
13

Extending Liquid Types to Arrays

MANUEL MONTENEGRO, SUSANA NIEVA, RICARDO PEÑA, and CLARA SEGURA,
Universidad Complutense de Madrid

A liquid type is an ordinary Hindley-Milner type annotated with a logical predicate that states the prop-

erties satisfied by the elements of that type. Liquid types are a powerful tool for program verification, as

programmers can use them to specify pre- and post conditions of their programs, whereas the predicates of

intermediate variables and auxiliary functions are inferred automatically. Type inference is feasible in this

context, as the logical predicates within liquid types are constrained to a quantifier-free logic to maintain

decidability.

In this article, we extend liquid types by allowing them to contain quantified properties on arrays so that

they can be used to infer invariants on array-related programs (e.g., implementations of sorting algorithms).

Although quantified logic is, in general, undecidable, we restrict properties on arrays to a decidable sub-

set introduced by Bradley et al. We describe in detail the extended type system, the verification condition

generator, and the iterative weakening algorithm for inferring invariants. After proving the correctness and

completeness of these two algorithms, we apply them to find invariants on a set of algorithms involving array

manipulations.

CCS Concepts: • Theory of computation → Invariants; Program verification; Logic and verification;

Program analysis;

Additional Key Words and Phrases: Dependent types, liquid types, invariant synthesis

ACM Reference format:

Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura. 2019. Extending Liquid Types to Arrays.

ACM Trans. Comput. Logic 21, 2, Article 13 (December 2019), 41 pages.

https://doi.org/10.1145/3362740

1 INTRODUCTION

A considerable amount of research has been carried out over the past decades in the context of
verification platforms [1, 4, 11, 12, 21, 33]. These platforms allow a programmer to specify the be-
haviour of their programs and check whether their implementations work as intended. Obtaining
provably correct programs is an attractive goal, but it comes at a price: verification requires manual
intervention. In particular, the programmers have to provide invariants in their loops so that the
verification platform can generate and check verification conditions accordingly. The latter step is

This work was partially funded by the Spanish Ministry of Economy and Competitiveness, State Research Agency, and

the European Regional Development Fund under grant TIN2017-86217-R (MINECO/AEI/FEDER, EU) and by Comunidad

de Madrid as part of the program S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the EU.

Authors’ address: M. Montenegro, S. Nieva, R. Peña, and C. Segura, Computer Science School, Universidad Complutense de

Madrid, Calle Profesor José García Santesmases 9, Madrid, 28040, Spain; emails: montenegro@fdi.ucm.es, nieva@ucm.es,

{ricardo, csegura}@sip.ucm.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1529-3785/2019/12-ART13 $15.00

https://doi.org/10.1145/3362740

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

https://doi.org/10.1145/3362740
mailto:permissions@acm.org
https://doi.org/10.1145/3362740
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3362740&domain=pdf&date_stamp=2020-01-21

13:2 M. Montenegro et al.

mechanical and can be automatically performed by a satisfiability modulo theories (SMT) solver
as long as these conditions are kept in a decidable logic, but finding a suitable invariant requires
insight in many cases. Fortunately, various techniques have been developed in the past few years,
allowing some invariants to be synthesised without a programmer’s assistance. Some of them [3,
8, 13–15, 18] are reviewed in Section 11. Logically qualified types, which we will refer to as liquid

types [20, 27, 35–37] in this article, stand out among these approaches.
Liquid types are dependent types in the sense that they depend on the values computed by the

program. A liquid type consists of an ordinary Hindley-Milner type with a logical predicate that
refines the set of values denoted by that type. In this context, invariant synthesis amounts to infer-
ring the predicates inside liquid types. The inference process tries to guess for each type different
combinations of predicates until a correct combination is found. Each attempt involves the gener-
ation of verification conditions which are subsequently sent to the SMT solver to check whether
the attempted combination was correct or not. In this way, the set of all possible combinations
of predicates can be considered as a search space to be explored. To make this approach feasible,
there are two main requirements:

• The set of logical predicates allowed inside liquid types has to be constrained so as to keep
a finite number of possibilities, thus making the search space finite.

• The SMT solver in charge of checking the validity of each attempted combination has to be
complete. In this way, each wrong attempt may guide the inference algorithm into pruning
the search space. Completeness in an SMT solver can be achieved by restricting the logical
predicates to a decidable logic.

Liquid types have been proven to be useful to synthesise nontrivial invariants. These include,
for example, invariants on algorithms involving linear arithmetic and uninterpreted functions [27].
This idea is extended in further work [20] to support recursive data types such as binary search
trees, sorted lists, and heaps. In the latter case, programmers are expected to provide a definition
of the recursive data type that includes a predicate involving the immediate recursive constituents
of a constructor application. For instance, a programmer can specify a subset of binary trees in
which the left (respectively, right) child of a node contains a value lower (respectively, greater)
than the value in that node, thus obtaining a specification of binary search trees. Although this
work is carried out in the context of functional languages, liquid types have also been successfully
applied to imperative languages, such as TypeScript [38], JavaScript [6], and C-like languages
[2, 28].

The aim of the present work is to extend the set of allowed predicates so as to include proper-
ties on arrays. This kind of properties usually involves quantification over the indices of an array.
For example, the fact that an array a is sorted can be expressed with the property ∀i, j . 0 ≤ i < j <
lena → a[i] ≤ a[j]. Quantified logic is undecidable in general, but we can restrict the set of proper-
ties to conjunctions of array properties as defined in Bradley et al. [5], thus maintaining decidability
when checking the generated verification conditions. We could, in fact, reuse the original liquid
type inference algorithm [27]. The only difference is that now, for each attempt, the generated
verification conditions may contain quantified formulas. The algorithm would handle quantified
formulas as atomic entities, and it would be the task of the SMT solver to get into their internal
structure to determine the validity of the verification conditions. However, it is possible to im-
prove the search for a correct combination of predicates if we allow the algorithm to manage the
constituents of quantified formulas separately. That is why we introduce a novel extension of the
liquid type inference algorithm that infers predicates occurring in the left-hand side of an impli-
cation, and splits a quantified formula on a given array segment into formulas involving smaller

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:3

segments. This constitutes a new form of weakening that has proved to be powerful enough to
infer many complex invariants arising in programs dealing with arrays.

These contributions have been carried out in the context of the CAVI-ART verification platform
[23]. This platform relies on an intermediate representation (IR), which is used as a target first-
order functional language to which imperative and functional programs can be translated. The
algorithms introduced in this work have been implemented and integrated in this platform.

This article extends previous work [22]. The new material addresses several technical aspects
underlying our inference algorithm, such as a formal description of the type system as a set of
rules, and a detailed definition of the verification condition generation (VCG) algorithm. Unlike
previous work on liquid types, our VCG algorithm infers the most precise type for a given ex-
pression by introducing disjunctions and existential quantifiers in refinements. We prove that this
VCG algorithm is correct and complete with respect to the type system. Another new contribution
is a reworked tool that improves the somewhat prototypical implementation of our previous work
[22]. Instead of generating plain-text conditions that were processed by the Why3 platform [11],
and then discharged by a SMT solver, this tool now interfaces directly with the Z3 solver [24],
leading to better execution times. New material includes a comparison of the performance of the
tool when inferring invariants with and without a programmer’s assistance.

This article is organized as follows. Section 2 introduces previous work on liquid types and their
inference algorithm. Our extension involves the inclusion of formulas that belong to a decidable
logic of array properties, which is reviewed in Section 3. Next, we survey in Section 4 the kind
of array properties we are interested in and show that the logic of array properties introduced
before is expressive enough for our purposes. In Section 5, we define the IR in which the analysis
will be performed, and then we describe in Section 6 the type system lying the foundations of the
formal development. After this, the two main phases of our type inference algorithm will be briefly
sketched in Section 7 and further elaborated in Sections 8 and 9. The feasibility of our extension
is assessed in Section 10 by a set of case studies. Finally, Section 11 introduces related work and
Section 12 concludes.

2 LIQUID TYPES

In its most basic form, a liquid type [27] is a standard polymorphic Hindley-Milner type annotated
with a logical predicate that constraints the values allowed by the former. More concretely, a basic
liquid type has the form {ν : τ | φ}, where ν is a variable, τ is a basic Hindley-Milner type (integer
or Boolean), and φ is a logical formula, also called refinement, which may depend on ν and other
program variables in scope. The ν variable is bound inside the type {ν : τ | φ}. Intuitively, the type
{ν : τ | φ} represents those values b of type τ such that φ[b/ν] is valid modulo a given theory.
For example, in the theory of quantifier-free linear arithmetic, {ν : int | ν ≥ 0} represents all non-
negative integers, and {ν : int | a ≤ ν < b} denotes all integers contained within the interval [a,b),
being a and b program variables. In the following, and whenever the refinement is true, we shall
abbreviate {ν : τ | true} to τ .

To infer liquid types in a given program, we have to restrict the kind of formulas allowed in
the refinements. In general, the choice of the underlying theory determines feasibility of type in-
ference. In this system, type inference becomes decidable when there are finitely many choices
for φ and all of those are kept into the theory of linear integer arithmetic with equality and un-
interpreted functions (QF-EUFLIA). The finite set of refinements allowed is defined from a set of
logical qualifiers. A qualifier q is a predicate that depends on ν and a placeholder variable (denoted
by �). Type inference assumes that a set Q of logical qualifiers has been fixed in advance. This
set may have been given by the programmer or may have been automatically synthesized (e.g., by
analysing the program). The larger this set, the more accurate refinements can be inferred, but the

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:4 M. Montenegro et al.

larger the search space becomes. From this set, we can obtain another set Q∗ with the instances
of the logical qualifiers appearing in Q. We say that q′ is an instance of q if and only if q′ results
from replacing all placeholders in q by program variables. For example, x − ν ≥ y is an instance of
�− ν ≥ �. Notice that the several occurrences of a placeholder inside a qualifier can be replaced
by different variables. As a result, type inference requires refinements inside liquid types to be
conjunctions of qualifier instances obtained from Q∗. Since there are finitely many variables in a
program, if Q is finite, so will be Q∗, and so will be the set of choices for the refinements inside
liquid types. The resulting search space can be traversed in an orderly manner to prune infeasible
choices. The details of the traversal are given in Rondon et al. [27], and they will be summarized
later in Section 2.2.

As usual in dependent type systems, input parameters in functional type signatures have to be
labelled with variables to be able to express the function’s output in terms of the input values. For
example, we can assign the following liquid type to a function subtracting two natural numbers:

subtract :: (x : {ν : int | ν ≥ 0}) → (y : {ν : int | 0 ≤ ν ≤ x }) → {ν : int | ν = x − y}.

This signature specifies that the first parameter has to be non-negative and that the second one
should be less than or equal to the former. In this case, the arithmetic theory allows the result of
subtract to have type {ν : int | ν = x − y} that uniquely characterizes the output in terms of the
input.

2.1 Refinements on Arrays

The examples considered so far involve simple arithmetic properties on integers, but refinement
predicates can also specify more complex properties involving data structures. For example, a
function that obtains the first element of an array could have the following type:

first :: ∀α .(x : {ν : array α | lenν ≥ 1}) → {ν : α | ν = x[0]},

where lenν denotes the length of the array ν . These refinements fit into the underlying QF-EUFLIA
theory provided that len and indexing on x are translated into uninterpreted function symbols.
However, quantifier-free theories fall short when we have to specify more complex—and hence
more interesting—properties on arrays. For example, the following declarations specify the type
of a function fill that sets all of the positions of an array to a given value and a function sort
for sorting an array:

fill :: ∀α .(a : array α) → (x : α) → {ν : array α | ∀i .0 ≤ i < lenν → ν[i] = x }, (1)

sort :: ∀α .(a : array α) → {ν : array α | (∀i .0 ≤ i ≤ j < lenν → ν[i] ≤ ν[j])}. (2)

The original work on liquid types [27] requires type refinements to be quantifier free for the
sake of decidability when inferring types. Therefore, the types of fill and sort would be ill-
formed in regards to this constraint. This issue is partially addressed in further work [20, 35], where
the authors extend the type system by allowing types to be parametric on refinement predicate

variables. This extended system supports types of the form τ 〈p〉, where τ is a Hindley-Milner
type (excluding function types) and p a refinement predicate variable. The parametric type τ 〈p〉
denotes all elements x of type τ such that p x holds. Whenever p is instantiated, it will be replaced
by a concrete predicate of type τ → bool. For example, assume that we have a function max that
computes the greatest of two given numbers. The following specification indicates that if the input
parameters satisfy a given property p, so does the result.

max :: ∀(p :: int → bool) . x : int
〈
p
〉→ y : int

〈
p
〉→ {ν : int

〈
p
〉 | ν ≥ x ∧ ν ≥ y}

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:5

Composite data structures can also be annotated with refinement predicate variables which can
be later instantiated with n-ary relations (n ≥ 1). For example, a list data type can be defined such
that it is parametric with respect to a binary relation. More concretely, the type [int] 〈r 〉 denotes
those lists of integers in which the relation r holds between every element of the list and those
appearing on its right. In this context, the list constructor instantiated to integer elements has the
following signature:

(:) :: ∀(r :: int → int → bool) . x : int → xs : [int 〈r x〉] 〈r 〉 → [int] 〈r 〉 .

With this definition, the type [int] 〈≤〉 can be used to denote increasingly sorted lists and
[int] 〈�〉 to denote lists whose elements are pairwise distinct. These two examples involve rela-
tions that hold “regularly” along all elements of the list. Unfortunately, there are some properties
on lists that are not fit for this type, particularly those properties involving list indices. For exam-
ple, some properties which arise when verifying the insertion sort algorithm cannot be expressed
such that only a given segment of a list is sorted, or that the elements in the first half of the list are
smaller than the elements in the second half. These properties can be expressed and are inferred
in our system (see function insert in Section 10).

As an alternative, a programmer may choose to use arrays instead of lists. In Vazou et al. [35],
arrays have type array τ 〈dom, rng〉, where τ is the Hindley-Milner type of the array elements, dom

is a predicate of type int → bool that constrains the set of valid indices, and rng is a relation of type
int → τ → bool which specifies the property to be satisfied by each element of the array. Thus, if x
has type array τ 〈dom, rng〉, and i is an integer number such that dom i holds, then so does rng i x[i].
For example, the array [0, 2, 4, 6, 8] can be given the type array int 〈λi .0 ≤ i < 5, λi x .x = 2i〉. In
this setting, the get and set functions for accessing and manipulating an array would have the
following signatures:

get :: ∀α .∀(dom :: int → bool).∀(rng :: int → α → bool).
(i : int〈dom〉) → array α〈dom, rng〉 → α〈rng i〉

set :: ∀α .∀(dom :: int → bool).∀(rng :: int → α → bool).
(i : int〈dom〉) → array α〈dom′, rng〉 → α〈rng i〉 → array α〈dom, rng〉,

where dom′ abbreviates the predicate λk .dom k ∧ k � i . Considering our fill function introduced
earlier, the type shown in (1) would be still ill formed under this extension, but by using refinement
predicate variables, the following type can be specified:

fill :: ∀α .∀(dom :: int → bool).∀(rng :: int → α → bool).
(a : array α〈dom, rng〉) → (x : α) → array α〈dom, λi .λz.z = x〉.

In this way, a programmer can specify properties on array elements that also depend on their
position. However, there is a limitation: the rng parameter characterizes each element by itself in
terms of its index, without relating it to the remaining elements. Therefore, the type of the sort
function shown in (2) cannot be expressed with this data type, as the result type of sort contains
a property that should hold for every pair of elements in the array.

