A Certified Implementation on top of the Java
Virtual Machine*

Javier de Dios Ricardo Pena

Departamento de Sistemas Informaticos y Computacién
Universidad Complutense de Madrid
jdcastro@aventia.com, ricardo@sip.ucm.es

Abstract. Safe is a first-order functional language with unusual mem-
ory management features: memory can be both explicitly and implicitly
deallocated at some specific points in the program text, and there is no
need for a runtime garbage collector. The final code is bytecode of the
Java Virtual Machine (JVM), so the language is useful for programming
small devices based on this machine.

As an intermediate stage in the compiler’s back-end, we have defined the
Safe Virtual Machine (SVM), and have implemented this machine on
top of the Java Virtual Machine (JVM). The paper presents the certified
implementation of the SVM on top of the JVM. We have used the proof
assistant Isabelle/HOL for this purpose.

1 Introduction

Safe! [20,15] was introduced as a research platform for investigating the suit-
ability of functional languages for programming small devices and embedded
systems with strict memory requirements. Its final aim is to be able to infer
and certify —at compile time— safe upper bounds on memory consumption
in a Proof Carrying Code environment [17]. Two features make Safe different
from conventional functional languages: (1) Its region-based memory manage-
ment system does not need a garbage collector; and (2) The programmer may
ask for explicit destruction of memory cells, so that they could be reused by the
program. The compiler produces as target language Java bytecode. These char-
acteristics, together with the formal certification of memory safety properties,
would make Safe useful for programming small devices.

Regions in Safe are inferred by the compiler and their allocation and dealloca-
tion are implicit. However, cell destruction, if desired, is explicit in the text and
it is expressed as a special form of pattern matching. This is a dangerous feature
which could result in having dangling pointers at runtime. The Safe compiler is
at present equipped with a battery of static analyses, which taken as a whole
infer the important property of absence of dangling pointers [20,15,14,16]. These

* Partially supported by the Spanish and Madrid Region Government grants S-
0505/TIC /0407 (PROMESAS), and TIN2008-06622-C03-01/TIN (STAMP)
! nttp://dalila.sip.ucm.es/safe

analyses are conveyed on an intermediate language called Core-Safe (explained
in Sec. 2.1), obtained after type-checking and desugaring the source language
called Full-Safe. The back-end comprises two more phases:

1. A translation from Core-Safe to the bytecode language of an imperative
abstract machine of our own, called the Safe Virtual Machine (SVM). This
language is explained in Sec. 2.2.

2. A translation from SVM to the bytecode language of the Java Virtual Ma-
chine (JVM) [13].

We have decided to provide certificates on the absence of dangling pointers
and (future certificates) on memory consumption at the Core-Safe level. The
main reason for that is avoiding translating the certificates down to the JVM
level, in parallel with the code. We also conjecture that this latter approach
would result in huge certificates and huge checking times. For this reason, we
prove instead that the translation does not destroy the certified properties. In
particular, that the heap structure and the number of active cells are correctly
mapped to the low level machine. Otherwise, absence of dangling pointers or
memory consumption would not be preserved.

In a previous work [5], we certified the translation from Core-Safe to SVM.
The main proof technique used there was structural induction on Core-Safe
expressions. The distance between Core-Safe and the SVM was not so long as
both languages shared the same heap definition, and the main emphasis was on
proving that the resources ‘consumed’ at the Core-Safe level were the same that
at the SVM level. Here we present the certification of the last translation step.
The proof technique is different because here both languages are imperative.
In essence we show that the JVM correctly simulates the SVM. The distance
between both machines is so long (there is an expansion factor of around 20
between an SVM instruction and its translation to JVM) that the proofs are
huge, although not difficult. The hardest part is showing that the final states in
both machines preserve the simulation relation.

Machine-assisted compiler certification has been developed by several au-
thors in the last few years. In Sec. 6 we review some of these works. As it is
argued in [10,11], mechanised certification is superior to manual verification and
of course to plain testing. For the certification being really trustable, the code
running in the compiler’s back-end should be ezactly the same which has been
proved correct by the proof-assistant. Fortunately, modern proof-assistants such
as Coq [2] and Isabelle/HOL [19] provide code extraction facilities which deliver
code written in some widely used languages such as Caml or Haskell. Of course,
one must trust the translation done by the proof-assistant.

Isabelle/HOL is a well-known proof assistant, allowing to express definitions
and properties in a formal language and to prove them with some human help.
We have formalised in Isabelle/HOL the semantics of our abstract machine SVM,
its translation to the JVM, and the JVM itself by extending a previous formal-
isation by G. Klein [7]. This was needed because Klein’s machine was a rather
small subset of the actual JVM and it did not cover some features needed by

our implementation. This infrastructure allowed us to formally state and prove
the correctness theorem.

The plan of the paper is as follows: In Section 2 we summarise our language
Safe and formalise in Isabelle/HOL the semantics of the SVM; Section 3 presents
the JVM formalisation made by Klein and our extension; in Section 4, we ex-
plain our design for mapping our machine to the JVM, and present the main
code generation functions; the certification itself is summarised in Section 5: we
define a simulation relation and prove that the pair formed by the instructions
translation and our memory management system, correctly simulates the SVM
semantics; there is finally a conclusions and related work section.

