
Space Consumption Analysis by Abstract Interpretation
Reductivity Properties I

Manuel Montenegro, Ricardo Peña, Clara Segura

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

Abstract

In a previous paper we presented an abstract interpretation-based static anal-
ysis for inferring heap and stack memory consumption in a functional lan-
guage. The language, called Safe, is eager and first-order, and its memory
management system is based on heap regions instead of the more conven-
tional approach of having a garbage collector.

In this paper we concentrate on an important property of our analysis,
namely that the inferred bounds are reductive under certain reasonable con-
ditions. This means that by iterating the analysis using as input the prior
inferred bound, we can get tighter and tighter bounds, all of them correct.
In some cases, even the exact bound is obtained.

The paper includes several examples and case studies illustrating in detail
the reductivity property of the inferred bounds.

Keywords: resource analysis, abstract interpretation, functional languages,
regions.

1. Introduction

In a previous paper [13], we presented an abstract interpretation-based
static analysis for inferring heap and stack memory consumption in a func-
tional language. It describes the automatic analysis of memory bounds for a

IWork supported by the projects TIN2008-06622-C03-01/TIN (STAMP), TIN2009-
14599-C03-01 (DESAFIOS10), S2009/TIC-1465 (PROMETIDOS) and the MEC FPU
grant AP2006-02154.

Email addresses: montenegro@fdi.ucm.es (Manuel Montenegro),
ricardo@sip.ucm.es (Ricardo Peña), csegura@sip.ucm.es (Clara Segura)

Preprint submitted to Science of Computer Programming April 24, 2014

first-order functional language called Safe, which has been developed in the
last few years as a research platform for analysing and formally certifying
properties of programs with regard to memory usage. Memory consumption
is especially relevant for instance when programming embedded devices. It
is necessary to ensure that programs will not stop due to lack of memory. It
is also useful to know in advance how much memory will be needed in order
to reduce hardware and energy costs.

The first results on memory consumption analysis were targeted towards
the functional programming paradigm. The developed techniques were sub-
sequently adapted to mainstream languages, such as Java or C++. Hughes
and Pareto introduce in [8] a first-order functional language with a type
and effect system guaranteeing termination and execution in bounded space.
This system is a combination of Tofte and Talpin’s approach to regions and
of sized types [9, 19]. The first fully automatic way to infer closed-form mem-
ory bounds is due to Hofmann and Jost [7]. Their analysis, based on a type
system with resource annotations, can infer linear heap memory bounds on
first-order functional programs with explicit deallocation. This approach is
extended in [11, 10] to higher-order programs. More recently, Hoffmann and
Hofmann have extended their initial work [7] to polynomial memory bounds
[6, 5], and Simões et al [20] have further extended it to lazy evaluation.

The COSTA system [2] follows a different approach, since it generates
recurrence equations and provides its own recurrence relation solver, PUBS
[1], which can handle multivariate, non-deterministic recurrence relations.
COSTA is an abstract interpretation-based analyser which works at the level
of Java bytecode, and supports several notions of cost, such as the number
of executed bytecode instructions, heap consumption, and number of calls to
a particular method.

In order to better compute memory bounds, we have decided Safe to have
a heap structured as a region stack in which regions are allocated and deal-
located in constant time. Given this memory model, we used in [13] abstract
interpretation-based techniques for inferring non-linear, monotonic, closed-
form expressions bounding the heap and stack memory costs of a program.
Safe’s type system [12] also supports polymorphic recursion on regions, mean-
ing in essence that the recursive internal calls may use different regions than
the external call. The language provides also a destructive pattern matching
feature which allows the programmer to explicitly dispose data structures,
or parts of them. Both features result in programs with less memory con-
sumption. Due to technical difficulties, we have excluded them in this work,

2

but we provide more comments on this in Section 5.
Since the memory needs of a program usually depend on its input, the

bounds we obtain in our analysis are multivariate functions on the sizes of
the inputs. Even if we restrict ourselves to a first-order functional language
like Safe, the inference of safe memory bounds is a very complex task, which
involves considering several preliminary results, such as size analysis, and
call-tree size analysis. Each one of these analyses is by itself a subject of
extensive research. In the analysis developed in [13] the size and call-tree
information is given externally.

The full development of the analyis can be found in [16], which is an ex-
tended and improved version of [13]. We can summarize the original contri-
butions of [13] as follows: (1) it infers space bounds for a functional language
with lexically scoped regions; (2) it uses abstract interpretation directly on
the infinite domain of multivariate monotonic functions; and (3) the bounds
go beyond multivariate polynomials. The additional contributions of this
paper are the following:

• Under certain mild conditions on the externally-given call-tree informa-
tion, our bounds have the nice property of reductivity. This means that
if we use a correct bound as an input of the abstract interpretation, we
get a new bound which is not only correct but also at least as tight.

• We have formally proved the correctness of all the results.

• We have implemented all the algorithms presented here in our Safe
compiler.

The proofs of the theorems, including the statement and proof of some aux-
iliary lemmas, are included in [17].

Plan of the paper

After this introduction, in Section 2 we summarise Safe’s features, the
abstract intepretation rules, and the space inference algorithms already pre-
sented in [13, 16]. Then, Section 3 is devoted to the reductivity property. We
specify and prove under which conditions this property holds. Detailed exam-
ples of reductivity are included here. Section 4 presents some medium-sized
case studies and the results obtained for many other functions. Section 5 dis-
cusses how it is possible to extend these results when polymorphic recursion
and explicit destruction are considered. Finally, Section 6 concludes.

3

2. Preliminaries

2.1. The Safe language

Safe is a first-order eager functional language with a Haskell-like syntax,
but with a different approach to memory management. Instead of using
a garbage collector, Safe’s heap memory model is based on a combination
of regions and explicit destruction. The latter aspect is controlled by the
programmer and it is not considered in this paper. However, in Section 5 we
sketch the inference of memory consumption in presence of this feature.

A region is a part of the memory, disjoint from other regions, in which
data structures are built. In this work, we define a data structure (DS in the
following) as the set of cells that stem from a given one (the root cell) and
have the same type. A cell is just a piece of memory containing a constructor
and the arguments to which it is applied. A naive implementation of cells will
assign a fixed number of bytes to all of them, but more clever implementations
are possible [15]. We pose the restriction that a data structure must be
contained within a single region. For instance, assume a list of lists of integer
values, of type [[Int]]. The cons-nil spine of the outer list is a DS which may
reside in a region different from those of the inner lists, each of which is a
separate DS. The integer values of the inner lists do not belong to any region
by themselves; they are contained within cells.

Regions are created and destroyed in a stack-like fashion. There is a cor-
respondence between the function call stack and the region stack. The region
associated with a function call to f is called its working region. An empty
region is allocated when a function call to f starts, and it is deallocated when
this call finishes. In the meanwhile new cells can be created in this region at
anytime, either by the owner function f or by some other function called from
it. All the DSs contained within a region are disposed of in constant time
when the region is deallocated. Regions are not handled directly by a Safe
programmer, but inferred by the compiler [14], which decorates function and
constructor applications with additional arguments: region variables. These
contain, at runtime, natural numbers denoting region positions in the stack,
being number zero the bottommost region, i.e. the first one being created.

Function definitions are also decorated with additional region parameters.
These are separated from the rest of normal parameters by a @ and contain
the region(s) in which the result of the function will be built.

4

1: 2: []

3: []

ys
xs

1: 2: result

Figure 1: Function append: the result is built on the region of the second parameter

Example 1. Consider the following function for concatenating two lists.

append [] ys @ r = ys
append (x : xs) ys @ r = (x : append xs ys @ r) @ r

There is a new region parameter r, which is used to build the resulting list,
and is passed to the subsequent recursive calls. The memory behaviour of
append is illustrated in Figure 1. �

Notice that, in the previous example, the result list shares the list passed
as second argument. If the programmer wants to avoid this sharing, Safe
provides a built-in facility for copying data structures. The expression ys @ r
returns a copy of the recursive spine of ys , which will be located in the region
given by r. If we substitute, in the example above, ys @ r for ys in the right-
hand side of the first equation, the result of append would not point to the
list ys , but to a copy of it. From now on, let us denote by appendC this
variant of the append function.

There exists a special region variable (self) in the scope of every function
definition which contains the identifier of the working region of that function.

Example 2. Consider the following implementation of the tree sort algo-
rithm:

treeSort xs @ r = inorder (mkTree xs @ self) @ r

The mkTree function builds a binary search tree from a given list, and inorder
builds a list by doing an inorder traversal of the elements of a given binary
search tree. Both functions receive a parameter specifying where to build the
result. The treeSort function builds the auxiliary binary search tree in its
working region (self), and it generates the result from this tree in the output
region given by r. When treeSort finishes, its working region disappears

5

2: []5: 9: 3: 9: []2: 3: 5:

Node 5

Node 3

EmptyNode 2

Empty Empty

Node 9

Empty Empty

Input Output

Working
region

of treeSort

Figure 2: Regions used by the treeSort algorithm

from the heap, and so does the auxiliary tree. This behaviour is graphically
illustrated in Figure 2. The full code of tree sort is shown in Figure 17, in
Section 4. �

Our space consumption analysis is applied to programs written in a desug-
ared variant of Full-Safe, whose name is Core-Safe. The syntax of the latter
is shown in Figure 3. There, we use the abbreviation item to denote the
sequence item1, . . . , itemn, and the notation |item| to denote its length. A
program is a sequence of data declarations, followed by a sequence of func-
tion definitions, and a main expression. Notice that the syntax distinguishes
between basic expressions and compound expressions, which respectively be-
long to BExp and Exp. The transformation from Full-Safe to Core-Safe
is standard and it shall not be described here. As an example, the append
function of Example 1 is translated as follows:

append xs ys @ r = case xs of
[]→ ys
(x : xx)→ let x1 = append xx ys @ r in (x : x1)@r

(1)

We have defined a big-step operational semantics for Core-Safe which also
accounts for the heap and stack consumption when executing an expression.

6

Prog 3 prog → data; def ; e

DecData 3 data → data T α @ ρ = altData
altData → C t @ ρ

DecFun 3 def → f x@ r = e
{Atoms}

a → c {literal constant}
| x {variable}

{Basic Expressions}
BExp 3 be → a {atom}

| x@ r {copy}
| a⊕ a {basic operator application}
| C a @ r {constructor application}
| f a @ r {function application}

{Expressions}
Exp 3 e → be {basic}

| let x = e in e {nonrecursive, monomorphic}
| case x of alt {pattern matching}

alt → C x→ e

Figure 3: Core-Safe language definition.

This resource-aware semantics is beyond the scope of this paper, and we refer
to [15, 16] for more details.

2.2. Safe’s type system

Safe provides an standard Hindley-Milner type system extended with
region type variables, which are the types of region variables. A region type
variable (RTV in the following) behaves as a polymorphic type variable in
Haskell, but only region variables are allowed to have a RTV as its type. The
compiler annotates algebraic data types with RTVs specifying the type of the
region which was used for building the corresponding DSs. For instance, if r
has the RTV ρ as its type, []@r has type [α]@ρ. If the types of two variables
are decorated with the same RTV, their corresponding DSs will live in the
same region at runtime. For instance, the compiler infers the following type
for the append function, and its variant appendC :

append :: [α]@ρ1 → [α]@ρ2 → ρ2 → [α]@ρ2

appendC :: [α]@ρ1 → [α]@ρ2 → ρ3 → [α]@ρ3

7

In the first case the result must be located at the same region as the
second parameter, whereas with appendC the result may live in a different
region. In both cases, the result is built in the region specified by the third
parameter (i.e. the region variable). Safe’s type system allows polymorphic
recursion on regions. This is not dealt with in our space analysis [13, 16],
but in Section 5 we briefly describe how we could handle it.