Another limitation of applying refinement predicate variables to arrays is that the subtyp-
ing relation may be affected by the way in which the data type is defined, regardless of
whether the array type is built into the language, or it is defined by the user. Let us com-
pare the type array τ 〈dom, rng〉 with the type {ν : array τ | ∀i .dom i → rng i ν[i]}. If the type
array τ 〈dom, rng〉 is an alias for (i : int〈dom〉) → τ 〈rng i〉, to prove that array τ 〈dom, rng〉 is a sub-
type of array τ 〈dom′, rng′〉, the following formula has to be proved:

∀i .∀z. dom′ i ∧ rng i z ⇒ dom i ∧ rng′ i z.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:6 M. Montenegro et al.

The validity of this formula amounts to proving unsatisfiability of ¬(dom′ i ∧ rng i z ⇒ dom i ∧
rng′ i z), which can be done by an SMT solver with a suitable quantifier-free logic. Notice that a
sufficient condition for the preceding formula to hold is that dom′ i implies dom i for every i and
that rng i z implies rng′ i z for every i and z. In other words, subtyping is contravariant with re-
spect to dom and covariant with respect to rng. However, if arrays were implemented as a set of
pairs of type (i : int〈dom〉,τ 〈rng i〉), subtyping would be covariant with respect to both dom and
rng, which is hard to justify with regards to the semantics of array types, since we could say that
array τ 〈λi .0 ≤ i < 3, rng〉 is a subtype of array τ 〈λi .0 ≤ i < 5, rng〉 for every τ and rng. This means
that it would be safe to use an array of length 3 wherever an array of length 5 is expected, which be-
comes unsafe, unless the programmer explicitly states that subtyping is contravariant in dom.1 But
if we allow quantified refinements and we want to prove that {ν : array τ | ∀i .dom i → rng i ν[i]}
is a subtype of {ν : array τ | ∀i .dom′ i → rng′ i ν[i]}, we have to send the following formula to the
SMT solver:

(∀i .dom i → rng i ν[i]) ⇒ (∀i .dom′ i → rng′ i ν[i]).

A sufficient condition for this to hold is that dom′ i implies dom i and that rng i ν[i] implies
rng′ i ν[i] for every i . We have contravariance with respect to the domain, which meets better
the intuition of an array of length 5 being a subtype of an array of length 3. Moreover, this con-
travariance is obtained regardless of the specific implementation of arrays. However, to prove this
formula, the underlying SMT solver has to deal with quantifier formulas, as the negation of the
preceding formula cannot be transformed into another quantifier-free equisatisfiable formula.

2.2 Type System and Inference in Absence of Arrays

In this section, we shall give an overview on how liquid types are inferred in Rondon et al. [27].
The type system is defined as a set of syntax-directed typing rules for deriving judgements of
the form Γ � e :: S , where S is a functional type schema whose constituents are basic types of
the form {ν : τ | φ}. Some of the assumptions in the typing derivation of a given judgement may
be subtyping judgements, which are derived, in turn, with the help of a set of subtyping rules.
One of these rules states that {ν : τ | φ1} is a subtype of {ν : τ | φ2} under a given environment Γ
provided the formula �Γ� ∧ φ1 ⇒ φ2 holds. In this case, �Γ� denotes a logic formula that expresses
the assumptions in the environment. This formula does not only contain the refinements of every
variable occurring in Γ but also the conditions that are known to hold in the corresponding context.
The latter are accumulated in the environment while traversing conditional expressions. Thus, the
type system is path sensitive.

Type checking. To check whether an expression has a given type, one can apply a set of syntax-
directed typing and subtyping rules to obtain a derivation tree whose leaves are verification con-
ditions of the form �Γ� ∧ φ1 ⇒ φ2, as explained earlier. If these conditions are discharged by an
SMT solver, then the expression is well typed.

Type inference. Assuming that Hindley-Milner types have been inferred in a previous phase,
the type inference algorithm decorates each type τ in the derivation tree with a fresh template
variable κ to get a type {ν : τ | κ}. Similarly to type checking, some verification conditions are
generated from the premises of the derivation tree, but now these conditions contain template
variables. Type inference amounts to finding a solution to the verification conditions—that is, a
mapping A from template variables to subsets of Q∗ such that all verification conditions hold.
The first attempt is done with the strongest mapping, which assigns the conjunction of all ele-
ments in Q∗ to each template variable (i.e.,A(κ) =

∧
Q∗ for every κ). If the verification conditions

1Although not mentioned in other works [35–37], liquid Haskell supports variance annotations in user-defined types.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:7

hold under this assignment, then A is a solution. Otherwise, there exists a verification condition
A(�Γ�) ∧A(κ1) ⇒ A(κ2) that does not hold. The algorithm then removes conjuncts from A(κ2)
(thus weakening the mapping) until the offending verification condition becomes valid. The re-
maining verification conditions are checked again under the updated assignment. This weakening
process is repeated until a solution is found. Since Q∗ is finite, termination is guaranteed.

3 DECIDABLE THEORIES ON ARRAYS

As explained earlier, when working with liquid types, refinements should be formalized using
formulas whose satisfiability could be provable. Therefore, it is important to know which theories
concerning arrays are decidable, to use formulas of such theories to specify array properties. First
studies involving satisfiability decision procedures for array theories have focused on quantifier-
free fragments [31], as the full theories are undecidable. Later, an extensional theory of arrays
with equality between unbounded arrays has been formalized as a decidable fragment [30]. An
extension of these theories is studied in Bradley et al. [5]. The motivation is that most assertions
and invariants of programs related to arrays require at least a universal quantifier over index
variables. Usual array properties to be specified are that an assertion (≥ 0, ≤ x , . . .) holds for all
elements in a given index range, or that every pair of elements of a segment of the array satisfy a
relationship (≤,�,=, . . .), or a comparison between the elements of the array and the elements of
another one. These array properties can be formalized by formulas having the following form:

∀j .φI (j) → φV (j), (3)

where j is a vector of index variables, the guard φI (j) delimits the segment of the array we are

interested in, and φV (j) refers to the value constraint. Both the guard and the value constraint
involve qualifiers referring to program variables. For instance, if v,w are array variables and i is
an integer variable, the equality of a segment of these arrays can be encoded by the following:

∀j .0 ≤ j < i → v[j] = w[j]. (4)

To have a satisfiability procedure for universal quantified formulas with the shape of (3), some

limitations are imposed to the syntax of φI (j) and φV (j). These limitations restrict the set of quali-
fiers that can be used to build those formulas, but most of the common program invariants referring
arrays can be expressed with the restricted set, as we will see.

Following Bradley et al. [5], the form of an index guard φI (j) is constrained according to the
grammar:

дuard ::= дuard ∧ дuard | дuard ∨ дuard | atom
atom ::= expr ≤ expr | expr = expr
expr ::= uvar | pexpr
pexpr ::= z | z ∗ evar | pexpr + pexpr ,

where z stands for Presburger arithmetic basic terms (i.e., terms built up from the constants 0, 1
and the functions + and −), uvar represents the variables that will occur universally quantified,
and evar represents the integer variables that will occur existentially quantified. Notice that the
relations � and < are not allowed between quantified indices, and they cannot be simulated using
≤ because terms as j + 1 are not valid in pexpr if j is a universally quantified variable. However,
we will write j < b, where j is quantified and b is in pexpr , as an abbreviation of j ≤ b − 1, which
is allowed if b is not quantified.

The formula φV (j) is constrained in such a way that any occurrence of a quantified variable

j ∈ j must be as a read into an array, a[j], for array term a, and nested array reads are not al-
lowed. Other program variables and terms can occur everywhere in the formula. A formula of

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:8 M. Montenegro et al.

the form (∀j .φI (j) → φV (j)) with the previous constraints for φI (j) and φV (j) is called an array

property.
The theory consisting of all existentially closed Boolean combinations of array property for-

mulas and quantifier-free formulas built from program variables and terms is decidable. The sat-
isfiability procedure introduced in Bradley et al. [5] reduces satisfiability of a formula of such
fragment to satisfiability of a quantifier-free formula in the combined theory of equality with un-
interpreted functions, Presburger arithmetic, and the element theories (corresponding to the types
of the program terms). Every universal quantified assertion is converted to a finite conjunction by
instantiating the quantified index variables over a finite set of index terms. Restrictions on guards
ensure that such an index set is finite.

However, when considering existentially closed ∀-∃-fragments, even with syntactic restrictions
like those in the array property, the satisfiability problem becomes undecidable. Other theories are
also proved in Bradley et al. [5] to be undecidable, and this is the case of the following extensions
of the array property formulas:

• If the formula contains nested reads as a1[a2[j]] and j is universally quantified
• If a[j] appears in the guard and j is universally quantified
• If the formula includes general Presburger arithmetic expressions over universally quanti-

fied index variables (e.g., j + 1) in the index guard or in the value constraint.

In Habermehl et al. [17], a more powerful decidable logic on arrays is presented. For instance,
accesses to array elements such as a[i + k], where i is a universally quantified variable and k is a
constant, are allowed. In addition, expressions such as i % 2 = 0 may occur in the guard. Unfortu-
nately, the decision procedure is based on Büchi automata, and conventional SMT solvers do no
support them.

4 ARRAY REFINEMENTS

When verifying programs which deal with arrays, many properties we express about them require
universal quantification as explained earlier. To bound the decidable fragment of the array theory
we actually need, we observe that those properties often fall into some of the following general
categories:

• Properties expressing that some elements of an array satisfy individually a property—for
example,

∀j .0 ≤ j < lenv → v[j] = 0, (5)

∀j .0 ≤ j < lenv ∧ j%2 = 0→ v[j] > 0, (6)

∀j .a ≤ j ≤ b → x < v[j] ∧v[j] ≤ y. (7)

• Properties expressing that some pairs of elements in a segment of an array satisfy a binary
relation.2—for example,

∀j1, j2.a ≤ j1 ≤ b ∧ a ≤ j2 ≤ b ∧ j1 � j2 → v[j1] � v[j2], (8)

∀j1, j2.0 ≤ j1 ≤ j2 < lenv → v[j1] ≤ v[j2], (9)

∀j1, j2.a ≤ j1 ≤ p ∧ p ≤ j2 ≤ b → v[j1] ≤ v[j2]. (10)

The last property holds after partition in quicksort, withp being the resulting pivot position.

2Ternary or bigger relations are less frequent, and they make the inference process too expensive.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:9

In addition, many times the binary relation concerns two different arrays—for example,

∀j1, j2.a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → v[j1] ≤ w[j2] (11)

is a property that holds while merging the two sorted halves [a,m] and [m + 1,b] of an
array w into an ordered array v (see Example 3 in the following).

• Usually, the preceding properties need to be completed with a property related to the length
of the array (as lenv > x) expressing the conditions on the ends of a segment so that the
array accesses are well defined. For instance, the property (7) can be completed as follows:

(∀j .a ≤ j ≤ b → x < v[j] ∧v[j] ≤ y) ∧ 0 ≤ a < lenv ∧ 0 ≤ b < lenv︸��������������������������������︷︷��������������������������������︸
segment limits

. (12)

In particular, the properties inferred in the examples shown in Section 10 fall into these cat-
egories. These include different sorting properties inferred in several sorting and searching al-
gorithms, and also properties describing the specific contents of an array (e.g., those inferred in
the dutch flag algorithm). All of the properties can be defined on delimited valid segments of the
involved arrays.

Some formulas listed earlier do not belong to the decidable fragment mentioned in the previous
section. In particular, (6) is not in the fragment because there cannot be operators over the quan-
tified variables, and (8) is not an array property because relation � is not allowed over the indices.
The remaining formulas are allowed,3 and even more, they belong to a subset of the fragment that
we are going to characterize in our formalization of array refinements.

Keeping in mind the preceding three kinds of array properties, we establish three kinds of re-
finements with the aim of inferring automatically array properties. We consider that they widely
cover many of the invariants needed to verify programs dealing with arrays, including the most
known sorting algorithms, as we show in Section 10. We will respectively call them simple ar-
ray refinements (denoted as ρ), double array refinements (denoted as ρρ), and length refinements
(denoted as δ).

Simple refinements can be expressed using universal quantification over a variable representing
the indices of the array whose elements meet the property. The array refinements corresponding
to these properties have the following shape:

ρ (w) ≡ ∀j .I (j) → E (w[j]),

wherew is the array to which the refinement refers. In the liquid type, this will be the array being
refined (i.e., ν). I is a predicate which restricts the values of the indices whose elements satisfy
the property. E is a predicate which expresses the individual property satisfied by each considered
element.

The qualifiers allowed in I and E are constrained as explained in the previous section to ensure
decidability and belong to sets of qualifiers which are provided by the programmer. As we may have
several simple refinements, we can consider predicate I to be just a conjunction of qualifiers due
to the logical equivalence (A ∨ B) → C ⇔ (A→ C) ∧ (B → C). For example, the property ∀j .0 ≤
j < lenν ∧ (j < a ∨ j > b) → ν[j] ≥ 0 will be written as a conjunction of refinements:

(∀j .0 ≤ j < lenν ∧ j < a → ν[j] ≥ 0) ∧ (∀j .0 ≤ j < lenν ∧ j > b → ν[j] ≥ 0).

To reduce the search space in the inference process, we will also consider that E is a conjunction
of qualifiers—that is, we do not allow disjunction of qualifiers. Due to the logical equivalence
A→ (B ∧C) ⇔ (A→ B) ∧ (A→ C), we can consider that in fact E is an atomic property about

3We consider len v to be a fixed integer rather than a function applied to v .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:10 M. Montenegro et al.

one element of the array. For example, the property ∀j .0 ≤ j < lenν → ν[j] ≥ 0 ∧ ν[j] ≤ 100 is in
fact expressed as the conjunction of two simple refinements:

(∀j .0 ≤ j < lenν → ν[j] ≥ 0) ∧ (∀j .0 ≤ j < lenν → ν[j] ≤ 100).

Then, the previous predicates (5) and (7) are also valid simple refinements. And notice that
properties about one element of the array can be expressed with simple refinements. For example,
the property ν[3] > 0 can be expressed as ∀j .j = 3→ ν[j] > 0.

Double refinements can be expressed using universal quantification over two variables represent-
ing the pairs of indices of the array whose elements meet the relation. They have the following
shape:

ρρ (v,w) ≡ ∀j1, j2.II (j1, j2) → EE (v[j1],w[j2]),

where v , w are the variables representing the arrays to which the refined array is related. In the
liquid type, at least one of them will be the refined array (i.e., ν), and in case the other is not, it has
to be a free variable which is in scope. II is a predicate which restricts the values of the pairs of
indices whose elements meet the relation. EE is a predicate which expresses the relation satisfied
by each considered pair. Of course, both II and EE must hold the constraints of the array property
formulas. Similarly to simple refinements, II is a conjunction of qualifiers and EE is a single qualifier
concerning two elements of the involved arrays. Note that the previous examples (9), (10), and (11)
are valid double refinements.

A length refinement δ is a single qualifier referring the length of the array, such as i ≤ len v and
len v ≤ len w . In (12), several valid length refinements are used to delimit a segment [a,b] on an
array where a property holds.

Definition 1. A refined array type has the following shape:

{ν : array τ | (
∧

i

δi (ν))

︸������︷︷������︸
length refinements

∧ (
∧

j

ρ j (ν))

︸������︷︷������︸
simple refinements

∧ (
∧

k

ρρk (ν ,vk))

︸�������������︷︷�������������︸
double refinements

},

where each vk may be ν itself or a free array variable.

