
Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

Deriving overloaded success type schemes in Erlang☆

Francisco J. López-Fraguas, Manuel Montenegro⁎, Gorka Suárez-García
DSIC, Universidad Complutense de Madrid, Calle Prof. José García Santesmases 9, 28040 Madrid, Spain

A R T I C L E I N F O

Keywords:
Polymorphic types
Type systems
Erlang
Success types
Program semantics

A B S T R A C T

Erlang is a programming language which brings together the features of functional programming and actor-
based concurrency. Although it is a dynamically-typed language, there exists a tool (Dialyzer) that analyses
Erlang programs in order to detect type discrepancies at compile-time. This tool is based on the notion of success
types, which are overapproximations to the actual semantics of expressions, so that the evaluation of an ‘ill-
typed’ expression will eventually fail at runtime. Dialyzer allows programmers to provide their own type spe-
cifications. Although such specifications can be polymorphic and overloaded (i.e., reflecting different executing
branches) for documentation purposes, the type analysis disregards the information provided by polymorphic
type schemes and so does, in some cases, with overloaded types. In this paper we introduce: (1) a type system
that allows us to obtain polymorphic overloaded success type schemes for programs, (2) a semantic definition of
this kind of types, and (3) correctness results that prove that the adequacy of the obtained types w.r.t. the
semantics of expressions.

1. Introduction

Erlang is a concurrent functional language which lies at the heart of
the Erlang/OTP platform. This platform consists of the Erlang runtime
system and a set of libraries. It is designed to build distributed, fault-
tolerant, soft real-time, highly available systems, and it provides hot-
swapping capabilities1

As a consequence of its pragmatic design philosophy, Erlang is
arousing increasing interest in industry and academia because of its
strength in producing robust, easy to build and maintain, scalable
systems. This is why several technologies are being developed with
Erlang —such as message-broker software (e.g. RabbitMQ, VerneMQ),
XMPP application servers (e.g. ejabberd), or distributed databases (e.g.
Riak, Apache CouchDB, Amazon SimpleDB)— including WhatsApp’s
message server [1,2].

Unlike the static typed discipline provided by Hindley–Milner type
systems [3] used in some languages (e.g., Haskell), the dynamically-
typed nature of Erlang makes it more flexible in the task of program-
ming. However, this flexibility comes at a price: unintended type errors
might go unnoticed until the program is executed. Multiple attempts to
design compile-time type analyses for Erlang can be found in the

literature [4–6]. Among them, Dialyzer [7–9] can be used to report type
discrepancies in programs, and Typer [10] is able to infer the type of the
functions defined in a program, both for documentation purposes and
for detecting errors.

Both Typer and Dialyzer are based on the notion of success types,
which are overapproximations to the sets of values to which expressions
may evaluate. In this context, there is a type (called none()) that de-
notes the empty set of values, so if an expression is given type none() by
the system, we can ensure that its evaluation will not result in a value,
either because it does not terminate, or because the evaluation fails at
some point. In this sense, expressions having a success type none() are
the closest analogue to ill-typed expressions in standard type systems.
But, unlike the latter systems, there are expressions having success
types different from none() whose evaluation might not succeed. This
approach to type analysis fits into the pragmatic philosophy of Erlang.
One of the design principles of Dialyzer is that it should neither require
type annotations from the programmer nor produce false positives. If
Dialyzer reports a type error, that error is bound to occur at runtime2

Dialyzer is a great tool to find runtime errors, but exhibits some
weaknesses. For example, it cannot infer polymorphic types for func-
tions. Programmers can attach polymorphic type specifications to their

https://doi.org/10.1016/j.cola.2020.100965
Received 8 November 2019; Received in revised form 28 February 2020; Accepted 5 April 2020

☆ Work partially supported by the Spanish MINECO project CAVI-ART-2 (TIN2017-86217-R) and by Comunidad de Madrid as part of the program S2018/TCS-4339
(BLOQUES-CM) co-funded by EIE Funds of the European Union.

⁎ Corresponding author.
E-mail addresses: fraguas@ucm.es (F.J. López-Fraguas), montenegro@fdi.ucm.es (M. Montenegro), gorka.suarez@ucm.es (G. Suárez-García).

1 Hot swapping allows developers to change the code of an application while it is running.
2 Assuming that the computation terminates.

Journal of Computer Languages 58 (2020) 100965

Available online 19 April 2020
2590-1184/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/25901184
https://www.editorialmanager.com/cola/default.aspx
https://doi.org/10.1016/j.cola.2020.100965
https://doi.org/10.1016/j.cola.2020.100965
mailto:fraguas@ucm.es
mailto:montenegro@fdi.ucm.es
mailto:gorka.suarez@ucm.es
https://doi.org/10.1016/j.cola.2020.100965
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2020.100965&domain=pdf


programs [9], but the inference algorithm cannot deal with poly-
morphic type variables, so these are transformed into monomorphic
types before the analysis. Also the tool is not designed to infer by itself
overloaded functional type specifications, although these overloaded
types may be given by the user. An overloaded functional type re-
presents a collection of functional types that represents the different
branches of execution of the function, where the input and output types
differ among those branches.

For example, a simple implementation of the map function in Erlang
is:

But the type inferred by Typer is:

The type inferred uses the type any() —which represents all the
possible values that can be represented by the language— almost
for every element. The only information we obtain from our map
function is that the second parameter and the result are lists.
However, this function admits the following overloaded type:

when(any(), []) [] , , , . ( , [ ]) [ ] ,1 11 1 1 1 .
We can see in the example that neither the polymorphic variables nor
the overloaded function type have been inferred.

A first contribution to address that problem was made in [11],
where given an Erlang program with user-given polymorphic type
specifications, a new one is synthesized such that Dialyzer, when run on
the transformed program, infers more precise types for expressions that
use polymorphic functions. However, this approach is limited by its
tight dependence of Dialyzer. Any change made to the tool could affect
and even invalidate the transformation proposed. Moreover, proving
any theoretical result relies on trusting on non rigorously proved
properties of Dialyzer. This is a second relevant weakness of Dialyzer:
the lack of a rigorous formalization and a well developed theoretical
framework upon which one can justify the technical correctness of the
proposals.

This paper is a step forward to our intended goal of developing a full
type system with associated type checking and type inference me-
chanisms that follow the philosophy of success types, but coping ap-
propriately with the issues of polymorphism and having at the same
time rigorous theoretical foundations. In previous work [12] we in-
troduced a polymorphic type system as a first step towards this aim.
Concretely, we stated a set of typing rules for deriving polymorphic
success types for programs written in a desugared version of Erlang, and
we proved them correct with respect to a suitable semantics of pro-
grams. In this paper we extend this work in several ways. Firstly, we
add support for overloaded functional types. This allows us to obtain
more accurate results not only when describing the result of a function,
but also when deriving types for their callers. A noteworthy con-
sequence is that we treat calls to functions involving runtime type
checking (such as is_integer, is_atom, etc.) as if they were or-
dinary function calls, without the need for specific typing rules re-
flecting their behaviour. Another difference with respect to our pre-
vious work is the way in which non-linear types (i.e. functional types in
which a type variable occurs more than once) are dealt with. The se-
mantics of types and constraints given in [12] was rather contrived due
to the need for tracking and joining the information corresponding to
the different occurrences of a type variable. In this work we take an
explicit approach by introducing new kinds of constraints on types,
which allow us to do without non-linear types (thus greatly simplifying
the technical development) while maintaining the expressiveness of the
type system.

The rest of the paper is organized as follows: Section 2 introduces
success types and their particularities by means of examples. Section 3
describes the syntax and semantics of the language that we shall study.
Sections 4 and 5 put forward the main definitions in the type system

and the derivation rules, the latter of which are exemplified in
Section 6. In Section 7 we discuss the correctness of the type system (its
proof can be found in a separate Appendix). Finally, Sections 8 and 9
consider alternative approaches to success types, and Section 10 con-
cludes.

2. Success types: an informal overview

In this section we shall introduce the Erlang language, success types
[8], and their relation with Dialyzer. We also highlight some differences
between success types and Hindley–Milner type systems.

2.1. Erlang’s syntax in a nutshell

As in the vast majority of functional languages, an Erlang program
consists of a series of function definitions. As an example, let us in-
troduce the following function halve that divides its input by two:

We can attach a guard to halve in order to restrict the set of input
values it accepts. For example, if we want to ensure that halve is only
applied to even integer numbers, we can rewrite3 it as follows:

where div and rem are infix operators that denote integer division and
remainder, respectively. With this guard, the evaluation of an expres-
sion such as 3halve ( )1 would fail at runtime.

An Erlang function definition may have several clauses, which are
scanned in order each time the function is called. For example, we can
extend the previous example with a new clause handling error cases:

In case the given input is an odd number, the function returns
not_even, which is an atom. In Erlang, atoms are symbolic constants.
One may think that the guard X rem 2 == 1 in the second clause is
redundant and that we could remove it so as to get:

However, this definition is not equivalent to that of halve ,2 since
halve3 can be applied to non-integer data such as the atom foo, so
halve (foo)3 would be evaluated to not_even whereas the evaluation of
halve (foo)2 would fail. If we want halve3 to check for non-integer values
as input without having to compute X rem 2, we could add the fol-
lowing guard to the second clause:

in which the guard is_integer(X) is satisfied whenever X is an in-
teger value.

Besides numbers and atoms, Erlang also supports lists and tuples.
The syntax of lists is similar to those of Prolog: [] denotes the empty
list and [X|Xs] denotes the list whose head is X and whose tail is Xs.
With respect to tuples, the expression 1 …{e , ,e }n denotes an n-ary tuple.
For example, let us extend halve3 to report a tuple containing the value
the function has been applied to, in case this value is not an even
number:

3 We use a subscript below the function name just for presentation purposes,
so that we can refer to the corresponding definition later.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

2



2.2. Success types

As it was mentioned in Section 1, success types overapproximate the
sets of values to which an expression is evaluated, and also over-
approximate the set of input-output pairs defining the behaviour of a
function. For example, given the halve1 function defined above, the type
(integer()) integer() would be a success type for this function. This
type specifies that the function expects an integer argument; otherwise
it shall fail or shall not terminate. In case it executes successfully, it
returns an integer number. From a semantic point of view, this type
represents all functions whose graphs (i.e. sets of input-output pairs)
are of the form (n, m), where n and m are integer numbers. Therefore,
the type is a overapproximation of the behaviour of halve ,1 and this
approximation is strict, since the graph of halve1 does not contain, for
example, the tuple (5, 0). Conversely, we know that any input-output
pair having a non-integer value as its first component cannot belong to
the graph of any function with type (integer()) integer(), and hence it
cannot belong to the graph of halve1. Therefore we can say that a
function application such as halve (foo)1 will certainly fail at runtime.

In this setting, every literal (such as an integer or an atom) con-
stitutes by itself a singleton type which represents that literal. In parti-
cular, not_even is a type that represents only the non_even atom.
Therefore, a success type for halve2 would be
(integer()) integer() not_even. The right-hand side at the arrow
contains a union type specifying that halve2 may return an integer
number or the atom not_even.

Success types can be sometimes rather counter-intuitive in com-
parison with Hindley–Milner types. At first sight, one would think that
the success type obtained for halve2 would be also applicable to halve ,3
but it is not. In fact, the expression halve (foo)3 evaluates to not_even,
so the pair (foo, not_even) is contained within the graph of halve ,3 but is
not represented by (integer()) integer() not_even. We would need a
more generic type for halve ,3 such as (any()) integer() not_even,
where the type any() denotes all Erlang values. A function with this type
allows any kind of input. If we still want to obtain the integer() type
we would have to add an is_integer guard to the second clause, as
we did in halve4. But, assuming that a programmer chooses not to in-
clude such a guard (e.g., because they want halve3 to accept any kind of
input), we can still describe more accurately the behaviour of halve3 by
using overloaded success types. For example, the overloaded type
(integer()) integer() (any()) not_even denotes all functions that
may return an integer when given an integer as input, and may return
not_even in any case.

The type …{ , , }n1 denotes the set of n-ary tuples such that, for
every i∈ {1.n}, the i-th component has type τi. Thus the halve5
function accepts the following success type: halve5:
(integer()) integer() (any()) {not_even, any()}. If the only in-
formation we know about halve5 is this success type, the most accurate
success type we could infer for the expression halve (foo)5 is
{not_even, any()}. Polymorphic success types allow us to improve upon this
by specifying a relation between the input and the output of a function,
which is realized by means of polymorphic type variables. For example, the
type (integer()) integer() . ( ) {not_even, } is a success type
of halve ,5 which allows us to derive the type {not_even, foo} for the ex-
pression halve (foo)5 . Besides this, polymorphic variables can be con-
strained. For example, had we added a guard when is_integer(X) to
the second clause of halve ,5 a success type for this function would be
(integer()) integer() . ( ) when{not_even, } integer().

Success typing brings several particularities not occurring in stan-
dard Hindley–Milner systems. Let us highlight some of them:

• There are no ill-typed expressions, in a strict sense. Every expression
has at least one success type: any().

• There is no algorithm that can, in general, compute all the success
types for an expression. This is because the notion of success types is
semantic, instead of being defined by set of rules. For instance,

assume the following expression:

in which b is a convoluted expression which always evaluates to
true. It turns out that 1 is a success type for this expression, but
an algorithm inferring that type would need to know whether b is
always evaluated to true, which is an undecidable problem.

• Some expressions do not have minimal success type. For example,
assume the following function:

where rand:uniform(2) may be evaluated to 1 or 2. There
exists an infinitely decreasing chain of success types for the ex-
pression g(), namely: any() 0 {ok, any()}

…0 {ok, 0 {ok, any()}} .
• There is a subtyping relation between types, also defined semanti-

cally. However, this relation is covariant in the arguments and the
result of a functional type. According to [9], the type (τ) → τ′ is a
success type for a function f if and only if for every pair of values v
and v′:

f v v v v( ) is evaluated to is of type is of type

Hence, in order to prove that ( ) ( )1 1 2 2 it is enough to
prove that 1 1 and 2 2. In a standard Hindley–Milner context,
it turns out that if (τ) → τ′ is a type for f, then:

f v v v v( ) is evaluated to is of type is of type

Given that the condition of v being of type τ is at the left-hand side of
the implication, the sufficient condition of covariance 1 1 shown
before turns into a contravariant relation: 1 1.

• The notion of polymorphism is subtler in the context of success types
than in Hindley–Milner type systems. In Hindley–Milner, any in-
stance of a valid polymorphic type scheme for an expression is a
valid type for that expression. For example, if ∀α.(α) → α is a valid
Hindley–Milner type for the identity function, then so are
(bool()) bool() and (int()) int(). This is not true when con-
sidering success types, since these two monomorphic success types
are incompatible for the same expression (they correspond to dis-
joint function graphs). In fact, the first monomorphic type would
forbid the application of the identity function to an integer, which is
an expression that always succeeds.

2.3. Dialyzer: a discrepancy analyzer for Erlang

As mentioned above, Dialyzer is a tool that infers success types for
every expression in a program and detects whether a sub-expression
admits the type none(), which would mean that its evaluation is bound
to fail at runtime. In our examples, Dialyzer infers for halve1 and halve2
the success types stated in Section 2.2. As regards to halve ,3 it would infer
the success type (any()) integer() not_even for this function, in
contrast to the overloaded type (integer()) integer() (any())

not_even. Although Dialyzer does not infer overloaded type specifi-
cations, the user still may specify them in their programs, and Dialyzer
exploits this information in order to obtain more accurate results. For
example, given the following definitions:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

3



With the given overloaded specification for f, Dialyzer reports that
the evaluation of g() will fail at runtime, since the expression f(1) has
2 as a success type, which does not belong to the domain of f, so it
cannot be used in the outer call to f. Without an user-given overloaded
specification for f, Dialyzer would obtain the specification -spec f(0
∪ 1) → 1 ∪ 2. As a result, the expression f(1) would obtain the type
1 2, and so would f(f(1)). No type clashes would be reported.

At the time of the writing, Dialyzer does not support overloaded
specifications for functions in which the types of the domains are non-
disjoint. Such specifications are ignored. In our halve3 example, the
specification (integer()) integer() (any()) not_even would be dis-
regarded, as integer() and any() do not denote disjoint sets of elements
(in fact, there is a subtyping relation between them). However such an
specification would be useful to obtain more accurate results in certain
cases. For example, assume the following definition:

A sound success type for halve_plus_one is
(integer()) integer(). The fact that the subexpression halve (X)3 occurs
as an argument of the + operator forces the branch (any()) not_even
in the overloaded specification of halve3 to be discarded, so X is bound
to be an integer(). Without an overloaded type, X would have been
inferred to have type any(). The typing rules that will be introduced in
this paper allow us to derive the type (integer()) integer() for hal-
ve_plus_one.

Regarding polymorphism, Dialyzer currently supports user-given
specifications with type variables. For example, in halve5 the user could
specify the type (integer()) integer() . ( ) {not_even, }.
Unfortunately, although these specifications are supported if the pro-
grammer supplies them, the extra information provided by poly-
morphism is lost when dealing with function applications. The occur-
rences of α in the type of halve5 are collapsed into any(), which results
in halve5: (integer()) integer() (any()) {not_even, any()}, thus
losing the connection between the input and the output.

