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Abstract. In this paper, we make a proposal for a second year course
on advanced programming, based on the functional paradigm. It assumes
the existence of a first course on programming, also based on functional
languages. Its main subject is data structures.
We claim that advanced data structures and algorithms can be better
taught at the functional paradigm than at the imperative one, and that
this can be done without losing efficiency. We also claim that, as a con-
sequence of the higher level of abstraction of functional languages, more
subjects can be covered in the given amount of time.
In the paper, numerous examples of unusual data structures and algo-
rithms are presented illustrating the contents and the philosophy of the
proposed course.

1 Introduction

The controversy about the use of a functional language as the first programming
language is still alive. Several proposals have been made on a first programming
course based on the functional paradigm or on a mixture of the functional and
imperative ones. Some of them have been actually implemented [11, 14].

Many teachers feel that the functional paradigm is better suited than the
imperative one to introduce students to the design of algorithms, and we do
not want to repeat here the numerous arguments given for this. However, one
of the obstacles to put these ideas into practice is the feeling that there is not
a clear continuation for this first course. There are plenty of textbooks well
suited for advanced programming, including in this category texts on formal
verification, data structures and algorithms, and modular programming. But all
of them assume the imperative paradigm. Perhaps, most of the people assume
that advanced programming (meaning the optimal use of the computer) can only
be done with imperative languages.

In this paper, we propose the objectives and contents of a second year course.
Its main subject is data structures. We claim that advanced data structures
and algorithms can be better taught at the functional paradigm than at the
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Short title: Data Structures.
Aims of the course: At the end of the course students should be able:

1. To formally specify an abstract data type (ADT) from an informal de-
scription of it.

2. To choose an efficient functional implementation of a formally specified
ADT. In order to do that, students should use one of the data structures
taught along the course.

3. To show the correctness of the implementation chosen for the ADT.
Kind of students: Computer Science students.
Year: Second year.
Prerequisites: A first course on functional programming and some imperative

notions such as arrays, iteration, . . . .
Text books: A combination of texts on functional programming and conven-

tional texts on data structures. For instance [1, 4, 7].
Duration of the course: 30 weeks.

sessions duration duration
per week per session per week

lecture hours 2 × 1h = 2h
tutorials 2 × 1h = 2h

laboratories 1 × 3h = 3h
private tuition = 6h

The laboratory is a separated subject with its own evaluation. Small programs,
written in Gofer, should be assigned as home work. The tuition hours given
in the table correspond to the time dedicated by the teacher to solve students
questions in his/her office.

Assessment: The laboratory will be evaluated by means of a medium sized pro-
gram developed by a team of 2–3 students. The theory will be evaluated by a
written examination covering the above stated aims.

Fig. 1. Course Description

imperative one. We also claim that this can be done in the same spirit of using
the computer resources in the most possible efficient way. A third claim is that,
as a consequence of the higher level of abstraction of functional languages, more
subjects can be covered in the given amount of time. We can exhibit, as a proof
of these assertions, our experience in teaching data structures and algorithms
in the imperative paradigm, and a limited experiment conducted by us, putting
some of the ideas below into practice in a one semester course on functional
programming for graduates having no previous experience on programming.

The philosophy of the course is not just to translate to the functional para-
digm the data structures and algorithms developed in the imperative field. In
many cases —for instance when dealing with trees— this is appropriate, but
in many others —the algorithms based on heaps are an example— it is not. In
some of these cases there exist alternative functional structures that can do the
job with the same efficiency as their imperative counterparts. Several examples
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of this are given in the paper. When there is not such an alternative, it seems
unavoidable the use of arrays updated in place. For this reason, we include a last
part of the course based on mutable arrays. There are now enough proposals to
have this feature in a functional language without losing transparential referency.
We give in the paper some examples of their use.

We are assuming that a first course on programming based on functional
languages has already been implemented, and so students know how to design
small/medium sized functional programs, mainly based on lists. They are also
supposed to know the use of induction to reason about the correctness of re-
cursive programs, and the use of higher order functions to avoid recursion. On
the other hand, they must have enough notions on imperative programming —
received, for instance, at the end of the course on functional programming or
in a separate course including computer architecture issues—, such as arrays,
iteration and the relation between tail recursive programs and iteration. These
notions are needed to allow a detailed discussion on the efficiency of some algo-
rithms.

The language used in the following is Haskell. After this introduction, the
rest of the paper is organized as follows: in Sect. 2 we briefly explain our current
second year course on advanced programming. Section 3 contains a proposal for
a new second year course based on the functional paradigm. Sections 4, 5 and 6
explain in detail the most original parts of the proposal and provide numerous
examples illustrating the spirit of the new course. Finally, in Sect. 7 we present
our conclusions.