The data declarations section follows a syntax similar to that of Haskell,
with the exception of the RTVs generated by the compiler. For instance,
binary search trees are decorated as follows:

data BSTree α @ ρ = Empty @ ρ | Node (BSTree α @ ρ) α (BSTree α @ ρ) @ ρ

As an example, we show below the type signatures of the functions oc-
curring in the tree sort example.

mkTree :: [Int]@ρ1 → ρ2 → BSTree Int @ ρ2

inorder :: BSTree α @ ρ1 → ρ2 → [α]@ρ2

treeSort :: [Int]@ρ1 → ρ2 → [Int]@ρ2

A DS can be spread among several regions, whose types will be reflected
in its algebraic type. For instance, a datatype of key-value pairs will be
decorated as data TBL α β @ ρ1 ρ2 ρ3 = TBL [(α, β)@ρ1]@ρ2 @ ρ3.

2.3. Space consumption analysis by abstract interpretation

2.3.1. Abstract domain

The space analysis of [13, 16] computes, for a function definition f x @ r =
ef , a triple (∆, µ, σ) of n-ary functions. The µ and σ components represent
the minimum amount of memory cells (resp. stack words) which must be
available to execute f , as a function on the size of the input arguments. For
example, the append function builds as many cells as its first argument has,
except the [] cell of the latter.

The size of an integer is defined as its value, whereas the size of a DS is
the number of cells of its recursive spine. For instance, the size of a list of
s elements is s + 1 (a cell with the [] constructor, plus s cells with the (:)
constructor), and the size of a BSTree with m elements is 2m + 1 (m cells
with the Node constructor plus m+1 cells with the Empty constructor). The
µ and σ components are assumed to belong to the following domain:

Ff
def
= {ξ : ((R+

∞)⊥)n → (R+
∞)⊥ | ξ is monotonic and strict}

8

where R+
∞

def
= R+ ∪ {+∞}, and the notation D⊥ abbreviates D ∪ {⊥}. The

+∞ value denotes the absence of an upper bound (either because it does
not exist, or because the algorithm is not able to infer it), and ⊥ denotes
an undefined input value result (for instance, the memory needs of the head
function are undefined when applied to an empty list). The order relation
v on this set is defined in a pointwise basis (i.e. ξ v ξ′ iff ξ x ≤ ξ′ x
for every x). It is easy to show that (F,v) is a complete lattice. We shall
use a guarded λ notation to denote elements from this lattice. For instance
λxs .[xs ≥ 2→ xs − 1] is the function that, given an xs1 returns xs − 1 if xs
is greater or equal than two, and ⊥ otherwise.

The ∆ component of the triple (∆, µ, σ) is also a function on the size of the
parameters, but it returns a mapping from the types of the region parameters
r to numbers in R+

∞. Every RTV is associated with the charges done to each
region during the execution of f , that is, the difference between the number
of cells in a region when the execution of f finishes and the number of cells in
that region when the execution of f starts. The ∆ components are assumed
to belong to a domain Df defined as follows:

Df = {∆ : ((R+
∞)⊥)n →

(
Rf → R+

∞
)⊥ | ∆ is monotonic and strict}

where Rf is the set of the region types of the r parameters. The elements of
Df are called abstract heaps. In the context of expressions we shall also con-
sider the charges done to the working region (of type ρself). In this context,
abstract heaps belong to a domain D∗f defined as above, but substituting
Rf ∪{ρself } for Rf . We can extend the above-mentioned v relation, and the
usual + and ∗ operators to abstract heaps in a standard way, and it turns
out that (Df ,v) is a complete lattice. Notice that both Ff and Df are para-
metric on the function definition f being inferred. Since the latter is easily
deduced from the context, we shall just write D and F in the following.

2.3.2. Abstract interpretation rules

Once we have defined the elements of our abstract domain, our next step
is to devise a way to infer a triple (∆, µ, σ). Firstly we address this problem in
the context of expressions by using an abstract interpretation function that,
given an expression e, yields a triple (∆, µ, σ), where ∆ ∈ D∗, and µ, σ ∈ F.

1In what follows, we will use the same name both for the argument of a Safe function
and its size. Then, if xs represents a list, we will also name xs to its size.

9

[[a]] Σ Γ td = ([], 0, 1)

[[a1 ⊕ a2]] Σ Γ td = ([], 0, 2)

[[x @ r]] Σ Γ td = ([Γ(r) 7→ |x|], |x|, 2)

[[C a @ r]] Σ Γ td = ([Γ(r) 7→ 1], 1, 1)

Σ(g) = (∆g, µg, σg) θ = unify(Γ, g, r) yi = |ai| x
G = (∆g y 6= ⊥ ∧ µg y 6= ⊥ ∧ σg y 6= ⊥) l = |x| q = |r|

∆ = [G→ θ ↓y ∆g] µ = [G→ µg y] σ = [G→ σg y]

[[g a @ r]] Σ Γ td = (∆, µ, ·t{l + q, l + q − td+ σ})

Figure 4: Abstract interpretation for basic expressions.

The abstract interpretation of e is parametric on a signature environment Σ
which maps each function name g occurring in e to a signature (∆g, µg, σg)
specifying the memory consumption of its corresponding definition. It is also
parametric on a typing environment Γ that gives the RTVs of the region
variables in scope, and a statically determined number td , which accounts
for the number of words in the stack above the topmost continuation (see
[16] for details).

In Figure 4 we define the abstract interpretation of basic expressions as a
set of rules. For the sake of brevity, we omit the λx prefix in the cost functions
and abstract heaps of the right-hand side. An explanation for these rules can
be found in [16]. In this paper, we only explain function application.

Assume we want to infer a particular function application g a @ r.
Firstly, we retrieve the signature of g from the signature environment Σ,
so let (∆g, µg, σg) = Σ(g). Each component is a function which depends on
the sizes of the l parameters given to g, so we have to pass the sizes of the
actual arguments |ai|, which, in turn, are functions of the parameters of the
caller (that is why we have |ai| x). The guard G discards those values x
leading to sizes |ai| x not belonging to the domain of ∆g, µg or σg. We have
to find a mapping θ between the RTVs in the g’s most general type and the
RTVs of the particular instance used in the call g a @ r. That is what the
function unify does.

For instance, if in Γ g has type t1 → t2 → ρ1 → ρ2 → t3 and r has
type ρ, and g is called as g x y @ r r, then unify(Γ, g, [r, r]) will return
θ = {ρ1 7→ ρ, ρ2 7→ ρ}.

If there are several RTVs of g’s type being mapped to the same RTV ρ

10

[[let x1 = e1 in e2]]σ td = ·t{2 + [[e1]]σ 0, 1 + [[e2]]σ (td+ 1)}
[[case x of alt]]σ td =

⊔n
r=1 [|x| ≥ 1 + NumRecPos(Cr)→ nr + [[er]]σ (td+ nr)]

where n = |alt |
altr = Cr xr → er
nr = |xr|

Figure 5: Stack consumption of compound expressions.

in the function application, then the charges done to the region of type ρ are
the sum of the charges made by g to the RTVs ρ′ such that θ(ρ′) = ρ. The
↓ operator does this computation. It is defined as follows

θ ↓y ∆ = λρ.
∑

ρ′∈θ−1(ρ)

∆ y ρ′

where ρ ∈ Rf ∪ {ρself }.
We use the notation [[e]]∆, [[e]]µ, and [[e]]σ to refer to the first, second, and

third components of [[e]], and we omit the Σ, Γ, and td parameters when they
are clear from the context.

Our next step is to define the result of the abstract interpretation when
applied to compound expressions (let and case). In the context of stack
consumption, we define the [[·]]σ interpretation as in Figure 5. This definition
is analogous to the resource-aware semantics defined in [16]. The function
NumRecPos returns the number of recursive positions in the constructor Ci,
and the ·t operator denotes a strict variant of the t operator.

In the context of heap consumption, we transform (i.e. we flatten) the
compound expression let or case into a set of sequences of basic expressions.
Each sequence represents a possible execution flow through the compound
expression, and it may be preceded by a guard G with conditions on the sizes
of the input arguments, which must hold in order to execute the sequence.
We use the notation [G → be1, . . . , ben] to denote such sequences. In [16]
we defined a function seqs which, given a compound expression e, returns its
corresponding set of sequences.

Example 3. If eappend denotes the Core-Safe expression of the append func-
tion given in (1), this expression can be flattened as follows:

seqs eappend = {[xs ≥ 1→ ys], [xs ≥ 2→ append xx ys , (x : x1)@r]}

11

[[e]]∆
def
= [[seqs e]]∆

[[e]]µ
def
= [[seqs e]]µ

[[S]]∆
def
=

⊔
seq∈S [[seq]]∆

[[S]]µ
def
=

⊔
seq∈S [[seq]]µ

[[[G→ be1, ..., ben]]]∆
def
= [G→ [[be1]]∆ + . . .+ [[ben]]∆]

[[[G→ be1, ..., ben]]]µ
def
= [G→ ·t{ [[be1]]µ,

||[[be1]]∆||+ [[be2]]µ,
. . . ,∑n−1

j=1 ||[[bej]]∆||+ [[ben]]µ}]

Figure 6: Abstract interpretation of compound expressions and sequences.

�

The [[·]]∆ and [[·]]µ interpretations of a sequence of basic expressions is
defined in Figure 6. If ∆ is an abstract heap, the notation ||∆|| denotes
the cost function λx.

∑
ρ∈Rf∪{ρself }∆ x ρ, which belongs to F. In case the

transformation of an expression gives rise to several sequences, we apply the
interpretation to each of them, and take the least upper bound of the results.
The definition of [[·]]∆ for a sequence of basic expressions is straightforward
since the incremental heap consumption is additive. The definition of [[·]]µ,
i.e. the peak heap consumption approximation, for a sequence of basic ex-
pressions is graphically justified in Figure 7. In this definition we use the
·t operator instead of t, since we want to make the cost of the whole se-
quence undefined when so is the cost of a single element in that sequence.
For instance, given the following definition,

head (x : xs) = xs

the memory needs of the head function are given by the expression µhead =
[xs ≥ 2 → 0], as the head function yields an undefined result when applied
to an empty list, which has size one. Therefore, if we flatten the expression
(let ys = [] @ r in head ys) into the sequence [[] @ r, head ys], and then
apply the [[·]]µ -intepretation to the latter, we would obtain ·t{1, 1 +⊥} = ⊥,
as the expression we started from yields an undefined value.

Example 4. Back to our append function, assume a signature in which
Σ(append) = (f∆, fµ, 0), for some f∆ ∈ D and fµ ∈ F such that dom f∆ =
dom fµ = {(xs , ys) | xs ≥ 1}. The interpretation yields the following results:

12

time

⟦be
1
⟧

Δ

evaluation of be1 evaluation of be
2

⟦be
2
⟧

Δ

⟦be
3
⟧

Δ⟦be
1
⟧

μ

⟦be
2
⟧

μ

⟦be
3
⟧

μ

evaluation of be
3

memory
footprint

Figure 7: Peak heap consumption for a sequence of three basic expressions

[[eappend]]∆ = [xs ≥ 2→ [ρ2 7→ 1 + f∆ (xs − 1) ys ρ2]] t
[xs ≥ 1→ [ρ2 7→ 0]]

[[eappend]]µ = [xs ≥ 2→ ·t{fµ (xs − 1) ys, f∆ (xs − 1) ys ρ2 + 1}] t
[xs ≥ 1→ 0]

�

There exists a correctness result [16] that establishes the soundness of the
bounds computed in this way, provided the signatures given in Σ are correct
bounds to their corresponding function definitions.