The paper is a summary of a rather large development whose full details
can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm, where all the
Isabelle/HOL theories containing the code generation functions, the lemmas,
and the proofs are available.

2 The Safe language

Safe [20,15,14,16] is a first-order eager language with a syntax similar to Haskell’s.
Its runtime system uses regions, i.e. disjoint parts of the heap where the program
allocates data structures. The smallest memory unit is the cell, a contiguous
memory space big enough to hold a data construction. A cell contains the mark
of the constructor and a representation of the free variables to which the con-
structor is applied. These may consist either of basic values, or of pointers to
other constructions. It is allocated at constructor application time. A region is
a collection of cells. It is created empty and it may grow and shrink while it is
active. Region deallocation frees all its cells. The allocation and deallocation of
regions is bound to function calls. A working region is allocated when entering
the call and deallocated when exiting it. Inside the function, data structures not
belonging to the output may be built there. When a function body is executing,
the live regions are the working regions of all the active calls leading to this one.
Not all live regions are in scope: they are (for reading, or for cell destruction)
those regions where the arguments live, also (for reading, destruction, or inser-
tion) the regions received as additional arguments, and the self working region.
The region arguments are explicit in the intermediate code but not in the source,
since they are inferred by the compiler. The following list sorting function builds
and intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference [14], the code is annotated with region arguments (those
occurring after the @):

treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treeSort’s self region and deallocated upon termina-
tion. The destruction facilities are associated to pattern matching. For instance,
we show here a constant space function appending two lists:

append []! ys =ys
append (x:xs)! ys x : append Xs ys

The ! mark is the way programmers indicate that the matched cell must be
destroyed. The constant space consumption is due to that, at each recursive
call, a cell is deleted by the pattern matching while a new one is allocated by
the (:) construction.

2.1 Core-Safe and its translation to SVM

The Safe front-end desugars Full-Safe and produces a bare-bones functional lan-
guage called Core-Safe. The transformation starts with region inference and
continues with Hindler-Milner type inference, pattern matching desugaring into
case expressions, transforming where clauses into let expressions, and some
others. A Core-Safe program is a sequence of possibly recursive polymorphic
data and function definitions followed by a main expression e whose value is the
program result. Destructive pattern matching is transformed into case! expres-
sions, and only constants or variables are allowed in function and constructor
applications. Also, only variables are allowed in case/case! discriminants and
in copy and reuse expressions. Region arguments are explicit in constructor and
function applications and in the copy expression. Function definitions have ad-
ditional region arguments rq, ..., r, where the function is allowed to build data
structures. As an example, we show the Core-Safe version of the above append
function, and a main program invoking it:

append zs ys @ r = case! zs of
(] — ys
r:xx — let yy = append zx ys Q r in
let zz = (z: yy) Q@ r in 2z;
let [=[] Q self in append 1 1 Q self

2.2 The Safe Virtual Machine

The Safe compiler translates Core-Safe into a set of sequences of imperative SVM
instructions. These belong to the instruction set of the SVM, whose semantics in
terms of configuration transitions is shown Fig. 1. A configuration of the SVM
consists of the six components (is, A, ko, k, S, cs), where is is the current
instruction sequence, A is the heap, k and k¢ are machine registers respectively
denoting the topmost region in the heap and the topmost region that must be
preserved upon reaching a normal form, S is the stack and cs is the code store
where the instruction sequences are kept. For example, the Core-Safe append
program of Sec. 2.1 generates the code store of Fig. 2.

A heap A is a function from pointers to construction cells w of the form
(4, ij-n), meaning that the cell is located in region j, that C is the data construc-
tor and the b; are its arguments. Regions are stacked as functions are invoked.

Initial/final configuration Condition

(DECREGION : is, A, ko, k, S, cs) k> ko
= (z’s, A‘km ko, ko, S, CS)

([POPCONT], A, k, k, b: (ko,p) : S, cs[p v is])
= (is, A, ko, k, b:S, cs)

(PUSHCONT p : is, A, ko, k, S, cs[p+— is'])
= (is, A, k, k, (ko,p):S, cs)

(COPY : 4s, Alb— (I,Cb;)], ko, k, b:j: S, cs) (6,b") = copy(A, j,b)
= (is, O, ko, k, b :S, cs) i<k
(REUSE : is, AW [b— w], ko, k, b: S, cs) fresh(b')

= (is, AW —w], ko, k, b :S, cs)
([cALL p], A, ko, k, S, cs[p— is])
= (is, A, ko, k+1, S, cs)
(PRIMOP @ :is, A, ko, k, c1:c2:85, c¢s) c=c1Dca
= (is, A, ko, k, ¢:S, cs)
(MATCH I 7™], A[SU +— (4,C™ b:™)], ko, k, S, cs[pj — is;"])
= (isr, A, ko, k, b S, cs)
(MaTcH! I 5™, AW [SU— (j,C™ b;)], ko, k, S, cs[pj — is;])
= (isr, A, ko, k, b S, cs)

