
recursive positions of its constructor.

31



[[e]]∆
def
= [[seqs e]]∆

[[e]]µ
def
= [[seqs e]]µ

[[S]]∆
def
=

⊔
seq∈S [[seq ]]∆

[[S]]µ
def
=

⊔
seq∈S [[seq ]]µ

[[[G→ be1, ..., ben]]]∆
def
= [G→ [[be1]]∆ + . . .+ [[ben]]∆]

[[[G→ be1, ..., ben]]]µ
def
= [G→ ·t{ [[be1]]µ,

||[[be1]]∆||+ [[be2]]µ,
. . . ,∑n−1

j=1 ||[[bej ]]∆||+ [[ben]]µ}]

Figure 12: Abstract interpretation compound expressions and sequences.

Example 12. Let us consider the insertion sort algorithm of Figure 1. The
Core-Safe code of the two functions involved is shown in Figure 11. We get:

seqs einsert =


seq1 ≡ [zs ≥ 1→ [ ] @ r, (y : x1)@r]
seq2 ≡ [zs ≥ 2→ y ≤ x, (x : xx )@r, (y : x2)@r]
seq3 ≡ [zs ≥ 2→ y ≤ x, insert y xx @ r, (x : x3)@r]


seqs einsSort =

{
seq4 ≡ [zs ≥ 1→ [ ] @ r]
seq5 ≡ [zs ≥ 2→ insSort xx @ r, insert x xx ′ @ r]

}
�

The extension of the abstract interpretation rules to compound expres-
sions will be done in terms of their decomposition into sequences of basic
expressions. Example 11 gave us an intuition on how to do this. If we re-
place the δi and mi components by their abstract counterparts ∆i and µi,
and generalize the formula given in (4) we get the definitions of Figure 12.
The reason of choosing ·t instead of t is that, if the cost of one of the basic
expressions is undefined for some input sizes, we want to cancel out the whole
sequence. In case a compound expression leads to several sequences, we have
to take the least upper bound of all of them, as shown in Figure 12.

Example 13. Back to our insertion sort algorithm, assume a signature Σ
in which Σ(insert) = (f∆, fµ, ) and Σ(insSort) = (g∆, gµ, ) for some f∆ ∈
Dinsert , fµ ∈ Finsert , g∆ ∈ DinsSort , gµ ∈ FinsSort that are defined when zs ≥ 1.

Let us apply the [[·]]∆ and [[·]]µ interpretations to the first two sequences
under an environment Γ = [r 7→ ρ2]:
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[[seq1]]∆ = [zs ≥ 1→ [ρ2 7→ 2, ρself 7→ 0]]
[[seq2]]∆ = [zs ≥ 2→ [ρ2 7→ 2, ρself 7→ 0]]]
[[seq1]]µ = [zs ≥ 1→ 2]
[[seq2]]µ = [zs ≥ 2→ 2]

Regarding the third sequence we assume that |xx | = [zs ≥ 2→ zs−1] and
that |y| = y. We get the guard G = zs ≥ 1, which is used in the respective
interpretations of the insert function application:

[[insert y xx @ r]]∆ =

[
zs ≥ 2→

[
ρ2 7→ f∆ y (zs − 1) ρ2

ρself 7→ 0

]]
[[insert y xx @ r]]µ = [zs ≥ 2→ fµ y (zs − 1)]

Therefore:

[[seq3]]∆ =

[
zs ≥ 2→

[
ρ2 7→ 1 + f∆ y (zs − 1) ρ2

ρself 7→ 0

]]
[[seq3]]µ = [zs ≥ 2→ ·t{fµ y (zs − 1), f∆ y (zs − 1) ρ2 + 1}]

Finally, let us assume that |xx | = |xx ′| = [zs ≥ 2→ zs − 1]. We get:

[[seq4]]∆ = [zs ≥ 1→ [ρ2 7→ 1, ρself 7→ 0]]

[[seq5]]∆ =

[
zs ≥ 2→

[
ρ2 7→ g∆ (zs − 1) ρ2 + f∆ (|x| zs) (zs − 1) ρ2

ρself 7→ 0

]]
[[seq4]]µ = [zs ≥ 1→ 1]
[[seq5]]µ = [zs ≥ 2→ ·t{gµ (zs − 1), g∆ (zs − 1) + fµ (|x| zs) (zs − 1)}]

Notice that the [[·]]µ interpretation of the last sequence depends on the
size of the variable x. A sensible size analysis would be expected to give
reasonable bounds to the sizes of xx and xx ′, but we cannot expect the same
for x, since it stands for an element of the input list. That is why we left
the symbolic application (|x| zs) in the result. As we will see later, if the f∆

function does not depend on its first argument this application is ignored. �
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[[let x1 = e1 in e2]]σ td = ·t{2 + [[e1]]σ 0, 1 + [[e2]]σ (td+ 1)}
[[case x of alt ]]σ td =

⊔n
r=1 [|x| ≥ 1 + |RecPos(Cr)| → nr + [[er]]σ (td+ nr)]

where n = |alt |
altr = Cr xr → er
nr = |xr|

Figure 13: Stack consumption of compound expressions.

Example 14. Following Example 13 we get:

[[einsert ]]∆ = [zs ≥ 1→ [ρ2 7→ 2, ρself 7→ 0]] t
[zs ≥ 2→ [ρ2 7→ 1 + f∆ y (zs − 1) ρ2, ρself 7→ 0]]

[[einsert ]]µ = [zs ≥ 1→ 2] t
[zs ≥ 2→ ·t{fµ y (zs − 1), f∆ y (zs − 1) + 1}]

[[einsSort ]]∆ = [zs ≥ 1→ [ρ2 7→ 1, ρself 7→ 0]] t[
zs ≥ 2→

[
ρ2 7→ g∆ (zs − 1) ρ2 + f∆(|x| zs) (zs − 1) ρ2

ρself 7→ 0

]]
[[einsSort ]]µ = [zs ≥ 1→ 1] t

[zs ≥ 2→ ·t{gµ (zs − 1), g∆ (zs − 1) + fµ(|x| zs) (zs − 1)}]

�

In order to bound stack costs, we cannot apply the flattening-based ap-
proach, since this transformation breaks the structure of an expression and,
unlike heap costs, the stack costs do depend on this structure. Instead of
defining the [[·]]σ interpretation as a function of the sequences originated from
a compound expressions, we define it compositionally as in Figure 13, which
roughly ressembles its counterpart in the semantics of Figure 5.