2.4. Inference of recursive definitions

The abstract interpretation function defined in the previous section al-
lows us to infer upper bounds to heap and stack memory consumption of
nonrecursive function definitions. However, we cannot directly apply this
abstract interpretation to recursive functions, as we would need to include in
Σ a correct bound to the recursive function, which is precisely what we are
trying to obtain. If we find a triple (∆0, µ0, σ0) of correct initial bounds, we
may store it in the signature environment Σ and apply the abstract inter-
pretation in order to get more precise bounds. In this subsection we briefly

13

computeDelta (f x @ r = ef) Σ Γ nb nr = (b∆bc ∗ nb + b∆rc ∗ nr) t b∆bc
where S = seqs ef

(Sb, Sr) = splitExpf S
∆b = [[Sb]]∆ Σ Γ
∆r = [[Sr]]∆ (Σ] [f 7→ ([], 0, 0)]) Γ

Figure 8: Algorithm for computing ∆0.

describe how to compute these initial bounds. A more detailed description
of these algorithms can be found in [16]. In Section 3 we show that if we
apply the abstract interpretation with these bounds in the signature envi-
ronment Σ we obtain a triple (∆1, µ1, σ1) which is equal to or more precise
than (∆0, µ0, σ0).

In order to compute these initial bounds, we need some information re-
garding the number of base (nbf) and recursive calls (nr f) generated during
a given call to f . We also need information on the maximum number of
nested recursive calls (lenf), that is, the height of the call tree. Each of
these components is a function on the size of the input, and hence belongs
to F. We assume these three functions to be given externally. In general
these functions are not independent of each other. For instance, with linear
recursion we get nr f = lenf − 1 and nbf = 1. However, we shall not assume
a fixed relation between them. The computation of these three functions is
closely related to the problem of termination and the computation of rank-
ing functions. For instance, a sytem such as PUBS [3, 4] would be able to
provide them in many examples.

An algorithm for computing our initial approximation ∆0 is given in
Figure 8. We separate the set of sequences that results from the flattening of
ef into a set Sb of base sequences (those who do not contain a recursive call
to f), and a set Sr of recursive sequences (the remaining ones). That is what
the splitExpf function does. Then we compute an upper bound ∆b to the
charges done in the execution of a base case and so we do with the recursive
cases ∆r. If ∆ is an abstract heap in D∗, b∆c denotes the abstract heap in
D that results from disregarding the information of ρself from ∆. The result
of b∆bc ∗ nb accounts for the consumption done by all the base cases, and so
does b∆rc∗nr for the recursive cases. The addition of both yields the overall
consumption of f (Figure 9). The upper bound with b∆bc is justified in [16].

The computation of the initial µ0 is given in Figure 10. There we assume

14

Δ
r

Δ
r

Δ
r

Δ
b

Δ
b

Δ
b

Δ
b

nr nodes

nb nodes

Δ
b
* nb + Δ

r
* nr

Figure 9: Approximation of the heap charges (∆)

computeMu (f x @ r = ef) Σ Γ ∆ len
= (∆self ∗ (len − 1) + ||∆bef ||+ t{µbef , µaft , µb}) t µb

where S = seqs ef
(Sb, Sr) = splitExpf S
(Sbef , Saft) = splitBAf Sr
∆∗bef = [[Sbef]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γ
∆bef =

⌊
∆∗bef

⌋
∆self = ∆∗bef ρself

µbef = [[Sbef]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ
µaft = [[Saft]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ
µb = [[Sb]]µ (Σ] [f 7→ (∆, 0, 0)]) Γ

Figure 10: Algorithm for computing µ0.

the existence of a function splitBA that splits each recursive sequence seq of
basic expressions in a set Sr into two sequences: the first one containing the
basic expressions being executed before (and including) the last recursive call,
and the second one containing those being executed after the last recursive
call. The function gathers all the ‘before’ parts in Sbef and the ‘after’ parts
in Saft . The rationale behind the expression returned by computeMu is more
involved than in the case of computeDelta, and we shall refer to [16] for more
details.

In order to compute an initial approximation to the stack consumption
σ0, we have to approximate the number of words on the stack that can be
inserted since the execution of a call starts, and until the next recursive call
is about to be executed. This number is called the stack level difference, and
it can be statically approximated by the SDf function. If we assume that
this amount of words is inserted onto the stack along the execution of lenf−1

15

Stack level

1st recursive call

SD
f
 e

f
 (n+m)

2nd recursive call 3rd recursive call

execution of e
f

execution of e
f

execution of e
f

SD
f
 e

f
 (n+m)

SD
f
 e

f
 (n+m)

call to f call to f call to f

time

⟦e
f
⟧

σ

⟦e
f
⟧

σ

⟦e
f
⟧

σ

Figure 11: Function SDf and approximation of the stack consumption of a function f .

computeSigma (f x @ r = ef) Σ td len
= t{0, SDf ef (n+m)} ∗ (len − 1) + σ
where σ = [[ef]]σ (Σ] [f 7→ ([], 0, 0)]) td

n = |x|
m = |r|

Figure 12: Computation of an initial approximation σ0.

nested recursive calls, and then we add the maximum stack consumption of
a single call, we get an initial approximation to the overall stack costs of a
function definition. The algorithm is shown in Figure 12, and a graphical
illustration of why this approximation is sound is depicted in Figure 11.

Example 5. Assume the following implementation of the insertion sort al-

16

gorithm:
insert :: Int → [Int]@ρ1 → ρ2 → [Int]@ρ2

insert y [] = [y]
insert y (x : xx) | y ≤ x = y : x : xx

| otherwise = x : insert y xx
insSort :: [Int]@ρ1 → ρ2 → [Int]@ρ2

insSort [] = []
insSort (x : xx) = insert x (insSort xx)

By applying the previously presented algorithms, we obtain the following
initial approximation (∆10, µ10, σ10) for insert :

∆10 = [zs ≥ 2→ [ρ2 7→ zs + 1]] t [zs ≥ 1→ [ρ2 7→ 2]]
µ10 = [zs ≥ 3→ zs + 2] t [zs ≥ 2→ 4] t [zs ≥ 1→ 2]
σ10 = [zs ≥ 2→ 8zs] t [zs ≥ 1→ 8zs − 5]

and the following initial approximation (∆20, µ20, σ20) for insSort :

∆20 = [zs ≥ 3→ [ρ2 7→ zs(zs − 1) + 1]] t [zs ≥ 2→ [ρ2 7→ 2(zs − 1) + 1]]t
[zs ≥ 1→ [ρ2 7→ 1]]

µ20 = [zs ≥ 4→ zs2 − 2zs + 4] t [zs ≥ 3→ 2zs + 1] t [zs ≥ 2→ 3]t
[zs ≥ 1→ 1]

σ20 = [zs ≥ 3→ 14zs − 13] t [zs ≥ 2→ t{6zs, 14zs − 18}]t
[zs ≥ 1→ 6zs − 5]

�

The computeDelta, computeMu, and computeSigma algorithms have been
proven correct w.r.t. our resource-aware operational semantics, given that the
abstract cost functions involved in their computations (i.e. ∆b, ∆r, etc) are
parameter-decreasing [16]. A cost function is parameter-decreasing when it
yields decreasing values from the root call to its recursive calls.

3. Reductivity properties

3.1. Preliminaries on fixed points in complete lattices

Let (L,v) be a complete lattice and f a monotonic function on L. Given
an element x ∈ L, we say that: x is a fixed point of f iff f(x) = x; f is
reductive at x iff f(x) v x; and f is extensive at x iff f(x) w x. We denote
by Fix (f) the set of fixed points of f . Similarly, we denote by Red(f) (resp.
Ext(f)) the set of points upon which f is reductive (resp. extensive).

17

L

Red(f)

Ext(f)

Fix(f)

x
f(x)

f n(x)
f n+1(x)

∏
n
f n(x)

gfp(f)

lfp(f)

Figure 13: Representation of the points upon which a given function is reductive and
extensive.

Given the fact that L is a complete lattice, the least upper bound and the
greatest lower bounds of Fix (f) are both defined and respectively denoted by
lfp(f) and gfp(f). Tarski’s fixed point theorem [21] establishes the relation
between fixed points and the reductivity/extensivity properties.

Theorem 1 (Tarski 1955, taken from [18][Section A.4]). Let (L,v) a
complete lattice and f : L→ L a monotone function. Then lfp(f) = uRed(f)
and gfp(f) = tExt(f).

Figure 13 depicts the layout of the reductive and extensive elements of L
w.r.t. a function f . If x is an element belonging to Red(f), then f(x) v x.
By monotonicity of f , we get f(f(x)) v f(x). By repeating this process we
get the following chain,

x w f(x) w f 2(x) w . . . w fn(x) w . . .

whose elements, by Tarski’s theorem, are located above the least fixed point.

3.2. Iteration of our abstract interpretation

Now let us apply these concepts to our particular abstract interpretation.
Recall that (F,v) and (D,v) are complete lattices. Given the context func-
tion definition f , and some fixed Σ, Γ and td, the iteration of the abstract

18

interpretation can be understood as a function on abstract heaps D → D
(resp. on cost functions F→ F) which, given an input ∆ (resp. µ, σ), inserts
it into the signature environment Σ, and applies the [[ef]]∆ interpretation
(resp. [[ef]]µ and [[ef]]σ) to the body of f .

Definition 1. Assume a function definition f x @ r = ef ∈ FD, where
n = |x| and m = |r|, and some fixed Σ, Γ, ∆, such that f /∈ dom Σ. We
define its iteration operators Df : D→ D, M∆,f : F→ F and Sf : F→ F as
follows:

Df (∆) = b[[ef]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γc
M∆,f (µ) = [[ef]]µ (Σ] [f 7→ (∆, µ, 0)]) Γ

Sf (σ) = [[ef]]σ (Σ] [f 7→ ([]f , 0, σ)]) Γ (n+m)

Notice that, strictly speaking, the D, M and S operators are also para-
metric on the given Σ and Γ, but we assume all these elements fixed. Now
we prove their monotonocity.

Proposition 1. The iteration operators Df , M∆,f and Sf are monotonic
on their input arguments.

For each of these operators, we can define its set of fixed points, reductive
elements and extensive elements in the same way as above.

Example 6. Consider the insert function of Example 5, and its iteration
operator Dinsert , obtained by definition:

Dinsert(∆) = [zs ≥ 2→ [ρ2 7→ 1 + ∆ y (zs − 1) ρ2]] t [zs ≥ 1→ [ρ2 7→ 2]]

Let us consider the abstract heaps ∆1, ∆2 and ∆3 defined as follows:

∆1
def
= [zs ≥ 1→ [ρ2 7→ 0]]

∆2
def
= [zs ≥ 1→ [ρ2 7→ bzsc+ 1]]

∆3
def
= [zs ≥ 1→ [ρ2 7→ 2zs]]

If we apply the Dinsert iterator to each of these, we obtain the following
results:

Dinsert(∆1) = [zs ≥ 2→ [ρ2 7→ 1 + 0]] t [zs ≥ 1→ [ρ2 7→ 2]]
= [zs ≥ 1→ [ρ2 7→ 2]]

19

Dinsert(∆2) = [zs ≥ 2→ [ρ2 7→ 1 + (bzs − 1c+ 1)]]t
[zs ≥ 1→ [ρ2 7→ 2]]

= [zs ≥ 2→ [ρ2 7→ bzsc+ 1]] t [zs ≥ 1→ [ρ2 7→ 2]]
= [zs ≥ 1→ [ρ2 7→ bzsc+ 1]]

Dinsert(∆3) = [zs ≥ 2→ [ρ2 7→ 1 + 2(zs − 1)]] t [zs ≥ 1→ [ρ2 7→ 2]]
= [zs ≥ 2→ [ρ2 7→ 2zs − 1]] t [zs ≥ 1→ [ρ2 7→ 2]]

Therefore, ∆1 ∈ Ext(Dinsert), ∆2 ∈ Fix (Dinsert), and ∆3 ∈ Red(Dinsert).
�

3.3. Reductivity of ∆0, µ0 and σ0

Now we will prove that:

1. The abstract heap ∆0 computed by computeDelta falls into the re-
ductive area of the lattice (D,v) with respect to the iteration of the
abstract interpretation Df , provided some admissibility conditions on
the externally given nb and nr functions hold.