([MATCHN [v m B;], A, ko, k, S, cs[p; — isjm+1]) r=Sl—-v+1A1<r<m
= (isr, A, ko, k, S, cs)
([MATCHN [v m p;], A, ko, k, S, cs[p; — isjmﬂ]) r=Sl—-v+1A-(1<r<m)

= (iSm+1, A, ko, k, S, cs)

(BUILDENV K; " :is, A, ko, k, S, cs)
= (is, A, ko, k, Itemp(K;) :S, cs) (1)
(BUILDCLS C" K; " K :is, A, ko, k, S, cs) Itemi(K) < k, fresh(b)
= (is, AW (Itemy(K),CI Ttemp(K:))], ko, k, b:S, cs) 1)

(SLIDE m n :4s, A, ko, k, bi-m:bjnzs, cs)
= (is, A, ko, k, b S, cs)
,{S!j ifK=35€N
def

(1) Itemp(K) = < ¢ it K=c

k if K = self

Fig. 1. The abstract machine SVM

Region identifiers j are natural numbers indicating the position of the region in
the region stack. By A |, we denote the heap obtained by deleting from A those
regions above region k. We will use p, g, ... to denote code labels solved by cs,
and b,b;,... to denote either cell pointers solved by A, or basic constants. By
C7" we denote the data constructor which leads to the r-th alternative out of m
of a case. By S!j we denote the j-th element of the stack S counting from the
top and starting at 0 (i.e. S'0 is the top element).

We do not show the translation functions from Core-Safe to SVM here but,
in order to understand the machine behaviour, we give some hints about it:

— let 1 = e in e5 is translated into pushing a continuation for es in the SVM
stack (PUSHCONT instruction), followed by the instructions of e;. If e; is a
constructor application, a new cell is allocated for it (BUILDCLS instruction)
and the execution proceeds with es.

Py — [BUILDCLS Nil2 [] self, BUILDENV [0,0, self], SLIDE 3 1, CALL P]

Py [MATCH! 0 [Ps, P4]]

P3 — [BUILDENV [1], SLIDE 1 3, DECREGION, POPCONT)

Py — [PUSHCONT Ps, BUILDENYV [3, 5, 6], SLIDE 3 0, CALL P,

Ps — [BUILDCLS Cons? [1, 0] 5, BUILDENV [0], SLIDE 1 6, DECREGION, POPCONT)

Fig. 2. Imperative code for the Core-Safe append program

— case expressions are translated into a MATCH/MATCH!/MATCHN instruction
jumping to the appropriate alternative. Each one is a separate sequence.

— The translation of function application consists of pushing the arguments in
the SVM stack (BUILDENV instruction), and then jumping to the function
body (CALL instruction). Function calls are always tail recursive, so there is
no need for a return instruction.

— When a normal form is reached: (1) the current environment is discarded
from the stack (SLIDE instruction); (2) some regions may be deallocated,
since a tail recursive call chain terminates (DECREGION instruction); and (3)
a continuation sequence is looked for in the stack (POPCONT instruction).

— The copy z@Qr, reuse x!, and primitive operation a; @ as expressions are
respectively translated into sequences containing a COPY, a REUSE, and a
PRIMOP instructions.

We now explain more closely each individual instruction: DECREGION deletes
from the heap all the regions between the current region k£ and region kg, exclud-
ing the latter; POPCONT pops a continuation from the stack or stops the execution
if there is none. Notice that b —which will usually be a value— is left in the stack
so that it can be accessed by the continuation; PUSHCONT pushes a continuation
represented by a region number and a code pointer.

Instruction COPY copies to region j the data structure starting at pointer b on
top of the stack; REUSE creates a fresh pointer b’ and makes it to point to the data
structure pointed to by b on top of the stack; CALL jumps to a new instruction
sequence and stacks an empty region k + 1; PRIMOP operates two basic values
located in the stack and replaces them by the result of the operation.

Instruction MATCH does a vectored jump depending on the matched cell con-
structor; MATCH! additionally destroys the matched cell; MATCHN is used when
the case discriminant is a basic value. The equations respectively describe what
happens when the discriminant is matched by one alternative, and when it is
not matched and the default alternative must be taken.

Instruction BUILDENV receives a list of keys K; and creates a portion of en-
vironment on top of the stack: If a key K is a natural number j, the item S!j is
copied and pushed on the stack; if it is a basic constant ¢, it is directly pushed on
the stack; if it is the identifier self, then the current region number k is pushed
on the stack; BUILDCLS allocates fresh memory and constructs a heap cell. It
receives a list of keys and the cell constructor C*; SLIDE removes some parts of
the stack and it is used to discerd environments when they are no longer needed.

The following invariant is ensured by the Safe compiler: For every instruc-
tion sequence in the code store cs, instruction i is the last one if and only if it

belongs to the set {POPCONT, CALL, MATCH, MATCH!, MATCHN}. It is introduced in
Isabelle/HOL as an axiom, since it is needed for proving the correctness theorem.