Example 15. The [[·]]σ interpretation of our running example einsert leads
to the following results with td = 3, if we assume that Σ(insert) = ( , , fσ)
such that dom fσ = {(y, zs) | zs ≥ 1}, and Σ(insSort) = ( , , gσ) such that
dom gσ = {zs|zs ≥ 1}:

[[einsert ]]σ Σ 3 = [zs ≥ 1→ 3] t
[zs ≥ 2→ 8 + fσ y (zs − 1)]

[[einsSort ]]σ Σ 2 = [zs ≥ 1→ 1] t
[zs ≥ 2→ t{1 + fσ (|x| zs) (zs − 1), 6 + gσ (zs − 1)}]
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�

It is easy to show (see [35]) that the results of the interpretation of an
expression fall into F and D∗, respectively.

3.3. Correctness of the abstract interpretation

In this section we aim to prove that the tuple (∆, µ, σ) resulting from the
abstract interpretation of e is an upper bound to the actual resource vector
(δ,m, s) resulting from the execution of e. Firstly we have to make precise
what do we mean with (∆, µ, σ) being an upper bound to (δ,m, s). As a first
step, we define this notion in the context of function definitions, rather than
isolated expressions. Given the function definition f x@ r = ef , assume the
following ⇓-judgement of its body ef , whose derivation is referred to as the
context derivation:

E0 ` h0, k0, td0, ef ⇓ hf , k0, vf , (δf ,mf , sf ) (5)

In the correctness theorem shown below, we will assume that we have
correct signatures for all the functions called from ef .

We are particularly interested in the part of the execution occurring under
the same call context as (5). That is, those ⇓-judgements that belong to the
derivation of (5), but not to the derivation of any further evaluation of ef
contained within (5). If the function is nonrecursive any subderivation meets
this requirement. Otherwise only the parts corresponding to the main call
are considered and the correctness result we present is this section requires
having a correct signature for the function itself.

We shall characterize such judgements by means of their region counter,
which will be always equal to k0, and the expression being evaluated, which
is a subexpression of ef .

Intuitively, we expect a correct signature (∆, µ, σ) to be an upper bound
to the actual vector (δf ,mf , sf ) for every input size. In order to check whether
this fact holds, we need to know the sizes s of the input parameters, since
the components of a signature are functions on these sizes.

Definition 5. Given a sequence of sizes s of the input arguments of the
context function f we say that µ is an upper bound to m in the context of s
(denoted µ �s m) iff µ s ≥ m. Analogously, σ is an upper bound to s in the
context of s (denoted σ �s s) iff σ s ≥ s.
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However, the case of ∆ is more involved, since we have to take into account
the correspondence between the static RTVs ρ1 . . . ρm and the dynamic region
identifiers given by E0(r1) . . . E0(rm). This correspondence is made explicit
via region instantiations. A region instantiation η is a function from RTVs
to natural numbers (interpreted as region identifiers), and it is demanded to
be consistent with the information provided by the runtime environment E0

and the types of the region parameters, given by a typing environment Γ0

which contains the bindings [rj : ρj] for each j ∈ {1..m}. For the purposes
of this paper, we assume that Γ0 is injective, so η can be considered as an
abbreviation for (E0 ◦ Γ−1

0 )|R∗f .
The key role of η bindings is the following: if there are several ρ’s being

mapped by η to the same region number i, the sum of the estimations of each
individual ρ is an upper estimation of the global amount of charges done to
the i-th region.

Definition 6. Given a sequence of sizes s of the input arguments of the
context function f , a number k of regions and a region instantiation η, we
say that ∆ is an upper bound to δ in the context of s, k and η (denoted
∆ �s,k,η δ) iff

∀j ∈ {0..k}.
∑
ρ∈R∗f
η(ρ)=j

∆ s ρ ≥ δ(j)

Example 16. Assume a function definition f x y @ r1 r2 = ef and the
execution of its body ef under a environment E and a heap h with three
regions (that is, k = 2). We also assume that sx = size(h,E(x)) = 4,
sy = size(h,E(y)) = 2 and that the function is typable under an environment
Γ such that Γ(ri) = ρi for i ∈ {1, 2}. If E(r1) = 0, E(r2) = 0 and E(self ) = 1,
then we get η = [ρ1 7→ 0, ρ2 7→ 0, ρself 7→ 1]. Let us define ∆ as follows:

∆ =

 ρ1 7→ 2x+ y
ρ2 7→ xy
ρself 7→ 7x+ 5


Then ∆ is a correct upper bound to δ = [0 7→ 10, 1 7→ 33] in the context of
sx, sy, k and η, since ∆ 4 2 = [ρ1 7→ 10, ρ2 7→ 8, ρ3 7→ 33], and it holds that
10 + 8 ≥ δ(0) and 33 ≥ δ(1). �

Given these definitions, we are ready to give a formal notion of a function
signature (∆, µ, σ) being correct:
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Definition 7 (Correct signature). Let (∆, µ, σ) be the signature of a func-
tion definition f x @ r = ef and Γ the type environment inferred for ef . This
signature is said to be correct if for all h, h′, k, Ef , v, ı, v, δ, m, s, s, η such
that

1. Ef ` h, k + 1, ef ⇓ h′, k + 1, v, (δ,m, s)
where Ef = [x 7→ v, r 7→ ı, self 7→ k + 1]

2. For each j ∈ {1..|s|}, sj = size(h, vj)

3. η is the consistent region instantiation determined by Ef and Γ

then ∆ �s,k,η δ|k, µ �s m, and σ �s s.

Notice that all these � relations are parametric with respect to the sizes of
the input arguments. That is why we cannot tell, for an arbitrary e, whether
the result of [[e]] is an upper bound to its associated resource vector (δ,m, s),
unless we consider the execution of this expression in the context derivation
specified in (5). Besides this, the result of the abstract interpretation de-
pends on the function signatures contained within Σ, with are assumed to be
correct, and the size functions | · |, which are assumed to be exact or upper
approximations of the actual runtime sizes of its corresponding DSs. A pre-
cise notion of a correct size analysis can be found in [35]. Roughly speaking,
a size function |x| is correct if it is always greater that the size of the data
structure pointed to by x at runtime.

Theorem 1 (Correctness of the abstract interpretation). Let us as-
sume a context function definition f x @ r = ef , the inferred global type
environment Γ for ef , a Σ containing correct signatures for all the functions
called from ef , an initial environment E0 and a heap h0 such that the judge-
ment (5) is derivable. For each subexpression e of ef and E, td, h, h′, v, δ,
m, s such that

1. For every seq ∈ seqs e, every occurrence of | · | in the evaluation of
[[seq ]]∆ Σ Γ and [[seq ]]µ Σ Γ has been inferred with a correct size analysis

2. E ` h, k0, td, e ⇓ h′, k0, v, (δ,m, s) belongs to the derivation of (5)

then

1. [[e]]σ Σ td �s s
2. There exists some seq ∈ seqs e such that [[seq ]]∆ Σ Γ �s,k0,η δ and

[[seq ]]µ Σ Γ �s m
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Figure 14: Representation of the activation tree of a function call to f .

where ∀j ∈ {1..|s|}.sj = size(h,E0(xj)), and η is the consistent region in-
stantiation determined by E and Γ.