Having polymorphism into account allows a type inference tool to
anticipate at compile time some program mistakes that would have
gone unnoticed if the tool had just collapsed type variables to any().
As an example, let us consider the identity function id, which has type
∀α.(α) → α. This is more precise than (any()) any(), since the former
would allow us to derive that the evaluation of id(true) + 3 shall not
succeed. Similarly, polymorphic variables allow us to detect whether
the elements of a list given to the map function (see Section 1) are not
disjoint from the domain of the function given to map. In [11] a pro-
gram transformation is introduced so that Dialyzer, when run over the
transformed program, uses a monomorphic instance suitable to each
call. However, deriving polymorphic type schemes for functions is not
trivial, since the meaning of polymorphic type variables is not so well-
studied in the context of success types as it is in the context of Hin-
dley–Milner type systems. In this paper we introduce a semantic defi-
nition of polymorphic types such that the typing rules allow us, on the
one hand, to take polymorphic information into account when deriving
types for expressions and, on the other hand, to derive polymorphic

type schemes for function definitions.

3. Language

In this section we introduce the language we work with in our type
system and our examples.

3.1. Syntax

Erlang has a rich and powerful syntax that can be translated into
Core Erlang, a desugared version of the language whose full syntax can
be found in [13]. This work is focused on a selected subset of Core
Erlang shown in Fig. 1. The differences between this subset and Core
Erlang are meant to simplify the typing rules without losing generality.
This subset has literal values, variables, lists, tuples, lambda abstrac-
tions, let expressions to introduce new variables, letrec expressions to
introduce new recursive functions, case expressions to branch the ex-
ecution, receive expressions to branch the execution when a message is
received, and function applications. The variable in the after clause of a
receive expression can be an integer or the atom ’infinity’. In this
last case the after clause will never be reached.

The literal values in this language are: atoms, integer numbers, float
numbers, and the empty list represented with []. Atoms are symbolic
constants, enclosed in single quotes (e.g. ’true’, ’ok’, ’Earth’).4

The first difference between our subset and Core Erlang is that we
unify the three different ways to apply functions. The first one uses
apply to invoke functions inside the current module or λ-abstractions
bound to a variable. The second one uses call to invoke functions
outside the current module. The last one uses primop to invoke some
language primitives like ’raise’.5 From the point of view of typing,
these are equivalent, so we give them an uniform treatment to remove
noise from our typing rules.

Core Erlang has tuples, written as { n
}, but to improve efficiency it

also uses internally another data structure called sequence, which is
written as < n

>, and is very similar to a tuple. Sequences are used by
Core Erlang in let or case, and some of the allowed forms of let are
transformed into:

= < > =< >
< > = < > =< >

x e e x e e
x e e x e e

let in let in
let in let in

Unlike tuples, sequences cannot be nested. In our subset of Core
Erlang, since sequences are an optimization mechanism of the im-
plementation of Erlang, we will use tuples instead of sequences because
they are pretty much similar from the point of view of types.

Core Erlang also has some expressions that are syntactic sugar like
do or catch. We assume that the program being type checked has al-
ready been desugared, so it does not contain this kind of expressions.

Fig. 1. Subset of the Core Erlang syntax.

4 A difference between Erlang and Core Erlang is that Erlang allows atoms to
be unquoted when they begin with a lower-case letter, underscore (_), or @; and
does not contains other characters than alphanumeric characters.

5 The primitive ’raise’ is used to throw exceptions inside Erlang.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

4



Exceptions are supported in Erlang, but the “let it crash” [14] phi-
losophy of the language discourages its extensive use. Thus we choose
to leave try/catch and exceptions as a future goal.

In the chosen subset, we only allow variables in case discriminants
and application parameters in order to simplify the typing rules. This
allows us to attach type information to the discriminant when typing
the branches. We also assume that, in the context of function applica-
tions, the function being applied and the arguments are variables, so
that their types can be stored in a typing environment when analysing a
function application.6

3.2. Semantics

In previous work [11,12] the semantics of a closed expression is
defined as a subset of DVal, where DVal represents all the possible
values that can be reached with the language expressions. To represent
functions inside DVal we use graphs, which are sets of tuples

args value(( ), ) that relate a sequence of values args (the arguments) to a
result value. Due to the non-deterministic nature of concurrent Erlang,
a tuple args may be related to more than one result inside a function
graph. In this sense, the semantics of a function is a mathematical re-
lation rather than a function in a strict sense. To represent data struc-
tures inside DVal we also use tuples ctor args( , ), where ctor is the
constructor of the structure and args is a sequence of values taken by the
constructor. The constructors we have in our language are:

• { }n an Erlang tuple with n elements whose values are args.
• [_|_] an Erlang list constructor, where the first value of args is the

head value of the list, and the second is the tail. We also use the
notations …v v v([_|_], , , , )n n1 1 and …v v v[ , , | ]n n1 1 to denote n 1
nested list constructors.

To extend these concepts to expressions with free variables we need
to consider substitutions that give values to variables. A substitution θ is
a total function Var→DVal, where Var is the set of all variables. Subst
denotes the set of all substitutions. The notation [ ] is used to assign the
default value 0 to all variables (any default value other than 0 would
serve). The notation …x v x v[ / , , / ]n n1 1 is used to represent the substitution
that assigns the value vi to the variable xi and 0 to the other variables.

The semantics e of an expression e is defined as a relation
×e Subst DVal. The idea is that if v e( , ) then v is one of

the possible values to which eθ can be reduced. The complete definition
of e is given in Fig. 2.

The function matches receives a substitution θ, a value v, and a
clause pwhen eg → e, and gives us the set of substitutions where the
program variables xi —inside a pattern expression p— are set to certain
values v ,i such that this new substitution x v[ / ]i i with the value v exists
in the semantics of the pattern p, and the substitution x v[ / ]i i with the
value ‘true’ exists in the semantics of the guard expression eg. This
means that the function returns the modified substitutions of θ that
match the semantics of the pattern and satisfy the guard of a clause.

Using matches, the case and the receive semantics remove the va-
lues not reached by the execution of these expressions. For instance:

Y
Z

case X of
when
when

end

true first
true second

Without the usage of the function matches, the semantics of the ex-
pression would be a set with the values ‘first’ and ‘second’. But
using matches, all the possible substitutions for the second clause are
contained in the substitutions of the first one, and that is why we cannot

reach the execution of the second clause.

4. Type system

The syntax of types is shown in Fig. 3. As explained before, the types
none() and any() denote the absence and the totality of values, re-
spectively. For every basic type B (such as integer() or atom()), we as-
sume a semantic definition B DVal containing the set of values
denoted by this type. Given a literal c, the namesake type c stands for
the singleton set {c} with the corresponding value. The same applies to
the empty list [ ]. A type can also be a type variable α. We assume that
there is a set TypeVar of type variables and we use α, β, α1, etc. to
denote elements from this set. As introduced in Section 2, there are
tuple types of the form { }i

n . The type nelist( , )1 2 represents those non-
empty lists containing elements in τ1 and whose continuations belong to
τ2. For example, nelist(integer(), [ ]) represents all non-empty proper
lists of integers, i.e., those having the empty list as its innermost tail. In
the following we use [ ] to abbreviate nelist( , [ ]) [ ].

The set of values to which type variables are instantiated can be
restricted via constraints. In particular, the type τwhen C denotes the
values of type τ, in which the type variables occurring in τ are in-
stantiated to sets of values satisfying the constraints in C. The syntax of
constraints is defined in the last line of Fig. 3. A constraint of the form
α⊆τ specifies that the values to which α is instantiated are contained
within τ. By abuse of notation, we write =1 2 to denote the con-
junction of α1⊆α2 and α1⊇α2. We also allow constraints in which the
left-hand side of the ⊆ relation is a literal c. A constraint of the form

…{ , , }n1 specifies that, whenever each variable αi is instantiated to a set
Vi, the intersection of all the Vi must be non-empty. For example, the
type when{nelist( , [ ]), nelist( , [ ])}1 2 {α1, α2} denotes those pairs
of non-empty lists having a common element. This kind of constraints
has been introduced in our type system in order to maintain the ex-
pressiveness of the non-linear types of [12], in which a pair of lists with
common elements are denoted by {nelist( , [ ]), nelist( , [ ])}. Lastly,
we have constraints of the form τ⇐α, which is a stronger (i.e. more
restrictive) variant of α⊆τ. The precise meaning and the rationale be-
hind this kind of constraints will be explained later after we have in-
troduced type instantiations and environments.

A polymorphic type scheme σ has the form . ( )j i
n and denotes

the set of all n-ary functions that receive values in i
n and return a value

of type τ. Al occurrences of the variables j inside ( )i
n are said to

be bound. A type of the form =i
m

i1 denotes an overloaded type scheme,
which represents those functions resulting from joining functional va-
lues taken from each σi. For example the type 0 → 1⊔1 → 0 contains the
functions defined by the following graphs: ∅, {(0, 1)}, {(1, 0)}, {(0, 1),
(1, 0)}. Notice the difference with the union type 0 → 1 ∪ 1 → 0. The
latter denotes the graphs ∅, {(0, 1)}, {(1, 0)}, but not {(0, 1), (1, 0)}.

We say that an occurrence of a variable α inside a type τ is free if it is
not bound. We denote by ftv(τ) the set of type variables occurring free
in τ. We shall also consider that when has higher precedence than { → ,
∪ , ⊔}, so the type (α1) → α2when α2⊆α1 is equivalent to (α1) →
(α2when α2⊆α1).

4.1. Type instantiations

Having introduced the syntax, we have to give a meaning to each
type. To that end we need a semantic function _ that maps every
type to the set of values it denotes. This function would, for example,
map the type integer() to the set of integer values, and map the type
nelist(integer(), [ ]) to the set of all non-empty proper lists that can be
built with integer values. However, things become more involved when
we have to figure out the set of values corresponding to a type such as
nelist( , [ ]). When considering this type in isolation, it turns out that α
could stand for any value, and hence the list 3[ , true ] belongs to the
semantics of nelist( , [ ]). However α may be restricted in a broader
context, such as in the type whennelist( , [ ]) integer(), which

6 We do not lose generality by introducing these constraints, since we can
replace complex expressions by let-bound variables.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

5



should exclude the list 3[ , true ]. Therefore, in order to determine
whether a value belongs to the semantics of a given type, we have to
track the set of values to which α is instantiated for that value. In this
example, α is instantiated to the set {3, true } and we would determine,
in the outer context, that this instantiation does not satisfy the con-
straint integer().

In a standard Hindley–Milner type system, instances of type vari-
ables are, in turn, types. In this work we adopt a slightly more generic
approach and consider instead that a type variable is instantiated as a
set of values. Thus we define a type instantiation as a function

TypeVar DVal: ( ), and we denote by TypeInst the set of all type
instantiations. We say that a variable α is instantiated by π if π(α) is non-
empty. In the example above, we say that [3, true ] belongs to the se-
mantics of nelist( , [ ]) under any instantiation π such that

=( ) {3, true }. Analogously, given the union type
= { ok , } error , we say that { ok , 5} belongs to the semantics of τ

under every π such that =( ) {5}, and that error belongs to the se-
mantics of τ under every π such that =( ) (i.e. α is not instantiated
in π).

As a consequence of the above, it turns out that our semantic
function _ will determine, for each type τ, a set of pairs (v, π) instead
of a set of values. The instantiation π specifies how the variables in τ are
instantiated for that specific v. For example, we would say that

3([ , true ], ) nelist( , [ ]) for any π such that =( ) {3, true }. The
occurrence of α in this type determines the value of π(α) in every pair
(v, π) belonging to nelist( , [ ]) . However, there may be some

occurrences of a type variable α which still, despite restricting the
corresponding π(α), they do it in a weaker way. As an example, con-
sider the occurrence of α inside the constraint integer(). There are
many choices for π(α) such that π satisfies this constraint. Therefore, it
will be useful to distinguish the occurrences of α which strongly con-
straint the corresponding π(α) from those that are just meant to check
some bounds on α. Given a variable α ∈ ftv(τ), we say that a type
variable is in an instantiable position of a type if it appears outside a
constraint, or in an instantiable position in the left-hand side of a
constraint of the form τ⇐α. We denote by itv(τ) the set of free type
variables in τ that occur in the instantiable positions of τ.

Let us introduce some notation on type instantiations. We denote by
[ ] the instantiation that maps every type variable to the empty set, and
by V[ ]i i

n the instantiation mapping each αi to its corresponding set
Vi and any other variable different from …, , n1 to the empty set. Given
two instantiations π1, π2 and a set X of type variables we say that
π1 ≡ π2 (modulo X) iff =( ) ( )1 2 for every α ∈ X. Given an in-
stantiation π and a set X of type variables, we denote by π\X the in-
stantiation π′ such that π′ ≡ [ ] (modulo X) and π′ ≡ π (modulo
TypeVar\X). That is, π′ is the substitution that behaves like π but
leaving the variables in X uninstantiated. We also lift the set operator ∪
to instantiations and use the notation π1 ∪ π2 to denote the π such that

=( ) ( ) ( )1 2 for every α ∈ TypeVar. This will allow us to de-
compose an instantiation π into a number of instantiations …, , ,n1
each one typing a component of a given value (for instance, an element
of a given list). Sometimes the decomposition should only apply to a

Fig. 2. Denotational semantics of expressions.

Fig. 3. Syntax of types, type schemes, and
constraints.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

6



given subset of variables. Thus we define a notion of decomposition
which is more restrictive than the ∪ operator. For any set Π of in-
stantiations and type τ, we define the set Dcp(Π, τ) as follows:

=Dcp

itvTypeVar

( , ) and .

(modulo ( ))

def

For example, when Π is {[α↦{1}, β↦{4, 5}], [α↦{2}, β↦{4, 5}]} and
τ is nelist( , [ ]), we say that [α↦{1, 2}, β↦{4, 5}] ∈ Dcp(Π, τ), but
there is no π such that π∈Dcp({[α↦{1}, β↦{4}], [α↦{2}, β↦{5}]}, τ),
since β is not in an instantiable position of τ, thus we shall not allow its
decomposition into the subsets {4} and {5}.

It is worth noting that, according to the semantic definition that will
be given below, if there are multiple occurrences of the same type
variable in different instantiable positions, then this variable will be
instantiated to the same set in all these occurrences. For example, the
type {α, α} denotes the sets of tuples whose components are equal, and
([α]) → [α] denotes those functions that, given a list, return another list
containing the same elements as the input, possibly by rearranging the
order of the elements, or by adding duplicates, or by discarding du-
plicates from the input list. This is different from what one would ex-
pect in a Hindley–Milner type system, in which the parametricity
property [15,16] allows the elements of the output list to be a proper
subset of those in the input list. If this is what we want to express in our
type system, we would have to use the type ([α]) → [α′]when α′⊆α.

4.2. Semantics of types and constraints

In this section we give a precise meaning to types by defining the
semantic function _ mentioned above. The definition is shown in
Fig. 4. The semantics of none() is empty, since it denotes the absence of
values. With respect to the semantics of any(), singleton types (literals
and the empty list) and basic types, each value is paired with every
possible instantiation, since no constraints are imposed on type vari-
ables. In the case of a type variable α, its semantics allows any possible
value v, but now α becomes instantiated to the singleton set {v}.

Regarding tuple types { },i
n these represent n-ary tuples

…v v({ }, , , )n
n1 such that each vi belongs to the semantics of its corre-

sponding τi. The instantiations associated with each component are
required to be all equal. Analogously, a list type nelist( , ) denotes the
set of non-empty lists, each one associated with an instantiation π.
Unlike tuple types, the instantiation π can be decomposed into several

πi, one for each element of the list. In order to motivate the use of
Dcp ({ }, )i

n instead of = =i
n

i1 consider the type
when when[(0 int()) (1 true )]. Clearly the two constraints

are incompatible, so it is sensible to exclude the list 0 1[ , ] from this type.
However, we get that when(0, [ {3}]) 0 integer() and

when(1, [ { true }]) 1 true . If we used standard union to
join all the instantiations we would obtain that 0 1([ , ], [ {3, true }])
belongs to the semantics of the list type, which is not what is intended,
especially when {3, true } does not satisfy any of the constraints in that
type.

The values denoted by a type of τ1 ∪ τ2 is the union of the values
denoted by each constituent. However, if we take a pair (v, π) from

,1 we must ensure that all the variables in itv(τ2) but not in itv(τ1)
become uninstantiated and vice versa. For example, the type
nelist( , [ ]) [ ] contains the empty list, but this value has to be paired
with an instantiation π such that =( ) . In order to understand the
rationale behind this restriction, assume a function f of type

when, . ([ ]) [ ]1 2 1 2 2 1. We expect that f, when given a list,
yields another list whose elements are a subset of those in the input list.
As a consequence, we expect f to map the empty list only to another
empty list. If we do not force α1 to be uninstantiated in the case in
which the input given to f is the empty list, then α2 would be able to
contain any element to which α1 is instantiated, thus allowing f ([ ]) to
be evaluated to some other list rather than [ ].