Example 1. Figure 1 shows the specification and the imperative code corresponding to the al-
gorithm insert used in the insertion sort, where

ord (v, l , r) ≡ ∀j1, j2.l ≤ j1 ≤ j2 ≤ r → v[j1] ≤ v[j2].

The property ∀j .i + 2 ≤ j ≤ n → x < ν[j] is part of the refinement of array v in line 3—that is, it
is an invariant property of the loop.

Example 2. Figure 2 shows the specification and the imperative code corresponding to the binary
search algorithm, where

lt (v,x , l , r) ≡ ∀j .l ≤ j < r → v[j] < x
geq(v,x , l , r) ≡ ∀j .l ≤ j < r → x ≤ v[j].

The property geq(v,x ,b + 1, lenv) is part of the refinement of array v in line 3—that is, it is an
invariant property of the loop.

Example 3. In Figure 3, we show the specification and the imperative code corresponding to the
algorithm merge used in the mergesort algorithm. The property

(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → ν[j1] ≤ w[j2])
∧(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ j ≤ j2 ≤ b → ν[j1] ≤ w[j2])

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:11

Fig. 1. insert algorithm. Fig. 2. binSearch algorithm.

Fig. 3. merge algorithm.

is part of the refinement of array v in line 4—that is, it is an invariant property of the first loop. It
is also part of v’s refinement in the second and third loops.

5 THE PROGRAMMING LANGUAGE OF THE CAVI-ART PLATFORM

In this work, we apply our extended liquid type system to programs written in the CAVI-ART
IR [23]. The CAVI-ART platform is oriented towards program verification. A key aspect of it
is the IR to which source programs, written in a variety of languages, can be transformed.
Once programs have undergone this transformation, the remaining activities (invariant synthesis,

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:12 M. Montenegro et al.

Fig. 4. CAVI-ART IR syntax.

termination analysis, verification condition generation, and proving) can be performed in a
language-independent way. While verifying programs, the generated verification conditions are
sent to the Z3 solver [24], which supports array properties.

The syntax of the IR is shown in Figure 4. It is a desugared first-order functional language with
tuples, data constructors, and a polymorphic type discipline. The restriction of being first order is
due to the fact that the CAVI-ART platform was intended for assisted verification of programs, and
most of this task is accomplished in the context of imperative languages, in which higher-order
constructs are moderately used. We could extend our IR with lambda expressions, as it is done in
the original liquid type framework, or else we could allow higher-order constructs in the source
language and defunctionalize it during its transformation to our IR, by following the usual steps
[26]. However, for the purpose of this work, higher order does not play any relevant role.

Because of its language-dependent nature, the set of type constructors is left unspecified. We
assume that the type definitions specific to each language have been given to Z3 in advance. This
also applies to the axiomatization of the behaviour of built-in functions of the source language. In
this work, we assume that each of these axiomatizations can be translated into a liquid type, and
that there exists a type constructor for the array data type with the functions get and set having
the following types:

get :: ∀α .(a : array α) → (i : {ν : int | 0 ≤ ν ∧ ν < lena}) → {ν : α | ν = a[i]}
set :: ∀α .(a : array α) → (i : {ν : int | 0 ≤ ν < lena})

→ (x : α)
→ {ν : array α | ν = a[i ← x]},

where the notation a[i ← x] denotes the result of storing x in the i-th position of the array a. These
functions are directly mapped to their counterparts in Z3’s array theory. This theory assumes that
arrays are of unlimited length, so we have to attach a variable to each array denoting the length
of the latter. When generating verification conditions, all calls to len are translated into accesses
to this variable.

We transform imperative programs with mutable state into the IR by computing the control
flow graph (CFG) of the input program. Each block in the CFG is transformed into single-static
assignment SSA form. The resulting blocks are translated into a set of mutually recursive functions.
The SSA transformation is applied locally to each block, so there is no need for ϕ functions in

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:13

Fig. 5. IR representation of the insert algorithm.

each node of the CFG. The ϕ functions are emulated by parameter passing in the resulting set of
mutually recursive functions. As a last step, we flatten let expressions to obtain an IR program in
A-normal form (see Montenegro et al. [23] for details). Figure 5 shows the result of transforming
the insert function of Figure 1 into the IR.

6 THE LIQUID TYPE SYSTEM

In this section, we define the rules of our type system. We will use B to denote basic liquid types,T
for either basic types or dependent tuple types, and LT for the previous ones and functional liquid
types:

B ::= {ν : τ | φ} Basic types

T ::= B | 〈xi :: Bi 〉 Nonfunctional types
LT ::= T | T1 → T2 Liquid types

Although in the program each function receives a sequence of arguments (xi :: Bi), we will use a

dependent tuple type, 〈xi :: Bi 〉 to express the dependency between them in its functional type. If
the function returns several results, the tuple is explicitly built in the function body, and this type

also encloses the dependency between such results 〈yj :: B′j 〉.
We define the α-equivalence relation between liquid types as usual. We write LT ≡α LT ′ to

represent that LT and LT ′ are equal except for a possible renaming of the quantified vari-
ables in the refinements and of the variables used to label the tuple components. In particular,

〈xi :: {ν : τi | φi }〉 ≡α 〈yi :: {ν : τi | φ ′i [yi/xi }〉, if φi ≡α φ ′i and yi are fresh variables not occurring
in φi

′.
Type schemes are obtained by quantifying type variables:

S ::= LT | ∀αS .
The rules of the liquid type system can be classified into three groups: expression typing

rules, a function definition typing rule, and subtyping rules. The left-hand side of the sequents
of these rules is a typing environment Γ containing information about the liquid types of free vari-
ables, function, and type constructor symbols, as well as Boolean conditions denoted by φ. More
precisely,

Γ ::= ϵ | Γ,γ
γ ::= φ | x :: B | f :: S | C :: S .

So that that the types are well formed, we require that the refinements are logic formulas whose
free variables are bound in the environment. Rules guaranteeing well formedness of types are
similar to those in the original system [27], and we do not show them here. Notice that in type
environments there are no variables with tuple types, because by syntactic construction the indi-
vidual components of tuples are pattern matched in let bindings.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:14 M. Montenegro et al.

Fig. 6. Typing rules for expressions.

6.1 Typing Rules for Expressions and Function Definitions

The typing rules for expressions are shown in Figure 6. The sequents of these rules have the
form Γ � e :: T . By τ = hmtype(B), we denote that the Hindley-Milner base type of B is τ . We also
use hmtype(c) to denote the Hindley-Milner type of a constant c . By gen(LT , Γ), we denote the
generalization of LT with respect to Γ, and it is defined by дen(LT , Γ) = ∀α .LT , where α are the
free fresh type variables of LT not occurring in Γ. The relation Inst (LT , S), used in the premises of
the (LTapp) and (LTcase) rules, denotes that the liquid type LT is an instance of the scheme S . It is
defined as follows:

• Inst (LT ,LT ′) if and only if LT ≡α LT ′

• Inst (LT ,∀α .S) if and only if there is τ such that Inst (LT , S[τ/α]).

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:15

Fig. 7. Typing rule for a top-level function definition.

The system has a rule for each syntactically different expression, except the rule (LTSub), which
can be applied anywhere in a type derivation.

The rules (LTvar) and (LTconst) give the strongest possible liquid typesrespectively to a free
program variable and a literal constant. The rule (LTtuple) gives types to the tuple components
from left to right, thus allowing the type of a component to depend on the value of a prior compo-
nent. The same strategy is used to type the arguments of a function application in the rule (LTapp).
Notice in this rule that the actual arguments are substituted for the formal ones in the result type.
Fortunately, in our IR, an actual argument can only be a constant or a variable, keeping this substi-
tution simple. In the (LTlet) rule, the bound variables xi are out of scope after the let expression,
so we forbid them to occur free in T . We admit, however, that the refinement of type T contains
an existentially quantified formula (e.g., ∃xi .φ). Similarly, in the (LTcase) rule,T ’s refinement may

contain an existentially quantified formula (e.g., ∃xi j .φ). Notice in this latter rule that the predi-
cate φi satisfied by the result of the constructorCi in the i-th branch of the case is satisfied by the
discriminant x in this branch, and that this knowledge is added to the typing environment to type
the branch expression.

Finally, the (LTfun) rule is the only one that may introduce polymorphism and mutual recursion
between functions. Several different instances of a polymorphic function definition may be used
in the letfun main expression, hence the type generalization done before typing this expression.

The (LTdef) typing rule for a top-level function definition is very similar to that of letfun, and
it is shown in Figure 7. The main difference is that we allow the function to contain pre/post condi-
tionsψ1 andψ2, and so the relation between them and the liquid types of the function arguments
and results must be checked for validity.

6.2 Subtyping Rules

The sequents of these rules have the form Γ � LT <: LT ′, where LT <: LT ′ represents that LT is a
subtype of LT ′. They appear in Figure 8, where [[Γ]] represents the semantics of the environment
Γ and is defined recursively as follows:

• [[]] = true
• [[Γ,x :: {ν : τ | φ}]] = [[Γ]] ∧ φ[x/ν]
• [[Γ, f :: S]] = [[Γ]]
• [[Γ,C :: S]] = [[Γ]]
• [[Γ,φ]] = [[Γ]] ∧ φ

To prove that a basic type is a subtype of another one, the rule (STbase) introduces as a proof
obligation checking the validity of a logical formula. The rule (STtuple) extends the relation in the
obvious way to tuples, and the rule (STfun) does the same for functional types. In this case, the
relation is covariant in the result and contravariant in the arguments.

Trivially, since in the classic first-order logic the implication behaves as a reflexive and transi-
tive relation we can prove, by induction on the depth of derivations, that subtype relation between

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:16 M. Montenegro et al.

Fig. 8. Subtype system.

types is reflexive and transitive. The following lemmas state that the liquid type and subtype sys-
tems are closed under α-equivalence.

Lemma 1. Let Γ be a liquid type environment. Let LT1,LT2,LT
′
1 ,LT

′
2 liquid types such that

LT1 ≡α LT ′1 and LT2 ≡α LT ′2 . If Γ � LT1 <: LT2, then Γ � LT ′1 <: LT ′2 .

Lemma 2. Let Γ be a liquid type environment. Let T1,T
′
1 be nonfunctional liquid types such that

T1 ≡α T ′1 , and let e be an expression. If Γ � e :: T1, then Γ � e :: T ′1 has a derivation of the same depth.

As a consequence of Lemma 2, we can simplify the (LTlet) rule as follows:

Γ � be ::
〈
xi :: Bi

〉
Γ,xi :: Bi � e :: T

Γ � let 〈xi :: τi 〉 = be in e :: T
(LTlet).

Similarly, renamings in the subtyping rules (STtuple) and (STfun) can be removed.
The following lemma asserts that strengthening the environment allows to prove the same typ-

ing and subtyping relations. It will be useful later (see Proposition 4) to prove completeness of our
VCG algorithm.

Lemma 3. Let Γ and Γ′ be liquid type environment such that [[Γ′]]⇒ [[Γ]]. It holds that

• If LT1,LT2 are liquid types such that Γ � LT1 <: LT2, then Γ′ � LT1 <: LT2.

• If T is a liquid type and e an expression such that Γ � e :: T , then Γ′ � e :: T has a derivation

of the same depth.

6.3 Type Operators

In the algorithm described later in Section 8.2 we will use the following operators defined on types
and also some of their properties, which we show in the following.

The disjunction of simple liquid types,
∨

i Ti , is recursively defined as follows:

• ∨i {ν : τ | φi } = {ν : τ | ∨i φi }
• ∨i 〈xi j :: Bi j 〉 = 〈x j ::

∨
i Bi j 〉, assuming that xi j = x j for every i .

The conjunction, T ∧ψ , is recursively defined as follows:

• {ν : τ | φ} ∧ψ = {ν : τ | φ ∧ψ }
• 〈xi :: Bi 〉 ∧ψ = 〈xi :: Bi ∧ψ 〉, assuming that xi are not free inψ .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:17

The existential quantification, ∃x .T , represents a liquid type whose refinement will contain ex-
istentially quantified formulas, and it is defined as follows:

• ∃x .{ν : τ | φ} = {ν : τ | ∃x .φ}
• ∃x .〈xi :: {ν : τi | φi }〉 = 〈xi :: {ν : τi | ∃x .(φ1[x1/ν] ∧ . . . ∧ φi)}〉 assuming that x � xi .

The reason for this complexity is that the quantified variable x should be instantiated in such a
way that it satisfies at the same time the current predicate φi and all predicates to its left in the
dependent tuple.

Example 4. We show an example of existential quantification over a tuple type:

∃x . 〈y1 :: {ν : int | ν > x ∧ x > 0},y2 :: {ν : int | ν > x ∧ ν < y1}
〉

=
〈
y1 :: {ν : int | ∃x .(ν > x ∧ x > 0)},y2 :: {ν : int | ∃x .(y1 > x ∧ x > 0 ∧ ν > x ∧ ν < y1)}〉 .

Now we show some properties that will be useful to prove soundness and completeness of the
VCG algorithm (see Sections 8.3 and 8.4). Some of their proofs can be found in the electronic
appendix.

Lemma 4. Let Γ be a type environment and T a nonfunctional liquid type. It holds that Γ �
T <: ∃x .T .

Lemma 5. Let Γ be an environment andTi nonfunctional liquid types. It holds that Γ � Ti <:
∨

i Ti

for every i .

Lemma 6. Let Γ be a type environment and T ,T ′ nonfunctional liquid types. If x is not free in T ′

and Γ � T <: T ′, then Γ � ∃x .T <: T ′.

Lemma 7. Let Γ be a type environment and Ti nonfunctional liquid types. If Γ � ∃x .Ti <: T for

every i , then Γ � ∨i ∃x .Ti <: T .

Proof. If T and Ti are basic, the proof holds because Γ � ∃x .Ti <: T for every i means that
for certain formulas φi and φ, it holds [[Γ]] ∧ ∃x .φi ⇒ φ for every i . Then [[Γ]] ∧∨i ∃x .φi ⇒ φ

holds as wanted. If T ,Ti are tuples, we can assume that they are of the form Ti = 〈x j :: Bi j 〉, Bi j =

{ν : τj | φi j },T = 〈x j :: {ν : τj | ψj }〉. Notice that we have types whose refinements contain existen-
tially quantified formulas and that for every j, ∃x .(φi1[xi1/ν] ∧ . . . ∧ φi j) ⇒ ∃x .φi1[xi1/ν] ∧ . . . ∧
∃x .(φi1[xi1/ν] ∧ . . . ∧ φi j). Using this fact and from the hypothesis that it holds Γ � ∃x .Ti <: T
for every i , we have that [[Γ]] ∧ ∃x .(φi1[xi1/ν] ∧ . . . ∧ φi j) ⇒ ψj for every i and every j. Hence,
[[Γ]] ∧∨i ∃x .(φi1[xi1/ν] ∧ . . . ∧ φi j) ⇒ ψj for every j. So, obviously it holds

[[Γ]] ∧
∨

i

∃x .φi1[xi1/ν] ∧ . . . ∧
∨

i

∃x .(φi1[xi1/ν] ∧ . . . ∧ φi j) ⇒ ψj ,

which allows us to conclude Γ � ∨i ∃x .〈x j :: Bi j 〉 <: T , using rules (STtuple) and (STbase). �

Lemma 8. Let Γ be a type environment and T a nonfunctional liquid type. If [[Γ]]⇒ φ, then Γ �
T <: T ∧ φ.

Lemma 9. Let Γ be an environment, B = {ν : τ | φ} a basic liquid type, and T ,T ′ nonfunctional

liquid types. If Γ,x : B � T <: T ′, then Γ � T ∧ φ[x/ν] <: T ′.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:18 M. Montenegro et al.