Proof. By induction on the structure of e.

From this correctness result we can devise a way for inferring upper
bounds to the heap and stack consumption of a non-recursive function, as-
suming that the functions called from it have already been inferred. We just
have to apply the abstract interpretation to the body of the function defini-
tion. The inference of recursive function definitions is far more involved, and
its study is deferred to the following section.

4. Memory consumption of recursive function definitions

The obvious question that arises when applying the abstract interpreta-
tion to a recursive function is which signature associated to f must be stored
into the signature environment Σ. The result of the abstract interpretation
will be correct if this initial signature is correct, but this signature is pre-
cisely what we aim to infer. We have to find a correct upper bound to the
memory consumption of a function definition by other means different from
the [[·]]-interpretations. Once these upper bounds are computed, it still makes
sense to apply the abstract interpretation under a signature environment Σ
containing those bounds. The new results are also correct, by Theorem 1,
but they might be more precise than the initial ones, as shown in [34, 35].

This section is devoted to the computation of these initial approximations,
which will be called ∆0, µ0 and σ0. In order to compute them, we need some
information regarding the number of recursive calls generated during the
evaluation of a call to f . This information will be given as a function of the
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input sizes x. We represent these recursive calls by means of activation trees
(or call trees), as shown in Figure 14. Before computing an upper bound to
the memory costs, we assume that the following information is available as
elements of F:

nr f Upper bound to the number of calls to f which invoke f again. This
number corresponds to the internal nodes of f ’s call tree.

nbf Upper bound to the number of basic calls to f that do not invoke f
again. It corresponds to the leaf nodes of f ’s call tree.

lenf Upper bound to the maximum length of f ’s call chains. It corresponds
to the height of f ’s call tree.

In general these functions are not independent of each other. For instance,
with linear recursion we get nr f = lenf − 1 and nbf = 1. However, we shall
not assume a fixed relation between them. The computation of these three
functions is closely related to the problem of termination and the computa-
tion of ranking functions, and we can use the techniques described in [28]
for computing them. Another possibility is to give definitions of these com-
ponents as recurrence relations and obtain closed forms by using recurrence
solving tools, such as PUBS [5, 6], possibly in combination with polynomial
interpolation-based techniques [36].

Example 17. Assume a call to insert y zs where zs = [z1, . . . , zn]. In the
worst case we get the following sequence of calls:

insert y [z1, . . . , zn] 1st call
→ insert y [z2, . . . , zn] 2nd call
...
→ insert y [zn] n-th call
→ insert y [ ] (n+ 1)-th call

So we obtain n+ 1 calls to insert , n of which are recursive. Since the size
of a list is its number of elements plus one, we get the following functions:

nbinsert = 1

nr insert = [zs ≥ 1→ zs − 1]

len insert = zs
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The sequence of calls for insSort zs is the following

insSort [z1, . . . , zn] 1st call
→ insSort [z2, . . . , zn] 2nd call
...
→ insSort [zn] n-th call
→ insSort [ ] (n+ 1)-th call

and consequently we get the following functions:

nbinsSort = 1

nr insSort = [zs ≥ 1→ zs − 1]

len insSort = zs

�

In the following subsections we shall present three algorithms for comput-
ing our initial ∆0, µ0 and σ0 (4.1.1, 4.1.2 and 4.1.3, respectively), and prove
that they are correct bounds to the actual memory needs of the program.

4.1. Initial approximations: ∆0, µ0, σ0

4.1.1. Algorithm for computing ∆0

In order to grasp the intuitive meaning of the algorithm, let us consider
the activation tree corresponding to a function call to f x @ r shown in
Figure 15(a). The grey nodes correspond to base calls, whereas the white
ones correspond to recursive calls. We can abstract each node by its charges
on memory as follows:

• Base nodes are abstracted by applying the [[·]]∆-interpretation to the
set of base sequences of the function’s body, that is, those sequences
not containing recursive calls to f . We discard sequences with recur-
sive calls, since their execution cannot take place in a base case. By
considering only base sequences we avoid inserting a signature for f in
the environment Σ, as it is not relevant. Let us denote by ∆b the result
of applying the interpretation to the set of base sequences.

• Recursive nodes are abstracted by applying the [[·]]∆-interpretation to
the set of of recursive sequences of the function’s body, that is, those
sequences containing at least one recursive call to f . We are interested
in the charges done by each individual white node without taking into
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Figure 15: Activation tree corresponding to f x @ r and its abstraction.

computeDelta (f x @ r = ef ) Σ Γ nb nr = (b∆bc ∗ nb + b∆rc ∗ nr) t b∆bc
where S = seqs ef

(Sb, Sr) = splitExpf S
∆b = [[Sb]]∆ Σ Γ
∆r = [[Sr]]∆ (Σ ] [f 7→ ([ ], 0, 0)]) Γ

Figure 16: Algorithm for computing ∆0.
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account its descendants. That is why we attach the empty signature
([], 0, 0) to f in the environment Σ. In this way the costs of the recursive
calls done by f are ignored. We use ∆r to denote this abstract heap.

The result of this abstraction is depicted in Figure 15(b). In the internal
nodes of the tree we get ∆r xri, where i depends on the particular recursive
call. In the leafs we obtain ∆b xbi, where i depends on the particular base
call. The charges done by the whole tree will be equal to the sum of the
charges of the recursive nodes plus the sum of the charges of the base nodes.
We can further simplify this abstraction if we assume that the value of ∆r

applied to the size of the arguments in the root call x is greater than or equal
to the value of ∆r applied to the arguments of the recursive calls xr1, xr2,
etc. When this property applies to ∆r we can replace each ∆r xri in each
recursive node by ∆r x. If it also applies to ∆b we can proceed with the base
nodes in a similar way, so we obtain a tree (see Figure 15(c)) that is an upper
approximation to the previous one, but now all the recursive nodes charge the
same cost, and so do the base nodes. If nb and nr respectively approximate
the number of base and recursive nodes, our initial approximation is given
by the function b∆bc ∗ nb + b∆rc ∗ nr .

The property we are assuming on ∆b and ∆r usually holds in practice,
and it is formally defined as follows:

Definition 8. An abstract heap ∆ ∈ D is said to be parameter-decreasing
with respect to a function definition f x @ r = ef iff, for every recursive call
f a @ r′ occurring in ef , and for all x ∈ ((R+

∞)⊥)n, it holds that ∆ x ≥ ∆ s,
where s denotes the size of the parameters in the recursive call, that is,

si
def
= |ai| x.

The algorithm for computing the initial approximation ∆0 is shown in
Figure 16. We assume the existence of a function splitExpf that divides the
sequences in S into recursive sequences (Sr) and base sequences (Sb). The
least upper bound with b∆bc handles those input sizes in which b∆rc becomes
undefined.