We have formalised the SVM by first defining in Isabelle/HOL some datatypes
for normal form values, and cells:

datatype Val = Loc Location | IntT int | BoolT bool
types Cell = Constructor x Val list

The heap is modelled as a partial function from locations to pairs (Region, Cell),
and a nat with the total number of regions. The stack is modelled as a list.

types HeapMap = Location — (Region x Cell)
Heap = HeapMap X nat
Stack = StackObject list

where stack objects can be values, region numbers or continuations. The SVM
code is modelled by a list of triples, each one consisting of a code label, a SVM
instruction sequence, and a function name. The aim is to represent a partial
function, but one which can be traversed. A code store provides also information
about which labels correspond to continuations.

types CodeSequence = Safelnstr list
SVMCode = (CodeLabel x CodeSequence x FunName) list
ContinuationMap = FunName — CodeLabel list
CodeStore = SVMCode x ContinuationMap

The program counter of the SVM is a pair (CodeLabel, nat) indicating the in-
struction sequence under execution and the next instruction of the sequence to
be executed. The SVM state consists of the heap, the register kg, the program
counter and the stack. Finally, the static part of a SVM program consist of a
code store, a constructor table containing constructor static attributes needed
at runtime, and a sizes table with sizes for the heap and the stack.

types PC = CodeLabel x nat
SVMState = Heap x Region x PC x Stack
SafelmpProg = CodeStore x ConstructorTable Type x SizesTable

We have defined a function execSVM making the SVM to execute the next
instruction, or to stop if there is none:

execSVM :: SafeImpProg = SVMState = (SVMState, SVMState) Either
execSVM ((code, cm), ct, st) (h, kO, (1,7),S) =
execSVMInst (the (map_of code 1) ! i) (map_of ct) h kO (I,3) S

where map_of , defined in Isabelle/HOL, transforms a list of pairs into a partial
function. If execSVM P s gives Left s, this means that s is a stopping state.
Otherwise, it gives Right s’. There is an equation defining execSVMInst for every
SVM instruction. The definitions closely follow the semantics given in Fig. 1.

datatype instr =

Store nat | Return | ArrLoad
| Load nat | Pop | ArrStore
| Tableswitch int int (int list) | Dup | ArrLength
| Getfield vname cname | Dup_z1 | ArrNew ty
| Putfield vname cname | Dup_z2 | Checkcast cname
| Getstatic vname cname | Swap | New cname
| Putstatic vname cname | BinOp op | LitPush val
| Invoke cname mname (ty list) | Ifempeq int | Jsr int
| Invoke_static cname mname (ty list) | Throw | Ret nat

| Invoke_special cname mname (ty list) | Goto int

Fig. 3. Supported instructions of the JVM.

3 Formalisation of the JVM in Isabelle/HOL

In the past years, there have been some efforts to formally define the JVM in
proof assistants in order to verify properties of the machine itself or of applica-
tions written in Java bytecode. Concerning Isabelle/HOL, there was some early
work by Cornelia Pusch [22] followed by Tobias Nipkow, Gerwin Klein and oth-
ers in the framework of some EU-funded projects [9,6,8]. As starting point, we
have used the definition of the JVM done in 2003 by G. Klein for Microjava, a
subset of Java [7], and have extended it with a static heap and some instruc-
tions such as Tableswitch, Invoke_static, binary operators, and others. These
extensions are part of the actual JVM and we needed in our implementation.

A JVM program is formalised as a list of class declarations, each one con-
sisting of the class and super-class names, and two lists for field and method
declarations.

types fdecl = vname X ty -- field declaration
sig = mname X ty list -- signature of a method
¢ mdecl = sig x ty x 'c -- method declaration ('c is the body)
"¢ class = cname x fdecl list x "¢ mdecl list -- class = superclass, fields, method
"¢ edecl = ecname x 'c class -- class declaration
"c prog = 'c cdecl list -- program

A method’s body provides the lengths of the operand stack and of the local
variable list, the bytecode instructions, and an exception table.

types bytecode = instr list
jum_method = nat X nat X bytecode X exception_table
Jum_prog = jum_method prog

The supported instructions are listed in Fig. 3. They represent both a subset
and an abstraction of the actual JVM instruction set [13].

The dynamic state of the JVM (jum_state) is formed by four components:
a possibly raised exception, a static heap (sheap), a dynamic heap (dheap), an
initial heap, and a stack of frames. The second is a partial function from pairs

(class, field) to values, and the third is a partial function from locations to
either objects or arrays (heap_entry). An object contains its class name and a
mapping from pairs (field, class) to values. An array consists of its elements
type, its length, and a partial mapping from indices to values. A frame (frame)
is formalised as a tuple containing the operand stack, the local variables (these
include the this pointer and the method arguments), the class name, the method
signature, the program counter, and a tag. This and the initial heap are not
present in the actual JVM, and they are related to a proof about the bytecode
type system made by Klein.

datatype heap_entry = Obj cname (vname X cname — val)
| Arr ty nat (nat — val)
types sheap = cname X vname — val -- static heap
dheap = loc — heap_entry -- dynamic heap

frame = opstack X locvars X cname X sig X pc X tag
jum_state = val option X sheap X dheap X ini_heap X frame list