2. The abstract costs µ0 and σ0, respectively computed by computeMu
and computeSigma, fall into the reductive area of the lattice (F,v)
with respect to the iteration of the respective abstract interpretations
M∆,f and Sf provided some admissibility conditions of the len function
hold.

The admissibility conditions are first defined.

Definition 2 (Admissible nb). A function nb for computing the number
of base calls is admissible with respect to a definition f x @ r = ef ∈ FD iff
for every x ∈ Rn the following conditions hold:

1. nb x ≥ 1

2. ∀seq ∈ seqs ef .
∑
{nb y | f a @ r ∈ seq ∧ yi = |ai| x} ≤ nb x

Definition 3 (Admissible nr). A function nr for computing the number
of recursive calls is admissible with respect to a definition f x @ r = ef ∈ FD
iff for every x ∈ Rn the following conditions hold:

1. nr x ≥ 0

2. ∀seq ∈ seqs ef .1 +
∑
{nr y | f a @ r ∈ seq ∧ yi = |ai| x} ≤ nr x

20

f x

@ r

f x
1
@ r f x

2
@ r

len x
1

len x
2

nr x
1

nr x
2

nb x
1

nb x
2

Figure 14: Activation tree of a call f x @ r. The triangles represent the activation trees
of each child call.

In order to get an intuitive idea on these conditions, let us consider the
activation tree shown in Figure 14. The root of this tree is a call to f
with two recursive calls, each one with an approximation of its number of
leafs nb xi and internal nodes nr xi, with i = 1, 2. Hence, the whole tree has
nb x1+nb x2 leafs or less. Admissibility on nb holds if the approximation nb x
given for the root node is greater than or equal to this number. Analogously,
nr is admissible if the approximation nr x of the root node is greater or equal
than 1 + nr x1 + nr x2.

Definition 4 (Admissible len). A function len for computing the maxi-
mal length of call chains is admissible with respect to a definition f x @ r
= ef ∈ FD iff for every x ∈ Rn the following conditions hold:

1. len x ≥ 1

2. ∀seq ∈ seqs ef .1 +
⊔
{len y | f a @ r ∈ seq ∧ yi = |ai| x} ≤ len x

3. If (Sb, Sr) = splitExpf (seqs ef), for every seq ∈ Sr, len x ≥ 2 whenever
guard(seq) x holds.

The first admissibility condition is fairly reasonable. The second one is anal-
ogous to its counterparts in nb and nr . Assume the situation given in Figure
14. An upper bound to the height of the whole tree is 1 + t{len x1, len x2}.
The second condition states that the approximated length len x must be
greater than or equal to this bound. Finally, the third condition states that,
in those values x that may lead to a recursive call, len must be greater than
two (accounting for the caller and the callee).

21

Theorem 2. Let us define ∆0 = computeDelta (f x @ r = ef) Σ Γ nb nr,
µ0 = computeMu (f x @ r = ef) Σ Γ ∆ len and σ0 = computeSigma (f x
@ r = ef) Σ (|x|+ |r|) len.

1. If nr and nb are admissible, and the ∆b and ∆r occurring in the defi-
nition of computeDelta are parameter-decreasing, then:

b[[seq]]∆ (Σ] [f 7→ (∆0, 0, 0)]) Γc v ∆0 for every seq ∈ seqs ef

Therefore, ∆0 ∈ Red(Df)
2. If len is admissible, the ∆self , µbef , µaft , µb occurring in computeMu

are parameter-decreasing, and b[[seq]]∆ (Σ] [f 7→ (∆, 0, 0)]) Γc v ∆ for
every seq ∈ seqs ef , then:

[[seq]]µ (Σ] [f 7→ (∆, µ0, 0)]) Γ v µ0 for every seq ∈ seqs ef

Therefore, µ0 ∈ Red(M∆,f).

3. If len is admissible and the σ occurring in the definition of computeSigma
is parameter-decreasing, then σ0 ∈ Red(Sf).

Proof. We distinguish if seq is a base or a recursive sequence, and apply
the abstract interpretation function.

This result allows us to iterate the abstract interpretation in order to
reach more precise bounds by considering chains as the following,

∆0 w Df (∆0) w D2
f (∆0) w · · · w Dnf (∆0) w · · ·

which, if eventually stabilizes, it does in a fixed point. Since the abstract
domain is infinite, the fixpoint is not necessarily reached in a finite number
of iterations. Each new bound is at least as precise as the previous one
but also usually more complex from the representation point of view, as will
become apparent in the examples. Simplification algorithms could improve
this although we have not implemented them yet.

Since the initial approximation to µ depends on the given input ∆, it is
advisable to spent some time iterating Df in order to achieve better results.
Notice that the ∆ given as parameter to computeMu must be reductive for
every sequence. This assumption holds, in particular, if ∆ is either the initial
approximation ∆0 computed by the algorithm of Section 2.4, or the result of
applying the abstract interpretation n > 0 times to it, Dnf (∆0).

22

The following three examples show respectively how the iteration opera-
tors Df , M∆,f and Sf work for functions insert and insSort of Example 5.
In each case we show a couple of iterations and then a general term for the
i-th iteration, which has been obtained by hand. The latter is used to obtain
the limit of the sequence of functions, which in some cases is a fixpoint or
coincides with the fixpoint in those sizes which are natural numbers.

Example 7. Assume the ∆10 of Example 5. By applying Dinsert to this
abstract heap we obtain:

Dinsert(∆10) = [zs ≥ 3→ [ρ2 7→ zs + 1]] t [zs ≥ 2→ [ρ2 7→ 3]]t
[zs ≥ 1→ [ρ2 7→ 2]]

which is strictly smaller than ∆10 when zs ∈ (2, 3). Another iteration yields
the following result:

D2
insert(∆10) = [zs ≥ 4→ [ρ2 7→ zs + 1]] t [zs ≥ 3→ [ρ2 7→ 4]] t

[zs ≥ 2→ [ρ2 7→ 3]] t [zs ≥ 1→ [ρ2 7→ 2]]

In general, the i-th iteration results in the following abstract heap:

Diinsert(∆10) =


⊥ zs < 1

[ρ2 7→ bzsc+ 1] 1 ≤ zs < i+ 2

[ρ2 7→ zs + 1] i+ 2 ≤ zs

This sequence of functions converges to the fixpoint:

∆fix
insert = [zs ≥ 1→ [ρ2 7→ bzsc+ 1]

In fact all the functions in the sequence coincide with ∆fix
insert on the sizes

which are natural numbers. In this case it is easy to prove that ∆fix
insert is the

only fixpoint of Dinsert , and that it represents the exact heap consumption of
the worst case of insert .

Had we used a more precise function nr insert = [zs ≥ 1→ bzsc − 1] then
we would have obtained directly a fixpoint:

∆′10 = [zs ≥ 1→ [ρ2 7→ bzsc+ 1]] = ∆fix
insert

Assume now the ∆20 of Example 5, which is obtained using ∆10. In order
to make the example more legible we will omit [ρ2 7→ . . .]. By applying

23

^W

∆20

DinsSort(∆20)
D2

insSort(∆20)
D3

insSort(∆20)
D4

insSort(∆20)

∆fix
insSort

Figure 15: Graphical representation of Di
insSort(∆20) (i ∈ {0..4}) and ∆fix

insSort .

DinsSort to this abstract heap we obtain:

DinsSort(∆20) = [zs ≥ 4→ zs2 − 2zs + 3]t
[zs ≥ 3→ 3zs − 3]t
[zs ≥ 3→ 3]t
[zs ≥ 1→ 1]

which is strictly smaller than ∆20 from 3 onwards. Another iteration yields
the following result:

D2
insSort(∆20) = [zs ≥ 5→ zs2 − 3zs + 6]t

[zs ≥ 4→ 4zs − 6]t
[zs ≥ 3→ zs + 3]t
[zs ≥ 2→ 3]t
[zs ≥ 1→ 1]

In Figure 15 we graphically represent ∆20 and iterations DinsSort(∆20) to
D4

insSort(∆20). In each iteration there is one more linear step which stabilises
after one more iteration, that is the reason why in interval [3, 4) iterations
D2

insSort(∆20), D3
insSort(∆20) andD4

insSort(∆20) are equal; and in [4, 5) iterations
D3

insSort(∆20) and D4
insSort(∆20) are equal.

24

The general form of the sequence is the following:

DiinsSort(∆20) = [zs ≥ i+ 3→ zs2 − (i+ 1)zs + (i+ 1)(i+ 2)/2]t
[zs ≥ i+ 2→ (i+ 2)zs − (i+ 1)(i+ 2)/2]t
[zs ≥ i+ 1→ (i− 1)zs + 3− (i− 2)(i− 1)/2]t
[zs ≥ i→ (i− 2)zs + 3− (i− 3)(i− 2)/2]t
. . . {j ∈ {1..i− 2}}
[zs ≥ i− j → (i− j − 2)zs + 3− (i− j − 3)(i− j − 2)/2]t
[zs ≥ 1→ 1]

It converges to the function:

∆2∞ =

[
zs ≥ 2→ (bzsc − 2)zs + 3− (bzsc − 3)(bzsc − 2)

2

]
t [zs ≥ 1→ 1]

which on the natural numbers, where zs = bzsc, coincides with the fixpoint,
(shown in Figure 15):

∆fix
insSort =

[
zs ≥ 1→ bzsc (bzsc+ 1)

2

]
This fixpoint represents the exact heap consumption of the worst case of
insSort .

In the following table we show the values of the first four iterations for
naturals 1 to 7, and also the corresponding values of the fixpoint:

1 2 3 4 5 6 7

∆20 1 3 7 13 21 31 43

DinsSort(∆20) 1 3 6 11 18 27 38

D2
insSort(∆20) 1 3 6 10 16 24 34

D3
insSort(∆20) 1 3 6 10 15 22 31

D4
insSort(∆20) 1 3 6 10 15 21 29

∆fix
insSort 1 3 6 10 15 21 28

Notice that, although the sequence converges to a strict upper bound
of the fixpoint, each new iteration coincides with the fixpoint in one more
natural number.

Had we used more precise functions as ∆fix
insert and nr insSort = [zs ≥ 1 →

bzsc − 1] we would have obtained:

∆′20 = [zs ≥ 2→ bzsc (bzsc − 1) + 1] t [zs ≥ 1→ 1]

25

which coincides with ∆20 on the natural numbers. In this case, we obtain a
sequence of functions

DiinsSort(∆
′
20) =

[
zs ≥ i+ 2→ bzsc2 − (i+ 1) bzsc+ (i+1)(i+2)

2

]
t[

zs ≥ 1→ bzsc(bzsc+1)
2

]
which converges to the fixpoint ∆fix

insSort . Each new iteration i reaches the
value of the fixpoint in the interval (i+ 1, i+ 2). �

Notice that, in the insert function, the abstract heaps of every iteration are
equal if we consider their domains only from a given threshold value. In some
applications, it may suffice to obtain an expression zs + 1 as an upper-bound
to the costs of insert , even though it is not a fixed point of the corresponding
iteration operator. This motivates the following definition.

Definition 5. Two abstract heaps ∆1,∆2 ∈ D are said to be asymptotically
equivalent (denoted ∆1 ≈ ∆2) if there exists some x0 such that, for every
x such that x ≥ x0, ∆1(x) = ∆2(x). The same applies to cost functions
σ, µ ∈ F.

In our example above, it holds that ∆10 ≈ Dinsert(∆10). In this case, we
say that ∆10 is an asymptotic fixed point of Dinsert . We have already seen in

Example 6 that ∆2
def
= [zs ≥ 1→ [ρ2 7→ bzsc+ 1]] is an exact fixed point.