The semantics of an overloaded type of the form =i
n

i1 is more
involved. First let us concentrate on the semantics of a simple func-
tional type ( ) ,i

n defined by the _ function. This semantics de-
notes graphs of n-ary functions. The function that always fails (i.e. the
function with an empty graph) belongs to every functional type. In this
case none of the variables in the instantiable positions of ( )i

n

would be actually instantiated. Now we assume that there is a pair
f( , ) ( )i

n such that the graph of f is non-empty. We de-
compose π into as many instantiations as tuples contained in the graph
of f. For every input-output tuple =w v v(( ), )i

n in this graph associated
with its corresponding instantiation πw, each argument vi has to
belong to the type τi of the corresponding parameter, and the result v
has to be contained within the type of the result (i.e. τ), all of them with
the same πw. For example, assume the type ([ ]) integer(). We
have, on the one hand, that 1 5([ , ], [ {1, 5}]) [ ] and
that (0, [ {1, 5}]) integer() . On the other hand, we
get that ([7, b , false ], [ {7, b , false }]) [ and that (1,
[ {7, b , false }]) integer() . Therefore, we get that the function

Fig. 4. Semantics of types and type schemes.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

7



with graph 1 5 7{(([ , ]), 0), (([ , b , false ]), 1)} belongs to the semantics
of ([ ]) integer() associated with the instantiation
[ {1, 5, 7, b , false }].

Now let us consider the semantics of a functional type scheme
. ( ) ,i i given by the function _ . For every pair

f( , ) ( )i we have to “erase” from π the information relative
to the bound type variables ,i since it is irrelevant outside the context
of the quantified type scheme. That is why we can replace the in-
stantiation π by any other π′ provided they agree in the variables that
are not quantified in the scheme.

The semantics of a type of the form τwhen C contains those pairs (v,
τ) belonging to the semantics of τ but provided π satisfies all the con-
straints in C. We denote the latter condition by π⊨C. The satisfiability
relation is defined in Fig. 5. A constraint α⊆τ is satisfied by π if the
values of π(α) are contained within the semantics of τ, each one with an
instantiation consistent with values of π. In this definition the ⊆ rela-
tion on sets is lifted to type instantiations in the usual way. For ex-
ample, we say that 1 2= [ {[ , ]}, {1, 2, 3}] satisfies [ ], but

1 2 5= [ {[ , , ]}, {1, 2, 3}] does not, since there is no π″ such
that 1 2 5([ , , ], ) [ ] and π″(β)⊆{1, 2, 3}. Satisfiability on
constraints of the form c⊆τ is defined similarly. With respect to join-
ability constraints { },i

n the satisfiability relation holds for π if either
all the variables i

n are uninstantiated in π, or all of them are in-
stantiated in π, but the corresponding sets to which they are in-
stantiated have at least one element in common. Constraints of the form
τ⇐α are a stronger (i.e. more restrictive) version of subset constraints
and they will be useful in normalization of type environments, as it will
be explained at the end of the next section. As an example, let us
consider the difference between [ ] and [ ] . Assume that
π(α) contains a single value, which is the list 0 4[ , ]. The constraint α⊆β
allows π(β) to be any superset of {0, 4}, whereas the constraint [ ]
forces π(β) to be exactly equal to {0, 4}. In general, if we get π⊨τ⇐α and

= v( ) { }, then it must hold that v( , ) . In the case in which
= …v v( ) { , , },n1 then the vi have to be contained within , each one

possibly with a different instantiation, but the union of all these in-
stantiations has to be exactly π. Back to the previous example, if

0 4 1=( ) {[ , ], [ , true ]} and [ ] , then it must hold that
=( ) {0, 4, 1, true }.

4.3. Environments and annotated types

As usual in type systems, in order to typecheck a given expression,
we have to track the types of the variables occurring in it. A type en-
vironment Γ is a pair (γ, C), where γ is a function that maps each pro-
gram variable to its corresponding type and C is a set of constraints that
pose restrictions to the type variables in γ. By abuse of notation, we
shall use Γ(x) instead of γ(x), and use .Γ|C to denote the set of con-
straints in the right-hand side of Γ. The environment [ ] denotes the
mapping of all variables to any() whereas ⊥ denotes the environment
that maps all variables to none(). We use the notation x C[ : ]i i

n to
denote the environment Γ′ such that =x( ) ,i i for each i∈ {1.n},

=z z( ) ( ) for any other z x{ },i
n and = CC C . As a particular

case, we use x C[ : ]i i
n for abbreviating x C[ ][ : ]i i

n .

The semantics of a type environment is the set of all substitutions
that map variables to values belonging to their respective types. More
precisely, given an environment Γ and an instantiation π, we define

Env as follows:

= x x xVar{ . ( ( ), ) ( ) , }Env C

Notice that the instantiation used for each variable has to be the same
as the one used to check the constraints in Γ. In case the instantiation is
not relevant, we use Env to denote that Env for some π.

The rules of the type system that will be described in Section 5 allow
us to derive not only a success type for an expression, but also an en-
vironment describing the necessary conditions in order to evaluate this
expression. Moreover, the success type of the expression may restrict
the type variables occurring in this environment and vice versa.
Therefore, it is convenient to group a type and an environment in a
single pair with its own semantic definition. Moreover, if an expression
contain case distinctions or calls a function with an overloaded type
scheme, the type system will allows us to derive a sequence of such
pairs. An annotated type is a sequence of pairs …; ; ; ;n n1 1 . The
syntax and semantics of annotated types is given in Fig. 6. The se-
mantics of an annotated type is a set of pairs (θ, v). We say that (θ, v)
belongs to the semantics of ⟨τ; Γ⟩ if there is an instantiation π such that
v belongs to the semantics of τ and θ belongs to the semantics of Γ.

We define a pre-order relation on typing environments as follows:
Γ1⊆Γ2 if and only if Env Env1 2 . We use Γ1 ≈ Γ2 to denote that
Γ1 and Γ2 are semantically equivalent. We can define analogous rela-
tions for annotated types. In some of the typing rules we shall make use
of greatest lower bounds on environments. That is, given Γ1 and Γ2, we
want to find some Γ such that =Env Env Env1 2 . This re-
quirement motivates the need for constraints of the form τ⇐α. As an
example, consider the following pair of environments:

= = =X Y X Z[ : nelist( , [ ]), : ] [ : , : ]1 1 2 2 1 2 3 4 3 4

The first one specifies that X is bound to a list, and that Y is one of its
elements. The second one specifies that X and Z are bound to the same
value. A candidate for the greatest lower bound of these two environ-
ments would be = =X Y Z[ : , : , : ,3 2 4 3 4 3

nelist( , [ ]), ]1 2 1 but, unfortunately, the semantics of Γ is strictly
greater than Env Env1 2 . In fact, the substitution [X/[1], Y/2,
Z/[1]] belongs to Env (if we choose =
[ {1, 2}, {2} {[1]}, {[1]}]1 2 3 4 ) but does not belong to

Env 1 . The reason for this loss of accuracy is that α1 appears in an
instantiable position of Γ1, but not in Γ. Hence whenever we find some

,Env 1 it holds that π(α1) contains exactly the elements of the list
θ(X), but, in Γ, the type variable α1 can instantiated to any superset
containing the elements of θ(X), thus breaking the requirement that Y is
one of the elements of X. In order to avoid this, the greatest lower
bound should be =X Y Z[ : , : , :3 2 4 3 , nelist( , [ ]) , ],4 1 3 2 1
which represents Env Env1 2 without loss of precision.

In order to obtain a explicit form of the greatest lower bound of two
environments and annotated types we need to normalize them before-
hand. The key idea to normalize an environment is to map each pro-
gram variable to a fresh type variable, adding new constraints to relate

Fig. 5. Constraint satisfiability.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

8



these new type variables to the types in the unnormalized environment:

=
=

norm x C x C ftv x C([ : ]) [ : { }] where ([ : ]) { }i i i i i i i i i

It is easy to prove that norm(Γ) ≈ Γ. Now we define the greatest
lower bound operator (⊓) between environments in order to combine
the information provided by several environments into a single one:

=
= =

=

x C C
norm x C norm x C
ftv ftv

[ : ]
where ( ) [ : ] and ( ) [ : ]

and ( ) ( )

i i

i i i i

1 2 1 2

1 1 2 2

1 2

To join the sets of constraints C1 and C2 we ensure that no type
variable is shared with the exception of the ,i by renaming
type variables if necessary. It is straightforward to prove that

=Env Env Env1 2 1 2 for every Γ1, Γ2.
Finally, we define a ⊗ operator that, when applied to a sequence of

pairs …; , , ; ,n n1 1 it joins all the τi into a tuple type while com-
puting the greatest lower bound on all the Γi:

= …
=

=
=

x C C
norm x C j n

ftv ftv

j k n j k
ftv j n

; ; { , , }; [ : ]
where ( ) [ : ] for all {1. }

and ( ; ) ( ; )

for all , {1. },
and ( ; ) { } for all {1. }

n n n i i n

j i i j

j j k k

j j i

1 1 1 1

We can extend this operator to annotated types (i.e. sequences of
pairs) by distributing ⊗ over the ; operator that composes annotated
types:

=

( ; )

( ); ( )
i i n

i n i n

1

1 1

The ⊗ operator satisfies the following property, which the typing
rule for tuples and lists will be based on:

Proposition 1. For every substitution θ, values …v v, , ,n1 and annotated
types …, , n1 such that v( , )i i for each i ∈ {1.n} we get

… …v v( , ({ }, , , ))n
n n1 1 .

Proof. See Appendix. □

5. Typing judgements

The definition of success types given in [9] states that τ1 → τ2 is a
success type of the function f if and only if, for all v, v′ ∈DVal, such that
f(v) evaluates to v′, then v is contained in τ1 and v′ is contained in τ2. In
other words, if the graph of the function denoted by f is contained
within the semantics of τ1 → τ2.

With the type rules shown in this section we shall obtain an anno-
tated type for each expression e. However, it will be convenient to add
to our judgements an initial environment which will reflect some (al-
ready known) assumptions on the free variables of the expression e.
Therefore, our judgements will be of the form Γ⊢e: ρ, with the following
meaning: assuming that the values of the free variables in e (given by a
substitution θ) are contained within their corresponding types in Γ, if e
is evaluated to a value v, then the pair (θ, v) belongs to the semantics of
ρ. More precisely, if Env and v e( , ) then v( , ) .
This can be expressed more succinctly as e Env . In the

following we use the terms assumption environment to refer to Γ and final
environment to refer to any Γ′ inside a pair in the sequence represented
by ρ.

The typing rules are shown in Fig. 7. The first two are auxiliary rules
to strengthen or weaken elements in our judgements. While [SUB1]
specifies that we can replace the assumption environment Γ′ by a
stronger (i.e. more restrictive) one, [SUB2] allow us to weaken the
annotated type ρ.

The [CNS] and [VAR] rules specifies that the final environment
inside the pair that types the expression poses no further constraints
besides those in the assumption environment. The [TPL] rule merges
the annotated types of each subexpression with the operator ⊗, whose
definition was given in Section 4.3, in order to obtain a tuple type as a
result. The [LST] rule does the same for list constructions, but con-
verting the tuple type constructor into a nelist type constructor for
every pair in the resulting annotated type.

With respect to the [ABS] rule, the final environment is the same as
the assumption environment, since the evaluation of a λ-abstraction
always succeeds. We use the type variables i to denote the types of the
free variables yi in the λ-abstraction. After analysing the body of the λ-
abstraction, we receive an annotated type. Each pair in the annotated
type will contain a result type τj and a type τj,i for each parameter xi
inside a final environment. We demand each final environment in the
annotated type to be equal to the assumption environment, except for
the types of the parameters xi

n. With each pair we will build a func-
tional type, which has to be generalized using the operator . This
operator takes all the instantiable type variables inside the functional
type and binds them. Finally, we obtain a collection of functional types
schemes that we will use to build the overloaded functional type, using
the operator ⊔. Each scheme might contain free type variables that also
appear in Γ, but these have to appear directly bound to program vari-
ables in Γ.

We have two rules for function applications: [APP1] only makes
sense when the type assumed for f is compatible with a functional type,
whereas [APP2] specifies that the evaluation of the expression will fail
otherwise. In the first case, the result consists of an annotated type
containing as many pairs as overloads in the type of f. Each pair con-
tains a type τj for the result and a modification of the assumption en-
vironment, where new constraints have been added to change the types
we know for the variables xi

n. To be able to apply this rule, the initial
environment Γ0 we obtained from the assumption environment must
satisfy certain conditions: the first condition is that Γ0(f) has to be a
(possibly overloaded) functional type, and the second is that all the
arguments xi

n must be associated with type variables x
n

i .
In order to avoid clashes between variables when applying the

[APP1] rule, we have to create a group of renamings µj
m for each

overload. A renaming μ is a (partial) injective mapping from type
variables to type variables. We assume the existence of a function
freshRenaming that, given a set of type variables, it returns a renaming
mapping those variables to fresh ones. The notation τμ denotes a type
with the same structure as τ in which the type variables have been
renamed according to μ. The final environment Γj shown in [APP1] adds
the following constraints to Γ0: each xi variable corresponding to the i-
th argument should match the type of the corresponding parameter τj,i;
and for each instantiable type variable β inside the functional type
scheme, the fresh variable generated by the renaming has to be a subset
of the original one.

Let us illustrate the rule [APP1] with the following example: F(Z)

Fig. 6. Syntax and semantics of annotated types.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

9



where F is bound to the function +X X X Yfun( ) { , }. The environ-
ment Γ0 maps F to the type .

when( ) { , number()} number(), number(), Y to β, and Z
to αZ. The renaming μ is created with freshRenaming, and we obtain

=µ [ / ]. Then, to build Γ1 we add the constraint α′⇐αZ to Γ0. Since
we do not have free instantiable type variables in the type of F, we do
not add further constraints. As result we obtain for F(Z) the type

when{ , number()} number(), number(); [ ] ,Z0
which adds new information to the program variables Z and Y.

Our second example of the rule [APP1] is F(X) when F has the type
( ) bool(). This happens, for example, when F is predicate function
received as parameter (e.g., as in a filter function). Assume that the
variable X has type β in Γ0, and μ is [α/α′]. To build Γ1 we add the
constraint α′⇐β to Γ0, and —since we have a free instantiable type
variable in the type for F— we also add α′⊆α to connect the renamed
variable with the original variable that occurs free in the functional
type. As result we obtain for F(X) the type bool(); [ , ]0 .
This implies that X has to be bound to a value contained within the
domain of F.

In order to derive a type for a case or a receive expression, we have
to derive a type for each one of its clauses. With the [CLS] rule we
obtain judgements of the form Γ⊩αcls: ρ; where α is a type variable,
which is the type of the discriminant of a case expression or a fresh type
variable in the case of a receive expression. The rule [CLS] demands
the type of the discriminant to be compatible with the type of the
pattern and the type of the guard to contain the atom true . In order to
satisfy the first requirement, we bind the variables appearing in the
pattern pi to fresh type variables, we derive the type of the pattern (by

using rules [LITP], [VARP], [LSTP], and [TPLP]), and finally we add a
matching constraint between the type of the discriminant and the type
of the pattern. The resulting environment is used to analyse the guard,
and we obtain an annotated type ;i i

n. For each pair in the anno-
tated type of the guard, we will use as assumption environment the i
with an extra constraint that checks if i contains the atom true . Then
we derive the annotated type ρi for the body of the clause. Finally, we
concatenate all the obtained ρi, disregarding the information relative to
pattern variables. The notation x{ }i returns an annotated type that
results from replacing all the environments Γ in ρ by x[ : any()]i .

The rule [RCV] is similar to [CAS] but —in order to typecheck the
clauses— demands the variable xt to have a type inside
integer() infinity , and —in order to typecheck the body of the after
expression— demands the variable xt not to contain infinity , since in
that case the after clause would not be evaluated at runtime.

In the [LET] rule we obtain an annotated type ;i i
n for the bound

expression e1. This allow us to take Γi, override the type for x with τi,
and use this modified environment as assumption environment for the
main expression e2. For each pair obtained analysing the bound ex-
pression, we will obtain an annotated type ρi for the main expression.
Finally, we annotate the whole let expression with the concatenation of
every ρi, removing the information regarding the bound variable x.

The [LRC] rule works like the [LET] rule with one main difference:
to analyse the bound expressions fi, we bind xi

n to the types i
n in the

assumption environment to analyse each bound expression. Since each
fi is a λ-abstraction, we know that the result will be a pair with a type
and the same environment we use as assumption environment, and we
also demand that the type inferred for each fi is the type τi as initially

Fig. 7. Typing rules for expressions and clauses.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

10



assumed.
Our first result states that we can always find a type derivation for a

given expression:

Proposition 2. Given any expression e and initial environment Γ, there
exists an annotated type ρ such that Γ⊢e: ρ. In particular: e: any(); [ ] .

Proof. Straightforward, by inspection of the typing rules. Side-
conditions involving the inclusion relation ⊆ between environments
or annotated types can always be satisfied by choosing [ ] and
any(); [ ] respectively on the right-hand side of these conditions. If

the side-condition of [APP1] involving f to be a scheme type does not
hold, then the rule [APP2] can be applied. The side-conditions of
[APP1] involving …x x, , n1 always hold, because in any environment if x
is related to a type τ, a fresh α can be assigned to x, and the type can be
moved to the constraints of the environment with the constraint τ⇐α.
The remaining side-condition of [ABS], involving the free variables in
the type scheme, depends on the annotated type obtained for e, which
can be modified using [SUB2] to build a bigger type with less
constraints if needed.

Once we prove have derived the judgement Γ⊢e: ρ for some ρ, and
given that any(); [ ] , we can use rule [SUB2] in order to obtain

e: any(); [ ] . □

6. Examples

In this section we will introduce some examples and the types ob-
tained for each with our type system. To keep the examples shorter, the
use of [CNS], [VAR], [CNSP], [VARP], [TPLP], and [LSTP] is not dis-
cussed because the use of these rules is trivial.