Klein defines a function ezec :: jum_prog x jum_state = jum_state option, execut-
ing the next instruction in the machine, which we have extended to the added
instructions. In addition, he defines the reflexive-transitive closure of the ezec P
relation, for a given program P, as follows:

exec_all :: [jum_prog, jum_state, jum_state] = bool (_F _—jom — _)
Pl s—jom —t=(st)€{(s,t). exec (P,s) = Some t}"

4 Implementation of the SVM on top of the JVM

The JVM provides support for allocating new objects in the heap but not for
releasing them. Instead, there is an automatic garbage collector system which col-
lects unused objects. On the contrary, the SVM has explicit releasing of cells and
no garbage collector. The JVM provides a frames stack for invoking and return-
ing from methods. The SVM control flow does not follow the typical call/return
scheme of imperative languages. The SVM is a kind of ‘jumping machine’ where
the control flow is in part driven by the stack. So, the JVM stack is not appro-
priate to be used as the SVM stack. Finally, the SVM stores code addresses in
the stack which are used to jump to the corresponding code. There is no support
instruction in the JVM for this need. Summarising, careful design decisions are
needed in order to correctly map the SVM to the JVM. First we explain how
data structures are mapped, and then how the code is mapped.

4.1 Mapping the SVM data structures

As explained in Sec. 1, one aim of Safe is to statically infer and certify upper
bounds for heap and stack sizes. In order to make the reusing of released cells
easier, we have decided to have fixed-size cells in the heap. The size is determined
at compile time for each particular program, according to the biggest size data
constructor.

void pushRegion () -- creates a top empty region

void popRegion () -- removes the topmost region

void decregion () -- removes the k — ko topmost regions

cell reserveCell () -- returns a fresh cell

void insertCell (p, 7) -- inserts cell p into region j

void releaseCell (p) -- releases cell p

cell copy (p,J) -- copies the data structure beginning at p into region j

Fig. 4. The interface of the classes Heap and CellFactory.

The heap is implemented by two classes, DirectoryCell and Heap providing
a pool of free cells and a stack of regions, each one consisting of a collection of
cells. Before refining this description, let us look at the main interface methods,
which we present in Fig. 4. Following their order of occurrence, they respectively
give support to the SVM instructions CALL, DECREGION (2 methods), BUILDCLS
(2 methods), MATCH! and COPY.

Notice that access to an arbitrary region is needed in insertCell and copy,
while releaseCell is provided with only the cell pointer as an argument. We have
implemented all the methods (except decregion) running in constant time by
representing the regions and the pool as circular doubly-chained lists. Method
decregion has a cost in ©(k — ko) independently of the number of cells of the
deleted regions. The region stack is represented by a static array of dynamic
lists and a static field &, so that constant time access to each region is provided.
Register kg is also a static field of the class Heap.

Initially, all the cells and the region array are allocated with sizes provided by
the compiler. During program execution, ‘allocating’ and ‘releasing’ cells mean
moving them from/to the freelist to/from the appropriate region list.

The SVM stack is implemented by a class Stack having a static array with a
size provided by the compiler. Its only meaningful method is slide (m,n), which
gives support to the SLIDE instruction. The rest of accesses are done by the
in-line code emitted by the compiler. We will call RTS (run-time system) to the
package consisting of the classes Heap, DirectoryCell, and Stack.

4.2 Mapping the SVM code

The code generated by translating a SVM program consists of a single JVM
class PSafe with a single method PSafeMain(). Core-Safe functions and the
main expression correspond to certain fragments of this method. This decision
is forced by the previous one of not using the frames stack of the JVM. Since
arguments are pushed to the SVM stack, function calls are implemented by JVM
goto instructions. A sequence of SVM instructions is represented by a jump-free
bytecode sequence. Invocation to RTS methods are allowed in the sequence.

A SVM MATCH instruction is implemented by using the JVM Tableswitch
instruction, which can branch in constant time to any label of a list of static
labels. The problem of storing/retrieving code addresses into/from the stack is
solved in this way: every continuation label p of every Safe function is given a

10

number ¢ = ¢m(p) in the range 0, ..., totC — 1, being totC the total number of
continuations in the program, which in turn is equal to the number of its non
constructor-building let expressions —so totC' is a static quantity—, and being
c¢m an appropriate bijective function. Instruction PUSHCONT p just pushes i to
the stack, while POPCONT uses a global Tableswitch instruction indexed by % to
jump to the appropriate static label.