2 A Second Year Course on Imperative Programming

Just to compare how things are being done at present, in this section we are
sketching the objectives and contents of the second year course on programming
currently being taught at our institution. The course follows to a conventional
first course on imperative programming where students learn how to program in
the small, having Pascal as the base language. The data structures of this first
course are limited to arrays, records and sequential files. The methodological
aspects provided by the course are those derivated of the stepwise refinement
technique, together with some abstract program schemes for traversing a se-
quence or searching an element in a sequence.

The objectives selected for the second course are mainly two:

1. At the end of the course, the student should be able to specify and implement
efficient and correct small programs.

2. The student should also be able to formally specify the external behavior
of an abstract data type, and to choose an efficient implementation of this
behavior.

As it can be observed, the main emphasis is done in formal specification and
verification issues but, to satisfy the second part of objective 2, also a sufficient
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number of data structures must be covered. Then, the course is naturally di-
vided into two parts: the first one dedicated to formal techniques for analyzing,
specifying, deriving, transforming and verifying small programs, and the second
one covering the most important data structures. This second part begins with
an introduction to the theory of abstract data types and their algebraic speci-
fication techniques. Then, every data structure is first presented as an abstract
data type and specified as such. Once the external behavior is clear, several im-
plementations are proposed. For each one, the cost in space of the representation
and the cost in time of the operations are studied. A scheme of the contents of
this second year course follows:

1. Efficiency analysis of algorithms.
2. Specification of algorithms by using predicate logic.
3. Recursive design and formal verification of recursive programs. Divide and

conquer algorithms. Quicksort.
4. Program transformation techniques.
5. Iterative design and verification. Formal derivation of iterative programs.
6. Abstract data types: concept, algebraic specification techniques and under-

lying model of a specification.
7. Linear data structures: stacks, queues, and lists. Array-based and linked-

based implementations.
8. Trees: binary trees, n-ary trees, search trees, threaded trees, AVL-trees, 2-3

trees. Algorithms for inserting and deleting an element. Disjoint sets struc-
ture for the union-find problem. Implementation by using an array.

9. Priority queues. Implementation by means of a heap (in turn implemented
by an array). Heapsort.

10. Lookup tables and sets. Implementation by means of balanced trees. Imple-
mentation by hash tables.

11. Graphs. Implementation by using an adjacency matrix and by adjacency
lists. Important algorithms for graphs: Dijkstra, Floyd, Prim and Kruskal.

As it can be observed, the course is rather dense and a little bit hard to follow.
However, our students seem to tolerate well the flood of formal concepts. In fact,
with respect to programming methodology, this course is the central one of the
curriculum. It is followed by a third year course on programming where students
learn more sophisticated algorithms (dynamic programming, branch and bound,
probabilistic algorithms, etc.). But the formal basis required to analyze the cost
and correctness of these algorithms is supposed to be acquired in the second year
course.

To complement the theory, there is a separate course on laboratory assign-
ments where students begin developing small modules representing abstract data
types and end with a medium sized program composed of several modules. For
this last assignment, students are grouped in teams of two or three people. The
programming language is Modula-2 on MS/DOS. In total, students receive 4
hours per week of formal lectures and tutorials, and spend 3 supervised hours in
the laboratory. The course duration is about 30 weeks. It is assumed some home
work and the use of non supervised hours in the laboratory.
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3 A New Proposal for this Course

We are detailing here the objectives and contents of our proposal for a second
year course. In order to establish the objectives, we assume students already
have acquired, in their first year, the skills enumerated in the introduction of
this paper.

We propose as the main objective the second one mentioned in the description
of the imperative course given in Sect. 2, that is, at the end of the course:

The student should be able to formally specify the external behavior of
an abstract data type, and to choose an efficient implementation of this
behavior.

That is, the main wonderings of the course are abstraction and efficiency. The
reasons for this choice are the same as in the imperative case: a first advanced
programming course must put the emphasis more in fundamental concepts and
techniques than in broading the programmer catalog of available algorithms.
Next courses can play this role.

As one of the main concerns is efficiency, the first subject of the course must
obviously be the efficiency analysis of functional programs. The usual way to
teach cost analysis is by studying the worst case and by using recurrences. These
recurrences can be easily established and solved assuming applicative order of
evaluation, i.e. eager languages. However, lazy languages offer better opportuni-
ties for teaching as they allow a more abstract style of programming [10]. Unfor-
tunately, cost analysis of lazy functional programs is not developed enough (see
[19] for a recent approach) to be taught at a second year course. So, we propose
to analyze the cost assuming eager evaluation, and to use the result as an upper
bound for lazily evaluated programs. Of course, this approach is only applicable
to programs terminating under eager evaluation.

The course is divided into three parts:

1. Abstract data types.
2. Efficient functional data structures not assuming mutable arrays.
3. Efficient functional data structures relying on mutable arrays.