6.1. Using functions in guards

In this example we use a function is_atom with the following type:

=_ (atom()) true (any()) falseis atom

This type will be given in the initial environment.7 Assume the fol-
lowing expression:

D D
M M
T T

fun case of
when

when
end

( )
is_atom( ) plastic
true { love , }

The type (atom()) plastic . ( ) { love , } is obtained with
our typing rules. Some of its judgements are shown at Fig. 8. Let us
discuss the application of the [SUB2] rule marked with a (*) sign. This
rule starts with the environment =0
D M[ : , : , atom() , true true ], where D is the parameter
of the function and M is the variable introduced by the first clause of the
case expression. Under Γ0, the atom plastic is typed by the rule [CNS]
with the pair plastic ; 0 . This pair can be transformed using [SUB2],
where the first step is to remove the true true constraint since it
holds that [ true true ] for every Γ, so the constraint is irrele-
vant. After removing the constraint we know that α is used in the en-
vironment only to type the variable D, and we also have the constraint
β⇐α, so we can replace α with β since it holds that Γ[x: α∣α⇐β] ≈ Γ[x:
β] for each Γ and x when α does not appear in Γ. After the substitution
we have the pair D Mplastic ; [ : , : atom() ] . We can then apply
the fact that Γ[x: β∣τ⇐β]⊆Γ[x: τ∣τ⇐β] for any x and Γ, thus obtaining

D Mplastic ; [ : atom(), : atom() atom() ] . We have lost the con-
nection between D and M, but M will be removed from the environment
after exiting the scope of the clause anyway. Finally, we can remove the

constraint by using the fact that Γ[τ⇐β] ≈ Γ when β does not occur in Γ.
In the judgement (**) we transform the environment before typing

the tuple, thus removing the true true constraint obtained from the
result of the guard. We substitute α for β because of the constraint β⇐α,
and after the substitution we rename β with the type variable α, which
did not occur in the environment at that time. As result we obtain the
pair D T{ love , }; [ : , : ] , where we can see the variable D con-
nected to the result of the function by means of the type variable α.

Without support for overloaded functional types, the type for
is_atom would be (any()) bool() and we could not get any useful
information from the guard in this example. To solve this issue, the type
system would need a specific rule to deal with the application of
is_atom. However, with overloaded functional types we can use the
[APP1] rule to obtain the type information we need. For each functional
type inside the type of is_atom, we obtain the annotated type made of
the pairs D Mtrue ; [ : , : , atom() ] and

D Mfalse ; [ : , : , any() ] . Both pairs will be used to find a
derivation for the body of the clause —in this example the atom
plastic —. In the case of the second pair, we obtain an environment
with the constraint false true . It holds that [ false true ] for
any Γ and that ρ; ⊥ ≈ ρ for any ρ, so the second branch of the annotated
type is cancelled out when applying the [SUB2] rule.

6.2. The Map function

The next example will be a derivation of the function Map, which
receives a function F and a list L, and returns a new list where each
element is the result of applying F to the element at the same position in
L. The code of Map is the following:

=Map F L L

X XS F X Map F XS
Map

letrec fun case of
when

when
end in

( , )
[] true []
[ | ] true [ ( )| ( , )]

The type (any(), []) [] , , , . (( ) , nelist( , []))
whennelist( , []) , can be obtained for this Map

function with our typing rules. This type represent those functions that:

• given any value and an empty list, return the empty list, and
• given a function with one parameter and a nonempty list whose

elements are in the domain of that function, return a list whose
elements must be in the range of function passed as argument.

Some of the judgements involved in the derivation are shown in
Fig. 9, where τMap is the type obtained for Map (described above), and
the initial environment is empty when the letrec rule is applied. We
start from the application of the [ABS] rule since the application of the
[LRC] rule is trivial for this example.

Using the tool Typer [10] from the Erlang distribution, the type we
obtain is ((any()) any(), [any()]) [any()], which overapproximates
the type obtained by our derivation, but does not take polymorphism
into account.

6.2.1. Constraints transformation
The most remarkable step of the derivation is the transformation of

the annotated type obtained from [LST] by applying the rule [SUB2] in
the judgement (*) of Fig. 9. In this section we will discuss some of the
transformations used to obtain the annotated type for that judgement.

One of the steps in the transformation is the conjunction of the
constraints that define the type variable αF. In the first pair of the an-
notated type we get (α) → β⇐αF and any() F . Every instantiation
satisfies the latter constraint, so it can be discarded from the environ-
ment to obtain an equivalent one. In the second pair the conjunction is
between (α) → β⇐αF and (α″) → β″⇐αF, in this case since both are
functional types with type variables inside we can remove (α″) → β″

7 For the sake of brevity, we do not show the binding of is_atom in the en-
vironments of the judgements shown in this example.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

11



adding the following constraints: = and = . This is justified by
the fact that whenever v( , ) [( ) , ( ) ]Env F F
holds, then and =( ) ( ). This transformation can also be applied to
other structures, such as lists or tuples.

Other of the steps consists in joining two type variables into a super-
type under certain conditions. For example, in the second branch of the
annotated type obtained after applying [LST], we have the type
nelist( , nelist( , [])) and we know that β′⊆β and β‴⊆β″. But the
transformation explained previously introduced the constraint = ,
so β‴⊆β″ can be transformed into β‴⊆β, and hence β′ and β‴ are
subsets of β. Let us introduce a variable β⋆ defined as β′ ∪ β‴. We can
replace β′⊆β and β‴⊆β with β⋆⊆β, and we can also replace
nelist( , nelist( , [])) with nelist( , nelist( , [])), which can be
over-approximated with nelist( , []). After finishing all those changes,
and remove the unused constraints, we can rename β⋆ to β′ since the

latter was removed previously from the pair. This step is also applied to
join α′ and α‴.

We have mentioned in Section 6.1 the substitution of type variables
involved in match constraints and the renaming of type variables inside
a pair of an annotated type. Another trivial transformation consists in
moving constraints from the environment to the right-hand side of a
when type and vice versa. That is, ⟨τ; Γ[C]⟩ ≈ ⟨τwhen C; Γ⟩.

6.2.2. Using the Map function
Now we will show some use cases where Map is applied to valid and

non valid arguments. The first use case is Map(F, L) under an en-
vironment Γ that maps F to (number()) number(), L to [integer()],
and Map to the type obtained before:

Fig. 8. Some of the judgements of the derivation in the example of Section 6.1.

Fig. 9. Some of the judgements involved in the derivation of Map.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

12



=

=

Map F L F L C
F L C

C

C

when
( , ) : []; [ : , : ] ;

nelist( , []) , ; [ : , : ]
where {(number()) number() , [integer()]

,
any() , [] }
where {(number()) number() , [integer()]

,
( ) , nelist( , []) }

F L

F L

F

L

F L

F

L

F L

1

2

1

2

The application has given us two pairs. The first pair forces L to
contain an empty list, F remains as it is, and the result is the empty list.
The second pair can be transformed so as to obtain that number() ,
number() , and integer() . The given result in the second pair is
a non-empty list of type number(). The annotated type we obtain with
these transformations and the rule [SUB2] is:

Map F L F L
F L

( , ): []; [ : (number()) number(), : []] ;
nelist(number(), []); [ : (number()) number(),

: nelist(integer(), [])]

The second use case is Map(F, L) under a Γ defined as before, but
now F is mapped to the type (bool()) bool(), and L to [integer()]:

=

=

Map F L F L C
F

L C
C

C

when
( , ) : []; [ : , : ] ;

nelist( , []) , ; [
: , : ]

where {(bool()) bool() , [integer()] ,
any() , [] }

where {(bool()) bool() , [integer()] ,
( ) , nelist( , []) }

F L

F L

F L

F L

F L

F L

1

2

1

2

This time the application of rule [APP] yields two pairs, the second
of which is equivalent to none(); . This is because the environment
Γ[F: αF, L: αL∣C2] is equivalent to
F L C[ : , : {bool() , bool() , integer() }],F L 2 so every
substitution θ belonging to the semantics of this environment has to be
obtained with an instantiation π in which bool() and

integer() . But there is no value v such that (v, π) belongs to the
semantics of the type whennelist( , []) , , since π cannot
satisfy the constraint α′⊆α. After applying the rule [SUB2] the anno-
tated type we obtain is:

Map F L F L( , ): []; [ : (bool()) bool(), : []] ;

This means that the only chance of success to execute this application is
that program variable L contains an empty list.

6.3. Higher-order & list-related functions

In this section we will show the types obtained for some functions
involving lists, such as Foldl, Reverse, Filter, and Nth; some of them are
higher-order functions. With the Typer [10] tool, the types obtained are:

Foldl
Filter

Reverse
Nth

: ((any(), any()) any(), any(), [any()]) any()
: ((any()) any(), [any()]) [any()]
: ([any()]) [any()]
: (pos_integer(), nonempty_maybe_improper_list()) any()

With our type system we can derive the following types instead:

Foldl

Filter

Reverse
Nth

when

when

when

: . (any(), , []) , , , , , .(( , ) , ,
nelist( , [])) , ,

: (any(), []) [] , , . (( ) bool(), nelist( , []))
nelist( , []) ,

: . ([ ]) [ ]
: , . (number(), nelist( , any()))

The types given by Typer for Foldl, Filter, and Reverse, are supertypes
of the types we have derived with our type system. Only in the case of
the type of Nth we find that Typer has found a more accurate type in the
first argument of the function. To improve our derivations with ar-
ithmetic operations we would need overloaded types for arithmetic
operators, so that they distinguish cases according to the sign of their
arguments.

In the following sections we explain how these types have been
obtained.

6.3.1. The Foldl function
The Foldl function takes a function, an accumulated value, and a list;

it is used to reduce a list into a single accumulated value by applying
the given function to every element of the list (from left to right) while
maintaining an accumulator that is propagated throughtout all appli-
cations. The code of this function is as follows:

=

=

Foldl F A L L
A

X XS
B F X A Foldl F B XS
Foldl

letrec fun case of
when

when
let in

end in

( , , )
[] true
[ | ] true

( , ) ( , , )

The type obtained for Foldl is .

when
(any(), , []) , , , , , . (( , ) , , nelist( , []))

, ,
from a derivation with our type system. In the first overload of the
given type, the first parameter F can be any value, the second parameter
A is also the result type of the functional type, and the third parameter L
is an empty list. In the second overload, the first parameter F is the
function that mixes the received accumulated value in the second
parameter A with the head of the third parameter L. For that reason the
type for A is contained in the type of the second parameter of F and the
type for L is contained in the type of the first parameter of F, and the
result of the functional type is the result type of F.

The type , , , , , . (( , ) , , [ ])
when , , is not a success type of this function, be-

cause when L is an empty list, the parameter A need not be related to
the type of F’s result, since the accumulating function is not going to be
called. For this reason, when L is an empty list, the result obtained from
the [CLS] rule is the pair F A L; [ : any(), : , : []] whereas in the
clause handling non-empty lists, we obtain when ,

F A L, ; [ : ( , ) , : , : nelist( , [])] .

6.3.2. The Filter function
The Filter function takes a predicate function and a list, and returns a

new list without the elements for which the predicate returns ’false’.
The code of the function is as follows:

=

= =

Filter P L L

X XS
B P X L2 Filter P XS

B
X L2
L2

Filter

letrec fun case of
when

when
let in let
in case of

when
when

end
end in

( , )
[] true []
[ | ] true

( ) ( , )

true true [ | ]
false true

The type (any(), []) [] , , . (( ) bool(), nelist( , []))
whennelist( , []) , can be derived for Filter. In the first

overload of that type, the first parameter P can be any value, the second
parameter L is an empty list, and the result type is the empty list. In the
second functional type, the first parameter P is a predicate function, the
second parameter a list L whose elements are contained by the type of
the only parameter of P, and the result type is a subtype of the list L.

Similarly as in the previous example, the type

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

13



when. . (( ) bool(), [ ]) [ ] , cannot be a
success type for this function, because when L is an empty list, P is not
called, so it is not necessarily a function. When L is not an empty list, we
know that the type of P is (α) → α′ and variable B ends up with the
following restrictions: α′⇐αB and true false B. Since α′ can be
instantiated to a single value, the output of the predicate function must
contain the bool() type to succeed in the innermost case distinction.

6.3.3. The Reverse function
The Reverse function takes a list and returns a new list with the same

elements in reverse order. The code of this function is the following:

= =
=

=

Reverse L K R2 L K
R2 LT A LT

A
X XS

B X A R2 XS B

Reverse

letrec
fun let in

fun case of
when

when
let in

end
in

( ) [] ( , )
( , )

[] true
[ | ] true

[ | ] ( , )

The type . ([ ]) [ ] is obtained for Reverse from a derivation
with our type system, where the only parameter L is a list. The list
reversal is done through an auxiliary function R2 with two parameters,
where the first parameter LS is a list and the second parameter A is an
accumulator. Since the type we obtain for R2 is

. ([], ) , . (nelist( , []), ) nelist( , ), a derivation for
R2 L( , []) yields the following annotated type as result:

L K L
K

; [ : , : [] , [] , ] ; nelist( , ); [
: , : [] , nelist( , []) , ] ,

L K K L K

L K K L K
where Γ contains the definitions for Reverse and R2. We can apply rule
[SUB2] because of the following

L K L K
L K

[]; [ : [], : []] ; nelist( , []); [ : nelist( , []), : []]
[ ]; [ : [ ], : []] ;

Therefore, after simplifying the annotated type into one pair, the
parameter L and the result of Reverse is [ ]. The occurrence of the same
α in both input and output entails that the set of elements in the output
list is the same as the set of elements in the input list.

6.3.4. The Nth function
The Nth function takes a number and a list, and returns the element

from that list at the position specified by the number. Its code is as
follows:

= =

> =

Nth N L K L
X XS

N
X

Z N K M N K Nth M XS

Nth

letrec fun let in case of
when

case of
when
when let in

end
end in

( , ) 1
[ | ] true

1 true
( , )

The type when, . (number(), nelist( , any())) is
obtained for Nth. Since the function might return even when the input
list is not traversed completely, we cannot ensure that the continuation
of this list is []. This is why we obtain nelist( , any()).

7. Correctness

In this section we shall prove that the types derived with the set of
rules shown in Section 5 are success types for their corresponding ex-
pressions. The detailed proofs can be found in the Appendix.

Before getting into the correctness theorem, we need some auxiliary

results. The first one states that if we rename the type variables oc-
curring free in a type, the resulting type denotes the same sets of values,
but with their instantiations modified accordingly. Given a renaming μ
and an instantiation π, the notation πμ denotes the instantiation such
that =µ µ( )( ) ( ( ))1 for every α ∈ rng μ and =µ( )( ) ( ) for
every α ∉ rng μ.

Lemma 1. Let μ be a substitution from type variables to type variables. For
every τ, C, v, and π such that =rng µ ftv ( ) it holds that:

1. v v µ µ( , ) ( , )
2. π⊨C⟹πμ⊨Cμ

Given a pair (v, π) belonging to the semantics of a type τ, only the
type variables occurring free τ are relevant to the instantiation π. The
rest of them could be remapped to different sets of values in π. This is
what the following lemma formalises:

Lemma 2. Let π and π′ be two instantiations, τ a type and C a set of
constraints.

1. For any value v, if v( , ) and π≡ π′ (modulo ftv(τ)), then
v( , ) .

2. π⊨C and π≡ π′ (modulo ftv(C)) then π′⊨C.

In our type system there are some rules that allow us to derive types
for patterns by obtaining judgements of the form Γ⊢p: τ. The intended
meaning of these rules are given by the following result:

Lemma 3. Assume an environment Γ, a pattern p and a type τ such that
Γ⊢p: τ. For every instantiation π and value v such that Env and

v p( , ) it holds that v( , ) .

The main result states that, whenever we obtain a judgement of the
form Γ⊢e: ρ, the annotated ρ is a success type for e.

Theorem 1. Assume an environment Γ, an expression e and an annotated
type ρ. If Γ⊢e: ρ then

e .Env

In the particular case in which our expression e is closed, our rules
infer success types as defined in [11] which in turn generalises the
definition given in [8].

Corollary 1. For any closed expression e and annotated type ρ such that
e[ ] : ; [ ] ,i

n then …e n1 .

8. Comparison with other type systems

In this section we will compare success types with other type sys-
tems used for languages like JavaScript or Python. Some of those type
systems follow a gradual typing [17,18] approach. For example: Java-
Script has TypeScript [19] and Flow [20], and Python has MyPy [21].
The examples we will show in the section will be written in TypeScript
and MyPy.

8.1. Getting types without annotations

Since TypeScript and MyPy are based on gradual type systems, they
accept programs without type annotations. The type checker can find
some potential problems in those programs without type annotations,
but with some limitations. A basic example in JavaScript is:

For TypeScript we get the following error:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

14



This error assumes that the subtraction operator in JavaScript does
not accept other types than numbers, which is not true according to the
language standard, but TypeScript, assuming a conservative approach,
gives a false positive for the sentence. Since this is more related to the
tricky behaviour of operators in JavaScript, let us see a similar example
in Python:

In MyPy we get the following error for this assignment:

In this case if we try to subtract a string to a number in Python, the
language will throw an exception and the program will crash. Both
TypeScript and MyPy can give a type for literal values and check if they
fit in the parameters expected by operators. However, if we use a
function to encapsulate the code shown before:

TypeScript will infer for sub the type (a:any,b:any):number,
for x the type number, and we will receive no error as in the previous
example. We receive no error in the call to sub with a string as its
second argument, because any value fits in the type any. Besides this,
the variables passed as arguments to a function do not get additional
type information that can be useful to catch mistakes when these
variables are being applied to another function. For example, if sub had
been defined as sub(a:number,b:number):number, the applica-
tion sub(x,y) would not deduce the type number for the variables x
and y. In Python we would have a similar situation:

The function sum in MyPy has the type (a:Any,b:Any) -> Any, so
we face the same situation where a string fits in the type Any. With
Flow the results are similar to TypeScript, but the error message blames
the expression a - b inside sub when we obtain calls to sub with
different types as in, for example, sub(3, 2) and sub(3, ”foo”).