4.3 Translation functions

As we have said, we have defined in Isabelle the translation from SVM to JVM
and used its code extraction facilities to produce the Haskell code actually exe-
cuted in the compiler. The translation provides, as add-ons, a function mapping
the SVM program counters to the JVM program counters corresponding to the
translation, a function mapping continuation labels to the small integers men-
tioned in Sec. 4.2, and a function assigning to each constructor a unique number.
These mappings are needed later to define the simulation relation between the
states of the SVM and the JVM.

codeMap :: PC — pc

contMayp :: CodeLabel — nat

consMayp :: Constructor — nat

trSVM2JVM :: SafelmpProg = jum_prog X codeMap X contMap X consMap

This function creates the initialisation code and the constructor mapping, builds
the SafeMain class and attaches to it the RTS classes. To produce the bytecode
of the only method of that class, it uses the function

trCodeStore :: [CodeLabel, pc, ContinuationMap, consMap, SVMCode]
= instrlist x codeMap X contMap

which traverses the SVM code sequences, accumulating the bytecode fragments
and the program counter mapping produced by them. It also assigns unique
numbers to continuations. In order to translate a sequence, it uses the function

trSeq :: [contMap, consMap, pc, pc X codeMap, CodeLabel x CodeSequence x FunName)
= (pc X codeMap) x instr list

which traverses one SVM sequence, accumulating the bytecode fragments pro-
duced by each SVM instruction. It also updates the program counter mapping
after each translation. The main translation function, defined by cases on the
SVM instruction being translated is

trinstr :: [pc, codeMap, contMap, consMap, pc, Safelnstr] = instr list

where the first pc is the one corresponding to the first JVM instruction of the
translation, and the second one is the program counter of the global Tableswitch
mentioned in Sec, 4.2 to deal with continuations. As an example, we show in
Fig. 5 the bytecode resulting from the translation of POPCONT. The code of all
these functions can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm.

11

[Getstatic Sf stackC, ArrLoad,

Getstatic topf stackC, Store 3, (* local3 <- p *)
Dup2, LitPush (Intg 2),

Dup2, BinOp Substract,

Dup2, Dup,

ArrLoad, Putstatic topf stackC, (* top <- top - 2 *)
Store 1, (* locall <- b *) Load 1,

LitPush (Intg 1), ArrStore, (x S[top] <- b *)
BinOp Substract, Load 2,

ArrLoad, Putstatic kOf heapC, (x k0 <- k’ %)
Store 2, (* local2 <- k’ %) Load 3, (* jump to continuation *)
LitPush (Intg 2), Goto (trAddr pcc (pc + incPop))]

BinOp Substract,

Fig. 5. The JVM bytecode produced by POPCONT

5 Certification of the implementation

The main idea of the proof is defining a simulation relation between SVM and
JVM states and showing that both machines evolve through states made equiv-
alent by the relation when executing a SVM program and its translation.

To define the simulation relation we must consider that part of the JVM state
is implemented by the static data structures kept in the RTS classes Heap and
Stack, and that the rest is kept in the cell objects and arrays of the dynamic heap.
The relation admits a SVM state to be simulated by several JVM states, since
there is an abstraction when going from lists of cells in the JVM to set of cells in
the SVM. The critical part of the relation is the existence of a bijection between
the SVM heap locations and the JVM dynamic heap locations corresponding
to active cells, i.e. cells linked in some list of the region stack. The bijection
must preserve the heap structure in the sense that equivalent cells must point
to equivalent cells. In the following, we will assume that P is a SVM program
and (P, cdm, ctm, com) = trSVM2JVM P its translation.

Definition 1. Given an injection g :: dom H = loc, and a constructor mapping
com, the JVM dynamic heap h and the region stack regS with k' regions simulate
the SVM heap (H, k), denoted equivH (H, k) h k'com regS g, if:

range g = activeCells regS k' Nk = k' AVl € dom H .equivC (H 1) (h (g 1)) com g

The first condition guarantees that ¢ is in fact a bijection. Predicate equivC
(not shown) defines that two cells are equivalent under g and com when both
live in the same region j and contain pointers made equivalent by ¢ in equivalent
argument positions. Equivalent constructor names are the string C' in the SVM
and the unique number com C in the JVM.

Definition 2. The JVM state s’ = (None, hs, ha, hs, ([], vs, “PSafe”, (“PSafeMain”, ts),
pe, tag)#(]) simulates the SVM state s = (H, ko, PC, S), denoted cdm, ctm, com +

s= §', if there exists an injection g :: dom H = loc such that:

1. equivH H hq K com regS g, where the region stack (regS,k’) is obtained
from hg and hg by using the RTS class Heap.

12

2. equivS S S’ top ctm g, where the stack (S’, top) is obtained from hs and hy
by using the RTS class Stack.

3. ko = k{, where k is the static field &y of the class Heap.

4. pc = cdm PC.

Predicate equivS (not shown) defines that the JVM stack (S’, top) simulates the
SVM stack S when, position by position, both contain either the same two basic
values, or two heap locations made equivalent by g, or two continuations made
equivalent by ctm?2.

Notice that the simulation relation guarantees that the heap structure is
exactly the same in both machines. So, properties such as the number of active
cells and the absence of dangling pointers are preserved.