Example 8. Assume the ∆10 and µ10 of Example 5. By applyingM∆10,insert

to µ10 we obtain:

M∆10,insert(µ10) = [zs ≥ 3→ zs + 1] t [zs ≥ 2→ 3] t [zs ≥ 1→ 2]

which is a fixpoint ofM∆10,insert . Notice that the operator depends on the ∆
being used, and in this case we cannot improve µ further by iterating with
the same ∆. Consequently we could try iterating both ∆ and µ at the same
time. We use ∆1i to denote Diinsert(∆10) and µ1i to denoteM∆1i,insert(µ1(i−1)).
Now we obtain the following sequence:

µ11 = [zs ≥ 4→ zs + 1] t [zs ≥ 3→ 4] t [zs ≥ 2→ 3] t [zs ≥ 1→ 2]
µ12 = [zs ≥ 5→ zs + 1] t [zs ≥ 4→ 5] t [zs ≥ 3→ 4] t [zs ≥ 2→ 3]t

[zs ≥ 1→ 2]
. . .

26

Abbreviating:

µ1i = [zs ≥ i+ 3→ zs + 1] t [zs ≥ 1→ bzsc+ 1]

which converges to the fixpoint µfix
insert = [zs ≥ 1 → bzsc + 1]. Again, this

fixpoint represents the exact heap peak of the worst case of insert .
In order to calculate µ for insSort we have to determine which ∆ and

µ we assume for insert . Functions are analysed in dependency order, which
means that we can assume we have already executed several iterations on
∆10 and µ10 before calculating ∆ and µ for insSort . In this example, for
simplicity, we will assume one iteration for each, i.e.

∆11 = [zs ≥ 3→ zs + 1] t [zs ≥ 2→ 3] t [zs ≥ 1→ 2]
µ11 = [zs ≥ 4→ zs + 1] t [zs ≥ 3→ 4] t [zs ≥ 2→ 3] t [zs ≥ 1→ 2]

and in such case we calculate ∆′20 and µ′20:

∆′20 = [zs ≥ 4→ zs2 − zs + 1]t
[zs ≥ 3→ 3zs − 2]t
[zs ≥ 2→ 2zs − 1]t
[zs ≥ 1→ 1]

µ′20 = [zs ≥ 5→ zs2 − 2zs + 3]t
[zs ≥ 4→ 3zs − 1]t
[zs ≥ 3→ 2zs]t
[zs ≥ 2→ 3]t
[zs ≥ 1→ 1]

Again if we iterate µ by fixing ∆ we obtain immediately a fixpoint and
we obtain poor results. If we iterate ∆ and µ at the same time, we obtain
a sequence of functions ∆′2i = DiinsSort(∆

′
20) and µ′2i = M∆′2i,insSort(µ

′
2(i−1))

such that for i ≥ 2,

∆′2i = µ′2(i−1)

= [zs ≥ i+ 4→ zs2 − (i+ 1)zs + (i+ 1)(i+ 2)/2]t
[zs ≥ i+ 3→ (i+ 3)zs + 1− (i+ 2)(i+ 3)/2]t
[zs ≥ i+ 2→ (i+ 1)zs + 1− i(i+ 1)/2]t
. . . {j ∈ {−1..i− 3}} . . .
[zs ≥ i− j → (i− j − 3)zs + 6− (i− j − 4)(i− j − 3)/2]t
[zs ≥ 2→ 3]t
[zs ≥ 1→ 1]

27

It converges to the function:

∆′2∞ = µ′2∞
= [zs ≥ 3→ (bzsc − 3)zs + 6− (bzsc − 4)(bzsc − 3)/2]t

[zs ≥ 2→ 3]t
[zs ≥ 1→ 1]

which is strictly smaller than the ∆2∞ obtained in Example 7, because we
use more precise information about insert . It also coincides on the natural
numbers with ∆fix

insSort , which is both a fixpoint of DinsSort andM∆fix
insSort

when

using ∆fix
insert and µfix

insert . This fixpoint represent the exact heap peak of the
worst case of insSort .

If we concentrate only on the asymptotic part of the sequence [zs ≥
i+ 4→ zs2 − (i+ 1)zs + (i+ 1)(i+ 2)/2] we can see that given a particular
natural zs ≥ 4, after zs − 4 iterations we get ∆′2(zs−4) zs = 3 + ∆fix

insSort zs .

Had we used ∆fix
insert , µ

fix
insert and ∆fix

insSort , then the initial approximation
µ′′20 would have already been the fixpoint µfix

insSort . �

Example 9. Recall σ10 in Example 5. By applying Sinsert we obtain a se-
quence σ1i = S iinsert(σ10):

σ1i = [zs ≥ i+ 2→ 8zs]t
[zs ≥ i+ 1→ 8zs − 5]t
[zs ≥ 1→ 8 bzsc − 5]

which converges to the fixpoint σfix
insert = [zs ≥ 1→ 8 bzsc − 5].

If we assume σ10 for insert , then we obtain σ20 from Example 5. By
applying SinsSort we obtain a sequence σ2i = S iinsSort(σ20) (i ≥ 2):

σ2i = [zs ≥ i+ 3→ 14zs − (8i+ 13)]t
[zs ≥ i+ 2→ t{8zs − 7, 14zs − (8i+ 18)}]t
[zs ≥ 3→ 8zs − 7]t
[zs ≥ 2→ t{8zs − 12, 7}]t
[zs ≥ 1→ 1]

which converges to the function

σ2∞ = [zs ≥ 3→ 8zs − 7] t [zs ≥ 2→ t{8zs − 12, 7}] t [zs ≥ 1→ 1]

Even in the natural numbers, this function is strictly bigger than the fixpoint
σfix

insSort when using σfix
insert for insert :

σfix
insSort = [zs ≥ 4→ 8 bzsc − 12] t [zs ≥ 1→ 6 bzsc − 5]

28

The latter is obtained as limit of the sequence generated when using σfix
insert

and len insSort = bzsc. This fixpoint represents the exact stack consumption
of the worst case of insSort . �

From the previous examples we have learned some useful lessons. First,
simultaneous iteration of ∆ and µ produces better results than iterating µ
with a fixed ∆. Second, succesive iterations may lead to a strictly decreas-
ing infinite sequence in which each iteration strictly improves the previous
bound but also generates a more complex expression, i.e. with more guarded
expressions and upper bounds which cannot be removed by simplification.
We expect to obtain automatically neither the general term of the sequence
nor its limit, but the graphical representation of the iterations helps an in-
terested user to guess them, and then maybe even to obtain a fixpoint. If we
are only interested in the asymptotic costs we can get rid of the lower part
of the functions, which makes expressions simpler, and iterate on the upper
part to obtain again a new asymptotic bound, or an asymptotic fixpoint.
Third, when analysing a function which depends on others, the better signa-
tures we have for them the better results we will obtain for the new function.
Additionally, the accuracy of our bounds strongly depends on the accuracy
of the external analyses (i.e. size analysis, nb, nr and len).

3.4. Reductivity in absence of admissibility conditions

As we have seen, reductivity only holds under some admissibility con-
ditions on the externally given nb, nr , and len functions. If one of these
admissibility conditions does not hold, then the initial signature may not be
reductive.

Given the above, let us assume that (∆0, µ0, σ0) is correct, but not re-
ductive. If we define, ∆1 = Df (∆0), µ1 = M∆0,f (µ0) and σ1 = Sf (σ0), we
know, by the correctness property of the abstract interpretation [16], that
the new signature (∆1, µ1, σ1) is correct, but not necessarily more precise
than (∆0, µ0, σ0). If ∆1 A ∆0 then we can safely discard ∆1, since our initial
approximation ∆0 is more precise. It could also be the case that ∆1 and ∆0

are not comparable, in which case we compute ∆′1 = u{∆1,∆0}, since it is
more precise than both ∆1 and ∆0, but still correct. The same reasoning
applies to the µ0 and σ0 components.

Therefore, in absence of the reductivity property we can define the fol-

29

lowing modified iteration operators as follows:

D′f (∆) = u{∆,Df (∆)}
M′

∆,f (µ) = u{µ,M∆,f (µ)}
S ′f (σ) = u{σ,Sf (σ)}

for every ∆ ∈ D, µ ∈ F and σ ∈ F. Obviously, D′f (∆) v ∆ and similarly for
the other two operators. So, trivially, if (∆0, µ0, σ0) is our initial signature,

∆0 ∈ Red(D′f) ∧ µ0 ∈ Red(M′
∆0,f

) ∧ σ0 ∈ Red(S ′f)

and, for every n ≥ 0, ((D′f)n(∆0), (M′
∆0,f

)n(µ0), (S ′f)n(σ0)) is a correct sig-
nature.

4. Case studies

In this section we apply our space analysis to several examples. Some of
the functions have already been introduced in previous sections. All the al-
gorithms for inferring costs have been implemented in Maple. The compiler’s
front-end generates a representation of the abstract syntax tree correspond-
ing to the program being analysed, and Maple computes the initial symbolic
approximations and perform the necessary simplifications. This system is
also used for computing the asymptotic expressions to the obtained bounds.

Example 10. Let us consider the problem of finding the longest increas-
ing subsequence (LIS) of a list given as parameter. For instance, the list
[12, 2, 3, 9, 5, 7, 1] has [2, 3, 5, 7] as its LIS. In general, assume a list [x1, . . . , xn].
The idea relies in building a list of n pairs [(l1,ms1), . . . , (ln,msn)], where
each lj describes the length of the LIS starting with the element xj, and
msj is the LIS itself. The generation of this list is performed in reverse
order. We start with the last element xn of the input list, whose corre-
sponding pair is, obviously, (1, [xn]). Assume we have computed the pairs
[(li+1,ms i+1), . . . , (ln,msn)] corresponding to the last n − i elements of the
list. The LIS that starts from xi can be done by taking the maximum among
all the lj (being j ∈ i+ 1..n) such that the head of the LIS that starts from
xj (that is, msj) is strictly greater than xi. Once we have computed all the
pairs, the LIS of the whole list is determined by the pair with the highest
first component.

30

maximum :: [(Int , α)@ρ1]@ρ2 → (Int , α)@ρ1
maximum [p] = p
maximum (p : xs) | l ≥ l′ = p

| otherwise = p′

where {(l,) = p; (l′,) = p′; p′ = maximum xs}

filterLower :: Int → [(Int , [Int]@ρ1)@ρ2]@ρ3 → ρ4 → [(Int , [Int]@ρ1)@ρ2]@ρ4
filterLower x [] @ r4 = [] @ r4
filterLower x (p : xs) @ r4

| x < head ms = (p : filterLower x xs @ r4)@r4
| otherwise = filterLower x xs @ r4

where (,ms) = p

lis :: [Int]@ρ1 → ρ2 → ρ3 → ρ4 → [(Int , [Int]@ρ2)@ρ3]@ρ4
lis [] @ r2 r3 r4 = [] @ r4
lis (x : xs) @ r2 r3 r4

| null lxs ′ = (((1, x : []@r2)@r3) : lxs)@r4
| otherwise = let (l,ms) = maximum lxs ′

in (((1 + l, (x : ms)@r2)@r3) : lxs)@r4
where lxs = lis xs @ r2 r3 r4

lxs ′ = filterLower x lxs @ self

lis ′ :: [Int]@ρ1 → ρ2 → ρ3 → (Int , [Int]@ρ2)@ρ3
lis ′ xs @ r2 r3 = maximum (lis xs @ r2 r3 self)

Figure 16: Full-Safe code (with regions) of the algorithm finding the LIS.

In Figure 16 we show the Full-Safe code, being annotated with regions
by the compiler. The lis function is given the input list [x1, . . . , xn], and
computes the list with the above mentioned pairs. The recursive call to lis
computes the list lxs of pairs corresponding to the the tail of the input. The
filterLower function discards all the pairs whose associated LIS starts with
an element lower or equal than the head of the input. Among the remaining
pairs, the maximum function selects the pair (lj,msj) with the highest lj.
Finally, the lis ′ function selects the maximal pair among those computed by
lis , which contains the length of the LIS, and the LIS itself.