7 THE TYPE INFERENCE ALGORITHM

The liquid type inference algorithm has the following phases:

(1) A standard type checking algorithm is run on the program, and we assume that it type
checks. Then every variable is annotated with τ , its conventional HM type. Remember
that our IR includes types at every defining occurrence. The type checking propagates
this information to every applied variable occurrence.

(2) Each type occurrence is then refined with a fresh variable ι of the appropriate kind, rep-
resenting a predicate, so obtaining type annotations of the form x :: {ν : τ | ι}. These vari-
ables are called template variables.4 Refined types containing such variables are called
template types (see Section 8.1). An initial template environment containing those tem-
plate types, as well as liquid types for predefined function and type constructor symbols,
is built to be used in the next phases.

(3) The syntax-driven liquid typing rules presented in Section 6 are applied. Starting from the
initial template environment and the main expression to be verified, a set Φ of constraints

is obtained. This is done by our VCG algorithm, presented in Section 8. These constraints
come in the end from the premise of the rule (STbase) of Figure 8 and are to be satisfied
so that the program can be correctly typed in the liquid type sense. A basic constraint
has the form [[Γ]] ∧ φ1 ⇒ φ2, where the φ1 and φ2 are template variables with pending

substitutions, such as in Rondon et al. [27]. The purpose of these pending substitutions is
to replace formal arguments by actual ones in function applications (see the rule (LTapp)
of Figure 6). [[Γ]] may contain additional template variables.

The aim of the inference algorithm is to solve the set of constraints Φ obtained by the
VCG algorithm. That means to find an appropriate substitution A that maps all template
variables in Φ to predicates, in such a way that A satisfies Φ.

(4) The constraints are solved by an iterative weakening algorithm. Roughly speaking, the
algorithm starts with the strongest possible mapping A for all template variables, and at
each step a variable assignment is weakened to satisfy a constraint. If a fixpoint is reached,
then the final mapping obtained, when applied to all templates, gives us the liquid types
for all of the variables. In this phase, it is important to note that the range of considered
substitutionsA is restricted, for each template variable, to conjunctions of some predefined
qualifiers (see Section 9.1). By the strongest possible mapping, we mean the substitution
that, satisfying the preceding conditions, converts the set of constraints to the strongest
possible one.

As it has been said, in Section 8.5 we present the VCG algorithm. There, we do not restrict the
form the predicates may have. Its purpose is to obtain a set of constraints as strong as possible so
that, should these constraints be solved, then we would obtain the strongest possible liquid type
for each type annotation. We prove that this algorithm is both sound and complete with respect
to the type system of Section 6.

However, the whole purpose of the liquid type inference is to have a decision procedure for
typing a restricted class of programs dealing with arrays. In this sense, we do not want arbitrarily
complex predicates in our types, because checking the validity of the constraints generated by
VCG will be delegated to an SMT solver supporting a set of decidable, but also restricted, theories.

For that reason, in Section 8.5 we restrict the form of the generated constraints so that the ones
obtained by the actual algorithm, let us call it VCG ′, are less involved than the ones generated

4Note that there will be as many template variables as type annotations.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:19

by VCG. In particular, we get rid of disjunctions of types. The types obtained are still sound, but
completeness is lost—that is, some valid types will never be obtained by the algorithm. This is not a
very important issue because, as it has been said, the iterative weakening algorithm restricts even
more the form of the predicates allowed in the type refinements. In particular, predicates must
be conjunctions of some atomic qualifiers taken from a given finite set, refinements containing
existentially quantified formulas are not allowed, and a restricted form of universal quantification
is allowed only in the refinements of array types. All of these restrictions are imposed to have a
terminating algorithm. Nevertheless, some form of completeness is still achieved in the following
sense: if the program admits a typing with liquid types having the syntactic restrictions imposed
to the predicates, then our algorithm terminates and it finds the strongest possible types having
this shape.

With respect to the original liquid type framework [27], the main differences of the approach
presented here are the following:

• In addition to the κ template variables, we introduce four new kinds of template variables
in our template types—all of them related to the array type.

• Our first VCG algorithm is complete with respect to the type system given in Section 6. The
second one, VCG ′, deals with the types whose refinements contain existentially quantified
formulas, introduced by let and case expressions, by transforming the existential variables
to universally quantified ones (see Section 8.5).

• The iterative weakening algorithm is much more complex than the conventional one, due
to the way in which the new template variables are initialised and weakened. An additional
complication is that although weakening a template variable, new template variables may
be created on the fly.

8 THE VCG ALGORITHM

Here we describe our algorithm, calledVCG, which generates constraints over template variables
by mainly following the syntax-driven liquid typing rules given in Section 6. The algorithm VCG
takes as input a template environment Γ and an expression e whose type is to be inferred, and

returns as output a pair (T̂ ,Φ), where T̂ is the inferred template type corresponding to e , and Φ is a
set of constraints that must be satisfied to type check e . The originality of the method with respect
to that of Rondon et al. [27] lies basically in the explicit use of refinements containing existentially
quantified formulas to capture the type of the let and case expressions, to force bound variables

not to be free in the resulting type T̂ , as well as the use of disjunctions to model the different
branches of a case. The reason for this is to infer the most precise type for each expression in such
a way that completeness is preserved.

First, we will specify what template types and environments are. After introducing the algo-

rithm, we will show that if VCG (Γ, e) = (T̂ ,Φ), there is a map A from template variables to predi-

cates that satisfies Φ, if and only if e has a valid liquid type derivation of A(T̂) from A(Γ).

8.1 Template Types and Environments

A basic template type is a refined type {ν : τ | φ}, where the refinement predicate φ may contain
template variables and pending substitutions θ . Template variables are to be replaced by actual
predicates during the constraint solving phase. We will use the notation κ for template variables
refining the type of a variable that is not an array and μ for template variables refining an array
type (see Section 9.1).

Tuple and functional template types are constructed in the obvious way from basic template

types. Basic template types are denoted by B̂, nonfunctional template types by T̂ , and general

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:20 M. Montenegro et al.

template types by L̂T . A template scheme is defined trivially from a template type and is denoted

by Ŝ .
We will make use of the following notation. Let A be a mapping from template variables to

predicates, and let φ be a formula containing template variables and pending substitutions. By
A(φ), we denote the instance of φ that result by replacing in it every template variable ι by A(ι)
and then apply the pending substitutions of φ. A({ν : τ | φ}) represents the liquid type {ν : τ |
A(φ)}. A(L̂T) denotes the natural extension of the notation A(B̂) to the general case. If Φ is a set of
constraints, we say that A satisfies Φ if A(φ) is true for every φ ∈ Φ.

A template environment Γ is a type environment which may contain template types and schemes,
as well as ordinary liquid types and guards including template variables. If Γ is a template envi-
ronment and A a mapping from template variables to predicates, A(Γ) represents {A(γ) |γ ∈ Γ}.

By Γ, we denote the shape of Γ—that is, the result of replacing in Γ all refinement predicates by
true, and also eliminating the guards.

8.2 The Algorithm

The algorithm VCG assumes the existence of an algorithm THM that infers the Hindley-Milner

type of a function definition f (xi :: τi) :: (yj :: τ ′j) = e from a template environment shape Γ, and

returns a template type using the inferred types to generate templates, by introducing appropriate
fresh template variables to represent the unknown refinements corresponding to the subexpres-
sions in the inferred Hindley-Milner type:

THM (Γ, f (xi :: τi) :: (yj :: τ ′j) = e) = 〈xi :: {ν : τi | ιi }〉 → 〈yj :: {ν : τ ′j | ι′j }〉

where ιi and ι j
′ are fresh template variables with respect to Γ.

Two properties hold:

• If THM (Γ, f (xi :: τi) :: (yj :: τ ′j) = e) = 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉 , then hmtype(B̂i) = τi and

hmtype(B̂′j) = τ
′
j , trivially by definition.

• Given a liquid type LT = 〈xi :: {ν : τi | φi }〉 → 〈yj :: {ν : τ ′j | φ ′j }〉 and its template

THM (Γ, f (xi :: τi) :: (yj :: τ ′j) = e) = 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉, then there exists a substi-

tution A such that A(〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉) = LT . Trivially, any A such that A(ιi) = φi and

A(ι′j) = φ ′j meets the property.

Now we show the formal equations defining the algorithm VCG:

• VCG (Γ,x) = ({ν : hmtype(Γ(x)) | ν = x }, ∅).
• VCG (Γ, c) = ({ν : hmtype(c) | ν = c}, ∅).
• VCG (Γ, 〈a,ai 〉) =

let(B̂,Φ1) = VCG (Γ,a) in

let(〈xi :: B̂i 〉,Φ2) = VCG (Γ;x :: B̂, 〈ai 〉) in
(〈x :: B̂,xi :: B̂i 〉,Φ1 ∪ Φ2).

• VCG (Γ, f ai) =
let S = Γ(f) in

let(〈xi :: B̂i 〉,Φ1) = VCG (Γ, 〈ai 〉) in
let〈xi :: B̂′i 〉 → T̂ = дet_inst (S, (xi :: hmtype(B̂i)))in

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:21

let Φ2 = subt (Γ, 〈xi :: B̂i 〉, 〈xi :: B̂′i 〉)in
(T̂ [ai/xi],Φ1 ∪ Φ2).

• VCG (Γ,C ai) is defined analogously to the f ai case.
• VCG (Γ, let 〈xi :: τi 〉 = be in e) =

let(〈x ′i :: B̂i 〉,Φ1) = VCG (Γ,be) in

let(T̂ ,Φ2) = VCG (Γ;xi :: B̂i [xi/xi
′], e) in

(∃xi .(T̂ ∧
∧

i φi [xi/xi
′][xi/ν]),Φ1 ∪ Φ2)

where B̂i = {ν : τi | φi }.
• VCG (Γ, letfun fi (xi j :: τi j) :: (yi j :: τ ′i j) = ei in e) =

let〈xi j :: B̂i j 〉 → 〈yi j :: B̂′i j 〉 = THM (Γ, fi (xi j :: τi j) :: (yi j :: τ ′i j) = ei) in

let(T̂ei
,Φ1

i) = VCG (Γi , ei)in

letΦ2
i = subt (Γi , T̂ei

, 〈yi j :: B̂′i j 〉) in

letŜi = дen(〈xi j :: B̂i j 〉 → 〈yi j :: B̂′i j 〉, Γ) in

let(T̂ ,Φ) = VCG (Γ; fi :: Ŝi , e) in
(T̂ ,Φ ∪⋃i (Φ1

i ∪ Φ2
i))

where Γi = Γ; fi :: 〈xi j :: B̂i j 〉 → 〈yi j :: B̂′i j 〉;xi j :: B̂i j .

• VCG (Γ, case x of Ci xi j :: τi j → ei) =
letτ = hmtype(Γ(x)) in

let Ŝi = Γ(Ci)in

let 〈xi j :: B̂i j 〉 → {ν : τ | φi } = дet_inst (Ŝi , (xi j :: τi j))in

let(T̂i ,Φi) = VCG (Γ;xi j :: B̂i j ;φi [x/ν], ei)in

(
∨

i ∃xi j .(T̂i ∧
∧

j φi j [xi j/ν] ∧ φi [x/ν]),
⋃

i Φi)

where B̂i j = {ν : τi j | φi j },

In the definition of VCG for case and function application cases, дet_inst is used to obtain an

instance of a template scheme. Let Ŝ be a template scheme and τi be ground types. The function

дet_inst (Ŝ, (xi :: τi)) returns the instance of Ŝ that makes the arguments of Ŝ match (xi :: τi), if it
is possible:

• дet_inst (∀α .〈yi :: B̂i 〉 → T̂ , (xi :: τi)) =

let θ =match(α , hmtype(B̂i),τi)in 〈xi :: B̂i [xi/yi]〉θ → T̂ [xi/yi]θ ,

wherematch(α ,τi ,τ ′i) is the unique substitution [τ/α], that makes τi [τ/α] = τi
′, if any.

• дet_inst (Ŝ, (xi :: τ ′i)) is undefined when the types of the arguments do not match, or Ŝ does
not have the expected form of function type.

We consider α empty as a particular case, in which τ and τ ′ must be the same.
The algorithm subt which generates verification constraints from subtyping conditions is a di-

rect translation of the subtyping rules defined in Section 6.2. In particular, subt (Γ, L̂T 1, L̂T 2), returns

a set of constraints Φ that must be satisfied so that L̂T 1 is a subtype of L̂T 2:

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:22 M. Montenegro et al.

• subt (Γ, {ν : τ | φ1}, {ν : τ | φ2}) = {[[Γ]] ∧ φ1 ⇒ φ2}.
• subt (Γ, 〈x :: B̂,xi :: B̂i 〉, 〈x ′ :: B̂′,x ′i :: B̂′i 〉) =

subt (Γ, B̂, B̂′) ∪ subt (Γ;x :: B̂, 〈xi :: B̂i 〉, 〈x ′i :: B̂′i [x/x
′]〉).

• subt (Γ, 〈xi :: B̂i 〉 → T̂ , 〈x ′i :: B̂′i 〉 → T̂ ′) =

subt (Γ, 〈x ′i :: B̂′i 〉, 〈xi :: B̂i 〉) ∪ subt (Γ;x ′i :: B̂′i , T̂ [xi
′/xi], T̂

′).

The algorithm VCGD obtains the template scheme and the verification conditions for a function
definition, in the context of a template environment:

• VCGD (Γ, define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2}) =

let〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉 = THM (Γ, f (xi :: τi) :: (yj :: τ ′j) = e) in

let(T̂ ,Φ1) = VCG (Γ′, e) in

letΦ2 = subt (Γ′, T̂ , 〈yj :: B̂′j 〉) in

(дen(〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉, Γ),Φ1 ∪ Φ2 ∪ {ψ1 ⇒
∧

i φi [xi/ν],
∧

j φ
′
j [yj/ν]⇒ ψ2}),

where B̂i = {ν : τi | φi }, B̂′j = {ν : τ ′j | φ ′j }, and Γ′ = Γ; f :: 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉;xi :: B̂i .

The following lemmas state that the algorithms subt and VCG are closed under α-equivalence,
as it happens for the liquid type and subtype systems.

Lemma 10. Let Γ be a template environment. Let L̂T 1, L̂T 2, L̂T
′
1, L̂T

′
2 be template types such

that L̂T 1 ≡α L̂T
′
1 and L̂T 2 ≡α L̂T

′
2. If subt (Γ, L̂T 1, L̂T 2) = Φ, then subt (Γ, L̂T

′
1, L̂T

′
2) = Φ′, where

Φ ≡α Φ′.

Lemma 11. Let Γ be a template environment. Let T̂1, T̂
′
1 be nonfunctional template types such that

T̂1 ≡α T̂ ′1 , and let e be an expression. If VCG (Γ, e) = (T̂1,Φ), then VCG (Γ, e) = (T̂ ′1 ,Φ
′), where Φ ≡α

Φ′.

As a consequence of these lemmas, we can choose xi
′ = xi and take off the substitution [xi/xi

′]
in the rule of VCG for the expression let, as well as in the rules of subt for tuple and functional
types.

8.3 Soundness of the VCG Algorithm

Now we show that the algorithm VCGD is sound with respect to the liquid type system. The proof
is based on the soundness of the algorithms VCG and subt that we prove next.

To simplify the reading, we introduce the following notation. Let Γ be a template environment,

e an IR expression, T̂ a template type, and A a mapping from template variables to predicates.

By Γ �A e :: T̂ , we denote A(Γ) � e :: A(T̂). Analogously, if L̂T 1 and L̂T 2 are template types, by

Γ �A L̂T 1 <: L̂T 2 we denote A(Γ) � A(L̂T 1) <: A(L̂T 2).