In our type system and in Dialyzer, program variables can have a
type specified by the user. Those are contained within the assumption
environment, but these specifications are not required, so we can have
programs without type annotations and still derive types for then.
Therefore the errors we have shown above would have been detected.
Since our typing rules extract information from the applications for the
program variables used as parameters in the call, we can infer addi-
tional type information for an abstraction, and therefore check for type
errors when calling those abstractions.

8.2. Annotations and false positives

In the next example in TypeScript we will have a function that takes
a list of values and returns only those that can be transformed into a
number, packed into an object with their integer successor:

For TypeScript we get the following error:

The problem here is that —after executing the map function— we
have an array of type NextInt<T> | undefined instead of
NextInt<T>. For that reason we execute the filter function to remove
the undefined values from the array, but the union type still remains
after filter. A first solution would be to first execute filter using the
conversion to check those elements in the array for which conversion
succeeds, and then execute map using again the conversion to build the
result:

This leads us to execute the conversion function twice, which is
inefficient and unnecessary. Another option to avoid the warning
message is to execute another map to cast to NextInt<T> for each
element in the array, but this is also unnecessary, because we can use a
cast for the whole final result before we return it:

In Flow the given error message is similar to TypeScript, but the
problem cannot be solved with a simple casting, and therefore the code
of the function must be changed using the first solution we have dis-
cussed for this example.

A similar example in Python using MyPy type annotations is as
follows:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

15



Inside makeTuple we get the following error for expression aux +
1:

And inside getNexts we get the following error in the return
statement:

The first error warns us that aux does not fit in the types for the plus
operator, since the value None cannot be added to another number.
Even if we use the condition aux != None in the if statement, the error
message is thrown by the tool. In order to fix it we can set the type Any
for aux:

Declaring aux as Any, MyPy uses the program variable as a dynamic
one and does not check if it fits or not in the plus operator. After solving
this error message, the second one is solved casting the final result into
the final type:

We could also have executed a map and cast each element into
Tuple[T, int], but like in the TypeScript example it would have been
unnecessarily inefficient.

A similar function to getNexts in Erlang would be:

In our type system the type ([ ]) [{ , int()} undefined ] would
be given for getNexts, like TypeScript and MyPy. But since the in-
tersection between [{ , int()} undefined ] and [{ , int()}] is not
empty, a success type system would not mark as an error if the user sets
the type for getNexts as ([ ]) [{ , int()}].

In contrast, both TypeScript and MyPy give false positives for safe
programs, because the final goal of these tools is to adapt the static
typing discipline to these languages. This can force the user to add extra
type information and castings to fit the pieces into expected result
types, or to create elaborated type hierarchies to keep things working.
In the worst scenario, the adoption of this approach may remove flex-
ibility to develop programs –unless the programmer chooses to dis-
regard the warnings given by the type checking tool– and in other cases
the programmer is forced to add additional hints to the type checker.
With success types these examples would not be rejected, giving the user
the option to set the input types for certain abstractions if the user
wishes to do so, without having to be worried about false positives.

Overloaded functions, i.e. groups of functions having the same name
and number of arguments, but different types for the input parameters,
can be defined in languages like Java, but dynamically-typed languages
do not support them. In languages like Erlang, JavaScript or Python, we
can simulate this by dynamically checking at runtime the arguments’
types to select one or another version. In our type system, and in
Dialyzer, overloaded functional types can be defined as type specifica-
tions to represent the different execution branches. However,
TypeScript and MyPy do not take overloaded functional types into ac-
count, and we can only have one functional type encompassing all the
execution branches of the function.

9. Related work

A significant amount of research has been carried out in order to
apply type-based static analysis to dynamically typed languages. As
explained in the previous section, well-known examples of this are
Typescript [19], and Python [22], but these techniques have also been
applied to other languages, such as Ruby [23]. Although [22] is or-
iented towards the translation of Python into JVM and CLI primitive
instructions (instead of emulating the Python model on top of the
corresponding virtual machine), these systems allow the programmer to
catch type errors at compile time. However, they follow the traditional
approach of ensuring the absence of type errors at runtime, even if some
false positives are reported. The type system introduced in this paper
follows the opposite goal introduced by success types [8], that is, to
avoiding false positives. Our goal is to assist the programmer in de-
tecting as many definite errors as possible. Although some other subtler
type errors may be left unreported, this approach can be combined with
the variety of mechanisms that Erlang provides (such as supervision
trees) for reporting and restarting the program state in the event of
crashes.

Another approach to apply type-based static analysis is soft typing
[24], which is a technique to find those places in a program where type
consistency is not guaranteed, in order to insert run-time type checks.
This approach shares Dialyzer’s philosophy insofar it does not require
type annotations from the programmer. A soft type checker does not
reject programs with potential type errors, but unlike success typing, it
is conservative in the sense that it inserts type checks whenever in
doubt. Some implementations of soft type systems have been developed
for Scheme [25] and Erlang [26], the latter introducing a specification
language for specifying the interface of Erlang modules. As acknowl-
edged by its author, the latter system might produce false positives such
as in function lists:nth/2 when there is no guarantee that the list is
accessed within its bounds. Another difference of our system with re-
spect to soft typing is the addition of type environments in annotated
types, which capture the necessary conditions for the evaluation of the
expression. Also the constraints related to a type in our system is an-
other difference that improves the polymorphic functional types.

Another area of research related to the integration of static typing
into dynamically typed languages is that of gradual typing [17,18].
Unlike the all-or-nothing approach provided by traditional languages, a
gradual type system allows programmers to partially annotate their
programs with types, while the unannotated parts of the program have
implicitly a dynamic type, which roughly corresponds to the any() type
in this work. Gradual type systems have also been studied in the context
of imperative languages [27,28]. There exists an inference algorithm
for gradual types [29] which consists in constraining the types of
variables from their definitions and assignments (inflows) and from the
context in which they appear (outflows). The latter bound the set of
values which a variable may contain at runtime, in a similar way as our
type environments represent an upper bound of the values of all the
variables in scope. However, the goal of the gradual typing inference is
not to detect type discrepancies, but to carry out performance optimi-
zations, in the same way as soft type systems. In this sense, we can say
that the type system presented here is closer to the notion of success
types which we extend in order to obtain polymorphic types.

Although type systems that overapproximate runtime behaviours
are rarely to be found in functional languages (with the exception of
success types in Erlang), this idea has been widely studied in the context
of logic programming with Prolog. Heintze and Jaffar [30] introduced a
transformation of logic programs into sets of constraints that approx-
imate their behaviour, and a method for simplifying such sets. Another
approach to capture the meaning of a logic program is based on regular
types [31,32], which can be expressed by unary logic programs. Type
checking is decidable for regular types, and inference is feasible by
using bottom-up abstract interpretation techniques with a suitable
widening operator [33,34]. Besides this, in [35,36] the call-success

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

16



semantics for Constraint Logic Programming (CLP) —with a defined
type system— are introduced and verification conditions for those se-
mantics are provided in order to statically detect errors on programs.

The logic programming-related approaches mentioned so far in-
volve only monomorphic types. Polymorphism is introduced by Barbuti
and Giacobazzi [37], who use abstract interpretation to infer, given a
predicate definition, an abstract success set that may contain type
variables. However, this set does not overapproximate the set of suc-
cesses of the predicate being defined; some refutable goals might be ill-
typed. The authors also briefly describe how to introduce union types in
their system. Their approach is subsequently refined by Lu [38,39],
who devises an analysis for inferring dependencies among the para-
meters of a logic predicate. Such dependencies are expressed with rules
involving polymorphic variables and union types. Unlike [37], the re-
sults soundly overapproximate the success set of the programs. In the
same way as in our system, type information is propagated in function
symbols from the arguments to the result and backwards. This propa-
gation is explicitly stated by the dependencies being inferred by the
analysis, whereas in our type system this information is implicit in the
typing environments. A substantial difference of our type system with
respect to these approaches is that constraints on type variables cannot
be expressed in the latter.

With regard to success types, Jakob and Thiemann [6] formalise a
success type system in which functional types include constraints that
determine the failure of the function. If the constraints are satisfied,
then the function will definitely fail. In our system we follow the op-
posite approach: those final environments whose constraints are not
satisfied for a given assignment from variables to values are semanti-
cally vacuous. The types that can be derived with [6] and the sets of
constraints determining failure are expressed recursively, since the
authors focus on errors involving recursive data structures other than
lists. The satisfiability of these sets of constraints is undecidable in
general.

10. Conclusions

We have presented a set of typing rules for a significant subset of
Core Erlang. These rules allow us to derive polymorphic type specifi-
cations, which can be overloaded in the sense of [9], and hence can

capture the semantics of a function in more accurate way than our
previous work. Formally, the type judgements derived by our rules
obtain, under a given type environment, an annotated type for an ex-
pression e. Inside each pair of the obtained annotated type, we can find
a new type environment expressing conditions for the free variables in e
that are necessary for the successful evaluation of e, and a set of type
constraints for the type variables of the given type in the same pair.
When the rules are applied to closed expressions, they derive success
types, i.e., overapproximations of the semantics.

The syntax of types presented in this paper involves the existence of
universally quantified types nested inside other functional types, si-
milar to the types in System F [40]. Although type inference in System F
is undecidable, in our context this problem becomes trivial, as we can
always derive a type for an expression. In fact, we can always derive the
any() type, as stated in Proposition 2. The problem of inferring an ac-
curate type for a given expression is more involved, and hence left as
future work, for which the set of rules presented in this paper will
hopefully provide a solid foundation.

One of the motivations of our work was to overcome some of the
limitations of Dialyzer as a static type analysis tool for Erlang. But it is
obvious that this work, by itself alone, cannot considered as a real al-
ternative to it. Dialyzer is a quite well engineered tool and its authors
have been able to integrate it in the life cycle of real Erlang programs,
without leaving out any part of the language. In order for our work to
complement or replace the role of Dialyzer, there are still some steps to
be taken. We have already mentioned the most important and techni-
cally interesting one, which is developing a polymorphic success type
inference system with a good compromise between accuracy (it should
infer not too trivial types and take sensible advantage of polymorphism
and overloading) and efficiency (it should be applicable to real pro-
grams). Moreover, the type system, at the levels both of derivation and
inference, must be extended to the whole Erlang language, so that it can
be used for any Erlang program. After completing those two steps and
checking the results for a set of real programs, we will be in a position
of trying to disseminate our tool within the Erlang community, so that
its integration into Erlang as a system could be considered.

Another future direction of this research will be to adapt these ideas
to other dynamically-typed imperative languages, such as JavaScript or
Python.

Appendix A. Appendix: Correctness proofs

Lemma 4. Assume an instantiation π, a type τ and a set of instantiations Π such that π∈ Dcp(Π, τ). Assume a renaming μ such that
= …dom µ rng µ { , , }n1 . Then:

µ Dcp µ µ({( )[ ( )] }, )i i

Proof. Let us denote by Π∘ the set µ{( )[ ( )] }i i . We have to prove that:

=µ (A.1)

µ itv µTypeVar(modulo ( )) for each (A.2)

In order to prove (A.1) let us assume a variable α. If α ∈ rng μ then:

=
=

=

=

=

µ
µ

µ

µ

µ

( )( )
( ( ))
{ ( ( )) }

{( )( ) }

{( )[ ( )]( ) }

{ ( ) }
i i

1

1

If α ∉ rng μ but α ∈ dom μ then:

=
=

µ( )( )
( )
{ ( ) }

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

17



the last step justified by the fact that α ∈ dom μ\rng μ and hence =( ) ( ) for each π∘ ∈ Π∘. Finally, if α ∉ rng μ and α ∉ dom μ we get:

=
=

=

=

=

µ

µ

µ

( )( )
( )
{ ( ) }

{( )( ) }

{( )[ ( )]( ) }

{ ( ) }
i i

Now let us prove (A.2). Assume some π∘ ∈ Π∘. We know that = µ( )[ ( )]i i for some π′ ∈ Π. Assume a variable α ∉ itv(τμ) we have to
prove that =µ( )( ) ( ). If α ∈ rng μ we get that µ itv( ) ( )1 and hence =µ µ( ( )) ( ( ))1 1 . Therefore:

= = = =µ µ µ µ( )( ) ( ( )) ( ( )) ( )( ) ( )1 1

On the contrary, if α ∉ rng μ but α ∈ dom μ we get

= =µ( )( ) ( ) ( )

since α ∈ dom μ\rng μ. Finally, in the case in which α belongs to neither dom μ nor rng μ we get that α ∉ itv(τ) and hence:

= = = =µ µ( )( ) ( ) ( ) ( )( ) ( )

□

In the following, given a set X of type variables and a renaming μ, we denote by Xμ the result of applying the renaming to all the variables
occurring inside X. More concretely:

=Xµ µ X dom µ X dom µ{ ( ) , } { , }

The following lemma states some properties of this definition:

Lemma 5. Assume a renaming μ.

1. For every type τ, =itv µ itv µ( ) ( ) and =ftv µ ftv µ( ) ( ).
2. For every X, Y⊆TypeVar such that =rng µ X Y( ) it holds that =X Y µ Xµ Yµ( ) .
3. For every X, Y⊆TypeVar it holds that =X Y µ Xµ Yµ( ) .

Proof. Let us prove the first property. Assume a type variable α ∈ itv(τ)μ. From the definition of this set we distinguish two cases:

• If = µ ( ) such that β∈ itv(τ), then α ∈ itv(τμ).
• If α ∈ itv(τ) with α ∉ dom μ, then α ∈ itv(τμ).

Now assume that α ∈ itv(τμ). There are two possibilities:

• α has appeared in itv(τμ) as a consequence of some β occurring in itv(τ) that has been renamed into α by μ. In this case we have that
= µ itv µ( ) ( ) .

• α has appeared in itv(τμ) because it was already in τ and it has been left untouched by μ. This means that α ∉ dom μ and hence α ∈ itv(τ)μ.

We could repeat the same reasoning above with ftv(τ) instead of itv(τ). Now let us prove the second property. Assume that α ∈ (X\Y)μ. According
to the definition of the latter, there are two possibilities:

• = µ ( ) for some β∈ X\Y. Since β∈ X we get that α ∈ Xμ. Now let us prove that α ∉ Yμ by contradiction. Assume that α ∈ Yμ.
• If = µ ( ) for some β′ ∈ Y, then we would have that = because μ is injective, and hence β∈ Y which contradicts β∈ X\Y.
• If α ∈ Y and α ∉ dom μ, then we contradict the fact that =Y rng µ .

Therefore, α ∉ Yμ, so α ∈ Xμ\Yμ.
• α ∈ X\Y and α ∉ dom μ. Since α ∈ X we get in this case that α ∈ Xμ. Now let us prove, again by contradiction, that α ∉ Yμ. Assume that α ∈ Yμ.
• If = µ ( ) for some β∈ Y then we would contradict the fact that =X rng µ .
• If α ∈ Y and α ∉ dom μ the former contradicts the fact that α ∈ X\Y.

Therefore α ∉ Yμ and hence α ∈ Xμ\Yμ.

We have then proved that (X\Y)μ⊆ Xμ\Yμ. Now we prove the opposite inclusion. Assume α ∈ Xμ\Yμ. The fact that α ∉ Yμ implies the following:

µ Y dom µ{ ( ) , } (A.3)

Y dom µ{ , } (A.4)

With the fact that α ∈ Xμ we distinguish two cases:

• If = µ ( ) for some β∈ X and β∈ dom μ, this implies that β∉ Y, since otherwise we would contradict (A.3). Therefore β∈ X\Y and α ∈ (X\Y)μ.
• If α ∈ X and α ∉ dom μ then we need α ∉ Y in order not to contradict (A.4). Therefore α ∈ X\Y and α ∈ (X\Y)μ.

Therefore, we have proved (X\Y)μ⊇ Xμ\Yμ and hence the equality between both sets.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

18



Finally, let us prove the third property. We first prove that (X ∪ Y)μ⊆ Xμ ∪ Yμ. Assume that α ∈ (X ∪ Y)μ. We distinguish cases:

• Assume that = µ ( ) for some β∈ X ∪ Y. If β∈ X we get that α ∈ Xμ⊆ Xμ ∪ Yμ. Similarly with the case β∈ Y.
• Assume that α ∈ X ∪ Y and α ∉ dom μ. If α ∈ X then α ∈ Xμ. If α ∈ Y then α ∈ Yμ. Therefore, α ∈ Xμ ∪ Yμ.

Now we prove that Xμ ∪ Yμ⊆ (X ∪ Y)μ. Assume that α ∈ Xμ ∪ Yμ. We only prove the case in which α ∈ Xμ, since the case α ∈ Yμ is similar. We have
two possibilites:

• If = µ ( ) for some β∈ X, then β∈ X ∪ Y and hence α ∈ (X ∪ Y)μ.
• If α ∈ X and α ∉ dom μ, then α ∈ X ∪ Y and hence α ∈ (X ∪ Y)μ.