The first part follows the same approach as the corresponding part of the
imperative course described in Sect. 2, but it now includes precise techniques
to show the correctness of an abstract data type implementation. This kind of
proofs are very hard to carry out when the implementing language is imperative,
but much easier to do when it is functional. This part of the program is explained
in detail in Sect. 4. In the remaining lectures of the course, each time an imple-
mentation is proposed, its correctness with respect to the algebraic specification
of the data type will be shown. It is expected that students will acquire this
ability.

The second part presents data structures —and algorithms to manipulate
them— achieving the same efficiency, up to a multiplicative constant, than their
imperative counterparts. So, the advantages of using a functional language are
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kept, and nothing is lost with respect to the efficient use of the computer. We
present structures not very common, such as the functional versions of left-
ist trees [7] and Braun trees [6], which can elegantly replace their imperative
equivalent ones whose efficiency is based on the constant access time of arrays.
Some implementations may even use arrays (purely functional languages such as
Haskell [9] provide this structure as primitive), but in a read-only way. So, they
do not rely on complex techniques or smart compilers to guarantee that arrays
are not copied. More details are given in Sect. 5.

The third part shows that all efficient imperative implementations based on
arrays (the typical example is a hash table) can be translated into a functional
language having arrays, provided that some method is used to guarantee that
arrays are updated in place. A more detailed discussion and some examples are
given in Sect. 6.

The table of contents of the course follows:

Part I: Fundamentals

1. Efficiency analysis of functional algorithms.
2. Abstract data types: concept, algebraic specification techniques and under-

lying model of a specification.
3. Reasoning about data types: Using the ADT specification to reason about

the correctness of a program external to the ADT. Correctness proof of an
implementation.

Part II: Functional Data Structures

4. Linear data structures: stacks, queues and double queues. Direct definitions
and implementation of queues by using a pair of lists.

5. Trees: binary trees, n-ary trees, search trees, AVL-trees, 2-3 trees, red-black
trees, splay trees. Algorithms for inserting and deleting an element.

6. Priority queues. Implementation by using a list. Implementation by means
of a heap, in turn implemented by a leftist tree.

7. Lookup tables, arrays and sets. Implementation by using an anonymous func-
tion. Implementation by a list. Implementation by balanced trees. Primitive
arrays. Implementation of flexible arrays by means of Braun trees.

8. Graphs. Implementation by using an adjacency matrix and by adjacency
lists. Prim’s algorithm to compute an optimal spanning tree.

Part III: Translation of Imperative Data Structures

9. Mutable arrays. Techniques to ensure updating in place.
10. Implementation of queues and heaps by using mutable arrays.
11. Hash tables. Implementation of lookup tables and sets by means of hash

tables.
12. Graphs revisited. Traversals. Disjoint sets structure. Kruskal’s algorithm for

optimal spanning tree. Other algorithms for graphs: Dijkstra’s algorithm and
Floyd’s algorithm to compute shortest paths.
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4 Reasoning About Abstract Data Types

Perhaps the main methodological aspect a second year course must stress is that
the programming activity consists of continuously repeating the sequence: first
specify, then implement, then show the correctness.

Algebraic specifications of abstract data types have been around for many
years, and there exists a consensus that they are an appropriate mean to inform
a potential user about the external behavior of a data type, without revealing
implementation details. For instance, if we wish to specify the behavior of a
FIFO queue, then the following signature and equations will do the job:

abstype Queue a
emptyQueue :: Queue a
enqueue :: Queue a -> a -> Queue a
dequeue :: Queue a -> Queue a
firstQueue :: Queue a -> a
isEmptyQueue :: Queue a -> Bool
dequeue (enqueue emptyQueue x) = emptyQueue
isEmptyQueue q = False =>

dequeue (enqueue q x) = enqueue (dequeue q) x
firstQueue (enqueue emptyQueue x) = x
isEmptyQueue q = False =>

firstQueue (enqueue q x) = firstQueue q
isEmptyQueue emptyQueue = True
isEmptyQueue (enqueue q x) = False

Just to facilitate further reasoning, we have adopted a syntax as close as possible
to that of functional languages. However, the symbol = has here a slightly differ-
ent meaning: t1 = t2 establishes a congruence between pairs of terms obtained
instantiating t1 and t2 in all possible ways. In particular, we have adopted a
variant of algebraic specifications in which operations can be partial, equations
can be conditional, and the symbol = is interpreted as existential equality. An
equation s = s’ => t = t’ specifies that, if (an instance of) s is well defined
and (the corresponding instance of) s’ is congruent to s, then (the correspond-
ing instances of) t and t’ are well defined and they are congruent (see [2, 17]
for details).

A consequence of the theory underlying this style of specification is that
terms not explicitly mentioned in the conclusion of an equation are undefined
by default. For instance, in the above example, (firstQueue emptyQueue) and
(dequeue emptyQueue) are undefined.

The algebraic specification of a data type has two main uses:

– It allows to reason about the correctness of functions external to the data
type.