Example 18. In our insSort running example, if S1 = seqs einsert and S2 =
seqs einsSort , defined in Examples 12 and 13, we obtain splitExpinsert S1 =
(S1b, S1r) and splitExpinsSort S2 = (S2b, S2r) where

S1b = {seq1, seq2} S2b = {seq4}
S1r = {seq3} S2r = {seq5}
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We obtain for the function insert : ∆1b = [zs ≥ 1 → [ρ2 7→ 2]] t [zs ≥
2 → [ρ2 7→ 2]] = [zs ≥ 1 → [ρ2 7→ 2]] and ∆1r = [zs ≥ 2 → [ρ2 7→ 1]]. By
considering the nb and nr functions of Example 17 we get:

∆insert
0 = [zs ≥ 2→ [ρ2 7→ zs + 1]] t [zs ≥ 1→ [ρ2 7→ 2]]

By attaching this abstract heap to insert in the signature environment,
we obtain the following results for insSort : ∆2b = [zs ≥ 1 → [ρ2 7→ 1]] and
∆2r = [zs ≥ 3→ [ρ2 7→ zs ]] t [zs ≥ 2→ [ρ2 7→ 2]], so

∆insSort
0 = [zs ≥ 3→ [ρ2 7→ zs(zs − 1) + 1]]t

[zs ≥ 2→ [ρ2 7→ 2(zs − 1) + 1]]t
[zs ≥ 1→ [ρ2 7→ 1]]

�

4.1.2. Algorithm for computing µ0

The algorithm for computing a first approximation µ0 to the heap needs of
a function is more involved. Let us consider the call tree of a given function
call f . We make a distinction between the charges done to the working
regions (self ) of the calls in this tree, and the charges done to the remaining
regions. The latter are cumulative, in the sense that the cells created in these
regions are not removed while the execution of the root call to f progresses.
The arrows in Figure 17a represent the directions of the execution flow, in
which charges to these regions grow. With respect to the charges done to the
working regions of the calls of the activation tree, these only grow from the
root call to the base cases, as Figure 17b shows. In this case we no longer
have arrows pointing upwards in the tree, because all the cells created in the
working region are removed when its corresponding function call finishes.
Therefore, the only directions in which we know for sure that these charges
grow, are the paths from the root call to its recursive children.

Now assume that, during this call to f , the execution flow has reached
the point just before executing the last base call (see Figure 18). We assume
the worst-case execution in which the longest call chain is the one who leads
to the last base call. In this situation, we obtain:

• The maximum accumulation of charges done to the regions different
from self . This is represented in Figure 18a. We denote these charges
by ∆bef , which can be obtained by applying the [[·]]∆-interpretation to
the execution sequences up to (and including) the last recursive call.
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(a) Regions different from the work-
ing region

(b) Working region

Figure 17: Growth of the charges done to different regions as the execution progresses.

• The maximum simultaneous charges done to the self region of the cur-
rent sequence of calls. These charges are represented in Figure 18b. If
we denote by ∆self the charges done in this region by each individual
call, and by len the length of the longest call chain, then the expression
∆self ∗ (len − 1) is an upper bound of these charges. As in the previous
case, the value of ∆self is obtained by applying the [[·]]∆-interpretation
without considering the expressions being executed after the last recur-
sive call.

The combination of these two charges gives us ∆self ∗ (len − 1) + ||∆bef ||.
Taking this value as a base level, we have to take the following charges into
account:

• Maximum level of memory occupied before the execution flow reaches
the last base call, on account of the charges done in memory before
the first recursive call and between any two consecutive recursive calls
(µbef ).

• Memory needs of the last base case, which is going to be executed (µb).
This corresponds to the white-marked call of Figure 18a.

• Memory needs of the part of the recursive cases which is still to be
executed after the last recursive call (µaft). This corresponds to the
white part of the gray-marked cells whose execution is pending.

Since none of them is necessarily greater than the other ones, we take the least
upper bound of the three. The algorithm is shown in Figure 19. Notice that
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len

(a) Regions different from self

len

(b) Working region (self )

Figure 18: Execution point before the control flow reaches the last recursive call. Full gray
nodes in (a) represent those calls whose execution is finished, whereas gray-white nodes
represent those calls whose execution has taken place until the last recursive call. The
rightmost base case (white node) has not been executed yet.

it must receive an abstract heap ∆, which is usually the initial approximation
∆0 given by computeDelta, although any other sound approximation to the
charges done by f is valid. We assume the existence of a function splitBAf

which divides each execution sequence in Sr into two subsequences: one
with the expressions being executed before (and including) the last recursive
call, and another with the expressions being executed from then. These
are stored, respectively, in Sbef and Saft . The abstract interpretations are
applied to these sets as explained previously. In the same way as in our ∆0,
we add µb in the least upper bound in order to deal with ⊥ in the remaining
components.

Example 19. Starting from the ∆insert
0 computed in Example 18, the algo-

rithm computeMu, when applied to insert , yields the following partial results

||∆bef || = [zs ≥ 3→ zs] t [zs ≥ 2→ 2]

∆self = [zs ≥ 2→ 0]

µbef = [zs ≥ 2→ 0]

µaft = [zs ≥ 2→ 1]

µb = [zs ≥ 1→ 2]

which lead to the following initial bound:

µinsert
0 = [zs ≥ 3→ zs + 2] t [zs ≥ 2→ 4] t [zs ≥ 1→ 2]
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computeMu (f x @ r = ef ) Σ Γ ∆ len
= (∆self ∗ (len − 1) + ||∆bef ||+ t{µbef , µaft , µb}) t µb

where S = seqs ef
(Sb, Sr) = splitExpf S
(Sbef , Saft) = splitBAf Sr
∆∗bef = [[Sbef ]]∆ (Σ ] [f 7→ (∆, 0, 0)]) Γ
∆bef =

⌊
∆∗bef

⌋
∆self = ∆∗bef ρself
µbef = [[Sbef ]]µ (Σ ] [f 7→ (∆, 0, 0)]) Γ
µaft = [[Saft ]]µ (Σ ] [f 7→ (∆, 0, 0)]) Γ
µb = [[Sb]]µ (Σ ] [f 7→ (∆, 0, 0)]) Γ

Figure 19: Algorithm for computing µ0.