Therefore, Xμ ∪ Yμ⊆ (X ∪ Y)μ and we have proved the equality. □

Lemma 6. Assume two instantiations π, π′, a renaming μ, and a set X of type variables such that π≡ π′ (modulo TypeVar\X). Let us denote by { }i the set of
type variables in dom μ\rng μ. Then:

µ µ XµTypeVar[ ] [ ](modulo )i i

Proof. For the sake of brevity, let us denote by π0 and π1 the instantiations µ [ ( )]i i and µ [ ( )]i i respectively. Assume a variable
α ∉ Xμ. We prove that =( ) ( )0 1 . If α ∈ rng μ we get that µ X( )1 and hence:

= = =µ µ( ) ( ( )) ( ( )) ( )0
1 1

1

If α ∉ rng μ but α ∈ dom μ we get that α ∈ dom μ\rng μ. Therefore:

= =( ) ( )0 1

Finally, if α ∉ rng μ and α ∉ dom μ we get that α ∉ X and hence:

= = =( ) ( ) ( ) ( )0 1

□

Lemma 7. Assume a renaming μ and a set of variables X such that =X rng µ . Then, for every instantiation π, if π≡ [ ] (modulo X), then πμ≡ [ ]
(modulo Xμ).

Proof. Assume a variable α ∈ Xμ. We have to prove that =µ( )( ) . According to the definition of Xμ we have two possibilities:

• = µ ( ) for some β∈ X. Then, by assumption, =( ) . We get:

= = =µ µ( )( ) ( ( )) ( )1

• α ∈ X with α ∉ dom μ. Since X and rng μ are disjoint we get that α ∉ rng μ, which entails =µ( )( ) ( ). From the assumption it follows that
=( ) .

□

Lemma 1. Let μ be a substitution from type variables to type variables. For every τ, C, v, and π such that =rng µ ftv ( ) it holds that:

1. v v µ µ( , ) ( , )
2. π⊨ C⟹ πμ⊨ Cμ

Proof. By induction on the structure of τ and C. The cases in which τ is a simple ground type (singleton, none(), any(), integer(), etc.) are trivial.
Without loss of generality, let us assume that dom μ⊆ ftv(τ). Otherwise we would restrict the domain of μ to ftv(τ) in order to obtain μ′ and prove the
property on μ′ instead of μ. In this way, we would get v µ µ v µ µ( , ) ( , ) because of Lemma 2 and the fact that =µ µ . We
consider now the remaining cases.

• Case = . If v( , ) then = v( ) { }. Since α ∉ rng μ we know that =µ v( )( ) { }, so if α ∉ dom μ we get =v µ µ( , ) . If
α ∈ dom μ let us assume that =µ ( ) . Hence = =µ v( )( ) ( ) { } and therefore =v µ µ( , ) .

• Case = { }i
n . Assume that v( , ) { } ,i

n then =v v{ }i
n for some vi

n such that v( , )i i for each i∈ {1.n}. By induction hyphotesis we get
that v µ µ( , )i i for every i∈ {1.n} and therefore v µ µ( , ) .

• Case = nelist( , )1 2 . In this case we get that = …v v v v[ , , ]n1 such that v( , )i i 1 for every i∈ {1.n} such that Dcp ({ }, )i
n

1 and
v( , ) 2 . By i.h. we get that v µ µ( , )i i 1 for every i∈ {1.n} and v µ µ( , ) 2 . Now assume that =dom µ rng µ { }i . Then none of

the αi occurs free in τ1μ′. Hence we can use Lemma 2 to ensure that v µ µ( , ( )[ ( )])i i i i i 1 for each i∈ {1.n}. Since we know that
Dcp ({ }, )i

n
1 we can apply Lemma 4 to obtain

µ Dcp µ i n µ({( )[ ( )] {1. }}, )i i i i 1

And therefore =v µ µ µ µ( , ) nelist( , ) nelist( , )1 2 1 2 .
• Case = 1 2. Assume that v itv itv( , ) ( ( ) ( ))1 2 1 . The case v itv itv( , ) ( ( ) ( ))2 1 2 is proved similarly. Then there exists some π′

such that v( , ) 1 and

itv itv
itv itv

TypeVar(modulo ( ( ) ( )))
[ ] (modulo ( ( ) ( )))

2 1

2 1

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

19



Assume that =dom µ rng µ { }i for some i . We can apply Lemma 6 to the first congruence and, since rng μ is disjoint from itv(τ2), we can apply
Lemma 7 to the second congruence. We get:

µ µ itv itv µ
µ itv itv µ

TypeVar[ ] [ ] (modulo ( ( ) ( )) )
[ ] (modulo ( ( ) ( )) )

i i 2 1

2 1

We can transform these congruences by using Lemma 5 and the fact that if π≡ [ ] modulo some set we get that [ ] [ ]i modulo the same
set:

µ µ itv µ itv µ
µ itv µ itv µ

TypeVar[ ] [ ] (modulo ( ( ) ( )))
[ ] [ ] (modulo ( ( ) ( )))

i i

i

2 1

2 1

Now we knew that v( , ) 1 . By i.h. we get v µ µ( , ) 1 . Since the variables in dom μ\rng μ do not occur in τ1μ, we can use Lemma 2 to
obtain v µ µ( , [ ])i 1 . The latter, with the equations shown above, leads to v µ µ itv µ itv µ( , [ ]) ( ( ) ( )),i 1 2 1 so finally

=v µ µ µ µ( , [ ]) ( )i 1 2 1 2 . Since the variables i do not appear free in (τ1 ∪ τ2)μ, we can use Lemma 2 to obtain
v µ µ( , ) ( )1 2 .

• Case = Cwhen1 . This follows directly from applying induction hypothesis on its constituents.
• Case = =i

l
i1 . Firstly let us prove the following fact for every n-ary graph v, every instantiation π, every renaming μ, and all ,i

n such that
=rng µ ftv (( ) )i

n :

v v µ µ( , ) ( ) ( , ) (( ) )i
n

i
n (A.5)

Assume some v( , ) ( )i
n . According to the definition of _ there are two cases. In the first one, we have =v and π≡ [ ] (modulo

itv (( ) )i
n ). We can apply Lemma 7 in order to obtain πμ≡ [ ] (modulo itv µ(( ) )i

n ) and then Lemma 5 in order to obtain πμ≡ [ ]
(modulo itv µ((( ) ) )i

n ). Therefore, =v µ µ µ( , ) ( , ) (( ) )i
n . In the second case, we get that =v f 1 and Dcp f( , ( ) )i

n
2

for some f such that,

f v v i n v v{(( , ), ) {1. }. ( , ) , ( , ) }i
n

i i

Let us define fμ as follows:

=fµ v v µ v v f{(( , ), [ ( )]) (( , ), ) }i
n

i i i
n

where { }i is the set of type variables in dom μ\rng μ. For every pair v v f(( , ), )i
n it holds that v( , )i i for each i ∈ {1.n} and

v( , ) . By induction hypothesis we get that v µ µ( , )i i for each i∈ {1.n} and v µ µ( , ) and, since the variables { }i do not
occur free in µ(( ) )i

n we can apply Lemma 2 so as to get that v µ µ( , [ ( )])i i i i for each i ∈ {1.n} and
v µ µ( , [ ( )])i i . Therefore, we have proved that:

fµ v v i n v µ v µ{(( , ), ) {1. }. ( , ) , ( , ) }i
n

i i

Moreover, we can apply Lemma 4 to the fact Dcp f( , ( ) )i
n

2 in order to obtain . Therefore,
= =v µ f µ fµ µ µ( , ) ( , ) ( , ) (( ) )i

n
1 1 and we have proved (A.5).Now we prove the following fact for every v, π, μ, α, ,i

n τ′ such that
=rng µ ftv (( ) )i

n :

v v µ µ( , ) . ( ) ( , ) ( . ( ) )i
n

i
n (A.6)

Firstly let us assume that α does not belong to either dom μ or rng μ. In this case we would have that =µ µ( . ( ) ) . (( ) )i
n

i
n .

Assume that v( , ) . ( ) ,i
n then we know that v( , ) ( )i

n for some π′ such that π′ ≡ π (modulo TypeVar\{α}). Since
ftv ftv(( ) ) ( . ( ) ) { }i

n
i

n and α does not belong to rng μ we can ensure that ftv (( ) )i
n is disjoint from rng μ and hence apply

(A.5) in order to obtain v µ µ( , ) (( ) )i
n . Now let us denote by { }i the variables in the set dom μrng μ. Those variables do not appear

free in µ(( ) ) ,i
n so we can apply Lemma 2 so as to get v µ µ( , [ ]) (( ) )i i

n . We can apply Lemma 6 to the fact that π′ ≡ π
(modulo TypeVar\{α}) in order to obtain µ µ[ ] [ ]i i (modulo TypeVar\{α}μ) or, since α is not in the domain of μ,

µ µ[ ] [ ]i i (modulo TypeVar\{α}). By the definition of _ we know that
=v µ µ µ( , [ ]) . (( ) ) ( . ( ) )i i

n
i

n . Again, since the i are not free in the type scheme (since α do not occur in
them) we can apply Lemma 2 to obtain v µ µ( , ) ( . ( ) ) ,i

n as we wanted to prove.Now let us assume that α does belong to
dom μ ∪ rng μ. In this case we have =µ µ( . ( ) ) . (( [ / ] ) [ / ])i

n
i

n where β is a fresh variable not appearing in
dom µ rng µ ftv (( ) )i

n . Assume that v( , ) . ( ) ,i
n then we know that v( , ) ( )i

n for some π′ such that π′ ≡ π
(modulo TypeVar\{α}). Since β is fresh, we can apply property (A.5) to obtain v( , [ / ]) ( [ / ] ) [ / ]i

n . Now that we know that α
does not appear free in this functional type after applying the renaming [α/β] we can, on the one hand, apply Lemma 2 to obtain
v µ( , [ / ][ ( )( )]) ( [ / ] ) [ / ]i

n and, on the other hand, ensure that rng μ is disjoint from the free variables in that type.
Hence let us apply (A.5) again to obtain v µ µ µ( , [ / ][ ( )( )] ) (( [ / ] ) [ / ])i

n . By Lemma 2 we get that
v µ µ µ( , [ / ][ ( )( )] [ ]) (( [ / ] ) [ / ])i i

n where i are those variables occurring in dom μ\rng μ. Now we apply Lemma 6
to π′ ≡ π (modulo TypeVar\{α}) and get π′[α/β][α↦(πμ)(α)] ≡ π[α/β][α↦(πμ)(α)] (modulo TypeVar\{β}). Let us apply it again to the ob-
tained equivalence, but now with μ, so as to obtain µ µ µ µ[ / ][ ( )( )] [ ] [ / ][ ( )( )] [ ]i i (mod. TypeVar\{β}).
Given the above, we can finally state that

v µ µ µ( , [ / ][ ( )( )] [ ]) . (( [ / ] ) [ / ]) .i i
n

Since the i variables do not occur free in the type scheme in the right hand side, let us apply Lemma 2 to obtain

v µ µ µ( , [ / ][ ( )( )] ) . (( [ / ] ) [ / ])i
n (A.7)

Now let us prove that, for every type variable γ≠ β,

=µ µ( [ / ][ ( )] )( ) ( )( ).

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

20



Assume that γ∈ rng μ. Then we get:

=µ µ( [ / ][ ( )] )( ) ( [ / ][ ( )])( ( ))1

If =µ ( ) ,1 the latter would be equivalent to = =µ µ( ) ( ( )) ( )( )1 . Otherwise we would get

=µ µ( [ / ][ ( )] )( ) [ / ]( ( ))1

since β is not in the domain of μ, this is equal to =µ µ( ( )) ( )( )1 . Now let us assume that γ∈ rng μ. We would get

=µ( [ / ][ ( )] )( ) ( [ / ][ ( )])( )

If = the right-hand side is equivalent to = = µ( ) ( ) ( )( ). Otherwise we get

=µ( [ / ][ ( )] )( ) ( [ / ])( )

Since we are assuming that γ≠ β, the latter is equivalent to = µ( ) ( )( ). Therefore, we have proved that π[α/β][α↦(πμ)(α)]μ≡ πμ (modulo
TypeVar\{β}). We can thus rewrite A.7 by using Lemma 2 in order to obtain

v µ µ( , ) . (( [ / ] ) [ / ]) ,i
n

or, equivalently,

v µ µ( , ) ( . ( ) ) ,i
n

which we wanted in order to prove (A.6).Finally, let us assume that =v( , ) i
n

i1 . This means that v is the union of some fi (i∈ {1.n}), such
that f( , )i i . For each i∈ {1.n} we can apply property (A.6) repeatedly (as many times as bound variables in σi) in order to obtain
f µ µ( , ) ,i i and hence =v µ µ( , ) ( )i

n
i1 .

• Case π⊨ α⊆τ′. We know that αμ is a type variable. In order to prove that πμ⊨ αμ⊆ τ′μ, let us assume some v∈ (πμ)(αμ). Firstly we prove that
v∈ π(α) by case distinction:
• If α ∈ dom μ we get that = = =µ µ µ µ µ µ( )( ) ( )( ( )) ( ( ( ))) ( )1 . Therefore, v∈ π(α).
• If α ∉ dom μ we get that =µ µ µ( )( ) ( )( ). Since α occurs free in the constraint, it does not belong to rng α, so =µ( )( ) ( ). Therefore,
v∈ π(α).
Since v∈ π(α), by definition of π⊨ α ⊆ τ′ we get that v( , ) for some π′ ⊆ π. By induction hypothesis we get that v µ µ( , ) .
Since π′ ⊆ π implies that π′μ⊆ πμ. Hence v belongs to the set v v µ{ ( , ) , π″⊆πμ}. So πμ⊨ αμ⊆ τ′μ holds.

• Case π⊨ c⊆ τ. It is similar to the previous case.
• Case π⊨ …{ , , }n1 . In the same way as in the case π⊨ α ⊆ C we can prove that =µ µ( )( ) ( )i i for every i∈ {1.n}. Therefore, if == ( )i

n
i1

we know that == µ µ( )( ) ,i
n

i1 so πμ⊨ …µ µ{ , , }n1 . The case in which = ( )i
n

i1 is analogous.
• Case π⊨ α⇐τ′. We know that there exists a family of instantiations = v{ ( )}v . such that = and v( , )v for every v∈ π(α).

Now let us define the set = v µ µ{ ( )( )},v where each v is defined as πvμ. It is well defined, since =µ µ( )( ) ( ) and there is a πv for
every element v∈ π(α). From v( , )v and the induction hypothesis we get v µ( , )v for each v∈ (πμ)(αμ). Now let us prove that

=µ . Assume some type variable β. If β∈ rng μ we get:

=
=

=

=

µ µ
µ

µ

( )( ) ( ( ))
( ( ))

( )( )

( )

v
v

v µ µ
v

v µ µ
v

1

( )

1

( )( )

( )( )

whereas if β∉ rng μ we get:

=
=

=

=

µ

µ

( )( ) ( )
( )

( )( )

( )

v
v

v µ µ
v

v µ µ
v

( )

( )( )

( )( )

Therefore we have proved that πμ⊨αμ⇐τ′μ.

□

Lemma 2. Let π and π′ be two instantiations, τ a type and C a set of constraints.

1. For any value v, if v( , ) and π≡ π′ (modulo ftv(τ)), then v( , ) .
2. If π⊨ C and π≡ π′ (modulo ftv(C)) then π′ ⊨ C.

Proof. By induction on the structure of τ and C. When τ is of the form α, if v( , ) then = v( ) { }. Since π≡ π′ (modulo ftv(τ)), we know that
=( ) ( ) for every α ∈ ftv(τ), therefore = v( ) { } and v( , ) . All other cases are straightforward applying the induction hypothesis. □

Lemma 3. Assume an environment Γ, a pattern p and a type τ such that Γ⊢p: τ. Then for every instantiation π and value v such that Env and
v p( , ) it holds that v( , ) .

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

21



Proof. By induction on the derivation of Γ⊢p: τ. We distinguish cases depending on the last rule applied.

• Case [LITP]
In this case we get =p c for some constant c, so it holds that c c( , ) .

• Case [VARP]
In this case we get =p x for some variable x such that =x( ) x for some type variable αx, and =v x( ). From Env it follows that

x x( ( ), ) ( ) or, equivalently, v( , ) x .
• Case [LSTP]

Now p is of the form p p[ | ]1 2 for some patterns p1 and p2 and v is of the form v v([_|_], , )1 2 for some v1 and v2 such that v p( , )1 1 and
v p( , )2 2 . By applying induction hypothesis to the derivations of both patterns we get v( , ) ,1 1 v( , )2 2 which leads to

v( , ) nelist( , )1 2 .
• Case [TPLP]

In this case p is of the form p{ }i
n for some patterns …p p, , n1 and v is of the form …v v({ }, , , )n

n1 for some …v v, , n1 . We apply the induction
hypothesis to each subderivation Γ⊢pi: τi so as to get v( , )i i for every i∈ {1.n}, hence v( , ) { }i

n .

□

Lemma 8. Assume that v( , ) . For every variable x and value v′ it holds that x v v x( [ / ], ) { } .