– It serves as a requirement that any valid implementation of the data type
must satisfy.
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The first use is rather familiar to functional programmers, as it simply consists
of equational reasoning. An equation of the data type may be used as a rewriting
rule, in either direction, as long as terms are well defined and the premises of the
equation are satisfied. For instance, if dequeue (enqueue q x) is a subexpres-
sion of e, then we can safely replace in e that subexpression by the expression
enqueue (dequeue q) x, provided that q is well defined and is not empty.

Properties satisfied by a specification are not limited to equations themselves.
Any other property derived from them by equational reasoning or by inductive
proofs could also be used. For instance, it is very easy to prove the following
inductive theorem from the above specification:

isEmptyQueue q => q = emptyQueue

The second use of a specification is to prove the correctness of an implemen-
tation. Let us assume we implement a queue by a pair of lists in such a way that
the first element of the queue is the head of the left list, and the last element
of the queue is the head of the right one. In this way, all the operations can be
executed in amortized constant time as the implementation below shows:

data Queue a = Queue [a] [a]
emptyQueue = Queue [] []
enqueue (Queue [] _) x = Queue [x] []
enqueue (Queue fs ls) x = Queue fs (x:ls)
dequeue (Queue (_:fs@(_:_)) ls) = Queue fs ls
dequeue (Queue [_] ls) = Queue (reverse ls) []
firstQueue (Queue (x:_) _ ) = x
isEmptyQueue (Queue fs _) = null fs

In the worst case, dequeue has linear time complexity, but this cost is compen-
sated by the previous constant time insertions. This can be easily proved by
using normal amortized cost analysis techniques. By the way, this implementa-
tion illustrates well the objective we are attempting at in this course: to suggest
functional implementations not having counterparts in the imperative field, but
achieving somehow the same efficiency.

To prove this implementation correct, the programmer must provide two
additional pieces of information:

– The invariant of the representation. This is a predicate satisfied by all term
generated values of the type.

– The equality function (==):: a -> a -> Bool, telling us when two legally
generated values of the type represent the same abstract value.

In our example, these predicate and function, respectively, are:

Inv
def= ∀ (Queue fs ls) . null fs⇒ null ls

(Queue fs ls) == (Queue fs’ ls’)
def=

fs ++ reverse ls == fs’ ++ reverse ls’
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The last step consists of showing that every equation of the specification is
satisfied by the implementation, modulo the equality function. In essence, this
amounts to replace in the equation the abstract values and operations by their
concrete versions, to assume that the invariant holds for all the concrete values,
and to show that both parts of the equation lead to equal values, where the
equality function == is the one corresponding to the equation type.

For instance, to prove the second equation of our specification, we write:

isEmptyQueue (Queue fs ls) == False⇒
dequeue (enqueue (Queue fs ls) x) ==

enqueue (dequeue (Queue fs ls)) x

By applying the definition of isEmptyQueue, the premise of the equation can
be simplified to null fs == False and, by algebraic properties of lists, this
amounts to say that fs matches the pattern f:fs’, then we can rewrite the
conclusion of the equation as:

dequeue (enqueue (Queue (f:fs’) ls) x) ==
enqueue (dequeue (Queue (f:fs’) ls)) x

After applying the definitions of enqueue and dequeue we find two possible
cases. If fs’ is not the empty list, we obtain:

Queue fs’ (x:ls) == Queue fs’ (x:ls)

which is obviously true. If fs’ is the empty list, we obtain:

Queue (reverse (x:ls)) [] == Queue (reverse ls) [x]

which is true by the definition of the equality function for queues, that is

reverse (x:ls) ++ [] == reverse ls ++ [x]

The kind of reasoning suggested in this section is easy to do when the un-
derlying language is functional, but it is totally unpractical when the language
is imperative. So, we are including these techniques, and the needed theory, in
the first part of the course. Then, we use them to show the correctness of most
of the implementations appearing in the rest of the course.

5 Functional Data Structures

In this section we study ADT’s whose implementing type is an algebraic one,
i.e. a freely generated type. Sometimes, the implemented type (e.g. binary trees)
is also a freely generated type, and then there is no distinction between the
specification and the implementation. In these cases we allow constructors to be
visible, in order to allow pattern matching over them.
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5.1 Linear Data Structures

The first ADT’s studied in the course are stacks and queues. Stack is a freely
generated type, so the ADT generating operations are transformed into alge-
braic constructors, and the specification equations, once adequately oriented as
rewriting rules, give a functional implementation of the rest of the operations.

We suggest implementing queues by using three different algebraic types.
The first implementation is performed using the constructor Enqueue:

data Queue a = EmptyQueue | Enqueue (Queue a) a

The time complexities of firstQueue and dequeue are linear in the length of
the queue. In the second representation, the constructor adds elements at the
front of the queue, so enqueue is linear:

data Queue a = EmptyQueue | ConsQueue a (Queue a)

After making a stand to the students on the apparently unavoidable linear
complexity of these implementations, the amortized constant time implementa-
tion given in Sect. 4 is presented. More advanced queue implementations could
be covered later in the course using, for example, the material in [16].