The main correctness theorem states that, if the SVM and its implementation
are started in equivalent states, then after the SVM executes its next instruction,
and after the number of steps required by the JVM to execute its translation,
both machines arrive to equivalent states. The Isabelle/HOL formalisation is:

theorem correctSVM2JVM :
[(P’,edm,ctm,com) = trSVM2JVM P;
cdm, ctm, com F S1 £ 51 s
execSVM P S1 = Right S2 | =
3 52°. P+ S1’-jum— S2° A\ cdm, ctm, com = S2 2§52

A first set of lemmas deal with the static properties of the translation and prove
that, if (p,7) and pc are two program counters made equivalent by cdm, then the
JVM bytecode starting at pc is exactly the translation of the SVM instruction
found at (p, 7). The topmost one is the following:

lemma fun_SVM2JVM [rule_format]:
(P’, cdm, ctm, com) = trSVM2JVM ((sums, ctmap), ini, ct, st) —
l < length syms —
sums !l = (p,seq,fn) —
1 < length seq —
sum = fst (the (map-of svms p)) i —
pc = the (cdm (p,i)) —
bytecode = extractBytecode P’ —
(3 edm’ ctm’ pee inss bytecode’ . inss = trinstr pc cdm’ ctm’ com pce svm A
drop pc bytecode = inss @ bytecode’)

After some initial massaging, the kernel of the main proof is done by cases on
the instruction executed in the SVM. We have proved one auxiliary lemma for
each SVM instruction. We show below the one corresponding to POPCONT:

lemma execSVMInstr- POPCONT :
[(P’, cdm, ctm, com) = trSVM2JVM ((sums, ctmap), ini, ct, ah, ai, bc);
cdm , ctm, com = ((hm, k), k0, (1, 1), S) £ 51 %
(fst (the (map_of syms 1)) ! i) = POPCONT;

2 More details can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm.

13

execSVMInst POPCONT (map_of ct) (hm, k) kO (I, i) S = Right S2;
drop (the (cdm (1, i))) (extractBytecode P’) =
trinstr (the (cdm (1, 1))) cdm’ ctm’ com pcc POPCONT @ bytecode’
] = 3 v sh’dh’ih’ fms’. P+ S1’-jum— (v’,sh’,dh’,ih’, fms’) A
cdm , ctm, com + S2 2 (v’,sh’,dh’,ih’, fms’)

The conclusion of the lemma is the same as that of the main theorem, but the
premises inform us that the instructions about to be executed in the JVM are
exactly those produced by the translation of POPCONT. The proof of this kind
of lemmas is rather long and consists of passing through all the intermediate
JVM states determined by the JVM bytecode and showing that the final state
is equivalent to the arrival state in the SVM. If the bytecode contains loops, the
proof become harder as we must introduce invariants and prove loop termination.

6 Conclusions and Related Work

We have presented a summary of the formalisations in Isabelle/HOL of two
abstract machines, one functional (the SVM) and one imperative (the JVM).
The latter is an extension of a previous one done by G. Klein [7]. We have also
formalised the implementation of the first on top of the second, and defined
a simulation relation between the abstract and the concrete states. As part of
the relation, we have proved the existence of a bijection across the execution,
guaranteeing that the number of cells and the heap structure is the same in
both machines. In a previous work, we proved that a similar equivalence held
between the Core-Safe and the SVM levels of the translation. Considering both
proofs as a whole, this certifies that the memory consumption and the absence
of dangling pointers properties certified at the Core-Safe level are preserved in
the JVM code actually executed.

The complete specification in Isabelle/HOL of the syntax and semantics of
both languages, of the translation functions, the theorems and the proofs, repre-
sent about one person-year of effort. Including comments, about 21 000 lines of
Isabelle/HOL scripts have been written, and about 120 lemmas, some of them
very long, have been proved. Isabelle/HOL features a Higher-Order Logic and
gives enough facilities for defining recursive and higher-order functions. These
are written in much the same way as a programmer would do in a modern func-
tional language such as ML or Haskell. Isabelle/HOL provides also inductive
predicates, inductive m-relations, transitive closures as well as ordinary first-
order logic. This has made it easy to express the desired properties with almost
the same concepts one would use in hand-written proofs. Partial functions have
also been very useful in modelling programming language structures such as en-
vironments, heaps, and the like. Being able to quantify these objects in HOL
has been essential for stating and proving the theorems.

Using some form of formal verification to ensure the correctness of compilers
has been a hot topic for many years. An annotated bibliography covering up to
2003 can be found at [4]. Most of the papers reflected there propose techniques
whose validity is established by formal proofs made and read by humans.

14

Using machine-assisted proofs for compilers starts around the seventies, with
an intensification at the end of the nineties. For instance, [18] uses a constraint
solver to asses the validity of the GNU C compiler translations. They do not try
to prove the compiler correctness but to validate its output, by comparing it with
the corresponding input. This technique was originally proposed in [21]. A more
recent experiment in compiler validation is [12], where the source is the term
language of HOL and the target is assembly language of the ARM processor.

More closely related to our work is [23] where the author uses Isabelle/HOL
to formalise the translation from a small subset of Java (called p-Java) to a
stripped version of the Java Virtual Machine. He defines a big-step semantics for
pu-Java and a sate-transition semantics for the small JVM (17 bytecode instruc-
tions). Then, the translation functions are defined and a correctness theorem
similar to ours is proved. This work can be considered as a first attempt, and it
was considerably extended by Klein, Nipkow, Berghofer, and Strecker himself in
[7,8,1]. Only the latter claims that the extraction facilities of Isabelle/HOL have
been used to produce an actually running Java compiler. The main emphasis is
on formalisation of Java and JVM features and on creating an infrastructure on
which other authors could verify properties of Java or Java bytecode programs.