Let us assume that the Σ environment already contains the heap cost
of maximum and filterLower , so that Σ(maximum) = (∆max , µmax ,) and
Σ(filterLower) = (∆filt , µfilt ,), being ∆max , ∆filt , µmax , and µfilt defined as

31

follows:

∆max = [xs ≥ 1→ []]
µmax = [xs ≥ 1→ 0]

∆filt = [xs ≥ 1→ 1] t [xs ≥ 2→ xs]
µfilt = [xs ≥ 1→ 1] t [xs ≥ 2→ 2] t [xs ≥ 3→ xs]

All these results are asymptotic fixed points. Now we apply computeDelta
to the lis function under this environment Σ. The partial results given for
each region are the following:

∆b,lis ρ2 = [xs ≥ 1→ 0]
∆b,lis ρ3 = [xs ≥ 1→ 0]
∆b,lis ρ4 = [xs ≥ 1→ 1]
∆b,lis ρself = [xs ≥ 1→ 0]

∆r,lis ρ2 = [xs ≥ 2→ 2]
∆r,lis ρ3 = [xs ≥ 2→ 1]
∆r,lis ρ4 = [xs ≥ 2→ 1]
∆r,lis ρself = [xs ≥ 2→ 1] t

[xs ≥ 3→ xs − 1]

Assume that nb lis = [xs ≥ 1 → 1] and that nr lis = [xs ≥ 1 → xs − 1].
The computeDelta algorithm yields the following result:

∆0,lis ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 2xs − 2]
∆0,lis ρ3 = [xs ≥ 1→ 0] t [xs ≥ 2→ xs − 1]
∆0,lis ρ4 = [xs ≥ 1→ 1] t [xs ≥ 2→ xs]

By iterating the [[·]]∆ interpretation on this result we get ∆1,lis = Dlis(∆0,lis),
where the charges done in ρ2 specified by ∆1,lis are as follows:

∆1,lis ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 2] t [xs ≥ 3→ 2xs − 2]

This differs from ∆0,lis ρ2 only in the interval [2, 3). Another iteration of Dlis

yields the following result:

∆2,lis ρ2 = [xs ≥ 1→ 0] t [xs ≥ 2→ 2] t
[xs ≥ 3→ 4] t [xs ≥ 4→ 2xs − 2]

which differs from the previous one in the interval [3, 4). Since these itera-
tions are asymptotically equivalent to ∆0,lis , we give ∆0,lis as parameter to
computeMu, obtaining the following result:

µ0,lis = [xs ≥ 1→ 1] t [xs ≥ 2→ 6] t [xs ≥ 3→ 5xs − 4]

32

insertT y Empty @ r1 = Node (Empty @ r1) y (Empty @ r1) @ r1

insertT y (Node l x r) @ r1

| x == y = Node l x r @ r1

| y < x = Node (insertT y l @ r1) x r @ r1

| y > x = Node l x (insertT y r @ r1) @ r1

mkTree [] @ r2 = Empty @ r2

mkTree (x : xs) @ r2 = insertT x (mkTree xs @ r2) @ r2

inorderAcc Empty xs @ r2 = xs
inorderAcc (Node l x r) xs @ r2 = inorderAcc l (x : rs)@r2 @ r2

where rs = inorderAcc r xs @ r2

inorder t @ r2 = inorderAcc t []@r2 @ r2

treeSort xs @ r2 = inorder (mkTree xs @ self) @ r2

Figure 17: Region inference for the treesort algorithm.

Now we apply the Mlis operator with the previously obtained abstract
heaps. Let µ1,lis =M∆1,lis ,lis(µ0,lis) and µ2,lis =M∆2,lis ,lis(µ1,lis). We get:

µ1,lis = [xs ≥ 1→ 1] t [xs ≥ 2→ 6] t [xs ≥ 3→ xs + 8] t
[xs ≥ 4→ 5xs − 4]

µ2,lis = [xs ≥ 1→ 1] t [xs ≥ 2→ 6] t [xs ≥ 3→ xs + 8] t
[xs ≥ 4→ xs + 12] t [xs ≥ 5→ 5xs − 4]

In this case, we already reach a fixed point in the first iteration. It is
interesting to note that, even if each call to lis does charges in its self region,
these are not reflected in ∆self of computeMu, as they are done after the
recursive call to lis . These charges are included in the µaft ,lis component,
which is not multiplied by the length of the longest call chain len lis . As a
consequence, we get a linear bound, instead of a quadratic one. �

The assignment of size functions to the variables of the function is straight-
forward in many programs involving list manipulations. However, this task
may be more involved when working with programs that manipulate nonlin-
ear data structures, such as binary trees.

33

Example 11. Recall the tree sort algorithm of Example 2. The Full-Safe
code of the whole algorithm is shown in Figure 17. Let us start with insertT .
Assuming that the tree given as parameter has size t, we must determine
the sizes of its left and right subtrees, pointed to by the variables l and r,
respectively. The root of the tree takes one cell, so the sum of the sizes of
the subtrees must be equal to t − 1. Moreover, and since the smallest tree
we can build (Empty) needs one cell, we know that the sizes of the subtrees
must range from 1 to t− 2. If we want to be on the safe side, we can assume
that both trees are of size t − 2, which is a correct approximation to their
actual runtime sizes. Hence we get the following size functions:

|l| = t− 2 |r| = t− 2 (2)

With respect to the call-tree information, we have to assume the worst case,
in which t is a degenerate tree. In this case, insertT does as many recursive
calls as the number of recursive nodes, and a single base call. Every binary
tree of size t is made up of (t − 1)/2 cells with the Node constructor, and
(t+ 1)/2 cells with the Empty constructor2. Hence we get:

nbinsertT = 1 nr insertT =
t− 1

2
len insertT =

t+ 1

2

The computeDelta algorithm yields the following initial approximation:

∆0,insertT = [t ≥ 1→ 3] t [t ≥ 3→ (t+ 5)/2]

which is an asymptotic fixed point. We use this bound for computing the
successive µ approximations,

µ0,insertT = [t ≥ 1→ 3] t [t ≥ 3→ 6] t [t ≥ 5→ (t+ 9)/2]
µ1,insertT = [t ≥ 1→ 3] t [t ≥ 3→ 4] t [t ≥ 5→ 6]

t[t ≥ 5→ (t+ 7)/2]
µ2,insertT = [t ≥ 1→ 3] t [t ≥ 3→ 4] t [t ≥ 5→ 6]

t[t ≥ 5→ (t+ 5)/2]

the last of which is an asymptotic fixed point. Now we assume that we apply
the mkTree function to a list of size zs . We start from the following size
information, given externally:

|xs| = zs − 1 |mkTree xs| = 2zs − 3

2The number of cells taken by a binary tree is always an odd number, so there is no
need to truncate the results of dividing by two.

34

The latter result is due to the fact that mkTree converts a list with n elements
(that is, of size n+ 1) into a tree made of n cells with the Node constructor,
and n + 1 cells with the Empty constructor. These amount to 2n + 1 cells.
Since a list of size xs has xs − 1 elements, the size of the result of mkTree xs
is 2(xs − 1) + 1 = 2xs − 1 or, as a function on zs , 2(zs − 1) − 1 = 2zs − 3.
Moreover, we assume nbmkTree = 1, nrmkTree = zs − 1, and lenmkTree = zs .
We obtain the following sequence of asymptotic bounds:

∆0,mkTree ≈ zs2

∆1,mkTree ≈ zs2 − zs + 2
∆2,mkTree ≈ zs2 − 2zs + 5
∆3,mkTree ≈ zs2 − 3zs + 9

all of them correspond to the charges done to ρ2. None of these functions is
an asymptotic fixed point. With respect to the heap needs, the computeMu
function yields µ0,mkTree ≈ zs2−4zs + 14, which is an asymptotic fixed point.

A call to inorderAcc t does as many recursive calls as internal nodes in
the input tree t, and as many base calls as Empty leaves, so nr inorderAcc =
(t − 1)/2, and nbinorderAcc = (t + 1)/2. Regarding the call-tree height, we
consider the worst-case of a degenerate tree with len inorderAcc = (t + 1)/2.
Assigning sizes to the l and r variables in inorderAcc is more involved. If
we proceeded as in (2), we would obtain the following bound to the charges
done to ρ2:

∆0,inorderAcc = [t ≥ 1→ 0] t [t ≥ 3→ (t− 1)/2] (3)

However, our nbinorderAcc, nr inorderAcc, and len inorderAcc functions would not be
admissible w.r.t. inorderAcc, so we could not ensure reductivity of ∆0,inorderAcc

w.r.t. DinorderAcc. Another possibility is to leave |l| unspecified, and define
|r| = t − (|l| t xs) − 1. In this case we also obtain the ∆0,inorderAcc of (3),
since the |l| t xs terms are canceled out in the result. However, these terms
appear again when applying the D operator, which leads to unintelligible
bounds that depend on the size of |l|. In this particular example we can take
advantage of the fact that the heap costs of inorderAcc do not depend on
how well-balanced is its input tree, so we can safely assume a degenerate tree
and assign |l| = 1, so |r| = t− 2. In this case we also get (3) as a result, and
we can iterate the abstract interpretation in order to get:

∆1,inorderAcc = [t ≥ 1→ 0] t [t ≥ 3→ 1] t [t ≥ 5→ (t− 1)/2]

35

Hence, ∆0,inorderAcc is an asymptotic fixed point, from which we obtain µ0 ≈
(t − 1)/2. Finally, we can apply the abstract interpretation function on
treeSort , which yields the following results:

∆treeSort ≈
[
ρ2 7→ xs
ρself 7→ xs2 − 3xs + 9

]
µtreeSort ≈ xs2 − 2xs + 10

�

Example 12. In Figures 18, 19 and 20 we show the results of applying our
memory consumption analysis to several example functions, most of them for
processing lists. The values ∆0, µ0 and σ0 represent the initial upper bounds
obtained by the computeDelta, computeMu and computeSigma functions. In
case these bounds are not fixed points of their corresponding operators D,M
and S, we represent the results of successive applications of these operators.
When i > 0, ∆i denotes the abstract heap Di(∆0). The same applies with
the µi and σi. In the case of µi, the i-th application of the M operator is
performed with the corresponding ∆i. A (?) mark attached to an abstract
heap or cost function indicates that it is an asymptotic fixed point of its
corresponding operator.

Some of the functions have already been introduced in this paper: append
and appendC (Example 1). The msort function implements the Mergesort
algorithm, and it depends on split and merge. The former obtains the first
n elements of the list xs given as input, whereas the latter merges two sorted
lists into a single one. The partition and qsort functions make up the stan-
dard implementation of Quicksort algorithm.

A call to pascal n computes the n-th row of the Pascal triangle by using
an auxiliary function sumList which transforms the list [x1, x2, . . . , xn] (cor-
responding to the n-th row of the Pascal triangle) into the list [x1 + x2, x2 +
x3, . . . , xn] (containing the elements of the n + 1-th row, excluding the first
1). The combNumbers function uses the result of pascal in order to compute
the binomial coefficient of the numbers given as parameters. The fib function
implements the following naive, memory consuming approach of computing
Fibonacci numbers, in which numbers given as parameters are stored in the
heap.

In some cases, we would get an infinite descending chain µ0 A µ1 A . . . A
µi A . . . of functions, as in the µ component of appendC . However, this does
not mean that the limit of this chain when i tends to +∞ is the zero-constant

36

�� ��append xs ys @ ρ3

∆0 ≈ [ρ2 7→ xs − 1](?)

µ0 ≈ xs − 1(?)

σ0 ≈ 7xs(?)�� ��appendC xs ys @ ρ3

∆0 ≈ [ρ3 7→ xs + ys − 1](?)