Proof. When v( , ) ; ,1 2 we know that v( , ) 1 or v( , ) 2 . Then by induction hypothesis we get x v v x( [ / ], ) { }1 or
x v v x( [ / ], ) { } ,2 which becomes x v v x( [ / ], ) ( ; ) { }1 2 .
When v( , ) ; , we know that Env and v( , ) . From ,Env we know that z z zVar. ( ( ), ) ( ) and π⊨

Γ|C, then we get:

=

z z z
z x z z z x z z

x
z x z z z x v
z x v z x z

Var
Var

Var
Var

. ( ( ), ) ( )
{ }. ( ( ), ) ( ) { }. ( ( ), ) ( )

since ( ) any()
{ }. ( ( ), ) ( ) { }. ( , ) any()

. ( [ / ]( ), ) ( { })( )

Since = x{ } ,C C with z x v z x zVar. ( [ / ]( ), ) ( { })( ) and π⊨ Γ\{x}|C, we get x v x[ / ] { }Env ; and with v( , ) , we get
x v v x( [ / ], ) ; { } . □

Lemma 9. For every π, α1 and α2:

1. π⊨ α1 ⊆ α2 if and only if π(α1) ⊆ π(α2).
2. =1 2 if and only if =( ) ( )1 2 .

Proof. Let us prove (1): (⇒) Assume that π⊨ α1 ⊆ α2. Given some v∈ π(α1) it holds that v( , ) 2 for some π′ ⊆ π. This means that = v( ) { }2
and hence v∈ π(α2). Therefore π(α1) ⊆ π(α2). (⇐) Let us prove that π⊨ α1 ⊆ α2. For any v∈ π(α1) it holds that v∈ π(α2). Therefore π[α2↦{v}] ⊆ π
and v v( , [ { }])2 2 .

Property (2) can be proved by applying (1) twice. □

Proposition 1. For every substitution θ, values …v v, , ,n1 and annotated types …, , n1 such that v( , )i i for each i∈ {1.n} we get
… …v v( , ({ }, , , ))n

n n1 1 .

Proof. When ρi has the form ⟨τi; Γi⟩ for each i∈ {1.n}, by definition we know:

…

…

v i n v

v i n v

( , ({ }, )) {1. }. ( , )

( , ({ }, )) ; ; {1. }. ( , ) ;

n
i

n
n i i

n
i

n
n n i i i

1

1 1

From the semantics of ⟨τi; Γi⟩ we have:

v

x x x vVar

( , )

. ( ( ), ) ( ) ( , )

Env i i i i

i i i i C i i i

i

First we want to normalize each Γi into a = x x[ : { ( ) }],i j j i C i j j such that =ftv ( ; ) { }i i j for every i∈ {1.n}, this means we need a
new = x[ { ( )}],i i j j and since i i (modulo ftv(.Γi|C)) with Lemma 2 we obtain i i C . Because = x( ) { ( )},i j j we know that:

x x x
x x xVar

( ( ), ) ( ( ), ) ( )
. ( ( ), ) ( )

j i j j i i j

i i

We also have that x{ ( ) },i i j j since v ( )i j means that =v x( )j then = ,v i and v x( , ) ( )i i j can be changed into v x( , ) ( ) ,i i j
using Lemma 2, since i i (modulo ftv(Γi(xj))). Then with i i C and x{ ( ) },i i j j we have that ,i i C and we can use again Lemma 2 to
obtain v( , ) ,i i i hence:

x x x vVar. ( ( ), ) ( ) ( , )i i i i C i i i

for all i ∈ {1.n}. Now we need to use a single π′ defined as:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

22



=
x

ftv i n( )
{ ( )} { }

( ) ( ; ) for all {1. }
otherwise

j j

i i i

Since =ftv ( ; ) { }i i j and =ftv ftv( ; ) ( ; )i i k k for all i, k∈ {1.n} and i≠ k, and, we know that π′ is well formed. Then, using
Lemma 2:

ftv
x x x

v

Var
(modulo ( ; ))

. ( ( ), ) ( )

( , )
i i i

i

i C

i i

With these results, we obtain by definition:

i n v v{1. }. ( , ) (({ }, ), ) { }i i
n

i
n

i
n (A.8)

After obtaining the semantics of the tuple, we need to unify the environments Γ′ such that = x[ : ]j j C n C1 . Because =x x( ) ( )j i j for
every i∈ {1.n}:

x x x x x xVar Var. ( ( ), ) ( ) . ( ( ), ) ( )i

which leads us to:

x x xVar. ( ( ), ) ( ) C n C

Env

1

(A.9)

Finally with A.8 and A.9 we obtain:

… =v( , ({ }, )) { }; ; ;n
i

n
i

n
n n1 1

proving the current case.
When ρj has the form ;j j for some j∈ {1.n}, by definition we know:

=( ; ) ;j j n j n j n1 1 1

and we also know by definition:

v v
v

( , ) ( , ) ;
( , )

j j j j j

j j j

hence we have two subcases:

• When v( , )j j by induction hypothesis with v( , )i i for each i∈ {1.n} when i≠ j, we obtain:

… v( , ({ }, ))
;

n
i

n
j n

j n j n

1

1 1

• When v( , )j j by induction hypothesis with v( , )i i for each i∈ {1.n} when i≠ j, we obtain:

… v( , ({ }, ))
;

n
i

n
j n

j n j n

1

1 1

proving the current case and the proposition. □

Theorem 1. Assume an environment Γ, an expression e and a sequence ρ of pairs. If Γ⊢e: ρ then

e Env

Proof. By induction on size of the typing derivation. We distinguish cases depending on the last rule applied.

• Case [SUB1]
We assume that we have obtained a derivation of Γ′⊢e: ρ for some Γ⊆Γ′. Then we get:

e
e since

by i.h.
Env itEnv

Env

Env

• Case [SUB2]
In this case we assume a derivation of Γ⊢e: ρ′ for some ρ⊆ρ′. Then we get:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

23



e
by i.h.
since

Env

• Case [CNS]
In this case the expression e being typed is a constant literal c. Assume that v c( , ) Env . This means that =v c and that Env . From
the latter it follows the existence of an instantiation π such that π⊨ Γ|C and x x( ( ), ) ( ) for all x∈Var. Besides this, we get that
c c( , ) , so we finally obtain c c( , ) ; .

• Case [VAR]
We know that the expression e is a variable x∈Var. Assume a pair v x( , ) such that Env . In this case =v x( ). We know that there
exists an instantiation π such that Env . In particular, x x( ( ), ) ( )Env . Therefore, =v x x( , ) ( , ( )) ( ); , which proves
the lemma.

• Case [TPL]
Assume that v e( , ) { }i

n with Env . In this case v is a value of the form …v v({ }, , , ),n
n1 where v ei i for each i∈ {1.n}. By

induction hypothesis, since v e( , ) ,i i Env it holds that v( , )i i for each i. By Lemma 1 we get that v( , ) n1 .
• Case [LST]

Assume that v e e( , ) [ | ] ,1 2 so =v v v([_|_], , )1 2 for some v1, v2. Similarly as in the previous case, we can apply induction hypothesis and
Lemma 1 to get that =v v( , ({ }, , )) { , }; ,i i i

n2
1 2 1 2 so v v( , ({ }, , ))2

1 2 belongs to { , };k k k for some k ∈ {1.n}. There
exists an instantiation π such that x x( ( ), ) ( ) ,k π⊨ Γk|C, and v v(({ }, , ), ) { , }; ,k k k

2
1 2 the latter of which implies v( , ) k1

and v( , ) k2 . Now we can apply the semantic definition of nelist( , )k k in order to get v v(([_|_], , ), ) nelist( , )k k1 2 . Therefore, we
get:

v( , ) nelist( , );k k k

and hence

v( , ) nelist( , ); .k k k
n

• Case [ABS]
In this case =e x efun( )i

n for some variables xi
n and expression e′. Assume a pair v e( , ) Env . From the semantic definition of

x efun( )i
n it follows that v is the graph of an n-ary function. Moreover, the fact that implies the existence of an instantiation π

such that:

z z zVar. ( ( ), ) ( ) C (A.10)

Assume a tuple w∈ v. Then v is of the form v v(( ), )i
n for some values v v,i

n such that x v v e( [ / ], )i i
n . Given that =x( ) any()i for every

i∈ {1.n}, we get, in fact, that x v v e( [ / ], )i i
n

Env . Therefore, the tuple x v v( [ / ], )i i
n also belongs to x; [ : ]j i j i

n m
, . In particular, it

belongs to x; [ : ]k i k i
n

, for some k∈ {1.m}. As a result, we have proven the following

=w v v v k m
x v v x

For every (( ), ) there exists some {1. }
s.t. ( [ / ], ) ; [ : ]

i
n

w

i i
n

k i k i
n

, (A.11)

We use kw to highlight its dependence of the tuple w. For every j∈ {1.m}, let us define the set Wj as follows:

= =W w v k j{ }j w

From (A.11) it follows that = …v W Wm1 . Now let us assume a given j∈ {1.m}. If Wj is empty, let us define an instantiation π′ as follows:

=
itv

TypeVar: ( )
if (( ) )

( ) otherwise
j i

n
j,

Then, according to the semantic definition of a functional type, ( , ) ( )j i
n

j, . By the way in which π′ is defined, it holds that π≡ π′
(modulo itvTypeVar (( ) )j i

n
j, ), so ( , ) ( )j i

n
j, . Equivalently, W( , ) ( )j j i

n
j, since we are assuming that Wj is

empty.
Now let us assume that Wj is nonempty. Assume some tuple w∈Wj of the form v v(( ), )i

n . By (A.11) it holds that
x v v x( [ / ], ) ; [ : ]i i

n
j i j i

n
, . This implies the existence of some instantiation πw such that:

v i n
z z z x

v

( , ) for every {1. }
( ( ), ) ( ) for any other { }
( , )

i w j i

w i
n

w j

w C

,

(A.12)

Again, we write πw to highlight the fact that each tuple w∈Wj has its own πw that witnesses the fact that w belongs to x; [ : ]j i j i
n

, . For each
one of such πw, let us define w as follows:

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

24



=
itv

TypeVar: ( )
( ) if (( ) )

( ) otherwisew
w j i

n
j,

where π is the instantiation that satisfies (A.10). Now let us prove that w w (modulo ftv (( ) )j i
n

j, ). Assume a type variable α.
• If itv (( ) ),j i

n
j, then =( ) ( )w w by definition.

• If ftv (( ) )j i
n

j, but itv (( ) ),j i
n

j, then ftv ( ( ) )j i
n

j, . The [ABS] rule specifies that there exists some y such that =y( )
and y x{ },i

n that is, α is one of the i type variables that have been used when applying [ABS]. Therefore, we get
=y y( ( ), ) ( ) ,w which implies = y( ) { ( )}w . On the other hand, from (A.10) we get = y( ) { ( )}. Therefore,

= = =y( ) ( ) { ( )} ( )w w .
Since w w (modulo ftv (( ) )j i

n
j, ) we can apply Lemma 2 to (A.12) in order to obtain:

v i n
v

( , ) for every {1. }
( , )

i w j i

w j

,

Now let us define = w W{ },j w j and =j j. Obviously, by definition of ,w it holds that πj ≡ π (modulo itvTypeVar (( ) )j i
n

j, ).
Therefore, Dcp ( , ( ) ),j j j i

n
j, which entails W( , ) ( )j j j i

n
j, for each j ∈ {1.m}. Moreover, we get that W( , ) ( )j j i

n
j,

for each j ∈ {1.m} (again as a consequence of being πj equal to π modulo itvTypeVar (( ) )j i
n

j, ). Therefore
= … =v W W( , ) ( , ) ( )m j

m
j i

n
j1 1 , . Together with (A.10): =v( , ) ( ) ;j

m
j i

n
j1 , .

• Case [APP1]
In this case =e f x( )i

n for some function symbol f and variables xi
n. Given that v f x( , ) ( ) ,i

n we get that θ(f) is the graph of an n-ary function
containing the tuple x v(( ( ) ), )i

n . Since θ(f) is an n-ary function it holds that f[ : (any() ) any()] ,Env
n and since ,Env we get that

,Env 0 where Γ0 is the environment occurring in the [APP1] rule. This rule allows us to assume that the f function has the following
overloaded scheme in Γ0:

=
=

f( ) . ( )
j

m
j i j i

n
j0

1
, ,

This means that there exists some instantiation π such that =f( ( ), ) . ( )j
m

j i j i
n

j1 , , and = x( ) { ( )}x ii for every parameter xi
where i∈ {1.n}. According to the semantic definition of an overloaded type scheme, it holds that = …f f f( ) ,m1 where each fi is the subgraph
corresponding to each branch of the overloaded type. That is, for each j ∈ {1.m} we get f( , ) . ( )j j i j i

n
j, , . Since we know that

x v(( ( ) ), )i
n is within θ(f), it has to belong to some fk where k∈ {1.m}. From the definition of _ we get that f( , ) ( )k k i

n
k, for some

π′ ≡ π (modulo TypeVar { }k i, ). Moreover, we get:

i n x v{1. }. ( ( ), ) and ( , )i k i k, (A.13)

for some π″⊆π′ such that π″ ≡ π′ (modulo itvTypeVar (( ) )k i
n

k, ). Let us denote by { }i the set of variables in itv (( ) ) { }k i
n

k k i, , and let us
assume another set { }i of fresh variables such that =µ [ / ]k i i according to the [APP1] rule. Since the i variables are fresh, we can apply
Lemma 1 to (A.13) so as to get:

i n x µ µ v µ µ{1. }. ( ( ), ) and ( , )i k k i k k k k, (A.14)

Notice that none of the i occur either in τk,iμk or τkμk, since all these variables have been renamed by the application of μk. This allows us to define
an instantiation = µ( )[ ( )]k i i so that π∘ ≡ π″μk (modulo ftv(τk,iμk)) for each i∈ {1.n} and π∘ ≡ π″μk (modulo ftv(τkμk)). In this way we
can use Lemma 2 to rewrite (A.14) as follows:

i n x µ v µ{1. }. ( ( ), ) and ( , )i k i k k k, (A.15)

Now let us denote by π• the instantiation [ ( )]i i and prove that = •. Assume some α ∈ TypeVar:
• If = i for some i we get = = =µ( ) ( )( ) ( ) ( )i k i i i• .
• If = i for some i we get = =( ) ( ) ( )i i i• .
• Otherwise α does not belong to itv (( ) ) { }k i

n
k k i, , . This means that:

= = = = =µ( ) ( )( ) ( ) ( ) ( ) ( )k •

since π″ ≡ π′ (modulo itvTypeVar (( ) )k i
n

k, ) and π″ ≡ π′ (modulo itvTypeVar (( ) )k i
n

k, ).
As a consequence, we can substitute π• for π∘ in (A.15) and get:

i n x µ v µ{1. }. ( ( ), ) and ( , )i k i k k k• , • (A.16)

Since the i variables are different from the ,x
n

i we know that = = x( ) ( ) { ( )}x x i• i i and hence from (A.16) we know that µk i k x• , i for
each i∈ {1.n}. Moreover, since π≡ π• (modulo TypeVar { }i ) and the i variables do not occur in Γ0, we get by Lemma 2:

y y y. ( ( ), ) ( ) and C• 0 • 0 (A.17)

Now let us prove that π•⊨βμk⊆β for every itv ( . ( ) )k i k i
n

k, , . This means that β is some of the βi defined before, but none of the { }k i, .
Hence we have to prove that i i• . Assume that v ( )i• . We get that:

= = =v ( ) ( ) ( ) ( ) ( )i i i i i• •

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

25



so v v( , [ { }])i i and [βi↦{v}]⊆π•. Therefore, π•⊨βiμk⊆βi which we wanted to prove. Given this result and equations (A.16) and (A.17)
we get:

=
v µ µ

µ µ itv
( , ) ; ;
where [{ } { ( . ( ) )}]

k k k j j j
m

k k i k x
n

k k i k i
n

k0 , , ,i

which proves the Lemma.
• Case [APP2]

In this case we have to prove that e none();Env or, equivalently, =e Env . Let us prove it by contradiction. Assume that
v e( , ) and Env . As in the case [APP1], this implies that θ(f) is the graph of an n-ary function, so f[ : (any() ) any()]Env

n .
Therefore, we get that f[ : (any() ) any()]Env

n . However, from the condition in rule [APP2] we get = ,Env leading to a
contradiction.