Lemma 12. Let Ŝ be a template type scheme, A be a mapping from at least all the template vari-

ables in Ŝ to predicates. Then Inst (A(〈xi :: B̂i 〉 → T̂),A(Ŝ)) if and only if дet_inst (Ŝ, (xi :: τi)) =

〈xi :: B̂i 〉 → T̂ .

Proposition 1. Let Γ be a template environment, L̂T 1, L̂T 2 be two template types, and Φ be a set

of constraints such that subt (Γ, L̂T 1, L̂T 2) = Φ. Then for every mapping A satisfying Φ, it holds that

Γ �A L̂T 1 <: L̂T 2 has a derivation in the subtype system.

Proof. By induction on the structure of L̂T 1 (see the electronic appendix). �

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:23

Proposition 2. Let Γ be a template environment, e an expression, T̂ a template type, and Φ a

set of constraints such that VCG(Γ, e) = (T̂ ,Φ). Then for every mapping A satisfying Φ, it holds that

Γ �A e :: T̂ has a valid derivation in the liquid type system.

Proof. By induction on the structure of e . We show some cases here, and the others are detailed
in the electronic appendix:

• Let e = f ai . If VCG(Γ, e) = (T̂ ,Φ), then T̂ = T̂ ′[ai/xi], Φ = Φ1 ∪ Φ2, such that

(i) (〈xi :: B̂′i 〉,Φ1) = VCG(Γ, 〈ai 〉),
(ii) Φ2 = subt (Γ, 〈xi :: B̂′i 〉, 〈xi :: B̂i 〉),

(iii) 〈xi :: B̂i 〉 → T̂ ′ = дet_inst (Ŝ, (xi :: hmtype(B̂′i))), where Ŝ = Γ(f).

As before, A satisfies Φ1 and Φ2. Applying the induction hypothesis to (i), a proof of the se-

quent Γ �A 〈ai 〉 :: 〈xi :: B̂′i 〉 can be derived. In addition, we have Γ �A 〈xi :: B̂′i 〉 <: 〈xi :: B̂i 〉,
by Proposition 1 applied to (ii). Moreover by applying Lemma 12 to (iii), we obtain

Inst (A(〈xi :: B̂i 〉 → T̂ ′), A(Ŝ)), with Ŝ = Γ(f), so A(Ŝ) = A(Γ)(f). Therefore, the following

is a proof of Γ �A e :: T̂ .

Γ �A 〈ai 〉 :: 〈xi :: B̂′i 〉 Γ �A 〈xi :: B̂′i 〉 <: 〈xi :: B̂i 〉

Γ �A 〈ai 〉 :: 〈xi :: B̂i 〉
(LTSub)

Inst (A(〈xi :: B̂i 〉 → T̂ ′),A(Ŝ))

Γ �A f ai :: T̂ ′[ai/xi]
(LTapp)

• Let e = let 〈xi :: τi 〉 = be in e ′. If VCG(Γ, e) = (∃xi .T̂ ,Φ), then T̂ = T̂ ′ ∧∧i φi [xi/ν]), Φ =
Φ1 ∪ Φ2 such that

(i) (〈xi :: {ν : τi | φi }〉,Φ1) = VCG(Γ,be),

(ii) (T̂ ′,Φ2) = VCG(Γ;xi :: {ν : τi | φi }, e ′).

Applying the induction hypothesis to (i) and to (ii) (A satisfies Φ1 and Φ2), we deduce the
following:

(iii) Γ �A be :: 〈xi :: {ν : τi | φi }〉
(iv) Γ,xi :: {ν : τi | φi } �A e ′ :: T̂ ′

Notice that T̂ and T̂ ′ differ only on
∧

i φi [xi/ν], and [[Γ,xi :: {ν : τi | φi }]]⇒
∧

i φi [xi/ν], so

by Lemma 8 we obtain that Γ,xi :: {ν : τi | φi } �A T̂ ′ <: T̂ . Then by Lemma 4, we have that

Γ,xi :: {ν : τi | φi } �A T̂ <: ∃xi .T̂ . Finally, by transitivity we get the following:

(v) Γ,xi :: {ν : τi | φi } �A T̂ ′ <: ∃xi .T̂ .

From (iv) and (v), we can derive the sequent Γ,xi :: {ν : τi | φi } �A e ′ : ∃xi .T̂ , using (LTsubt).
Taking this sequent and (iii), as premises we obtain a derivation of

Γ �A let 〈xi :: τi 〉 = be in e ′ :: ∃xi .T̂

using the rule (LTlet), because xi are not free in ∃xi .T̂ . �

Theorem 1. Let Γ be a template environment, define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2} be a func-

tion definition, Ŝ a template scheme, and Φ a set of constraints such that

VCGD (Γ, define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2}) = (Ŝ,Φ).

Then for every mapping A satisfying Φ, it holds that

Γ �A define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2} :: Ŝ .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:24 M. Montenegro et al.

Proof. It is a direct consequence of Propositions 1 and 2 (see the electronic appendix). �

8.4 Completeness of the VCG Algorithm

Here we prove that VCG as well as VCGD are complete with respect to the liquid type system.
First, we prove the completness of subt with respect to the subtype system.

Proposition 3. Let Γ be a template environment, L̂T 1, L̂T 2 be two template types, and A be a

mapping from template variables to predicates. If Γ �A L̂T 1 <: L̂T 2 has a derivation in the subtype

system, then there is a set of constraints Φ such that subt (Γ, L̂T 1, L̂T 2) = Φ and A satisfies Φ.

Proof. By induction on the depth of the proof of Γ �A L̂T 1 <: L̂T 2. The full proof is detailed in
the electronic appendix. �

Proposition 4. Let Γ be an environment, e an expression, andT a nonfunctional type. If Γ � e :: T
has a derivation in the liquid type system, then for any template environment Γ′ and any mapping

from template variables to predicates A such that A(Γ′) = Γ, there exist a template type T̂ , a mapping

A′ extending A, and a set of constraints Φ such that

• VCG(Γ′, e) = (T̂ ,Φ),
• Γ � A′(T̂) <: T ,

• A′ satisfies Φ.

Proof. By induction on the depth of the derivation of Γ � e :: T . We show here the proof when
the last rule applied in the derivation is (LTcase). The rest are in the electronic appendix.

Let Γ′ and A be such that A(Γ′) = Γ. If (LTcase) is the last rule of the derivation of Γ �
e :: T , then e = case x of Ci xi j :: τi j → ei , hmtype(Γ(x)) = τ , and for all i we have Γ(Ci) = Si and

Inst (〈xi j :: Bi j 〉 → Bi , Si). In addition,

(i) Γ, xi j :: Bi j , φi [x/ν] � ei :: T , xi j are not free in T ,
Bi j = {ν : τi j | φi j } and Bi = {ν : τ | φi }.

From hmtype(Γ(x)) = τ ,we have hmtype(Γ′(x)) = τ . SinceA(Γ′) = Γ, for every i , Γ(Ci) = Si , there

is Ŝi such that Γ′(Ci) = Ŝi and A(Ŝi) = Si , for each i . Moreover, Inst (〈xi j :: Bi j 〉 → Bi , Si) implies

that if 〈xi j :: B̂i j 〉 → B̂i = дet_inst (Ŝi , (xi j :: τi j)), then A(〈xi j :: B̂i j 〉 → B̂i) = 〈xi j :: Bi j 〉 → Bi . So,

B̂i = {ν : τ | ψi },A(ψi) = φi and B̂i j = {ν : τi j | ψi j },A(ψi j) = φi j . Hence, applying the induction

hypothesis to (i), for each i , there are T̂i , Ai (extension of A), and Φi such that

(ii) VCG (Γ′;xi j :: B̂i j ;ψi [x/ν], ei) = (T̂i ,Φi),

(iii) Γ;xi j :: Bi j ;φi [x/ν] � Ai (T̂i) <: T ,
(iv) Ai satisfies Φi .

Without loss of generality, we can assume that the new template variables occurring in T̂i and Φi

are different for each i , so the domains of the mapping extensions Ai only have in common the
domain of A. Then there is A′ =

⋃
i Ai , a common extension of A, satisfying (iii) and (iv) replacing

Ai by A′, for every i .

Hence, there exists an extension A′ of A, a template type T̂ =
∨

i ∃xi j .(T̂i ∧∧
j ψi j [xi j/ν] ∧ψi [x/ν]), and a set of constraints Φ =

⋃
i Φi such that the result of

VCG (Γ′, case x of Ci xi j :: τi j → ei) is (T̂ ,
⋃

i Φi), because hmtype(Γ′(x)) = τ , and for every

i , Γ′(Ci) = Ŝi , дet_inst (Ŝi , (xi j :: τi j)) = 〈xi j :: B̂i j 〉 → B̂i and (ii). Moreover, A′ satisfies Φ, by (iv).

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:25

Now we need to prove Γ � A′(T̂) <: T . Since A′ verifies (iii) for every i, by Lemma 9 we obtain
that

Γ � A′ ��
�
T̂i ∧
∧

j

ψi j [xi j/ν] ∧ψi [x/ν]
��
	
<: T .

By Lemma 6,

Γ � A′ ��
�
∃xi j .

��
�
T̂i ∧
∧

j

ψi j [xi j/ν] ∧ψi [x/ν]
��
	

��
	
<: T

for every i , because xi j are not free in T .

In addition, using Lemma 7,

Γ � A′ ��
�

∨
i

∃xi j .
��
�
T̂i ∧
∧

j

ψi j [xi j/ν] ∧ψi [x/ν]
��
	

��
	
<: T

as we wanted to prove. �

Theorem 2. Let Γ be a template environment and e ′ = define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2}
be a function definition. If

Γ � define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2} :: S,

then for any template environment Γ′ and any mapping from template variables to predicates A such

that A(Γ′) = Γ, there are a template scheme Ŝ , a mapping A′ extending A, and a set of constraints Φ
such that

• VCGD (Γ′, e ′) = (Ŝ,Φ),
• A′(Ŝ) = S ,

• A′ satisfies Φ.

Proof. Assuming that (LTdef) has been applied to obtain the derivation of Γ �A e ′ :: S , then it

is the case that S = gen(〈xi :: Bi 〉 → 〈yj :: B′j 〉, Γ), where Bi = {ν : τi | φi }, B′j = {ν : τ ′j | φ ′j } and

(i) Γ, f :: 〈xi :: Bi 〉 → 〈yj :: B′j 〉, xi :: Bi � e :: 〈yj :: B′j 〉,
(ii) ψ1 ⇒

∧
i φi [xi/ν],

(iii)
∧

j φ
′
j [yj/ν]⇒ ψ2.

Let 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉 = THM (Γ′, f (xi :: τi) :: (yj :: τ ′j) = e), B̂i = {ν : τi | φ̂i }, B̂′j = {ν : τ ′j |
φ̂ ′j }.

Then there is A′ extension of A such that A′(〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉) = 〈xi :: Bi 〉 → 〈yj :: B′j 〉.

Moreover, if we denote gen(〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉, Γ′) by Ŝi , we have

(iv) A′(φ̂i) = φi and A′(φ̂ ′j) = φ ′j ,

(v) A′(Ŝi) = Si .

Then, applying Proposition 4 to (i), there is A′′ extending A′, T̂e and Φ1 such that

(vi) VCG (Γ′; f :: 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉;xi :: B̂i , e) = (T̂e ,Φ1),

(vii) Γ, f :: 〈xi :: Bi 〉 → 〈yj :: B′j 〉, xi :: Bi � A′′(T̂e) <: 〈yj :: B′j 〉,
(viii) A′′ satisfies Φ1.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:26 M. Montenegro et al.

Therefore, by Proposition 3 and (vii), there is Φ2 such that

(ix) Φ2 = subt (Γ′; f :: 〈xi :: B̂i 〉 → 〈yj :: B̂′j 〉;xi :: B̂i , T̂e , 〈yj :: B̂′j 〉),
(x) A′′ satisfies Φ2.

In addition, A′′ satisfies ψ1 ⇒
∧

i φ̂i [xi/ν], because A′′ is an extension of A′, (ii), and (iv), and A′′

satisfies
∧

j φ̂
′
j [yj/ν]⇒ ψ2, becauseA′′ is an extension ofA′, (iii), and (iv). So we can guarantee that

there existsA′′, extendingA, a set of constraints Φ = Φ1 ∪ Φ2 ∪ {ψ1 ⇒
∧

i φ̂i [xi/ν],
∧

j φ̂
′
j [yi/ν]⇒

ψ2} such that A′′ satisfies Φ (see (viii) and (x)), and VCGD(Γ, e ′) = (Ŝ,Φ), by (vi) and (ix), where

A′′(Ŝ) = S , by (v), since the template variables of Ŝ are in the domain of A′ and A′′ is an extension
of A′. �

8.5 A Practical Verification Condition Generator

The VCG algorithm presented in prior sections has good mathematical properties, but it produces
rather complex verification conditions. Given that the inference algorithm will discharge these
conditions with the aid of an automatic verifier (an SMT solver), it is important to keep the formulas
simple enough so that they can remain inside the decidable domain of the solver.

To this aim, the actually implemented algorithm presents some differences with respect to the
idealVCG presented up to now. In what follows, we will refer to the actual algorithm asVCG ′when
applied to an expression and as VCGD ′ when applied to a function definition. These differences
are the following:

(1) It does not generate existentially quantified formulas in let or case expressions.
(2) It does not generate disjunction of types in case expressions.
(3) It generates the constraints in the form of a set of goals. Given a function definition, the

goals generated for it have the following shape:

[[Γ]] ∧ θ1.ι1 ∧ · · · ∧ θn .ιn ⇒ θn+1.ιn+1

where ιi , i = 1, . . . ,n + 1, denote template variables, and θi , i = 1, . . . ,n + 1, denote pro-
gram variable substitutions. The goal represents the set of constraints that must hold in
a path through the function body. The template variables in the left-hand side represent
the predicates held by each function argument, whereas the one in the right-hand side
corresponds either to the predicate held by the function result or by one of the arguments
of a function application. The substitutions arise in the function application rule of VCG
(see Section 8.2).

As a practical issue,VCG ′ starts with an initial typing environment holding very precise prede-
fined liquid types for function symbols belonging to the solver decidable theories, such as +, −, <,
≤, get, set, . . .For instance, the type of − is

(−) ::
〈
x : {ν : int},y : {ν : int}〉→ {ν : int | ν = x − y}.

When an expression such as let z = x ⊕ y in e is processed byVCG ′, being ⊕ a symbol predefined
in the initial environment, the application and let rules force the constraint z = x ⊕ y to be added
to the typing environment. As a consequence, many of the let binding expressions are kept in the
current typing environment as additional conditions on the let bound variables. This feature is
also assumed to be present in the VCG algorithm.

With respect to item (1), nothing essential is lost given the syntactic restrictions of the IR. As
stated in Section 5, the IR programs are in A-normal form. So, a basic block consists of a sequence
of let expressions ended either in a basic expression or in a case expression. In the latter case,

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:27

each branch of the case follows in turn the same pattern. What we call a goal collects in [[Γ]] the
conditions of a complete path through the body of a function definition until either a function
application or a basic expression e is found. These conditions have either the shape x = be, should
they come from a let binding, or essentially the shape y = C yj , should they come from a case

branch. So, a goal for a function f , in the case that no function application is found, can be depicted
as follows:

∧
i

(θi .ιi) ∧
∧

i

(∃xi .xi = bei) ∧
∧

i

(∃yi j .yi = C yi j) ⇒ [e/resf].ιn+1

where resf is the name of the result returned by the function f being defined. So, all existential
quantifiers are moved outside the implication as universal ones, and the formula is given in this
form to the SMT solver to be checked for validity. If an application to a function д is found, then
the latter substitution must replace the result returned by f by the result returned byд. In addition,
some additional goals are created to imply the argument predicates of function д.