By using the previous ∆insert
0 , µinsert

0 , the algorithm applied to insSort
yields the following

||∆bef || = [zs ≥ 4→ (zs − 1)(zs − 2) + 1] t
[zs ≥ 3→ 2(zs − 2) + 1] t
[zs ≥ 2→ 1]

∆self = [zs ≥ 2→ 0]
µbef = [zs ≥ 2→ 0]
µaft = [zs ≥ 4→ zs + 1] t [zs ≥ 3→ 4] t [zs ≥ 2→ 2]
µb = [zs ≥ 1→ 1]

which results in the following initial bound:

µinsSort0 = [zs ≥ 4→ zs2 − 2zs + 4] t
[zs ≥ 3→ 2zs + 1] t
[zs ≥ 2→ 3] t
[zs ≥ 1→ 1]

�

4.1.3. Algorithm for computing σ0

In order to approximate the stack costs of a function, we follow an ap-
proach similar to that of µ0. In this case we do not have cumulative com-
ponents such as the ∆bef shown before, because the behaviour of the stack,
in this sense, is analogous to that of the self region in the heap: it grows
as the execution flow descends through the activation tree. We use the term
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time

Stack level

Before
recursive call

Stack level
difference

Function execution
starts

Figure 20: The stack level difference value denotes the maximum difference between the
stack levels when the function starts executing and before its recursive call is done.

stack level to denote the number of words existing in the stack at a given
execution point. It is useful to obtain the maximum difference between the
stack levels in two execution points: when the context function f starts its
execution, and when a recursive call to f is going to be done (see Figure
20). We use the term stack level difference to refer to this value, which is
not expressed as an element of F, but as an element of N⊥ instead. This
is because this value does not depend on the input sizes as the rest of the
components we have seen so far. As we will see below, this quantity can be
statically approximated.

In order to compute an initial σ0 let us replicate the behaviour shown in
Figure 20 along a number len of nested recursive calls, so that we get the
graph shown in Figure 21. At the point in which the last base case is about
to be executed, the stack level reaches SD ∗ (len − 1) words, being SD the
maximum stack level difference. Then we have to proceed similarly as in
the computation of µ0: taking the value SD ∗ (len − 1) as a base level, we
should consider the stack costs on account of the base cases and the part
of the recursive cases before and after the last recursive call. If we denoted
these components by σb, σbef and σaft respectively, we would have to take
the least upper bound ·t{σb , σbef , σaft}. However, and because the absence of
cumulative components in the computation of stack needs (unlike the heap
needs µ, in which the cumulative ∆ component is involved), taking the least
upper bound of these three components is equivalent to applying the [[·]]σ-

47



time

Stack level

1 2 3 len
  
 1 

...

len

S
f
 e

f
 (n+m)

S
f
 e

f
 (n+m) * (len  1)

σ

Figure 21: Stack level behaviour during the execution of subsequent recursive calls.

computeSigma (f x @ r = ef ) Σ td len
= t{0, SDf ef (n+m)} ∗ (len − 1) + σ
where σ = [[ef ]]σ (Σ ] [f 7→ ([ ], 0, 0)]) td

n = |x|
m = |r|

Figure 22: Computation of an initial approximation σ0.

interpretation to the whole expression without taking into account the costs
of the subsequent recursive calls.

The algorithm for computing σ0 is shown in Figure 22. The SD function,
defined in Figure 23, computes the stack level difference for a given expression
in the context of a function definition. If this expression does not contain
recursive calls, it returns ⊥. If ef is the body of the context function f , with
n data parameters and m region parameters, the result of SDf ef (n+m) is
the stack level difference of this function.

Example 20. The algorithm computeSigma, when applied to the insert
function, yields the following intermediate results

SD insert (einsert) 3 = 8 σ = [zs ≥ 2→ 8] t [zs ≥ 1→ 3]

leading to σinsert
0 = [zs ≥ 2 → 8zs ] t [zs ≥ 1 → 8zs − 5]. For the function

insSort we obtain

SD insSort (einsSort) 2 = 6
σ = [zs ≥ 3→ 8zs − 7] t [zs ≥ 2→ t{6, 8zs − 12}] t [zs ≥ 1→ 1]
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SDf (f a @ r) td = |a|+ |r| − td
SDf be td = ⊥ if be is not a call to f
SDf (let x1 = e1 in e2) td = t{2 + SDf e1 0, 1 + SDf e2 (td+ 1)}
SDf (case x of alt) td = tnr=1(|xr|+ SDf er (td+ |xr|))

where altr = Cr xr → er

Figure 23: Definition of SDf , which computes the stack level difference.

leading to
σinsSort0 = [zs ≥ 3→ 14zs − 13]t

[zs ≥ 2→ t{6zs, 14zs − 18}]t
[zs ≥ 1→ 6zs − 5]

�

4.2. Correctness of the initial approximations

4.2.1. Before/after semantics with call tree counters

In this section we make precise the idea of the nb, nr , and len func-
tions being correct approximations to the actual parameters of the call tree
deployed at runtime. This is done by extending our semantic judgements
with a triple (Nb, Nr, L) of natural numbers representing the number of base
calls, recursive calls, and the maximum depth of the call tree. Obviously, it
makes little sense to talk about recursive calls, if we do not specify which
function do these numbers refer to. Therefore, the name of this function will
be attached to the arrow of these judgements, as in ⇓f .

Besides this, it turns out to be useful to distinguish between the charges
done in memory before the last recursive call in the current context, and
those done after this call. For this reason, we shall split each of the δ and m
components of our resource vector into two subcomponents: their before part,
(δb and mb), and their after part (δa and ma). The former takes into account
the expressions being executed before (and including) the last recursive call
in the current call context, and the latter takes into account the expressions
being executed after (and excluding) that recursive call. By convention, we
assume that, if the evaluation of an expression does not contain any recursive
call, all its charges are stored in the after part, and the before part is left
with no charges.
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Given the above, our extended semantics defines the derivation of judge-
ments of the following form:

E ` h, k, e ⇓f h′, k, v, (Nb, Nr, L), (δb/δa,mb/ma)

We omit the s component of the resource vector, since no distinction between
the before and after part is necessary for that component, as we shall see later.
In Figure 24 we show the rules for let expressions. The rest can be found in
[34, 35].

When evaluating a let expression we have to distinguish whether a recur-
sive call to f is done during the evaluation of e2. This can be done with the
help of the L2 component of the call tree counter returned by the evaluation
of e2. If there are no recursive calls in e2 we obtain L2 = 1 (i.e. the depth
of the call tree is 1), and we apply [Let1NC ]. In this case, the before part
corresponds to the before part of the evaluation of e1, whereas the after part
comprises the after part of e1 and the whole evaluation of e2. The [Let2NC ]
rule is used when there are recursive calls in e2 (that is, L2 > 1). The be-
fore part includes the evaluation of e1 and the before part of e2, whereas the
after part only contains the after part of e2. In this case, the formalization
of the (Nr, Nb, L) requires further case distinction, and we define a separate
operator ⊗ for this purpose.