A realistic C compiler for programming embedded systems has been built and
verified in [3,10,11]. The source is a small C subset called Cminor to which C is
informally translated, and the target is Power PC assembly language. The com-
piler runs through six intermediate languages for which the semantics are defined
and the translation pass verified. The authors use the Coq proof-assistant and its
extraction facilities to produce Caml code. They provide figures witnessing that
the compile times obtained are competitive with those of gcc running with level-2
optimisations activated. This is perhaps the biggest project on machine-assisted
compiler verification done up to now.

As we have said in Sec. 1, the motivation for verifying the Safe back-end arises
in a different context. We have approached this development because we found it
more rapid than translating the Core-Safe properties to certificates at the level
of the JVM. Also, we expected the size of our certificates to be considerably
smaller than the ones obtained with the other approach. Additionally to previous
efforts, we have complemented functional correctness with a proof of resource
consumption and memory structure preservation.

Acknowledgement We are grateful to Delfin Rupérez for providing prelimi-
nary Isabelle/HOL code for the RTS, the JVM extensions, and the translation.

References

1. S. Berghofer and M. Strecker. Extracting a formally verified, fully executable
compiler from a proof assistant. In Proc. Compiler Optimization Meets Compiler
Verification, COCV’03, pages 33-50. ENTCS, 2003.

2. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2004.

15

10.

11.
. G. Li, S. Owens, and K. Slind. Structure of a Proof-Producing Compiler for a

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-end.
In Symp. on Formal Methods, FM’06, LNCS 4085, pages 460-475. Springer, 2006.
M. A. Dave. Compiler verification: a bibliography. SIGSOFT Software Engineering
Notes, 28(6):2-2, 2003.

J. de Dios and R. Pefia. Formal Certification of a Resource-Aware Language Imple-
mentation. In Int. Conf. on Theorem Proving in Higher Order Logics, TPHOL’09,
Munich (Germany), pages 1-15. LNCS 5674 (to appear), Springer, August 2009.

. G. Klein. Verified Java Bytecode Verification. PhD thesis, Institut fiir Informatik,

Technische Universitat Miinchen, 2003.

G. Klein and T. Nipkow. Verified Bytecode Verifiers. Theoretical Computer Sci-
ence, 298:583-626, 2003.

G. Klein and T. Nipkow. A Machine-Checked Model for a Java-Like Language,
Virtual Machine and Compiler. ACM Transactions on Programming Languages
and Systems, 28(4):619-695, 2006.

G. Klein, T. Nipkow, N. Schirmer, M. Strecker, and M. Wildmoser. Project Veri-
fiCard. http://isabelle.in.tum.de/VerifiCard/, 2001-2003.

X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Principles of Programming Languages, POPL’06, pages
42-54. ACM Press, 2006.

X. Leroy. A formally verified compiler back-end. Submitted, 79 pags., July 2008.

Subset of Higher Order Logic. In Furopean Symp. on Programming, ESOP’07,
pages 205-219. LNCS 4421, Springer, 2007.

T. Lindholm and F. Yellin. The Java Virtual Machine Sepecification Second Edi-
tion. The Java Series. Addison-Wesley, 1999.

M. Montenegro, R. Pena, and C. Segura. A Simple Region Inference Algorithm
for a First-Order Functional Language. In Trends in Functional Programming,
TFP’08, Nijmegen (The Netherlands), pages 194-208, May 2008.

M. Montenegro, R. Pena, and C. Segura. A Type System for Safe Memory Manage-
ment and its Proof of Correctness. In ACM Principles and Practice of Declarative
Programming, PPDP’08, Valencia, Spain, July. 2008, pages 152-162, 2008.

M. Montenegro, R. Pefia, and C. Segura. An Inference Algorithm for Guaran-
teeing Safe Destruction. In Selected papers of Logic-Based Program Sinthesis and
Transformation, LOPSTR’08, LNCS 5438, Springer., pages 135-151, 2009.

G. C. Necula. Proof-Carrying Code. In ACM SIGPLAN-SIGACT Principles of
Programming Languages, POPL’97, pages 106-119. ACM Press, 1997.

G. C. Necula. Translation validation for an optimizing compiler. SIGPLAN No-
tices, 35(5):83-94, 2000.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, 2002.

R. Pena, C. Segura, and M. Montenegro. A Sharing Analysis for SAFE. In Selected
Papers of the Tth Symp. on Trends in Functional Programming, TFP’06, pages
109-128. Intellect, 2007.

A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In Tools and
Algorithms for Construction and Analysis of Systems, TACAS’98, LNCS 1384,
Springer, pages 151-166, 1998.

C. Pusch. Proving the Soundness of a Java Bytecode Verifier Specification in
Isabelle/HOL. In Tools and Algorithms for Construction and Analysis of Systems,
TACAS’99, pages 89—-103. LNCS 1579, Springer, 1999.

M. Strecker. Formal Verification of a Java Compiler in Isabelle. In Conference on
Automated Deduction, CADE’02, LNCS 2392, Springer, pages 63-77, 2002.

16