As an example, we show some of the goals arising when VCG ′ is applied to function f3 of
Figure 5:

∀i,x ,v, z,b . (ι31 ∧ ι32 ∧ ι33 ∧ (z = v[i]) ∧ (b = x < z) ∧ b ⇒ id . ι41)
∀i,x ,v, z,b . (ι31 ∧ ι32 ∧ ι33 ∧ (z = v[i]) ∧ (b = x < z) ∧ b ⇒ id . ι42)
∀i,x ,v, z,b . (ι31 ∧ ι32 ∧ ι33 ∧ (z = v[i]) ∧ (b = x < z) ∧ b ⇒ id . ι43)
∀i,x ,v, z,b, res3, res4 . (ι31 ∧ ι32 ∧ ι33 ∧ (z = v[i]) ∧ (b = x < z) ∧ b ⇒ [res3/res4] . ιres4),

where ιi j is the template variable corresponding to the argument j of function fi . In this example,
the first three substitutions are the identity because function f4 is being called with its actual
arguments having the same names as the formal ones, but this is not necessarily the case.

With respect to item (2), and when applying the case rule, VCG ′ never generates a disjunction
of types. Instead, it assumes a fresh type T for the case expression. This fresh type is usually the
template variable of a postcondition, which must hold in all case branches. Let us call ιT to this
variable, and let us denote ϕi to the condition collected while traversing the branch i of the case.
Then VCG ′ generates the conjunction of the following set of goals:

{ϕi ⇒ θ .ιT | i = 1, . . . ,n}

being n the number of branches of the case expression. This is logically equivalent to the single
goal:

�
�

∨
i

ϕi
�
	
⇒ θ .ιT .

When the corresponding constraints are solved, it is not guaranteed that T will be the minimum
possible type, so it may be bigger than the disjunction in the left-hand side. In this sense, VCG ′

still gives a sound type, but it may lose completeness with respect to the ideal one.

To generate a goal belonging to a function definition f (xi :: τi) :: (yj :: τ ′j) = e ,VCG ′ first intro-

duces in the environment Γ the type bindings of the arguments xi :: τi xi :: B̂i , with hmtype(B̂i) =
τi , and then it infers the type of e , as expressed in the rule (LTfun) of Figure 6. When VCG ′ tra-
verses e , it collects in the environment all conditions arising from let bindings and from the pattern
matchings done as long as case branches are taken in the path. Finally, the goal ends up in an im-
plication to a template variable, possibly affected by a pending substitution.

For all of these reasons, in what follows we will denote a goal in the simplified form [[Γ]]⇒ θ . ι,
or even simpler, ϕ ⇒ θ . ι.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:28 M. Montenegro et al.

9 THE ITERATIVE WEAKENING ALGORITHM

First, we introduce the different kinds of template variables used by the algorithm and the sets of
qualifiers used to instantiate these variables. The algorithm is then explained in detail. Finally, its
soundness and relative completeness are investigated.

9.1 Refinement Templates

As stated, the simplest form of a template type is a basic refined type whose refinement predicate
contains exactly one template variable. The template type of a variable x which is not an array
contains a κ template variable as usual, x : {ν : τ | κ}. The range of a A for κ variables consists of
a conjunction of qualifiers taken from the set Q∗, which is obtained from a user-given set Q by
substituting program variables in scope in this text location, and of the appropriate type, for the
wildcard �.

The template type of an array variable a is dealt with similarly, except for the fact that the tem-
plate variable is denoted by μ, a : {ν : array τ | μ}. The range ofA(μ) is an array refinement, which
consists of a conjunction of array refinement templates, by previously substituting the template
variable inside the template type. These templates may have three possible shapes:

• Simple array refinement templates, ρ
def
= (∀j .η → q), where q is a qualifier taken from the

set Q∗E (see the following) and η is a template variable.

• Double array refinement templates, ρρ
def
= (∀j1, j2.ηη → q), where q is a qualifier taken from

the set Q∗EE (see the following) and ηη is a template variable.
• A length refinement template variable ζ , which refines the array length. This variable will

be instantiated by a conjunction of properties restricting the array length.

We will use ξ to denote both a simple and a double array refinement template, so A(μ) =
(
∧n

i=1 A(ξi)) ∧A(ζ), where A(ρ) = (∀j .A(η) → q) and A(ρρ) = (∀j1, j2.A(ηη) → q). The range of
A(η) are conjunctions of qualifiers taken from the set Q∗I ; the range of A(ηη) are conjunctions of
qualifiers taken from the set Q∗II , and the range of A(ζ) are conjunctions of qualifiers taken from
the set Q∗

len
.

The previously mentioned sets of qualifiers, Q∗I , Q∗I , Q∗E , Q∗EE , and Q∗
len

, are obtained by in-
stantiating specific wildcards in the corresponding following sets with variables in scope of the
appropriate type:

• The set QI uses� and # as wildcards in the qualifiers, and only the bound variable j can be
substituted for the wildcard #. The # must occur in each qualifier.

• The set QII uses �, #1 and #2 as wildcards in the qualifiers, and only the bound variables
j1 and j2 can be respectively substituted for the wildcards #1 and #2. At least #1 or #2 must
occur in each qualifier.

• The sets QI and QII are such that when wildcards are instantiated, the corresponding qual-
ifiers satisfy the restrictions imposed on the guards of array property formulas as explained
in Section 3.

• The set QE uses � and # as wildcards in the qualifiers, and only the bound variable j can
be substituted for the wildcard #. This wildcard only occurs in expressions of the form ν[#],
and this expression must occur in each qualifier.

• The set QEE uses �, #1, and #2 as wildcards in the qualifiers, and only the bound variables
j1 and j2 can be respectively substituted for the wildcards #1 and #2. These wildcards only
occur in expressions of the form ν[#1], �[#1], ν[#2], and �[#2], and both wildcards, and ν
must occur in each qualifier.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:29

• QE and QEE are such that the corresponding instantiated qualifiers satisfy the restrictions
imposed on the value constraint formulas of the array property (see Section 3).

• The set Qlen uses � as the wildcard, and each qualifier must mention either lenν or len�.

Example 5. In the insert algorithm, the following predicate is part of the refinement type for v :

∀j1, j2.0 ≤ j1 ≤ i ∧ i + 2 ≤ j2 ≤ n → ν[j1] ≤ ν[j2].

It can be obtained from the template ρρ
def
= (∀j1, j2.ηη → q), and the sets QII = {0 ≤ #1,�+ 2 ≤

#2, #1 ≤ �, #2 ≤ �} and QEE = {ν[#1] ≤ ν[#2]}.
In the merge algorithm, the following predicate is part of the refinement type for v :

∀j1, j2.a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → ν[j1] ≤ w[j2].

It can be obtained from c , and the sets QII = {� ≤ #1,� ≤ #2, #1 ≤ �− 1, #2 ≤ �} and QEE =

{ν[#1] ≤ �[#2]}. Another part of v’s refinement type expresses that a segment is sorted:

∀j1, j2.a ≤ j1 ≤ j2 ≤ k − 1→ ν[j1] ≤ ν[j2].

It can be obtained from the same template, by adding the qualifier #1 ≤ #2 to the set QII and the
qualifier ν[#1] ≤ ν[#2] to the set QEE .

From now on, we will consider fixed the sets Q, QI , QII , QE , QEE , and Qlen. We denote by Q
the collection of these six sets.

We will say that a mapping A is suitable to Q if it assigns a value of their respective ranges to
each κ, μ, ζ , η, and ηη variables, and for each η variable of a ρ template,A(η) contains 0 ≤ j < lenν ,
where j is the universally quantified variable in ρ, and for each ηη variable of a ρρ template, A(ηη)
contains 0 ≤ j1 < lena ∧ 0 ≤ j2 < lenb, where j1, j2 are the universally quantified variables in ρρ,
a and b are either ν , or the free array variable in scope substituted for � in the qualifier at the
right-hand side of ρρ. We will denote the set of all mappings suitable to a given Q as AQ .

For any template variable ι, ifQ is a set of qualifiers or array refinements, when we write A(ι) =
Q ,Q will denote the conjunction of its elements. In the examples, we omit to write the component
0 ≤ j < lenν of A(η) when it is not relevant (analogously for A(ηη)).

In what follows, we will make the following abuse of notation. When we write A(�), where �
can be a template type (or a scheme), an environment, a constraint, or a set of constraints, we will
denote the object �, after replacing every template variable ι inside � by A(ι).

The final aim of the type inference algorithm is to find a mapping A suitable to a given Q such
that A is a solution of all generated verification conditions. We start with the strongest possible
mapping and weaken it until a solution is found, in accordance with the following definition.

Definition 2. Given a set of constraints Φ and a collection Q = {Q,QI ,QII ,QE , QEE ,Qlen}, we
say that A is a solution of Φ with respect to Q if A ∈ AQ and A satisfies Φ.

Notice that κ, μ, ζ variables occur in logically positive positions in the templates, whereas η and
ηη variables occur in negative ones. As a consequence, weakeningA may consist of weakening the
assignment to a κ, a μ, or a ζ variable, or strengthening the assignment to a η or a ηη variable.

9.2 The Iterative Weakening Algorithm

Given a set of goals Φ and a collection Q = {Q,QI ,QII ,QE ,QEE ,Qlen}, the purpose of the algo-
rithm is to find a solution to Φ with respect to to Q .

Next, we describe the steps of the weakening algorithm. It starts with the strongest possible
mapping A suitable to Q . This consists of the following:

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:30 M. Montenegro et al.

(1) For a κ variable, A(κ) is the conjunction of all the well-typed qualifiers of Q∗ containing
variables in scope.

(2) For a μ variable, A(μ) is the conjunction of as many instances A(ρ) of ρ templates as
well-typed qualifiers in Q∗E , and as many instances A(ρρ) of ρρ templates as well-typed
qualifiers in Q∗EE . There is also an additional conjunction A(ζ) for qualifying the array
length (with variables in scope in each case):
• For a ζ variable, A(ζ) is the conjunction of all the well-typed qualifiers of Q∗

len
contain-

ing variables in scope.
• For the η variable of a ρ template, A(η) is the weakest possible predicate, which is 0 ≤

j < lenν , where j is the universally quantified variable in ρ.
• For the ηη variable of a ρρ template, A(ηη) is the weakest possible predicate, which is

0 ≤ j1 < lena ∧ 0 ≤ j2 < lenb, where j1, j2 are the universally quantified variables in ρρ;
a and b are either ν , or a free array variable in scope substituted for� in the qualifier at
the right-hand side of ρρ.

Example 6. In the binSearch algorithm of Figure 2, we have Q∗E = {x ≤ ν[j],x > ν[j]}, Q∗I =
{j ≤ a − 1, b + 1 ≤ j}. If we denote by μ3 the template variable corresponding to the array v at the
beginning of each iteration, then the refinement

(∀j . 0 ≤ j ∧ j < len ν → x ≤ ν[j]) ∧ (∀j . 0 ≤ j ∧ j < len ν → x > ν[j]) (13)

will be included in the strongest assignment to μ3.

At each iteration, the algorithm arbitrarily chooses a goal φ ∈ Φ not satisfied by A. Then, A is
weakened to make the goal valid. If this is not possible, then the algorithm ends up with failure.
Otherwise,A is replaced by its weakened formA′, and the set Φ of goals is inspected again looking
for a new unsatisfied goal. Because A has changed, some prior satisfied goals may have turned
into unsatisfied ones. If no unsatisfied goal remains, then the algorithm ends up with success. We
get the liquid type of each program variable by applying the final mapping A and the pending
substitutions to all templates.

The crucial step is then how to weaken the mapping A to satisfy a goal φ. A difference with the
standard algorithm of Rondon et al. [27] is that, in our case, weakening A may change the goals
themselves and may introduce new template variables. Let us see the process in detail:

(1) If φ has the form [[Γ]]⇒ θ .κ, and A(κ) = q1 ∧ · · · ∧ qr , then the weakening removes from
A(κ) all qualifiers qi such that the formula A([[Γ]])) ⇒ θ .qi is not valid. This approach
corresponds to the standard weakening of Rondon et al. [27].

The ζ variable of an array refinement is dealt with exactly in the same way as a κ
variable, so in what follows we will not insist on these ζ variables.

(2) If φ has the form [[Γ]]⇒ θ .μ, andA(μ) = A(ξ1) ∧ · · · ∧A(ξr), in a first step the weakening
removes from A(μ) all refinements A(ξi) such that the formula A([[Γ]]) ⇒ θ .A(ξi) is not
valid and cannot be made valid. If the formula is not valid, then it is tested whether it can
be made valid by strengthening the antecedent of A(ξi). To do this, the η or ηη variable of
ξi is assigned the strongest possible value—that is, the conjunction of all qualifiers of its
respective Q∗I or Q∗II set. This assignment makes the instance of ξi as weak as possible. If
despite being that weak the formula is not valid, then A(ξi) is discarded from A(μ).

(3) For each not valid A(ξi) in A(μ) which can be made valid by strengthening its antecedent
as explained before, a search for the strongest possible valid form of each ξi instance is
performed. Let us assume for a moment that ξi is a simple refinement template ρ1 of the
form ∀j .η1 → q, and A(η1) = Q1 ⊆ Q∗I . The discussion would be similar for a double one.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:31

Conjunctions mj of |Q1| + 1, |Q1| + 2, |Q1| + 3, etc. qualifiers from Q∗I , all of them supersets
of Q1, are tried in this order as possible mappings for the η1 variable of ρ1, until one of
them, let us call it m1, makes the formula valid. Then the algorithm refrains from trying
any superset ofm1; instead, it continues the search by trying the rest of the conjunctions.
It may be the case that more than one conjunction (excluding their respective supersets)
succeeds. Let them be m2, . . . ,ms . Then fresh copies of ρ1, call them ρ2, . . . , ρs , of the
form ∀j .ηl → q, with ηl fresh variables l = 2..s , are created. Now A′ is built from A, by
changing the component A(ξi) of A(μ) by the conjunction A′(ρ1) ∧ · · · ∧A′(ρs), where
A′(η1) =m1, . . . ,A

′(ηs) =ms .

Example 7. In the merge algorithm described in Figure 3, the following formula cannot be proved
to be valid as a refinement A(μ) of the result array u:

∀j1, j2.a ≤ j1 ≤ k − 1 ∧ 0 ≤ j2 < lenv → ν[j1] ≤ w[j2].

This is because the mappingA(η) = {a ≤ j1, j1 ≤ k − 1, 0 ≤ j2, j2 < lenv} is too weak. By creating a
fresh refinement and a fresh variable η′ and doing A′(η) = A(η) ∪ {i ≤ j2, j2 ≤ m}, A′(η′) = A(η) ∪
{j ≤ j2, j2 ≤ b}, we get

(∀j1, j2.a ≤ j1 ≤ k − 1 ∧ 0 ≤ j2 < lenv ∧ i ≤ j2 ≤ m → ν[j1] ≤ w[j2])
∧(∀j1, j2.a ≤ j1 ≤ k − 1 ∧ 0 ≤ j2 < lenv ∧ j ≤ j2 ≤ b → ν[j1] ≤ w[j2]),

which can be shown to be a valid refinement. This refinement means that the elements of the
already-sorted segment ν[0..k − 1] in the result are less than or equal to those in the segments
w[i ..m], w[j ..b], which are still to be sorted.