µ0 ≈ 2ys + xs − 2
µ1 ≈ 2ys + xs − 3
µ2 ≈ 2ys + xs − 4

σ0 ≈ 7xs(?)�� ��length xs

∆0 ≈ [](?)

µ0 ≈ 0

σ0 ≈ 5xs(?)�� ��split n xs @ ρ1 ρ2 ρ3

∆0 ≈
 ρ1 7→ 1
ρ2 7→ min(n, xs + 1) + 1
ρ3 7→ min(n, xs + 1) + 1

(?)

µ0 ≈ 6 + 2 min(xs, n− 1)
µ1 ≈ 5 + 2 min(xs, n− 1)(?)

σ0 ≈ 9 min(n+ 1, xs + 2) + 1(?)�� ��merge xs ys @ ρ1

∆0 ≈ [ρ1 7→ 2xs + 2ys − 3](?)

µ0 ≈ 2xs + 2ys − 3(?)

σ0 ≈ 11xs + 11ys − 10(?)

�� ��msort xs @ ρ1 ρ2

∆0 ≈
[
ρ1 7→ 1

2xs2 + 1
2xs − 3

ρ2 7→ 2xs2 − 3xs

]
∆1 ≈

[
ρ1 7→ 1

4xs2 + 3
2xs − 15

4
ρ2 7→ xs2 + xs − 3

]
∆2 ≈

[
ρ1 7→ 1

8xs2 + 9
4xs − 35

8
ρ2 7→ 1

2xs2 + 4xs − 11
2

]
∆3 ≈

[
ρ1 7→ 1

16xs2 + 23
8 xs − 79

16
ρ2 7→ 1

4xs2 + 13
2 xs − 31

4

]
∆4 ≈

[
ρ1 7→ 1

32xs2 + 55
16xs − 175

32
ρ2 7→ 1

8xs2 + 35
4 xs − 79

8

]
µ0 ≈ 15

8 xs2 + 1
2xs log(xs − 1) + 2xs

+ 1
2 log(xs − 1)− 55

8

µ1 ≈ 25
32xs2 + 1

4xs log(xs − 1) + 73
16xs

+ 3
4 log(xs − 1)− 299

32

µ2 ≈ 45
128xs2 + 1

8xs log(xs − 1) + 447
64 xs

+ 7
8 log(xs − 1)− 1579

128

µ3 ≈ 85
512xs2 + 1

16xs log(xs − 1) + 2419
256 xs

+ 15
16 log(xs − 1)− 7995

512

µ4 ≈ 165
2048xs2 + 1

32xs log(xs − 1)

+ 12235
1024 xs + 31

32 log(xs − 1)− 38971
2048

σ0 ≈ 14 log(xs − 1) + 11xs + 15
σ1 ≈ 11xs + 1(?)�� ��partition y xs @ ρ2 ρ3 ρ4

∆0 ≈

 ρ2 7→ xs
ρ3 7→ xs
ρ4 7→ xs

(?)

µ0 ≈ 3xs
µ1 ≈ 3xs − 1(?)

σ0 ≈ 9xs − 2(?)

Figure 18: Results of the space analysis (1)

37

�� ��qsort xs @ ρ1 ρ2

∆0 ≈
[
ρ1 7→ 2xs2 − 4xs + 2
ρ2 7→ xs2 − xs + 1

]
∆1 ≈

[
ρ1 7→ 2xs2 − 6xs + 6
ρ2 7→ xs2 − 2xs + 3

]
∆2 ≈

[
ρ1 7→ 2xs2 − 8xs + 12
ρ2 7→ xs2 − 3xs + 6

]
∆3 ≈

[
ρ1 7→ 2xs2 − 10xs + 20
ρ2 7→ xs2 − 4xs + 10

]
µ0 ≈ 7xs2 − 19xs + 19
µ1 ≈ 7xs2 − 30xs + 42
µ2 ≈ 7xs2 − 41xs + 76
µ3 ≈ 7xs2 − 52xs + 121

σ0 ≈ 20xs − 9
σ1 ≈ 20xs − 19
σ2 ≈ 20xs − 29
σ3 ≈ 20xs − 39�� ��sumList xs @ ρ2

∆0 ≈ [ρ2 7→ xs](?)

µ0 ≈ xs + 1
µ1 ≈ xs(?)

σ0 ≈ 9xs − 9(?)�� ��combNumbers m n

∆0 ≈ [](?)

µ0 ≈ m2 −m+ 12(?)

σ0 ≈ 15m+ 17(?)�� ��unshuffle xs @ ρ2 ρ3

∆0 ≈
[
ρ2 7→ xs + 1
ρ3 7→ xs

](?)
µ0 ≈ 2xs + 2
µ1 ≈ 2xs + 1(?)

σ0 ≈ 7xs + 2(?)

�� ��pascal n @ ρ1

∆0 ≈ [ρ1 7→ n2 + 3n+ 2]
∆1 ≈ [ρ1 7→ n2 + 2n+ 3]
∆2 ≈ [ρ1 7→ n2 + n+ 5]
∆3 ≈ [ρ1 7→ n2 + 8]

µ0 ≈ n2 + 2n+ 3
µ1 ≈ n2 + n+ 5
µ2 ≈ n2 + 8
µ3 ≈ n2 − n+ 12

σ0 ≈ 15n+ 13
σ1 ≈ 15n+ 4
σ2 ≈ 15n− 5
σ3 ≈ 15n− 14�� ��fib n@ ρ1

∆0 ≈ [ρ1 7→ 2n − 1]
∆1 ≈ [ρ1 7→ 2n−1 + 2n−2 − 1]
∆2 ≈ [ρ1 7→ 2n−1 + 2n−4 − 1]

∆3 ≈ [ρ1 7→ 2n−3 + 3 · 2n−4
+ 3 · 2n−5 + 2n−6 − 1]

µ0 ≈ 4 · 2n−2 + 2 · 2n−3 − 3
µ1 ≈ 4 · 2n−3 + 6 · 2n−4 +

2 · 2n−5 − 4
µ2 ≈ 2 · 2n−4 + 6 · 2n−5 +

8 · 2n−6 + 2 · 2n−7 − 5
µ3 ≈ 2 · 2n−5 + 8 · 2n−6 +

12 · 2n−7 + 10 · 2n−8 +
2 · 2n−9 − 7

σ0 ≈ 5n+ 7
σ1 ≈ 5n+ 6
σ2 ≈ 5n+ 5
σ2 ≈ 5n+ 4

Figure 19: Results of the space analysis (2)

38

�� ��reverse ′ xs @ ρ2

∆0 ≈ [ρ2 7→ xs2 − xs + 1]
∆1 ≈ [ρ2 7→ xs2 − 2xs + 3]
∆2 ≈ [ρ2 7→ xs2 − 3xs + 6]
∆3 ≈ [ρ2 7→ xs2 − 4xs + 10]

µ0 ≈ xs2 − 2xs + 3
µ1 ≈ xs2 − 3xs + 6
µ2 ≈ xs2 − 4xs + 10
µ3 ≈ xs2 − 5xs + 15

σ0 ≈ 13xs − 12
σ1 ≈ 13xs − 19
σ2 ≈ 13xs − 26
σ3 ≈ 13xs − 33

�� ��revAux xs ys @ ρ2

∆0 ≈ [ρ2 7→ xs − 1](?)

µ0 ≈ xs(?)

σ0 ≈ 6(?)�� ��reverse xs @ ρ2

∆0 ≈ [ρ2 7→ xs](?)

µ0 ≈ xs + 1(?)

σ0 ≈ 7(?)

Figure 20: Results of the space analysis (3)

function, since the results shown here are only asymptotic bounds, and the
limit does not have to coincide asymptotically with the µi. In the case of
appendC , the sequence {µi}i∈N converges pointwise to xs + ys−1, which is a
fixed point of theM operator. With the stack costs of qsort we get a similar
situation. Normally, the initial bounds are overapproximations of the actual
fixed points. In the case of msort , whose worst-case heap space complexity
is in O(xs log xs), we get a quadratic bound. Notice, however, that the xs2

coefficient keeps decreasing at each iteration.
The reverse ′ function of Figure 20 implements a naive algorithm for re-

versing the elements of a list.

reverse ′ [] = []
reverse ′ (x : xs) = append (reverse ′ xs) [x]

This algorithm has quadratic heap space complexity, in contrast to the
revAux and reverse functions, of linear heap space complexity:

revAux [] ys = ys
revAux (x : xs) ys = revAux xs (x : ys)
reverse xs = revAux xs []

These differences become apparent in the results shown in Figure 20. �

39

min :: Int → Int → Int
min x y | x ≤ y = x

| x > y = y

minimumAc :: Int → [Int]→ Int

�

�

�

�
σmin ≈ 5

σminimumAc ≈ 11
σremoveAc ≈ 9

σselectSortAc ≈ 17

minimumAc ac [] = ac
minimumAc ac (x : xs) = minimumAc (ac ‘min‘ x) xs

removeAc :: Int → [Int]→ [Int]→ [Int]
removeAc x [] ac = ac
removeAc x (y : ys) ac | x == y = revAux ys ac

| x/ = y = removeAc x ys (y : ac)

selectSortAc :: [Int]→ [Int]→ [Int]
selectSortAc [] ac = ac
selectSortAc xs ac = selectOrdAc (removeAc y xs []) (y : ac)

where y = minimumAc (−∞) xs

Figure 21: Tail-recursive selection sort algorithm

In Safe, tail-recursive functions are executed in constant stack space with-
out the need of any compiler optimization [15]. Our algorithm computeSigma
is aware of this, since it can be proven that for every tail-recursive function
definition f x @ r = ef ∈ FD the result of SDf ef (|x|+ |r|) is always zero.
As a consequence, we get σ0 = σ, where σ is defined as in computeSigma. If
the latter does not depend on the input sizes, neither does σ0.

Example 13 (Tail recursive selection sort). Let us consider the imple-
mentation of the selection sort algorithm shown in Figure 21, where every
function builds its result in an accumulator parameter. As a consequence,
all the functions are tail recursive, and their stack costs are constant (i.e. do
not depend on the size of the input). Besides this, the upper bounds on
the number of stack words inferred by computeSigma are also constant (see
Figure 21). �

5. Inference in presence of explicit destruction and polymorphic
recursion

Our inference algorithms yield correct upper bounds assuming the ab-
sence of region-polymorphic recursion. Besides this, Safe provides a case!

40

construct which, in addition to the pattern matching, destroys the cell pointed
to by its discriminant. This kind of destruction is controlled by the program-
mer. In this section we briefly sketch how to improve these algorithms in
order to deal with these language facilities. The implementation of these
techniques is subject of future work.