From these semantic rules it is easy to show that the new components
introduced are just counters, and they do not influence the evaluation of
the expression. As a consequence, if we can execute an expression e under
the ⇓ semantics for a given environment E and heap h with k regions, we
can do the same under the ⇓f semantics (for any f), and we will get the
same normal form v and final heap h′. A little less obvious is the relation
between the (δb/δa,mb/ma) components of the ⇓f semantics, and the original
resource vector (δ,m, s) given by the corresponding ⇓-judgement. The whole
δ component is equivalent to the (region-wise) addition of the before and after
parts. With respect to the m component, an intuitive idea of its relation with
the mb and ma was already given by Section 2.3, when the heap consumption
of two expressions executed in sequence was explained. In this case, we can
consider that the consumption done by an expression is equivalent to the
sequential execution of the before and after parts of such expression. The
following lemma states these results formally.

Lemma 1. Let us assume an evaluation E ` h, k, td, e ⇓ h′, k, v, (δ,m, s).
Given a function f , there exists unique tuples (Nb, Nr, L) and (δb/δa,mb/ma)
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L2 = 1
E ` h, k, e1 ⇓f h′, k, v1, (Nb,1, Nr,1, L1), (δb,1/δa,1,mb,1/ma,1)

E ∪ [x1 7→ v1] ` h′, k, e2 ⇓f h′′, k, v, (Nb,2, Nr,2, L2), (δb,2/δa,2,mb,2/ma,2)
δa = δa,1 + δa,2 ma = max{ma,1, ||δa,1||+ma,2}

E ` h, k, let x1 = e1 in e2 ⇓f h′′, k, v, (Nb,1, Nr,1, L1), (δb,1/δa,mb,1/ma)
[Let1NC ]

L2 6= 1
(Nb, Nr, L) = (Nb,1, Nr,1, L1)⊗ (Nb,2, Nr,2, L2)

E ` h, k, e1 ⇓f h′, k, v1, (Nb,1, Nr,1, L1), (δb,1/δa,1,mb,1/ma,1)
E ∪ [x1 7→ v1] ` h′, k, e2 ⇓f h′′, k, v, (Nb,2, Nr,2, L2), (δb,2/δa,2,mb,2/ma,2)

δb = δb,1 + δa,1 + δb,2 mb = max{mb,1, ||δb,1||+ma,1, ||δb,1||+ ||δa,1||+mb,2}
E ` h, k, let x1 = e1 in e2 ⇓f h′′, k, v, (Nb, Nr, L), (δb/δa,2,mb/ma,2)

[Let2NC ]

(Nb,1, Nr,1, L1)⊗ (Nb,2, Nr,2, L2) = (Nb, Nr,max{L1, L2})

where (Nb, Nr) =

{
(Nb,2, Nr,2) if Nr,1 = 0

(Nb,1 +Nb,2, Nr,1 +Nr,2 − 1) otherwise

Figure 24: Enriched big-step semantics

such that E ` h, k, e ⇓f h′, k, v, (Nb, Nr, L), (δb/δa,mb/ma). Moreover, it
holds that:

1. δ = δb + δa.

2. m = max{mb, ||δb||+ma}.

Proof. The uniqueness of (Nb, Nr, L) and (δb/δa,mb/ma) are consequence
of the ⇓-evaluation being deterministic. The remaining properties are proven
by induction on the size of the ⇓-derivation.

Similarly as we did in Section 3.3, we can prove that the abstract inter-
pretation of the before and after sequences are, respectively, upper bounds
of the corresponding (δb/δa,mb/ma) components of the semantics.

In the following we shall use the letters ϕ, ψ, χ, etc. to denote ⇓-
judgements. Given one of these:

ϕ ≡ E ` h, k, td, e ⇓ h′, k, v, (δ,m, s)
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we have shown that, given a function f , there exist unique numbers Nb,
Nr, L, mb, and ma, and unique mappings δa, δb such that E ` h, k, e ⇓f
h′, k, v, (Nb, Nr, L), (δb/δa,mb/ma) can be derived. All these components are
determined by the judgement ϕ, so we can use the notation N f

b (ϕ), N f
r (ϕ),

Lf (ϕ), δfb (ϕ), and δfa (ϕ) to refer to these components. By abuse of notation,
we use δ(ϕ), m(ϕ), s(ϕ) for denoting, respectively, the δ, m, and s compo-
nents of the resource vector occurring in the judgement ϕ. Moreover, we use
Exp(ϕ) for denoting the expression being evaluated in ϕ. The notation Φ(ϕ)
denotes the set of judgements belonging to the derivation of ϕ (including ϕ
itself).

Now we are ready to give a formal definition of a function nb, nr and len
being correct.

Definition 9. Let us assume a function definition f x @ r = ef . We say
that nr (resp. nb and len) is a correct approximation of the number of
recursive calls (resp. base calls and height of the call tree), iff for every ϕ,
Ef , h, k, td, h′, v, δ, m, s, v, ı, s such that

1. ϕ ≡ Ef ` h, k, td, ef ⇓ h′, k, v, (δ,m, s), where Ef = [x 7→ v, r 7→ ı,
self 7→ k + 1].

2. For each i ∈ {1..|x|}, si = size(h, vi)

then it holds that nr s ≥ N f
r (ϕ) (resp. nb s ≥ N f

b (ϕ) and len s ≥ Lf (ϕ)).

4.2.2. Correctness of the initial ∆0, µ0 and σ0

The first step for proving the correctness of computeDelta is to express
our δ component resulting from the evaluation of a given function in terms
of the charges done by the base and recursive cases, and the number of base
and recursive calls done during that evaluation. The intuition behind this
idea is the same as in Section 4.1.1. In order to compute the charges done
by a recursive call, we need to be able to isolate the charges done by the
call itself from the charges done by its subsequent recursive calls. This can
be done with the help of an additional syntactic construct dmask, which
resets the δ component of a given expression. Its semantics are given by the
following rule:

E ` h, k, td, e ⇓ h′, k, v, (δ,m, s)
E ` h, k, td,dmask e ⇓ h′, k, v, ([ ],m, s)

It is easy to see that if we replace a function definition f x@ r = ef in a
environment FD by another masked function definition f x @ r = dmaskef
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we will be able to obtain the same judgements as with our initial signature,
but we will obtain a possibly different δ component in the resource vector.
The next theorem uses this function to define the charges done by a recursive
call.

Theorem 2. Assume a function definition f x @ r = ef ∈ FD such that
the following execution takes place:

ϕ ≡ E ` h, k + 1, td, ef ⇓FD h′, k + 1, v, (δ,m, s)

Let us define FD′ = (FD\f) ] [f 7→ f x @ r = dmask ef ], and assume the
following execution under FD′,

ϕ′ ≡ E ` h, k + 1, td, ef ⇓FD′ h
′, k + 1, v, (δ′,m, s)

which is derivable by using the ⇓-rules. Given the following definitions

δbase = max {δ(ψ) | ψ ∈ Φ(ϕ),Exp(ψ) = ef , L
f (ψ) = 1}

δrec = max {δ(ψ) | ψ ∈ Φ(ϕ′),Exp(ψ) = ef , L
f (ψ) > 1}

then we get:
δ|k ≤ δbase |k ∗Nf

b (ϕ) + δrec |k ∗Nf
r (ϕ) (6)

Proof. By induction on Lf (ϕ).