Example 8. In the binSearch algorithm, the following constraint establishes the correctness of
the initial iteration:

x : κ1 ∧v : μ1 ∧ a = 0 ∧ b = (len v) − 1⇒ v : μ3.

This constraint is not valid under the initial assignment to μ3 given in (13), but it can be made valid
by strengthening its antecedent, since for instance the first conjunct of (13) becomes

(∀j . 0 ≤ j ∧ j ≤ a − 1 ∧ b + 1 ≤ j ∧ j < len ν → x ≤ ν[j]).

The search for supersets refines this predicate into the following two:

(∀j . 0 ≤ j ∧ j ≤ a − 1→ x ≤ ν[j]) ∧ (∀j . b + 1 ≤ j ∧ j < len ν → x ≤ ν[j]),

which are both valid because the j ranges over two empty sets. The first conjunct will disappear
from the μ3 assignment in subsequent weakenings.

9.3 Soundness, Completeness, and Cost of the Weakening Algorithm

Fixed a family of qualifier sets Q , we will show the following properties:

(1) The weakening algorithm always terminates.
(2) If the weakening algorithm terminates with failure, then there exists no mappingA ∈ AQ

satisfying all of the goals.
(3) If the weakening algorithm terminates with success, then not only the mapping found

A satisfies all of the goals but also A is the strongest possible mapping satisfying them
in AQ .

We will start by showing that the search space (i.e., the set AQ of mappings suitable to Q) is a
complete lattice, with the following definition of �.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:32 M. Montenegro et al.

Definition 3. Let A,A′ ∈ AQ . We say that A � A′ if for all κ, A(κ) ⇒ A′(κ), and for all μ, A(μ) ⇒
A′(μ).

This relation is indeed a partial order, where = corresponds to logical equivalence of formulas.
In fact, it is a complete lattice in which the bottom-most (and hence strongest) element is the initial
mapping A0.

Theorem 3. The partial ordered set (AQ ,�) is a (finite) complete lattice.

Our goal now is to prove that each step of the weakening algorithm produces an output mapping
weaker than the input one.

Proposition 5. Let A ∈ AQ . If A(μ) = A(ξ) and A′(μ) = A′(ξ1) ∧ · · · ∧A′(ξs) is obtained by the

process described in the step 3 of the weakening algorithm, then A′ ∈ AQ and A � A′.

Proof. For the sake of simplicity, let us assume that ξ = (∀j .η1 → q) and for all i , ξi = (∀j .ηi →
q). In addition, let us assume A(η1) = Q1.

We remind that (∀j .φ1 → q) ∧ · · · ∧ (∀j .φs → q) is equivalent to (∀j .φ1 ∨ · · · ∨ φs → q). More-
over, for all i = 1..s , A′(ηi) = Q1 ∪Q′i for some conjunction of qualifiers Q′i , and therefore

A′(μ) = A′(ξ1) ∧ · · · ∧A′(ξs)
⇔ ∀j .((Q1 ∧Q′1) ∨ · · · ∨ (Q1 ∧Q′s)) → q
⇔ ∀j .Q1 ∧ (Q′1 ∨ · · · ∨Q′s) → q.

The antecedent of A′(μ) is stronger than the antecedent of A(μ) = (∀j .A(η1) → q) = (∀j .Q1 → q),
so A(μ) � A′(μ). �

Theorem 4. Let A ∈ AQ . If A′ is obtained from A by one step of the inference algorithm, then

A′ ∈ AQ and A � A′.

Proof. That steps 1 and 2 of the weakening process described in Section 9.2 lead to a mapping
A′ weaker than the prior one A is rather trivial, because some conjuncts are being removed from
the mapping of κ, ζ , or μ variables. That the result holds for the step 3 is a direct application of
Proposition 5. �

We show now that given a fixed set of goals Φ, if there exists one or more mappings in AQ that
turn all of the goals in C into valid formulas, then

(1) There exists a minimum or strongest mapping As in AQ which makes Φ valid (Theorem 5).
(2) All mappingsA ∈ AQ produced by the inference algorithm are belowAs (i.e.,A � As) (see

Theorem 6).

Theorem 5. Given a set Φ of goals, if there exists a mappingA ∈ AQ that is a solution with respect

to Φ, then there exists a minimum mapping As ∈ AQ such that As (Φ) is valid.

Proof. It is enough to show that for every pair of mappingsA1,A2 making Φ valid, their greatest
lower bound A1 �A2 is also a solution of Φ. As the set of mappings making Φ valid is finite, its
minimum element would satisfy Φ and this would be As .

We make note that the definition of A1 �A2 is the same for both a κ and for a μ template
variables. If we indistinctly denote by ι to any one of these variables, we have defined in both cases
(A1 �A2) (ι) = A1 (ι) ∪A2 (ι). Since the range of a mapping is a set of formulas that we interpret
as the conjunction of all of them, we will write A1 (ι) ∪A2 (ι) as A1 (ι) ∧A2 (ι). Let φ ∈ Φ be any of
the goals, and let us assume that it has the form ϕ ⇒ θ .ι, where ϕ is a formula possibly having

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:33

additional template variables and θ is a pending substitution. Then by hypothesis, we have the
following:

A1 (ϕ) ⇒ θ .A1 (ι) is valid
A2 (ϕ) ⇒ θ .A2 (ι) is valid.

It is clear that A1 (ϕ) ∧A2 (ϕ) ⇒ θ .(A1 (ι) ∧A2 (ι)) is also valid. So, there exists a minimum or
strongest mapping As such that As (Φ) is valid. �

Theorem 6. If the set Φ of goals has a strongest solution As ∈ AQ , and A is a mapping produced

by the inference algorithm, then A � As .

Proof. By induction on the number of weakening steps done by the algorithm. For the initial
mapping A0, we have A0 � As because A0 is the minimum of the lattice A.

Let 0 ≤ n, and assume by induction hypothesis that for every k , 0 ≤ k ≤ n, Ak � As . We prove
that the weakening steps produce a new mapping An+1 such that An+1 � As . Let ι′ be the template
variable at the right-hand side of the goal solved in the step n + 1, since An+1 (ι) = An (ι), for any
ι � ι′,An+1 (ι) ⇒ As (ι), by the induction hypothesis. Let us prove thatAn+1 (ι′) ⇒ As (ι′) by reductio
ad absurdum. Suppose there is an element φ ∈ As (ι′) such that An+1 (ι′) � φ. We distinguish two
cases:

• If ι′ is a κ variable, then φ is a qualifier q such that q � An+1 (κ). Hence, there is a previous
mapping, Ak , k ≤ n, such that q was eliminated from Ak (κ) when solving a goal ϕ ⇒ θ .κ,
because Ak (ϕ) � θ .q. Then As (ϕ) � θ .q, since Ak � As by the induction hypothesis. But
this is a contradiction, because As is a solution of Φ and then it holds As (ϕ) ⇒ θ .As (κ). So,
An+1 (ι′) ⇒ As (ι′) for κ variables.

• If ι′ is a μ variable, thenφ is an instance of a template ξ . We show the simple case ξ = ∀j .η →
q. The proof for a double template is similar.
IfAn+1 (μ) � (∀j .As (η) → q), then we can affirm that there is no instance of ξ , (∀j .Q → q) ∈
An+1 (μ), such that Q ⊆ As (η). Notice that, assuming As is a solution of C and (∀j .As (η) →
q) ∈ As (μ), we can affirm that these instances of ξ have not been discarded in step 2 of
the algorithm. Then for any Q ⊆ As (η) there is k ≤ n such that a goal with μ at the right-
hand side, say ϕ ⇒ θ .μ, has been solved in accordance with step 3 of the algorithm, at the
k iteration and ∀j .Q → q has been discarded because

Ak (ϕ) � θ .(∀j .Q → q). (14)

Otherwise (∀j .Q ′ → q) ∈ An+1 (μ), with Q ′ ⊆ Q ⊆ As (η), contradicting that An+1 (μ) �
(∀j .As (η) → q). Since for every Q ⊆ As (η) there is k such that (14) holds, taking Q =
As (η), and by applying the induction hypothesis Ak � As , we conclude that As (ϕ) �
θ .(∀j .As (η) → q), which is a contradiction because As is a solution of C . Then An+1 (ι′) ⇒
As (ι′) also for μ variables.

Therefore, An+1 � As , finishing the proof of A � As . �

Putting it all together, let Γ be the initial template environment obtained in phase 1 (see Sec-

tion 7) of the process of verifying a block definition bd = define {ψ1} f (xi :: τi) :: (yj :: τ ′j) = e {ψ2},
using the qualifier set Q . If VCGD′(Γ,bd) = (Ŝ,Φ), then under the conditions of AQ being a finite
complete lattice, and by Theorems 5 and 6, if a solution with respect to Q exists for Φ, then the
weakening algorithm terminates, and it gives the strongest mapping As as a result. In addition,

and in accordance with Theorem 1, there is a derivation of the sequent As (Γ) � bd :: As (Ŝ) in the
liquid type system.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:34 M. Montenegro et al.

The cost of the iterative weakening algorithm is dominated by the number of formulas sent for
validity checking to the SMT solver. This, in turn, takes place during the weakening of a template
variable. To compute a cost expression, let us first introduce some size parameters:

• Let nκ ,nμ ,nζ ,nη , and nηη respectively be the number of κ, μ, ζ ,η, and ηη variables of the
inferred program.

• Let n∗,nI ,nII ,nE ,nEE , and nlen respectively be the maximum sizes of sets Q∗, Q∗I , Q∗II , Q∗E ,
Q∗EE , and Q∗len in the different program locations.

Then the maximum number of weakenings a κ variable may undergo is n∗, and each one involves
proving a formula. Similarly, the number of weakenings μ and ζ variables may undergo respec-
tively are nE + nEE and nlen, since these are the number of conjuncts that each of these variables
is mapped to after the initialization. But sometimes an η or ηη variable must be strengthened to
weaken a conjunct ξ . This strengthening is in fact a search among the set of subsets of respectively
Q∗I and Q∗II . This involves proving in the worst case 2nI and 2nII formulas. So, in the worst case,
the total number of formulas submitted by the algorithm is in the following complexity class:

O (nκn∗ + nζnlen + nμ (nE + nEE) + nη2nI + nηη2nII).

It can be appreciated that this time cost is very sensitive to the number of qualifiers in the sets Q∗I
and Q∗II .

10 IMPLEMENTATION AND RESULTS

To assess the feasibility of the algorithm introduced in this article, we have implemented a tool5

that infers liquid types in an IR program (see Section 5). Our tool receives a file containing the
following:

• The liquid types of the external functions that may be used in function definitions being
analysed. These are kept in an initial environment Γ0.

• The definitions of the Q, QI , QII , QE , QEE , and Qlen sets.
• The definitions of the functions to analyse. Each one may have a precondition and/or post-

condition, and may already include liquid types, if the user chooses to supply them.

Our implementation proceeds as follows. After performing a standard Hindley-Milner type
checking, it traverses the types of all parameters and results of each function and transforms each
of them into a liquid type containing a fresh template variable. If the user has already specified an
explicit liquid type for a given parameter or result, no template variable will be generated for that
type. Then for each template variable, it instantiates the Q, QE , etc. sets by replacing the� place-
holders by variables in scope, so each template variable has its specific collection of Q�, Q�

E
, etc.

sets. Finally, the tool generates goals as described in the algorithm VCG′ (Section 8.5) and applies
the iterative weakening algorithm on them. In the latter phase, the goals are sent to the Z3 SMT
solver [24], which determines their validity. The decision procedure of Z3 implements a specific
logic for arrays (CAL) that is subsequently translated to the theory of uninterpreted functions
[25].

We have applied the tool to a series of algorithms involving arrays. The simplest one (fill) fills
all positions of an array with a fixed value. We also have implementations of insertion sort (func-
tions insert and insert_sort), quicksort (functions partition and quicksort), two versions
of selection sort (functions minimum, sel_sort_simple and sel_sort_full), implementations

5Available at https://github.com/manuelmontenegro/liquidarrays.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

https://github.com/manuelmontenegro/liquidarrays

Extending Liquid Types to Arrays 13:35

of linear search (linsearch), binary search (binsearch_simple, binsearch), and the Dutch Na-
tional Flag algorithm [9, pp. 111–116] (function dutch_flag).

We have evaluated two versions of selection sort due to this example having two nested loops.
In the first version (sel_sort_simple), we extract the inner loop—which computes the minimum
value contained within a subvector—into its own function minimum, infer the type of the latter, and
then analyse the outer loop. In an imperative language, this would be as if the programmer had
manually supplied the postcondition of the inner loop. However, sel_sort_full combines both
loops into a single function, so the invariants are inferred all at once, without the programmer’s
assistance.

Regarding binary search, binsearch_simple and binsearch differ in the case in which the
element being searched for is not found. The former returns the index where the missing element
should be inserted, whereas the latter returns -1.

In the electronic appendix, we show the specification given for each function. Figure 9 contains
the invariants inferred. These invariants are obtained from the inferred refinements in the parame-
ters of the auxiliary functions of each example by replacing the ν with the corresponding variable.
For example, when translating insert_sort into IR, an auxilary function f1 k v is generated. This
function inserts v[k] into the subarray v[0..k), (assuming that the latter is sorted) to obtain an-
other sorted array v ′ and calls itself recursively with k + 1 and v ′ as arguments. The type inferred
for f1 is the following:

f1 :: k : {ν : int | 0 ≤ ν }
→ v : {ν : array int | ∀j1, j2.0 ≤ j1 ≤ j2 < k → ν[j1] ≤ ν[j2] ∧ k ≤ lenν }
→ {ν : array int | ∀j1, j2.0 ≤ j1 ≤ j2 < lenν → ν[j1] ≤ ν[j2]}.

If we replace each ν in the refinement types of k and v by their corresponding program variables,
we get the invariant shown in Figure 9.

Figure 10 contains execution statistics for each example. The #G column shows the number of
goals generated. However, some of them are valid for any assignment of the template variables,
so they are discarded and hence not sent to the iterative weakening algorithm. The #NG column
shows the number of goals remaining after this preliminary screening. The number of template
variables generated for each example is shown under #κ and #μ. The columns labelled with #S
specify how many steps have taken the algorithm for each example. A step consists of finding a
nonvalid goal and weakening its consequent until the goal becomes valid. A step involves sending
a number of formulas to the SMT solver. The #F indicate how many formulas have been sent
during the whole execution of iterative weakening.

As mentioned earlier, the users may specify liquid types in their functions. If every type is
decorated with liquid types, then no template variables are generated, but the goals are still solved,
so our tool is also suitable for type checking. The columns under Typecheck in Figure 10 show the
execution statistics when the tool is used for this purpose. However, if no liquid types are provided
by the user, they still have to specify a precondition and a postcondition, and let the system infer
all intermediate types. The columns under Full contain the results when the tool is run under
variants of the following sets:

Q = {0 ≤ ν , � ≤ ν , � < ν }
QE = {� ≤ ν[#],ν[#] < �, ν[#] = �, ν[#] � �, ν[#] = 0, ν[#] = 1, ν[#] = 2}
QI = {� ≤ #, # < �, # = �}
QEE = {ν[#1] ≤ ν[#2], ν[#1] ≤ �[#2]}
QI I = {� ≤ #1, #1 ≤ �, � ≤ #2, #2 ≤ �, #1 ≤ #2, #1 = �, #2 = �}
Qlen = {� < lenν , � ≤ lenν , � < len�, � ≤ len�}.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:36 M. Montenegro et al.

Fig. 9. Invariants inferred for each example.