• Case [LET]
Assume a tuple =v x e elet in( , ) 1 2 Env . Then there exists some v1 such that v e( , ) ,1 1 x v v e( [ / ], )1 2 . Since Env we
get that v e( , )1 1 Env and therefore it holds that v( , ) ; ,i i

n
1 where ;i i

n is the sequence of pairs used when applying the [LET]
rule. This means that v( , ) ;k k1 for some k ∈ {1.n}. In particular there exists some π such that:

z z z
v

Var. ( ( ), ) ( )
( , )

k

k

k C

1

which we can rewrite as follows:

z x x v z x z
x v x x x

x

Var { }.( [ / ]( ), ) [ : ]( )
( [ / ]( ), ) [ : ]( )

[ : ]

k k

k k

k k C

1

1

The first two facts can be merged to get:

z x v z x z
x

Var. ( [ / ]( ), ) [ : ]( )
[ : ]

k k

k k C

1

and therefore x v x[ / ] [ : ]Env k k1 . Since x v v e( [ / ], )1 2 we can apply induction hypothesis on the derivation of Γk[x: τk]⊢e2: ρk so as to
get . By Lemma 8 we get v x x( , ) { } { }¯ ,k i

n which proves the lemma.
• Case [CAS]

Assume that v x clscase of( , ) i
n . There exists some k ∈ {1.n} and vj such that x v v e( [ / ], )j j and x v matches x cls[ / ] ( , ( ), )j j k

where clsk is of the form pwhen eg↦e′ and =x vars p{ } ( )j . Moreover, since we have applied [CAS] we know that =x( ) and that Γ⊩αclsk: ρk for
some ρk. We unfold the definitions of matches(θ, θ(x), clsk) and Γ⊩αclsk: ρk so as to get:

x v x p x p( [ / ], ( )) [ : ] :j j j j p (A.18)

x v e x e( [ / ], true ) [ : ] : ;j j g j j p g j j
m

(A.19)

x v v e
e

j n
( [ / ], )

[ true ] :
for every {1. }

j j
j j j

(A.20)

Since we know that ,Env there exists some π such that Env . Let us denote by π′ the instantiation v[ { }]j j . Since the j

variables are fresh, we know that Env by Lemma 2 and hence x v x[ / ] [ : ]j j Env j j . Besides this, =x x( ( ), ) ( ) , so
= x( ) { ( )}. Therefore we can use these facts with (A.18) in order to apply Lemma 3 and obtain that x( ( ), ) p . Since we know that
= = x( ) ( ) { ( )} then it holds that π′⊨τp⇐α and therefore x v x[ / ] [ : ]j j Env j j p . Now we can apply induction hypothesis on the

derivation (A.19) to obtain that x v( [ / ], true ) ;j j j j
m . This implies the existence of some l∈ {1.m} such that

x v( [ / ], true ) ;j j l l . There exists an instantiation π such that ( true , ) l and Env l . From the first fact it follows that
true l which we can join with the second fact in order to get that x v[ / ] [ true ]j j l l . Now we can use (A.20) to apply the

induction hypothesis and get x v v( [ / ], )j j l . From Lemma 8 we get =v x x( , ) { } { } ,l i j i
m

k k
n which proves the

lemma.
• Case [RCV]

Assume that v cls x ereceive after( , ) i
n

t with Env . According to the semantic definition of receive expressions, there are two
possibilities:
[RCV-1 ] There is some k∈ {1.n}, and some values v v,i such that x Integer( ) { infinity },t x v v e( [ / ], ) ,i i and

x v matches v cls[ / ] ( , , ),i i k where xi are the variables occurring in the pattern of clsk and ek is the body of the k-th clause in the receive
expression (i.e. clsk).

[RCV-2 ] θ(xt) ∈ Integer and v e( , ) .
Firstly let us assume [RCV-1]. If x Integer( ) { infinity }t then ,Env t where = x[ : integer() infinity ]t t ; so

=Env Env t Env t . Equivalently, θ belongs to Env t for some instantiation π. Now assume that the chosen
clause clsk is of the form pwhen eg → e″, and xi are the variables appearing in p. By definition of matches(θ, v′, clsk) it holds that

x v v p( [ / ], )i i . Let us denote by π′ the instantiation v v[ { }, { }],i i where α is the fresh variable that has been used in the

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

26



application of the [RCV] rule, and i are the fresh variables used in the [CLS] rule that must have been applied to prove that Γ⊓Γt⊩αclsk:
ρk. Since π and π′ only differ on those fresh variables, by Lemma 2 we get Env t . In fact, if we extend the environment we also
get that x v[ / ]i i is contained within x( )[ : ]Env t i i . We can then apply Lemma 3 and proceed as in the [CAS] case to prove the
lemma.
Now we assume [RCV-2]. Since θ(xt) ∈ Integer we get that ,Env t where = x[ : integer()]t t and hence Env t . The lemma
follows from applying the induction hypothesis to the derivation of e :t .

• Case [LRC]
In this case e is of the form =x f eletrec ini i

n . Without loss of generality let us assume that =n 1, that is, that the letrec expression only defines
one binding. The extension to two or more bindings is straightforward. In particular, assume that =x f eletrec in , where f is an expression of
the form x efun( )i

m . By one of the assumptions of the [LRC] rule, we get that Γ[x: τ′]⊢f: ⟨τ′; Γ[x: τ′]⟩ for some τ′.
Let us define the function Fθ: DVal→DVal as follows: for each v∈DVal,

= =F v v v v x v v f( ) where { } { ( [ / ], ) }

Let us define the sequence v( )k k as follows:

=
= >

v
v F v k( ) for each 0k k

0

1

It is easy to show that the semantics is monotone on the functions occurring in a fixed substitution θ. That is, if x v v x v v f( [ / ], ), ( [ / ], )1 1 2 2
and v1⊆v2, then v v1 2. Therefore, the sequence v( )k is, in fact, an ascending chain: …v v v0 1 2 . Let us prove that, for each k , the
substitution θ[x/vk] belongs to x[ : ]Env . We proceed by induction on k:
• Base case ( =k 0). Since f is a λ-abstraction, the [ABS] rule must have been used somewhere in the derivation tree of Γ[x: τ′]⊢f: ⟨τ′; Γ[x: τ′]⟩.

Therefore, the semantics of τ′ contains the empty graph ∅, hence x x[ / ] [ : ]Env .
• Inductive step (k> 0). Assume that x v[ / ]k Env 0 . Since +x v v f( [ / ], )k k 1 and Γ[x: τ′]⊢f: ⟨τ′; Γ[x: τ′]⟩ we get, by induction hy-

pothesis on this derivation that +x v v x( [ / ], ) ; [ : ]k k 1 . This implies the existence of some instantiation π such that x[ : ]Env
and +v( , ) ,k 1 so +x v x x[ / ] [ : ] [ : ]k Env Env1 .
As a consequence of this, it can be proved that =x v x[ / ] [ : ]k k Env1 . By Tarksi’s fixed point theorem, we get that = =lfp F v ,k k1 so

x lfp F x[ / ] [ : ]Env . On the other hand, we get that x lfp F v e( [ / ], ) , so we apply induction hypothesis on the derivation of Γ[x:
τ′]⊢e′: ρ so as to get that x lfp F v( [ / ], ) , to which we apply Lemma 8 to obtain v x( , ) { } .

□

References

[1] N. Chechina, K. MacKenzie, S. Thompson, P. Trinder, O. Boudeville, V. Fördős,
C. Hoch, A. Ghaffari, M.M. Hernandez, Evaluating scalable distributed Erlang for
scalability and reliability, IEEE Trans. Parallel Distrib. Syst. 28 (8) (2017)
2244–2257.

[2] F. Cesarini, Which companies are using Erlang, and why?, 2019, https://www.
erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-
mytopdogstatus.html. Retrieved Oct. 18, 2019.

[3] L. Damas, R. Milner, Principal type-schemes for functional programs, Proceedings of
the 9th ACM SIGPLAN-SIGACT Symposium on Principles of
ProgrammingLanguages, ACM, 1982, pp. 207–212.

[4] S. Marlow, P. Wadler, A practical subtyping system for Erlang, Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, ICFP
’97, ACM, New York, NY, USA, 1997, pp. 136–149, https://doi.org/10.1145/
258948.258962.

[5] N. Valliappan, J. Hughes, Typing the Wild in Erlang, Proceedings of the 17th ACM
SIGPLAN International Workshop on Erlang, Erlang 2018, ACM, New York, NY,
USA, 2018, pp. 49–60, https://doi.org/10.1145/3239332.3242766.

[6] R. Jakob, P. Thiemann, A falsification view of success typing, in: K. Havelund,
G.J. Holzmann, R. Joshi (Eds.), NASA Formal Methods - 7th International
Symposium, NFM 2015, Pasadena, CA, USA, April 27–29, 2015, Proceedings,
Lecture Notes in Computer Science, 9058 Springer, 2015, pp. 234–247, , https://doi.
org/10.1007/978-3-319-17524-9_17.

[7] T. Lindahl, K. Sagonas, Detecting software defects in telecom applications through
lightweight static analysis: a war story, Programming Languages and Systems,
Springer, 2004, pp. 91–106.

[8] T. Lindahl, K. Sagonas, Practical type inference based on success typings,
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’06, ACM, New York, NY, USA, 2006,
pp. 167–178.

[9] M. Jimenez, T. Lindahl, K.F. Sagonas, A language for specifying type contracts in
Erlang and its interaction with success typings, in: S.J. Thompson, L. Fredlund
(Eds.), Proceedings of the ACM SIGPLAN Workshop on Erlang, Freiburg, Germany,
October 5, 2007, ACM, 2007, pp. 11–17.

[10] T. Lindahl, K. Sagonas, Typer: a type annotator of erlang code, Proceedings of the
ACM SIGPLAN workshop on Erlang, ACM, 2005, pp. 17–25.

[11] F.J. López-Fraguas, M. Montenegro, J. Rodríguez-Hortalá, Polymorphic types in
Erlang function specifications, Functional and Logic Programming - 13th
International Symposium, FLOPS 2016, Kochi, Japan, March 4–6, 2016,

Proceedings, (2016), pp. 181–197.
[12] F.J. López-Fraguas, M. Montenegro, G. Suárez-García, Polymorphic success types

for Erlang, in: G. Barthe, G. Sutcliffe, M. Veanes (Eds.), LPAR-22. 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16–21 November 2018, EPiC Series in Computing, 57 EasyChair,
2018, pp. 515–533.

[13] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nyström, M. Pettersson,
R. Virding, Core Erlang 1.0.3 language specification, 2004.

[14] J. Armstrong, Erlang, Commun. ACM 53 (9) (2010) 68–75, https://doi.org/10.
1145/1810891.1810910.

[15] J.C. Reynolds, Types, abstraction and parametric polymorphism, Proceedings of the
IFIP Congress, (1983), pp. 513–523.

[16] P. Wadler, Theorems for free!, in: J.E. Stoy (Ed.), Proceedings of the Fourth
International Conference on Functional Programming Languages and Computer
Architecture, FPCA 1989, London, UK, September 11–13, 1989, ACM, 1989, pp.
347–359, , https://doi.org/10.1145/99370.99404.

[17] J. Siek, W. Taha, Gradual typing for functional languages, Scheme and Functional
Programming, (2006), pp. 81–92.

[18] J. Siek, W. Taha, Gradual typing for objects, ECOOP 2007 - Object-Oriented
Programming(2007) 2–27. 10.1007/978-3-540-73589-2_2.

[19] G.M. Bierman, M. Abadi, M. Torgersen, Understanding Typescript, in: R.E. Jones
(Ed.), ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28, - August 1, 2014. Proceedings, Lecture Notes in Computer
Science, 8586 Springer, 2014, pp. 257–281, , https://doi.org/10.1007/978-3-662-
44202-9_11.

[20] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, G. Levi, Fast and precise type
checking for javascript, PACMPL 1 (OOPSLA) (2017) 48:1–48:30, https://doi.org/
10.1145/3133872.

[21] N. Savage, Gradual evolution, Commun. ACM 57 (10) (2014) 16–18, https://doi.
org/10.1145/2659764.

[22] D. Ancona, M. Ancona, A. Cuni, N.D. Matsakis, RPython: A step towards reconciling
dynamically and statically typed OO languages, Proceedings of the 2007
Symposium on Dynamic Languages, DLS ’07, ACM, New York, NY, USA, 2007, pp.
53–64, https://doi.org/10.1145/1297081.1297091.

[23] M. Furr, J.-h.D. An, J.S. Foster, M. Hicks, Static type inference for Ruby,
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, ACM,
New York, NY, USA, 2009, pp. 1859–1866, https://doi.org/10.1145/1529282.
1529700.

[24] R. Cartwright, M. Fagan, Soft typing, in: D.S. Wise (Ed.), Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI), Toronto, Ontario, Canada, June 26–28, 1991, ACM, 1991, pp. 278–292, ,

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

27

http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0001
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0002
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/3239332.3242766
https://doi.org/10.1007/978-3-319-17524-9_17
https://doi.org/10.1007/978-3-319-17524-9_17
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0011
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0013
https://doi.org/10.1145/99370.99404
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0015
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/3133872
https://doi.org/10.1145/3133872
https://doi.org/10.1145/2659764
https://doi.org/10.1145/2659764
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1145/1529282.1529700


https://doi.org/10.1145/113445.113469.
[25] A.K. Wright, R. Cartwright, A practical soft type system for Scheme, LISP and

Functional Programming, (1994), pp. 250–262, https://doi.org/10.1145/182409.
182485.

[26] S. Nyström, A soft-typing system for Erlang, in: B. Däcker, T. Arts (Eds.),
Proceedings of the ACM SIGPLAN Workshop on Erlang, Uppsala, Sweden, August
29, 2003, ACM, 2003, pp. 56–71, , https://doi.org/10.1145/940880.940888.

[27] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, P. Vekris, Safe & efficient gradual
typing for TypeScript, Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, ACM, New York,
NY, USA, 2015, pp. 167–180, https://doi.org/10.1145/2676726.2676971.

[28] M.M. Vitousek, A.M. Kent, J.G. Siek, J. Baker, Design and evaluation of gradual
typing for Python, Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS ’14, ACM, New York, NY, USA, 2014, pp. 45–56, https://doi.org/
10.1145/2661088.2661101.

[29] A. Rastogi, A. Chaudhuri, B. Hosmer, The ins and outs of gradual type inference,
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL ’12, (2012), p. 481, https://doi.org/10.1145/
2103656.2103714.

[30] N. Heintze, J. Jaffar, A Finite Presentation Theorem for Approximating Logic
Programs, Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’90, ACM, New York, NY, USA, 1990,
pp. 197–209, https://doi.org/10.1145/96709.96729.

[31] P.W. Dart, J. Zobel, A Regular Type Language for Logic Programs, Types in Logic
Programming, (1992).

[32] E. Yardeni, E. Shapiro, A type system for logic programs, J. Logic Program. 10 (2)
(1991) 125–153, https://doi.org/10.1016/0743-1066(91)80002-U.

[33] J.P. Gallagher, D.A. de Waal, Fast and precise regular approximations of logic
programs, in: P.V. Hentenryck (Ed.), Proceedings of the Eleventh International
Conference on Logic Programming, Santa Marherita Ligure, Italy, June 13–18,
1994, MIT Press, 1994, pp. 599–613.

[34] C. Vaucheret, F. Bueno, More precise yet efficient type inference for logic programs,
in: M.V. Hermenegildo, G. Puebla (Eds.), Proceedings of the 9th International
Symposium Static Analysis, SAS 2002, Madrid, Spain, September 17–20, 2002,
Proceedings, Lecture Notes in Computer Science, 2477 Springer, 2002, pp. 102–116, ,
https://doi.org/10.1007/3-540-45789-5_10.

[35] P. Pietrzak, A type-based framework for locating errors in constraint logic pro-
grams, Linköping University Electronic Press, 2002 Ph.D. thesis.

[36] P. Pietrzak, J. Correas, G. Puebla, M.V. Hermenegildo, A practical type analysis for
verification of modular prolog programs, in: R. Glück, O. de Moor (Eds.),
Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation, PEPM, San Francisco, California, USA, January 7–8,
2008, ACM, 2008, pp. 61–70, , https://doi.org/10.1145/1328408.1328418.

[37] R. Barbuti, R. Giacobazzi, A bottom-up polymorphic type inference in logic pro-
gramming, Sci. Comput. Program. 19 (3) (1992) 281–313, https://doi.org/10.
1016/0167-6423(92)90038-D.

[38] L. Lu, Improving precision of type analysis using non-discriminative union, Theory
Pract. Logic Program. 8 (01) (2008) 33–79, https://doi.org/10.1017/
S1471068407003055.

[39] L. Lu, A polymorphic type dependency analysis for logic programs, New Gener.
Comput. 29 (4) (2011) 409–444, https://doi.org/10.1007/s00354-009-0117-5.

[40] J.-Y. Girard, The system f of variable types, fifteen years later, Theor. Comput. Sci.
45 (1986) 159–192, https://doi.org/10.1016/0304-3975(86)90044-7.

F.J. López-Fraguas, et al. Journal of Computer Languages 58 (2020) 100965

28

https://doi.org/10.1145/113445.113469
https://doi.org/10.1145/182409.182485
https://doi.org/10.1145/182409.182485
https://doi.org/10.1145/940880.940888
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/96709.96729
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0028
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0028
https://doi.org/10.1016/0743-1066(91)80002-U
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0030
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0030
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0030
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0030
https://doi.org/10.1007/3-540-45789-5_10
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0032
http://refhub.elsevier.com/S2590-1184(20)30025-3/sbref0032
https://doi.org/10.1145/1328408.1328418
https://doi.org/10.1016/0167-6423(92)90038-D
https://doi.org/10.1016/0167-6423(92)90038-D
https://doi.org/10.1017/S1471068407003055
https://doi.org/10.1017/S1471068407003055
https://doi.org/10.1007/s00354-009-0117-5
https://doi.org/10.1016/0304-3975(86)90044-7

	Deriving overloaded success type schemes in Erlang
	Introduction
	Success types: an informal overview
	Erlang’s syntax in a nutshell
	Success types
	Dialyzer: a discrepancy analyzer for Erlang

	Language
	Syntax
	Semantics

	Type system
	Type instantiations
	Semantics of types and constraints
	Environments and annotated types

	Typing judgements
	Examples
	Using functions in guards
	The Map function
	Constraints transformation
	Using the Map function

	Higher-order &#x0026; list-related functions
	The Foldl function
	The Filter function
	The Reverse function
	The Nth function


	Correctness
	Comparison with other type systems
	Getting types without annotations
	Annotations and false positives

	Related work
	Conclusions
	Appendix: Correctness proofs
	References