Lists are considered primitive types. Students have extensively worked with
lists in their first course. In contrast with the imperative course, we lose some
implementations: circular lists, two-way linked lists, etc. We think this is not a
handicap for students (see the conclusion section).

5.2 Trees

Trees are a fundamental data structure in the curriculum of any computer sci-
ence student. Algebraic types and recursion are two characteristics of functional
languages which strongly facilitate the presentation of this data structure and
the algorithms manipulating it.

The most basic ones are binary trees with elements at the nodes:

data Tree a = Empty | Node (Tree a) a (Tree a)

Using recursion and pattern matching, a great variety of functions over trees can
be easily and clearly presented: height of the tree, traversals, balance conditions,
etc. Anyway, most of the times recursion can be avoided using the corresponding
versions of fold and map for trees (see [4, 5]).

Binary search trees, general trees, and their operations are the next topics.
Their definitions follow:

data Ord a => SearchTree a =
Empty

| Node (SearchTree a) a (SearchTree a)

data Tree a = Node a (Forest a)
Forest a = [Tree a]
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where we have overloaded the tree constructors.
The most important topic is the presentation of balancing techniques such

as AVL trees, splay trees and 2-3 trees. Fortunately, the algorithms for insertion
and deletion result so concise that they can be completely developed in a single
lecture. A good reference for 2-3 trees in a functional setting is [18]. Just to
show how compact the algorithms result, we are presenting here our version of
AVL-trees:

data Ord a => AVLTree a =
Empty

| Node Int (AVLTree a) a (AVLTree a)

The Node constructor has as its first argument the height of the tree. This allows
an easier implementation than the one using a balance factor (-1,0,1). The key
of this implementation is the function joinAVL, which joins two AVL trees. If
x = (joinAVL l a r), then inorder x = inorder l ++ [a] ++ inorder r.

joinAVL l a r
| abs (ld-rd) <= 1 = sJoinAVL l a r
| ld == rd+2 = lJoinAVL l a r
| ld+2 == rd = rJoinAVL l a r
| ld > rd+2 = joinAVL ll la (joinAVL lr a r)
| ld+2 < rd = joinAVL (joinAVL l a rl) ra rr
where ld = depth l

rd = depth r
(Node _ ll la lr) = l
(Node _ rl ra rr) = r

lJoinAVL l a r
| lld >= lrd = sJoinAVL ll la (sJoinAVL lr a r)
| otherwise = sJoinAVL (sJoinAVL ll la lrl) lra

(sJoinAVL lrr a r)
where (Node ld ll la lr) = l

lld = depth ll
lrd = depth lr
(Node _ lrl lra lrr) = lr

rJoinAVL l a r
| rrd <= rld = sJoinAVL (sJoinAVL l a rl) b rr
| otherwise = sJoinAVL (sJoinAVL l a rll) rla

(sJoinAVL rlr ra r)
where (Node rd rl ra rr) = r

rrd = depth rr
rld = depth rl
(Node _ rll rla rlr) = rl

sJoinAVL l a r = Node (1+max (depth l) (depth r)) l a r
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depth Empty = 0
depth (Node d _ _ _) = d

From joinAVL, functions for insertion and deletion in AVL trees can be trivially
defined, just adapting those for binary search trees by replacing the occurrences
of the constructor Node by the function joinAVL.

Even though we can present tree-like data structures in more detail than
using an imperative language, we lose some ideas. For instance, threaded trees
cannot be easily represented, because the threads generate a graph.

5.3 Priority Queues

The first proposal for the implementation of this data structure is a list where
elements are inserted at the beginning. We need to go through the list in order
to find the best element (we suppose that this element is the smallest one)

data Ord a => PriQueue a = PriQueue [a]

This implementation is efficient enough if there are few elements, so it can be
used in practice. But its linear complexity makes it inefficient if there are many
elements. Other simple implementations, such as ordered lists, do not improve
the situation.