Notice the similarity between the expression (6) and that occurring in the
definition of computeDelta. The latter can be considered an “abstract” ver-
sion of the former. The correctness of the result of computeDelta follows
from this theorem.

Theorem 3. Let ∆0 = computeDelta (f x @ r = ef ) Σ Γ nb nr. If the
following conditions hold

1. Σ contains correct signatures for all the functions being called from f ,
except f itself.

2. The expression ef is typeable under the typing environment Γ.

3. nb and nr are correct approximations of the number of base and recur-
sive calls of f , respectively.

4. The abstract heaps ∆b and ∆r occurring in the definition of computeDelta
are parameter-decreasing.
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then ∆0 is a correct abstract heap for f .

Proof. (Sketch) It is a consequence of Theorems 1 and 2. Assume a judge-
ment:

ϕ ≡ E ` h, k, td, ef ⇓ h′, k, v, (δ,m, s)
By Theorem 1, the abstract heap ∆b is a correct bound of δbase |k, and ∆r is
a correct bound for δrec, because [ ] is a correct bound to the heap charges of
the function definition f x @ r = dmask ef .

Let us define, for each i ∈ {1..|x|}, si = size(h,E(xi)), and let us denote
by η the region instantiation consistent with E and Γ. We get:

∆0 w b∆bc ∗ nb + b∆rc ∗ nr �s,k,η δbase |k ∗N f
b (ϕ) + δrec|k ∗N f

r (ϕ) ≥ δ|k
In order to prove the correctness of computeMu we use an additional

construct mmask, which resets the m component of the resource vector:

E ` h, k, td, e ⇓ h′, k, v, (δ,m, s)
E ` h, k, td,mmask e ⇓ h′, k, v, (δ, 0, s)

Similarly as before, the following theorem gives the memory needs as an
expression which resembles the cost expression given by computeMu. The
difference is that it uses elements from the concrete domain, rather than the
abstract one.

Theorem 4. Assume a function definition f x @ r = ef ∈ FD and the
following judgement:

ϕ ≡ E ` h, k + 1, td, ef ⇓FD h′, k + 1, v, (δ,m, s)

Let us define FD′ = (FD\f) ] [f 7→ f x @ r = mmask ef ], and assume the
following execution under FD′,

ϕ′ ≡ E ` h, k + 1, td, ef ⇓FD′ h
′, k + 1, v, (δ,m′, s)

which is derivable by using the ⇓-rules. Given the following definitions:

δself = max {δfb (ψ)(k + 1) | ψ ∈ Φ(ϕ),Exp(ψ) = ef , L
f (ψ) > 1}

mbef = max {mf
b (ψ) | ψ ∈ Φ(ϕ′),Exp(ψ) = ef , L

f (ψ) > 1}
maft = max {mf

a(ψ) | ψ ∈ Φ(ϕ),Exp(ψ) = ef , L
f (ψ) > 1}

mbase = max {m(ψ) | ψ ∈ Φ(ϕ),Exp(ψ) = ef , L
f (ψ) = 1}

We get:

m ≤ ||δfb (ϕ)|k||+ δself ∗ (Lf (ϕ)− 1) + max{mbef ,maft ,mbase} (7)

54



Proof. By induction on Lf (ϕ), using Lemma 1.

The correctness of computeMu is established by connecting the elements of
the abstract domain appearing in its result with the elements of the concrete
domain occurring in the previous theorem.

Theorem 5. Let µ0 = computeMu (f x @ r = ef ) Σ Γ ∆ len. If the
following conditions hold

1. Σ contains correct signatures for all the functions being called from f ,
except f itself.

2. The expression ef is typeable under the typing environment Γ.

3. len is a correct approximation of the maximum length of the call tree
of f .

4. ∆ is a correct abstract heap for f .

5. The space cost functions ∆self , ∆bef , µaft , µbef , and µb occurring in the
definition of computeMu are parameter-decreasing.

then µ0 is correct with respect to f .

Proof. (Sketch) The proof proceeds in a similar way as Theorem 3. In this
case, it follows from Theorems 1 and 4. Assume a judgement

ϕ ≡ E ` h, k, td, ef ⇓ h′, k, v, (δ,m, s)

and denote, for each i ∈ {1..|x|}, si = size(h,E(xi)),
By Theorem 1, and following the same steps as in proof of Theorem 3 we

can prove that µb �s mbase .
Similarly, we can prove that ∆self �s δself , ||∆bef || �s ||δfb (ϕ)|k||, µbef �s

mbef , µaft �s maft . So we obtain:

µ0 w ∆self ∗ (len − 1) + ||∆bef ||+ t{µbef , µaft , µb}
�s δself ∗ (Lf (ϕ)− 1) + ||δfb (ϕ)|k||+ max{mbef ,maft ,mbase}
≥ m

For proving the correctness of computeSigma we follow a similar approach.
The details can be found in [35].
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4.3. Correctness in absence of parameter-decrease conditions.

The correctness of the initial bounds depend on the fact that their com-
ponents are parameter-decreasing, as stated in Definition 8. Therefore, it
is useful to establish some sufficient conditions under which the parameter-
decrease property is guaranteed. Given a function definition, the first con-
dition states that if the sizes of the parameters do not increase from the
root call to the recursive ones, every abstract heap or space cost function is
parameter-decreasing with respect to that definition.

Proposition 1. Assume a function definition f x @ r = ef . If for every
recursive call f a @ r in its body it holds that |ak| x v xk for every k ∈
{1..|x|}, then every ∆ ∈ D and ξ ∈ F is parameter-decreasing with respect to
f .

It is not unusual to write function definitions for which this condition does
not hold. In particular, those functions having an accumulator parameter
whose size increases from the root call to its recursive calls do not satisfy
this condition. Notice, however, that in these kind of functions, the costs do
not depend on the sizes of these accumulator parameters. Hence we can set
out the following weaker sufficient condition.

Proposition 2. Assume a function definition f x @ r = ef and ∆ ∈ D
(resp. ξ ∈ F). If for every recursive call f a @ r in the body of f it holds
that |ak| x v xk for every k of {1..|x|} except a subset P , and ∆ (resp. ξ),
does not depend on the parameters contained within P , then ∆ (resp. ξ) is
parameter-decreasing with respect to f .