The specific variant being used depends on the example. Regarding sets QI and QI I , the quali-
fiers 0 ≤ #, # < lenν , 0 ≤ #1, #1 < lenν , 0 ≤ #2, and #2 < lenν are automatically introduced by the
tool, so the user does not have to provide them. We have found that, in some cases, the instan-
tiated sets Q�, Q�

E
, etc. may contain qualifier instances which are known not to occur in any

valid inferred refinement. For example, if our lin_search algorithm looks for a given integer x
in an array of integers, the Q�

I
set may contain qualifier instances such as # ≤ x , which are not

expected in this set since x does not denote an index in the array. This is why our tool allows the
user to manually remove some of these instances. By doing so, we obtain the results shown under
the header Pruned. These show that hints provided by the user may lead to substantially better
execution times.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:37

Fig. 10. Execution statistics for the examples involving arrays.

With respect to running times, we believe that there is room for improvement in some cases in
which the user does not manually remove instantiated qualifiers. We are currently studying the
use of triggers in Z3 to reduce the search space needed for solving a formula. Still, the properties
inferred are in general far from being trivial. Up to five array refinements are needed in some
cases to completely express the property kept invariant by a loop. We believe that these results are
encouraging enough to continue exploring the power of liquid types to assist the programmer in
the verification of complex array manipulating algorithms.

11 RELATED WORK

The closest related work is about liquid types. This has been already reviewed in Section 2, and
we have explained its limitations regarding universally quantified formulas. Let us extend our
discussion to two recent works on this framework.

Vazou et al. [34] introduced a notion of bounded quantification for refinement types. Bounds
are translated into function types, representing Horn constraints. In this way, decidability is pre-
served, and the abstract interpretation of liquid typing of Vazou et al. [35] can be reused to infer
concrete refinements. The applications of their proposal rely on the definition of particular data
types, over which some constraints (bounds) are imposed. Arrays—where arbitrary refinements
could be undecidable—are not considered. They impose the restriction that subtyping constraints
only have implications inside the refinements corresponding to supertypes (i.e., T2 in a relation
T1 <: T2), whereas our inference system allows subtyping between array refinements, then impli-
cations occur in both sub- and supertypes. In this sense, our inference system supports a wider
handling of implications.

A new technique called fusion was recently proposed by Cosman and Jhala [7] to infer liquid
types in situations where the conventional framework was unable to succeed, or it succeeded
with a much higher computational cost. The new situations include polymorphism and higher-
order functions. Their constraint generation algorithm is somewhat related to ours in that they
introduce existential quantifications in let expressions and disjunctions in situations similar to our
case expressions.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

13:38 M. Montenegro et al.

A related technique to infer invariants of imperative programs is predicate abstraction, a variant
of abstract interpretation which is also part of the liquid type approach. This was applied by Ball
et al. [3] and Flanagan and Qadeer [13]. The starting point is to have a finite set Q = {p1, . . . ,pn }
of atomic predicates in a decidable logic, from which more complex predicates can be built. In
Flanagan and Qadeer [13], the domain contains all combinations of the pi by ∧ and ∨ (i.e., the set
of all Boolean functions with n Boolean arguments which are 22n

functions). The abstract inter-
pretation of a loop proceeds in the forward direction by using a strongest postcondition semantics.
After each loop iteration, the predicate obtained is joined by ∨ to the one obtained in the prior
iteration, and the result is abstracted by the abstraction function to that domain. Since this one is
finite, a least fixpoint is always reached, provided the loop invariant can be effectively expressed
by combinations of the given atomic predicates. If the algorithm succeeds, it obtains the strongest
invariant belonging to the domain. They report experimenting their system with a Java program
consisting of 520 loops and were able to infer invariants for 98% of these loops, some of them
involving arrays. The main drawback of the approach, when compared with the one presented
here, is that a number of annotations given by the programmer—in some examples, up to 15—are
needed in each loop.

Gulwani et al. [15] proposed an abstract interpretation domain with universally quantified pred-
icates. In prior attempts, quantification was introduced by rather ad hoc means, but the abstract
domain did not contain quantified formulas. After looking at the shape of many invariants, the
authors propose the general form E ∧∧n

j=1 ∀Uj (Fj⇒ ej), where E, all Fj , and all ej are formulas

belonging to nonquantified domains. Both E and the Fj are conjunctions of atomic predicates, and
the ej are just atomic ones. Each Uj is a tuple of (quantified) variables occurring free in Fj and ej .
An example of invariant is 1 ≤ i ≤ n ∧ ∀k (0 ≤ k < i⇒a[k] = 0). The authors define an infinite
lattice where the elements are formulas with this shape, define widening and narrowing operators
to ensure termination, and also give some heuristics to convert nonquantified facts into quantified
ones, when at least two iterations have been done during the interpretation of a loop. They infer
invariants for most of the usual sorting algorithms, for finding an element in an array, and for
other similar examples. The main differences with our approach are that our lattice is finite, so
termination is guaranteed, and that we need neither widening nor heuristics.

Srivastava and Gulwani [29] proposed a system where the user gives a template formula for
each particular invariant. In the template, the predicates are represented by unknowns that the
system must guess. For instance, in a ∧ ∀k (b⇒ c), the system must find a substitution of concrete
predicates for the variables a, b, and c . The user must also supply a setQ of atomic predicates, con-
junctions of which will replace the template unknowns. If an invariant exists having the template
shape and formed by conjunctions of predicates from Q , then the algorithm finds the strongest
one. The reported examples include invariants for all of the sorting algorithms, the binary search
in an array, list insertion, and list deletion. A difference with our approach is that decidability of
the formulas is not guaranteed. The authors recognize that they sometimes provide their SMT
solver with additional hints (triggers) to deal with undecidable quantified formulas. Additionally,
they need to give the system a template with the exact number of quantified conjuncts, which is
sometimes difficult to guess. Our algorithm generates as many conjuncts as needed to prove the
correctness of the input program.

The F* system [33] allows full dependent typing via SMT solvers using a higher-order univer-
sally quantified logic. Regarding expressiveness, F * has the advantage of processing higher-order
languages, but unlike in our system, the generated constraints may fall outside the SMT decidable
theories. This makes the type system undecidable, so in practice they have a dependency on the
solver’s unpredictable quantifier instantiation heuristics. The first versions of F* required a heavy
annotation burden on the programmer, as predicates had to be explicitly instantiated. Although the

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

Extending Liquid Types to Arrays 13:39

current version of F* [32] may require fewer annotations, the advantages of our approach related
to verifying array properties are, on the one hand, that it ensures decidable checking and tem-
plates are automatically instantiated, and, on the other hand, that it requires minimal programmer
annotations.

A last group of related works is the temporal sequence [8, 14, 18], based on abstract interpreta-
tion. The main insight is the definition of an abstract domain for arrays, where they are considered
to be split into a finite number of slices, and each slice satisfies a possibly different property. Its
contents are represented by a single abstract variable that is updated as long as the algorithm
progresses. They succeed in obtaining invariants for some array processing algorithms, the most
complex of which is insertion sort. The approach is limited to single for loops and to slices de-
scribed by a predicate with only one universally quantified index. In addition, they would be forced
to change the abstract domain each time they wish to infer a different property. All reported exam-
ples can be dealt with by our approach, and they admit that, at present, they cannot infer quicksort.

12 CONCLUSION

We have presented an extension of the liquid type approach to universally quantified formulas
about arrays. Arrays are nonrecursive data structures and cannot be dealt with by using the recur-
sive refinements introduced in Kawaguchi et al. [20]. Additionally, arrays are normally updated
in-place and so used in imperative languages, whereas the liquid type approach seems to fit better
with functional ones. We have circumvented both obstacles: the first one by allowing predicates on
arrays where the indices can be universally quantified, and the second one by using our verifica-
tion platform which transform imperative programs into functional ones. The array refinements
introduced in this article try to cover properties satisfied for all elements of an array segment
and properties between pair of elements, either of the same array or of two different ones. Algo-
rithms searching arrays for a certain property are also covered, since their invariant can usually
be expressed by a universal quantification (saying that no element of the array segment currently
explored satisfies the property). As future work, we would like to generate at least a part of the
qualifiers directly from the code, thus liberating the programmer from most of this task.

We believe that other general refinements for arrays could be defined to cover programs in
which certain elements of an array segment are counted or operated in some way. The resulting
constraints should still be automatically proved valid by the current SMT solver technology. In
this way, more decidable array invariants could be rescued from the general undecidable problem
of invariant synthesis.

REFERENCES

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Wolfram

Menzel, and Peter H. Schmitt. 2000. The KeY approach: Integrating object oriented design and formal verifica-

tion. In JELIA 2000: Logics in Artificial Intelligence. Lecture Notes in Computer Science, Vol. 1919. Springer, 21–36.

DOI:https://doi.org/10.1007/3-540-40006-0_3

[2] Alexander Bakst and Ranjit Jhala. 2016. Predicate abstraction for linked data structures. In VMCAI 2016: Verification,

Model Checking, and Abstract Interpretation. Lecture Notes in Computer Science, Vol. 9583. Springer, 65–84. DOI:
https://doi.org/10.1007/978-3-662-49122-5_3

[3] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. 2001. Automatic predicate abstraction of

C programs. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’01). 203–213.

[4] Michael Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs, K. Rustan M. Leino, Wolfram Schulte, and Herman

Venter. 2005. The Spec# programming system: Challenges and directions. In VSTTE 2005: Verified Software: Theories,

Tools, Experiments. Lecture Notes in Computer Science, Vol. 4171. Springer, 144–152. DOI:https://doi.org/10.1007/

978-3-540-69149-5_16

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

https://doi.org/10.1007/3-540-40006-0_3
https://doi.org/10.1007/978-3-662-49122-5_3
https://doi.org/10.1007/978-3-540-69149-5_16
https://doi.org/10.1007/978-3-540-69149-5_16

13:40 M. Montenegro et al.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s decidable about arrays? In Proceedings of the 7th

International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’06). Springer, 427–442.

[6] Ravi Chugh, David Herman, and Ranjit Jhala. 2012. Dependent types for JavaScript. In Proceedings of the 27th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’12). 587–

606. DOI:https://doi.org/10.1145/2384616.2384659

[7] Benjamin Cosman and Ranjit Jhala. 2017. Local refinement typing. In Proceedings of the ACM Conference on Program-

ming Languages, Vol. 1, Issue ICFP. Article 26, 27 pages. DOI:https://doi.org/10.1145/3110270

[8] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. A parametric segmentation functor for fully automatic

and scalable array content analysis. In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming

Languages (POPL’11). 105–118. DOI:https://doi.org/10.1145/1926385.1926399

[9] E. W. Dijkstra. 1976. A Discipline of Programming. Prentice Hall.

[10] Matthias Felleisen and Philippa Gardner (Eds.). 2013. Programming Languages and Systems: 22nd European Symposium

on Programming (ESOP’13). Lecture Notes in Computer Science, Vol. 7792. Springer.

[11] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where programs meet provers. In ESOP 2013: Program-

ming Languages and Systems. Lecture Notes in Computer Science, Vol. 7792. Springer, 125–128.

[12] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’02). ACM, New York, NY, 234–245. DOI:https://doi.org/10.1145/512529.512558

[13] Cormac Flanagan and Shaz Qadeer. 2002. Predicate abstraction for software verification. In Proceedings of the 29th

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’02). ACM, New York, NY, 191–202.

[14] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. 2005. A framework for numeric analysis of array operations.

In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05).

338–350. DOI:https://doi.org/10.1145/1040305.1040333

[15] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. 2008. Lifting abstract interpreters to quantified logical domains. In

Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’08).

ACM, New York, NY, 235–246.

[16] Rajiv Gupta and Saman P. Amarasinghe (Eds.). 2008. Proceedings of the 2008 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation(PLDI’08). ACM, New York, NY.

[17] Peter Habermehl, Radu Iosif, and Tomás Vojnar. 2008. What else is decidable about integer arrays? In FoSSaCS 2008:

Foundations of Software Science and Computational Structures. Lecture Notes in Computer Science, Vol. 4962. Springer,

474–489. DOI:https://doi.org/10.1007/978-3-540-78499-9-33

[18] Nicolas Halbwachs and Mathias Péron. 2008. Discovering properties about arrays in simple programs. In Proceed-

ings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). 339–348.

DOI:https://doi.org/10.1145/1375581.1375623

[19] Michael Hind and Amer Diwan (Eds.). 2009. Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’09). ACM, New York, NY.

[20] Ming Kawaguchi, Patrick Maxim Rondon, and Ranjit Jhala. 2009. Type-based data structure verification. In Proceedings

of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’09). 304–315.

[21] K. Rustan M. Leino. 2012. Developing verified programs with Dafny. In Proceedings of the 2012 ACM Conference on

High Integrity Language Technology (HILT’12). ACM, New York, NY, 9–10.

[22] Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura. 2017. Liquid types for array invariant synthesis.

In Proceedings of the International Symposium on Automated Technology for Verification and Analysis (ATVA’17). 289–

306.

[23] Manuel Montenegro, Ricardo Peña, and Jaime Sánchez-Hernández. 2015. A generic intermediate representation for

verification condition generation. In LOPSTR 2015: Logic-Based Program Synthesis and Transformation. Lecture Notes

in Computer Science, Vol. 9527. Springer, 227–243.

[24] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In TACAS 2008: Tools and

Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science, Vol. 4963. Springer,

337–340.

[25] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2009. Generalized, efficient array decision procedures. In Pro-

ceedings of the 2009 Conference on Formal Methods in Computer-Aided Design (FMCAD’09). IEEE, Los Alamitos, CA,

45–52.

[26] John C. Reynolds. 1998. Definitional interpreters for higher-order programming languages. Higher-Order and Sym-

bolic Computation 11, 4 (1998), 363–397. DOI:https://doi.org/10.1023/A:1010027404223

[27] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). 159–169.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1145/3110270
https://doi.org/10.1145/1926385.1926399
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/1040305.1040333
https://doi.org/10.1007/978-3-540-78499-9-33
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1023/A:1010027404223

Extending Liquid Types to Arrays 13:41

[28] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2010. Low-level liquid types. In Proceedings of the 37th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’10). ACM, New York, NY,

131–144.

[29] Saurabh Srivastava and Sumit Gulwani. 2009. Program verification using templates over predicate abstraction. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’09).

223–234.

[30] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. 2001. A decision procedure for an extensional

theory of arrays. In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS’01). IEEE, Los

Alamitos, CA, 29–37.

[31] Norihisa Suzuki and David Jefferson. 1980. Verification decidability of Presburger array programs. Journal of the ACM

27, 1 (1980), 191–205.

[32] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, et al. 2016. Dependent types and multi-monadic effects in F*. In Proceedings of the 43rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’16). ACM, New York, NY, 256–270.

[33] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying higher-order

programs with the Dijkstra monad. In Proceedings of the 34th Annual ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’13). 387–398.

[34] Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded refinement types. In Proceedings of the 20th ACM

SIGPLAN International Conference on Functional Programming (ICFP’15). 48–61.

[35] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract refinement types. In ESOP 2013: Programming

Languages and Systems. Lecture Notes in Computer Science, Vol. 7792. Springer, 209–228.

[36] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: Experience with refinement types in the real world.

In Proceedings of the ACM SIGPLAN Symposium on Haskell (Haskell’14). 39–51.

[37] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types

for Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP’14).

269–282.

[38] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement types for TypeScript. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’16). DOI:https://doi.org/

10.1145/2908080.2908110 arXiv:arXiv:1604.02480v1

Received December 2018; revised June 2019; accepted September 2019

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 13. Publication date: December 2019.

https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/2908080.2908110