The heap data structure gets logarithmic complexity for insertion and dele-
tion, and constant time for consulting the minimum, because in imperative pro-
gramming heaps are implemented by arrays. There exist other imperative data
structures, more general and with very good complexities, such as skew heaps
[20], but they cannot be easily translated to the functional framework. Fortu-
nately, there exist data structures adequate for its implementation in a functional
language: binomial queues [12] and leftist trees [7]. Here, we show the last one
because it is simpler:

data Ord a => Leftist a =
Empty

| Node Int (Leftist a) a (Leftist a)

These trees have the same invariant property as heaps: the element at the root is
always less than or equal to the rest of the elements. But now, the condition that
heaps are almost-complete trees is replaced by the condition that the shortest
path from any node to a leaf is the rightmost one. The length of this path is
kept in the first field of Node. As a consequence of this condition, joining two
leftist trees by simultaneously descending through the rightmost path of both
trees, takes time in O(log n).

join Empty llt = llt
join llt Empty = llt
join l@(Node n ll a lr) r@(Node m rl b rr)
| a < b = cons ll a (join lr r)
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| a >= b = cons rl b (join rr l)
cons Empty a r = Node 1 r a Empty
cons l@(Node n _ _ _) a r@(Node m _ _ _) =
| n >= m = Node (m+1) l a r
| n < m = Node (n+1) r a l

Using join, the operations of the min priority queue ADT can be implemented
as:

emptyQueue = Empty
enqueue q a = join q (Node 1 Empty a Empty)
firstQueue (Node _ _ a _) = a
dequeue (Node _ l _ r) = join l r
remQueue q = (firstQueue q, dequeue q)

Similarly, min-max priority queues can be as easily defined as min priority
queues. These constitute examples of data structures that would not be presented
in an imperative course.

5.4 Lookup Tables, Arrays and Sets

Lookup tables (and by extension sets) are a fundamental data structure for prac-
tical programming. Usually, tables represent partial functions going from a do-
main type to a range type. This point of view leads to the first implementation,
in which a memoized function is used:

data Eq a => Table a b = Table (a -> b)
emptyTable = Table \a -> error "No association."
lookup (Table f) a = f a
update (Table f) a b = Table \a’ -> if a’ == a then b else f a’

This implementation is an interesting example of the use of a function inside
a data structure, and this should be remarked to the students. Other näıve
implementation of tables consists of using a list of pairs (key, value).

As a first step in the presentation of arrays, we present implementations for
general tables separately from those whose domain type is Int, or in general
any index type. Then, we go on with implementations for tables based on search
trees using some of the balancing techniques, as it is usual in the imperative
course. Once again, for tables indexed by integers there exists a tree-like data
structure easier than the general balanced trees: Braun trees [6]

data Braun a = Empty | Node a (Braun a) (Braun a)

The elements are inserted in the tree using a very ingenuous technique: the value
associated with index 0 is stored at the root, odd indexes are stored in the left
subtree, while even indexes are stored in the right subtree. Then, the lookup and
update operations are:
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lookup (Node a odds evens) n
| n == 0 = a
| odd n = lookup odds ((n-1)/2)
| even n = lookup evens ((n/2)-1)

update (Node a odds evens) n b
| n == 0 = Node b odds evens
| odd n = Node a (update odds ((n-1)/2) b) evens
| even n = Node a odds (update evens ((n/2)-1) b)

where the update operation receive an index belonging to those stored in the
tree. Thus, a function creating an array with n elements is needed:

mkIdxTable n b
| n == 0 = Empty
| n > 0 = Node b (mkIdxTable odd b)

(mkIdxTable (n-odd-1) b)
where odd = n/2

where nodes are initiated with the same fix value b.
Let us note that Braun trees are more versatile than usual arrays, because

flexible arrays can be implemented using these trees (i.e. arrays where indexes
may be added or removed). Below, we present functions to add an index to any
of the array ends (functions for removing an index are symmetric).

lowExtend Empty a = Node a Empty Empty
lowExtend (Node a odds evens) b =

Node b (lowExtend evens a) odds
highExtend tree b = extend tree (cardinality tree) b
extend Empty n b = Node b Empty Empty
extend (Node a odds evens) n b
| even n = Node a odds (extend evens (n/2-1) b)
| otherwise = Node a (extend odds (n/2) b) evens

We would let the students note that insertion, deletion and extension take loga-
rithmic time. As an exercise for students, the implementation of flexible arrays
where the low limit of the range it is not forced to be equal to 0 can be proposed.

Now, we would briefly introduce primitive arrays. Arrays in functional lan-
guages have constant time complexity for the lookup operation, and they are
primitive in Haskell. In order to get constant time complexity for the update
operation, they must be updated in place.

5.5 Graphs

Graphs are a strange data structure from the ADT point of view. Although they
can be specified with all the needed operations in order to be manipulated hiding
the internal representation, the efficiency of many algorithms is conditioned to
having direct access to this representation. After specifying the ADT, in this
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part of the course we study several alternative representations: adjacency ma-
trix, adjacency lists, list of arcs, etc. In some cases, these representations can be
implemented using lists instead of arrays without losing efficiency. One exam-
ple is Prim’s algorithm for the computation of the minimal spanning tree of a
weighted graph, representing its adjacency matrix by a list of lists:

data Graph = [[Float]]