This criterion is satisfied by every example function definition in this
paper. In absence of the parameter-decrease property, we can still adapt
our computeDelta, computeMu and computeSigma algorithms so as to get
correct initial approximations. We can follow an approach similar to that of
[2]: the key idea is to compute an invariant Ψ bounding the feasible sizes of
the parameters as a function of the arguments given to the root call, and then
maximize the partial components appearing in each algorithm (for instance,
∆b and ∆r in computeDelta). If the invariant Ψ is given by a set of linear
constraints, we can use linear programming techniques for this maximization.
This adaptation is subject of future work.
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5. Conclusions and related work

We have introduced an abstract interpretation-based analysis for comput-
ing memory bounds, which takes heap and stack consumption into account.
In this paper we show how to calculate initial correct approximations to the
consumption of recursive functions. It is possible to apply repeatedly the
abstract interpretation to the initial approximations and obtain also correct
approximations. In [34] we show that, under certain conditions, the new
approximations are more accurate than the previous ones.

The strengths of our approach can be summarized as follows:

1. It scales well to large programs, as each Safe function can be sepa-
rately inferred. The relevant information about the called functions is
recorded in the signature environment.

2. It supports arbitrary algebraic data types, provided they do not present
mutual recursion.

3. We get upper bounds for the maximum amount of live memory, as the
inference algorithms take into account the deallocation of dead regions
made at function termination.

4. It can accommodate several complexity classes, provided these are
monotone with respect to the input sizes.

5. It is, to our knowledge, the first approach in which the upper bounds
can be improved just by iterating the inference algorithm.

Safe’s type system [29] supports polymorphic recursion on regions, mean-
ing in essence that the recursive internal calls may use different regions than
the external call. The language provides also a destructive pattern matching
feature which allows the programmer to explicitly dispose data structures,
or parts of them. Both features result in programs with less memory con-
sumption. The restriction we have imposed to our cost and size functions to
be non-negative and monotone is the reason why destructive pattern match-
ing has been omitted from our analysis in a first phase. In [34] we provide
some sufficient conditions in which cell deallocation can be taken into ac-
count without breaking the monotonicity restriction. Polymorphic recursion
does not fit either in our inference strategy for ∆f , since it assumes that
the regions used by a recursive function f do not change from the external
call to the internal ones. As the number of region combinations is finite, we
could extend our algorithms to polymorphic recursion with some additional
analysis on these region patterns, as we explain in [34].
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The first approaches to space consumption analysis were restricted to
infer linear memory bounds. Hughes and Pareto developed in [24] a type
system and a type-checking algorithm which guarantees safe memory upper
bounds in a region-based first-order functional language. Unfortunately, the
approach requires the programmer to provide detailed consumption anno-
tations. As it has been said, the first fully automatic technique is due to
Hofmann and Jost. In [21] they present a type system and a type inference
algorithm which, in case of success, guarantees linear heap upper bounds
for a first-order functional language, and it does not require programmer
annotations. This type system has been extended in [27] so as to support
higher-order functions, and in [43] to support lazy evaluation.

Beyond linear bounds, the pioneer research on memory consumption is
that carried out under the AHA project (Amortised analysis of Heap space
Usage) [16], aimed at inferring amortised costs for heap space. In [40], Shkar-
avska et al. introduce a variant of sized types, in which the size annotations
can be polynomials of any degree. They address two novel problems: polyno-
mials are not necessarily monotonic and they are exact bounds, as opposed
to approximate upper bounds. These bounds are inferred with a combina-
tion of testing and polynomial interpolation-based techniques. In [39] they
extend their work to give approximate upper bounds on the output sizes,
thus broadening the class of analysable programs. In this case, the size
relations are expressed via non-deterministic conditional rewriting systems,
from which a closed form is extracted by using polynomial interpolation. A
strength of this approach is that, since the inference is testing-based, the
function being inferred can be considered as a black box. This allows them
to use the same inference techniques in different applications, such as, for
example, inferring loop-bounds for Java programs [41]. Unfortunately, poly-
nomial interpolation-based techniques do not necessarily lead to a correct
upper bound, and some external mechanism is needed for checking that the
result of the analysis is sound. Our analysis always gives correct bounds if
the externally given call-tree and size information is correct.

The COSTA system (COSt and Termination Analyzer for Java Bytecode)
[3, 4] implements a fully mechanical approach to resource analysis for Java
bytecode programs. It is based on the classical method of Wegbreit [47]. It
consists in the generation of a recurrence relation which captures the cost
of the program being analysed, and the computation of a closed form by
using a built-in recurrence solver PUBS [1, 2]. Their results go far beyond
linear bounds: the system can infer polynomial, logarithmic, and exponential
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bounds. COSTA also allows a restricted form of non-monotonicity, provided
it occurs in the context of linear expressions. The computation of our initial
∆0 is inspired by the way in which PUBS solves recurrence relations. The
main difference is that PUBS computes the nb and nr functions giving the
number of calls in a recurrence, whereas these functions are given externally
in our system. However, PUBS’ approach of computing both nr and nb
from the len function may yield imprecise over-approximations in some cases
(e.g. Quicksort). A drawback, in comparison to our system, is that COSTA
does not support non-linear size relations, even if these were given externally.
The reason behind this is that these relations are the guards of the recurrence
being generated, and PUBS assumes these guards to be conjunctions of linear
constraints.

More recently, the COSTA team has extended their system in order to
deal with different models of garbage collection [5]. The new results are
very promising. In their work, they claim that their liveness-based model
can accommodate the region-based memory management approach of [10],
although this integration is neither described nor formally specified.

Another promising technique for inferring polynomial bounds is due to
Hoffmann and Hofmann [20], which extends the work of [21]. In the uni-
variate case, their system is able to infer bounds, expressed as non-negative
linear combinations of binomial coefficients. These combinations subsume
the class of polynomials with non-negative coefficients, while allowing some
polynomials with negative coefficients, such as x2 − x. However, it does not
cover some other natural-valued polynomial bounds, such as 3x2 − 6x + 7.
In a more recent work [19], Hoffmann et al. extend their analysis to the
inference of multivariate functions. Unlike our system, they do not handle
regions nor explicit destruction, although they claim that the latter can be
added with no difficulty. Their first attempts only dealt with lists but recent
papers can also deal with arbitrary data types.

Both the original type system of [21], and its extension to polynomial
bounds [20] are closely related to the potential method used in the context
of amortised analysis [45, 13]. This approach provides an implicit notion
of input size (the number of elements in a list, usually), but there is no
explicit dependence between input sizes and costs, since the latter are given
by the potential assigned to each element of the input and output DSs. On
the contrary, our space analysis, as well as the COSTA system, are both
based on explicit sizes and symbolic manipulation. It is arguable whether
one is better than the other. An advantage of amortised analysis is that
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it allows to express more precisely the memory costs, when they do not
depend exclusively on the input size. Moreover, amortised analysis yields
more precise results when considering several functions executed in sequence,
since it accounts for the overall costs as a whole, instead of just adding the
worst-case costs of each function separately. On the contrary, the approaches
based on symbolic manipulation can be extended more easily, for instance,
by including cost expressions from several complexity classes, as it is done in
Safe.
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