If we consider region-polymorphic recursive definitions, the abstract inter-
pretation described in Section 2.3.2 would require no changes, since its proof
of correctness does not distinguish between recursive and non-recursive func-
tion applications. Polymorphic recursion does affect the computation of the
initial ∆0 and µ0 explained in Section 2.4. Assume a function definition with
m region parameters, and that the type of the i-th region parameter is ρi,
for each i ∈ {1..m}. The computeDelta algorithm assumes that this mapping
between region parameters and RTVs remains constant through the subse-
quent recursive calls, but this is not true in the case of polymorphic recursive
definitions: the i-th region parameter may be mapped to a different ρj (j 6= i)
in some recursive calls, or it could be mapped to ρself . As a consequence, we
have a finite number Γ1, . . . ,Γn of typing environments typing the subsequent
recursive calls. For every recursive call, the correspondence between region
variables and RTVs is given by one of these environments. Assume we are
able to find some nr (i) (i ∈ {1..n}) such that nr v nr(1)+nr(2)+· · ·+nr(n) and
each nr (i) bounds the number of recursive calls associated with the environ-
ment Γi. Then we would be able to consider each nr (i) separately, multiplied
by the charges done by the recursive subsequences under the environment
Γi, in the style of the following example:

Example 14. Given the following region-annotated definition:

f :: Int → ρ1 → ρ2 → ρ3 → ([Int]@ρ1, [Int]@ρ2)@ρ3

f 0 @ r1 r2 r3 = ([]@r1, []@r2)@r3

f n @ r1 r2 r3 = (n : xs, n : ys)@r3

where (xs, ys) = f (n− 1) @ r2 r1 self

Assume Γ = [r1 : ρ1, r2 : ρ2, r3 : ρ3]. In the first recursive call, the type
of the first parameter becomes ρ2 and the type of the second one becomes
ρ1, whereas no region is mapped to ρ3. In the second recursive call, the type
of the first parameter is ρ1 again, and the type of the second parameter is
ρ2. In the third recursive call we have the same mapping as in the first one.
These changes in the mappings between parameter positions and RTVs can
be depicted as follows:

41

r
1

 ↦ ρ
1

r
2
 ↦ ρ

2

r
3
 ↦ ρ

3

r
1

 ↦ ρ
2

r
2
 ↦ ρ

1

r
3
 ↦ ρ

self

r
1

 ↦ ρ
1

r
2
 ↦ ρ

2

r
3
 ↦ ρ

self

�
1

�
2

�
3

If nr = λn.n is an upper bound to the number of recursive calls, one of
these calls is done with the typing environment Γ1 above, at most

⌈
n−1

2

⌉
of

these calls correspond to Γ2, and at most
⌈
n−1

2

⌉
are done with Γ3. Therefore,

we have three different functions for modeling the number of recursive calls:
nr (1) = λn.1, nr (2) = λn.

⌈
n−1

2

⌉
, and nr (3) = λn.

⌈
n−1

2

⌉
By applying the ab-

stract interpretation rules with the recursive and base part of the expression
assuming each Γi, we obtain the following abstract heaps:

∆r
(1) = [ρ1 7→ 1, ρ2 7→ 1, ρ3 7→ 1]

∆r
(2) = [ρ1 7→ 1, ρ2 7→ 1]

∆r
(3) = [ρ1 7→ 1, ρ2 7→ 1]

∆b
(1) = [ρ1 7→ 1, ρ2 7→ 1, ρ3 7→ 1]

∆b
(2) = [ρ1 7→ 1, ρ2 7→ 1]

∆b
(3) = [ρ1 7→ 1, ρ2 7→ 1]

Hence we get:

∆0 = nr (1) n ∗∆r
(1) n ρ1 + nr (2) n ∗∆r

(2) n ρ2 + nr (3) n ∗∆(3) n ρ1

+nb n ∗ (∆b
(1) n ρ1 t∆b

(2) n ρ2 t∆b
(3) n ρ1)

= 1 +
⌈
n−1

2

⌉
+
⌈
n−1

2

⌉
+ 1

∆0 = 1 +
⌈
n−1

2

⌉
+
⌈
n−1

2

⌉
+ 1

∆0 = 1

�

Regarding our destructive case!, the presented abstract interpretation needs
to know which variable is affected by a case!. Assume we adapt our flattening
transformation, so it generates sequences of the form [G→ be1, . . . , ben | D],
where D is a set containing the variables occurring in the discriminant of a
destructive pattern matching. The [[·]]∆ interpretation of sequences would be
redefined as follows:

[[[G→ be | D]]]∆ Σ Γ =
[
G→ ·

⊔{
[]f ,

∑n
i=1 ([[be i]]∆ Σ Γ) +

∑
x∈D[R(x) 7→ −1]

}]
where R(x) denotes the outermost RTV of the type of x. This information
can be obtained from the typing environment. The least upper bound with

42

the empty abstract heap is done to avoid overall negative charges. With
this new definition it can be proven that the [[·]]∆ interpretation is correct,
and yields a function in D. However, the computeDelta algorithm is more
problematic: it could return an initial bound ∆0 not belonging to D, since the
monotonicity property might not hold. However, in those examples where
∆b and ∆r (being these as defined in computeDelta) belong to D, so does the
resulting ∆0. The same applies to µ0 and σ0: if their respective components
belong to F, so do the results µ0 and σ0.

Example 15. Assume a destructive variant of the revAux function of Ex-
ample 12.

revAuxD :: [α]@ρ1 → [α]@ρ2 → ρ2 → [α]@ρ2

revAuxD xs ys @ r = case! xs of
[]→ ys
(x : xx)→ let x1 = (x : ys)@r in revAuxD xx x1 @ r

We get the following sequences:

seq1 = [xs ≥ 1→ ys | xs]
seq2 = [xs ≥ 2→ (x : ys)@r, revAuxD xx x1 | xs]

The first one is a base sequence, and the second one is recursive. We get the
following abstract heaps by assuming Σ(revAuxD) = ([]f , 0, 0).

b∆bc = [xs ≥ 1→ [ρ2 7→ 0]] b∆rc = [xs ≥ 2→ [ρ2 7→ 0]]

Both of these heaps belong to F. Since nr = xs − 1 and nb = 1, the
computeDelta algorithm yields ∆0 = [xs ≥ 1→ [ρ2 7→ 0]]. That is, revAuxD
needs no additional heap space in order to be executed. �

6. Conclusions and future work

In this paper, we have showed that the memory bounds computed by
the algorithms presented in [16] belong to the reductive subdomain of the
abstract interpretation function, provided certain reasonable conditions are
met. This property allows us to iterate the interpretation in order to obtain
tighter, and still correct, bounds. Our approach then consists of finding
some initial correct approximations, and repeatedly applying an abstract
interpretation algorithm in order to increase their accuracy. The strengths
of the whole approach can be summarized as follows:

43

1. It scales well to large programs, as bounds can be separately inferred
for each Safe function.

2. It supports arbitrary algebraic data types, provided they do not present
mutual recursion.

3. We get upper bounds for the maximum amount of live memory, as the
inference algorithms take into account the deallocation of dead regions
made at function termination.

4. It can accommodate several complexity classes, provided these are
monotone with respect to the input sizes.

5. It is, to our knowledge, the first approach in which the upper bounds
can be improved just by iterating the inference algorithm.

The latter point of the above list should be interpreted cautiously, since
a larger amount of iterations implies more accuracy, but also more complex-
ity in the resulting expressions (at least with our current implementation).
Notice, however, that we still can get simple asymptotic bounds. In those
cases where the programmer is only interested in asymptotic bounds, these
can be given as input to the next iteration, and the result is another correct
asymptotic bound, much simpler to compute than if the iteration were done
with a non-asymptotic initial bound.

Notice also that, in some cases, it is possible to get an infinite, strictly
decreasing sequence of upper bounds without reaching a fixed point. It is an
interesting subject of future work to study how to automatically determine
the limit of such sequences.

From the examples presented in Section 3.3, it can be seen that at present
two approaches for using the system are possible:

• A completely automated way in which initial upper bounds are au-
tomatically inferred, then iterated a predetermined (small) number of
times, and then printed. This mode is advisable when quick results
are more important than precise ones, particularly if we just look for
asymptotic costs.

• A semi-automated way in which human intervention is admissible, and
more precise bounds are seeked for. By looking at the results given by
the system, a human can compute the limits to which the sequences of
bounds converge or even the fixpoints, and then introduce these bounds
as input for improving the inference of subsequent functions.

44

A weak point that still requires more work is the restriction we have im-
posed to our cost and size functions: they must be non-negative and mono-
tone. That is why destructive pattern matching has been omitted from our
analysis in a first phase. Polymorphic recursion does not fit either in our
inference strategy for ∆f , since it assumes that the regions used by a recur-
sive function f do not change from the external call to the internal ones.
We have explained in Section 5 how our basic inference algorithms could be
extended to cope with these features. Nevertheless, the ideas presented there
have thus far neither still been implemented nor proved correct.

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, Closed-form upper bounds
in static cost analysis, Journal of Automated Reasoning 46 (2011) 161–
203.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost analysis
of Java bytecode, in: Proceedings of the 16th European Symposium on
Programming, ESOP’07, LNCS 4421, Springer, 2007, pp. 157–172.

[3] E. Albert, S. Genaim, M. Gómez-Zamalloa, Parametric inference of
memory requirements for garbage collected languages, in: Proceedings of
the 2010 international symposium on Memory management, ISMM’10,
ACM Press, 2010, pp. 121–130.

[4] E. Albert, S. Genaim, A.N. Masud, More precise yet widely applicable
cost analysis, in: Proceedings of the 12th International Conference on
Verification, Model Checking and Abstract Interpretation, VMCAI’11,
LNCS 6538, Springer, 2011, pp. 38–53.

[5] J. Hoffmann, K. Aehlig, M. Hofmann, Multivariate amortized resource
analysis, in: Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, POPL’11, ACM,
2011, pp. 357–370.

[6] J. Hoffmann, M. Hofmann, Amortized resource analysis with polyno-
mial potential, in: Proceedings of the 19th European Symposium on
Programming, ESOP’10, LNCS 6012, Springer, 2010, pp. 287–306.

45

[7] M. Hofmann, S. Jost, Static prediction of heap space usage for first-
order functional programs, in: Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM,
2003, pp. 185–197.

[8] J. Hughes, L. Pareto, Recursion and dynamic data-structures in
bounded space: towards embedded ML programming, in: Proceedings
of the 4th ACM SIGPLAN international conference on Functional pro-
gramming, ICFP’99, ACM, 1999, pp. 70–81.

[9] J. Hughes, L. Pareto, A. Sabry, Proving the correctness of reac-
tive systems using sized types, in: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL’96, ACM Press, 1996, pp. 410–423.

[10] S. Jost, Automated Amortised Analysis, Ph.D. thesis, Fakultät
für Mathematik, Informatik und Statistik der Ludwig-Maximilians-
Universität München, 2010.

[11] S. Jost, K. Hammond, H.W. Loidl, M. Hofmann, Static determination of
quantitative resource usage for higher-order programs, in: Proceedings
of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL’10, ACM, 2010, pp. 223–236.

[12] M. Montenegro, R. Peña, C. Segura, A type system for safe memory
management and its proof of correctness, in: Proceedings of the 10th
International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, PPDP’08, ACM Press, 2008, pp. 152–162.

[13] M. Montenegro, R. Peña, C. Segura, A space consumption analysis
by abstract interpretation, in: Proceedings of the 1st International
Workshop on Foundational and Practical Aspects of Resource Analy-
sis, FOPARA’09, LNCS 6324, Springer, 2010, pp. 34–50.

[14] M. Montenegro, R. Peña, C. Segura, A simple region inference algorithm
for a first-order functional language, in: Proceedings of the 18th Inter-
national Workshop on Functional and (Constraint) Logic Programming,
WFLP’09, LNCS 5979, Springer, 2009, pp. 145–161.

46

[15] M. Montenegro, R. Peña, C. Segura, A resource semantics and abstract
machine for Safe: A functional language with regions and explicit deal-
location, Information and Computation 235 (2014) 3–35.

[16] M. Montenegro, R. Peña, C. Segura, Space Consumption Analysis
by Abstract Interpretation, Technical Report, Dpto. de Sistemas In-
formáticos y Computación. Universidad Complutense de Madrid, 2014.
TR-2-14, pages 1–104.

[17] M. Montenegro, R. Peña, C. Segura, Space Consumption Analysis by
Abstract Interpretation: Reductivity Properties . Detailed Proofs, 2014.
Pages 1–12.

[18] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis,
Springer, 1999.

[19] L. Pareto, Sized types, 1998. Licentiate thesis, Chalmers University of
Technology.

[20] H. Simões, P. Vasconcelos, M. Florido, S. Jost, K. Hammond, Automatic
Amortised Analysis of Dynamic Memory Allocation for Lazy Functional
Programs, in: International Conference on Functional Programming
(ICFP’12), ACM SIGPLAN, 2012, pp. 165–176.

[21] A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific Journal of Mathematics 5 (1955) 285–309.

47