Assuming that the resulting spanning tree is represented by a list of edges, Prim’s
algorithm can be computed by:

prim :: Graph -> [(Int,Int)]
prim g = prim’ (length g - 1) (zip [1,1..] (g !! 1))
where prim’ 0 l = []

prim’ (n+1) l = (i,j) : prim’ n (improve i l (g !! i))
where (j,d) = foldr1 minPar l

i = pos (j,d) l
improve i = zipWith

(\(j,d) d’ -> if d <= d’ then (j,d) else (i,d’))
minPar (j,d) (j’,d’) = if d<=d’ then (j,d) else (j’,d’)

As in the imperative case, the complexity of this algorithm is O(n2).
In general, there is no problem in using primitive arrays, because most al-

gorithms for graphs access to the representation but they do not modify it.
Unfortunately, the efficient implementation of the usual algorithms for graphs
need auxiliary data structures using arrays updated in place. These algorithms
will be seen in the last part of the course.

6 Translation of Imperative Data Structures

Our aim in this section is to show that imperative techniques can be easily
adapted to the functional framework.

In the previous section, we did not cover two fundamental data structures:
hash tables and disjoint sets. Also, the well known algorithms on graphs by
Kruskal, Dijkstra, Floyd, and those using depth-first search were skipped. The ef-
ficient implementations of these data structures and algorithms need arrays with
constant time lookup and update operations. Functional arrays implemented
consecutively in memory have constant access time to their components, but
when a modification is performed, a new copy of the array may be generated.
Then the cost would be linear. If the original array is not further needed, in place
modification could be done, getting a constant cost. Thus, the programmer must
take care of the fact that if an array is modified, then the old one cannot be used.
This property is usually referred to as single-threaded updating. By abstract in-
terpretation, a compiler may realize, in some cases, that structures are used in a
single-threaded way, and in this case does not generate unneeded copies. Because
the problem is undecidable, some programming techniques have been proposed
to help the compiler in this task. Recently, two solutions, allowing a great ex-
pressive power and with a low number of restrictions, have been given: monadic
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data structures [15] and uniqueness types [3]. They allow to simultaneously have
several data structures treated in a single-threaded way.

In the presentation of the algorithms to the students, we recommend to
use a style asumming that the compiler will deduce the single-threaded flows.
The reason for this is that students must not be constrained to a particular
technique. This is a research field that may produce more expressive techniques
in the forthcoming years.

6.1 Queues, Heaps and Hash Tables

With the objective of introducing functional arrays to the students, two classical
implementations would be presented: queues and heaps. Here, we show a queue
implemented by means of a circular array:

data Queue a = Queue Int --Capacity
Int --First element
Int --Number of elements
(Array Int a) --Circular array

mkQueue c = Queue c 0 0 (array (0,c-1) [])
enqueue (Queue c f n a) e =

if n < c then Queue c f (n+1) (a // [((f+n) ‘mod‘ c,e)])
else error "Full queue"

dequeue (Queue c f n a) =
if 0 < n then Queue c ((f+1) ‘mod‘ c) (n-1) a
else error "Empty queue"

firstQueue (Queue c f n a) =
if 0 < n then (a!f) else error "Empty queue"

As we have shown in this example, the translation of imperative implemen-
tations using arrays does not present special problems. As well as for queues,
the corresponding translations of imperative heaps and hash tables are simple.

6.2 Graphs Revisited

The recent work [13] is a good example showing how modern functional lan-
guages and the use of mutable arrays (monadically implemented) can be applied
to the implementation of algorithms on graphs. It contains very valuable material
to be used in this part of the course.

In addition to these ones, we include the shortest path algorithms by Dijkstra
and by Floyd, and Kruskal’s minimal spanning tree algorithm (Prim’s one has
already been studied). We give below the implementation of Kruskal’s algorithm
using the disjoint sets ADT. Due to lack of space, we just write the signature of
this ADT (there exist efficient implementations based on arrays):

data DisSet
mkDisSet :: Int -> DisSet
find :: Int -> DisSet -> (Int,DisSet)
union :: Int -> Int -> DisSet -> DisSet
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The first operation generates the sets {1}, {2}, . . . , {n}. Given an integer and
a disjoint set, find returns a set label (Int) and a disjoint set equivalent to the
one given as argument, but reorganized in order to increase the efficiency of later
consults. Given two labels, union joins the corresponding sets.

If the graph is represented by a list of weighted arcs, we have:

data Edge = Edge Int Int Float
(Edge _ _ p1) < (Edge _ _ p2) = p1 < p2
data Graph = Graph [Edge]

then Kruskal’s algorithm is

kruskal :: Graph -> Graph
kruskal (Graph es) =

Graph (kruskal’ (n, h, mkDisSet n))
where n = numNodes (Graph es)

h = foldr (flip enqueue) emptyQueue es
kruskal’ :: (Int, PriQueue Edge, DisSet) -> [Edge]
kruskal’ (n, h, p)
| (n==0) || isEmptyQueue h = []
| li==lj = kruskal’ (n,h1,p2)
| otherwise = e : kruskal’ (n-1, h1, union li lj p2)

where (e,h1) = remQueue h
(Edge i j _) = e
(li, p1) = find i p
(lj, p2) = find j p1

Let us note, that not only the disjoint set is used in a single-threaded way, but
also the priority queue.

6.3 Guaranteing Single-Threaded Use of Arrays

Just to show that the transformations needed to guarantee the single-threaded
use of mutable types are not so big, we present two implementations of queues
respectively using monadic data structures and uniqueness types. To shortern
the presentation, we omit error detection. Below we give the monadic implemen-
tation:

data Queue s a = Queue Int (MutVar s Int) (MutVar s Int)
(MutArr s Int a)

--mkQueue :: Int -> ST s (Queue s a)
mkQueue n =

newVar 0 ‘thenST‘ \f ->
newVar 0 ‘thenST‘ \t ->
arr (0,n-1) [] ‘thenST‘ \a ->
returnST (CirQueue n f t a)

--enqueue :: Queue s a -> a -> ST s ()
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enqueue (CirQueue n f t a) e =
readVar t ‘thenST‘ \tv ->
readVar f ‘thenST‘ \fv ->
writeArr a ((fv+tv)‘mod‘n) e ‘thenST_‘
writeVar t (tv+1)

--dequeue :: Queue s a -> ST s ()
dequeue (CirQueue n f t a) =

readVar t ‘thenST‘ \tv ->
readVar f ‘thenST‘ \fv ->
writeVar f ((fv+1) ‘mod‘ n) ‘thenST_‘
writeVar t (tv - 1)

--firstQueue :: Queue s a -> ST s a
firstQueue (CirQueue n f t a) =

readVar f ‘thenST‘ \fv ->
readArr a fv

The implementation with uniqueness types would be:

data Queue a = Queue Int Int Int *(Array Int a)

mkQueue :: Int -> *(Queue a)
mkQueue n = Queue n 0 0 (array (0,n-1) [])
enqueue :: *(Queue a) -> a -> *(Queue a)
enqueue (Queue max f t a) e =

Queue max f (t+1) (a // [(f+t)‘mod‘max := e])
dequeue :: *(Queue a) -> *(Queue a)
dequeue (Queue max f t a) = Queue max ((f+1)‘mod‘max) (t-1) a
firstQueue :: *(Queue a) -> (a,*(Queue a))
firstQueue (Queue max f t a) = let! e = a ! f

in (e, Queue max f t a)

Let us note that, in contrast to the implementation given in Sect. 6.1, there
are differences between the type of the operations given in the specification and
that of the implementation. These kind of problems also appear in the imper-
ative implementation of data types. For monadic data structures, there exist
techniques which mechanically relate the monadic and non monadic implemen-
tations of a given type (see [8]). For uniqueness types, the conversion techniques
are very easy because there is only a trivial change in the signature, and the
compiler can infer the uniqueness types.

7 Conclusion

We have presented a proposal for a course on data structures based on the
functional paradigm. One of the claims made at the begining of the paper about
this proposal was that, compared to an equivalent course based on imperative
programming, more material can be covered. To prove this claim, we note that
both more ADT’s, and more implementations, are taught in the course:
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– The priority queue ADT is enriched with a new join operation, merging two
priority queues into one.

– The array ADT is enriched with operations to make it flexible.
– More balanced trees are covered —splay trees, red-black trees— and, perhaps

more important than this, they are covered in full detail: the imperative
versions of delete operations are usually too cumbersome to be taught in
detail. This is not the case with the functional ones.

– Leftist trees and Braun trees are usually not covered in an imperative course
on data structures.

Another improvement is that —due to the proximity between the functional
paradigm and the algebraic specification formalism— to show the correctness of
an ADT implementation is now a feasible task. In many situations (for instance,
dealing with search trees algorithms), the algebraic equations can be directly
transformed into functional definitions. There is the hope that, after teaching
this course several times, many algorithms could be derived by transforming the
ADT specification. This would lead to a derivation approach to correctness, as
an improvement of the more traditional verification approach.

Compared to the imperative course, there are some topics not covered by
the functional one: queue implementation by using a simply-linked list and two
pointers, circular lists, doubly-linked lists and threaded trees. These implemen-
tations correspond to ADT’s with special operations. For instance, doubly-linked
lists is a good implementation of a sequence-with-memory ADT, which “remem-
bers” the cursor position and provides operations to move the cursor forward
and backward. A functional alternative to these implementations is always pos-
sible. For instance, the sequence-with-memory ADT could be implemented by a
pair of lists used in a rather similar way that those of the queue implementation
of Sect. 4. We believe that nothing essential is missed if the student does not
learn these pointer-based implementations. These topics are useful when look-
ing at the machine at a very low level, for instance in physical organizations of
data bases, or in some operating systems data structures. Then, these low level
structures would be better covered in the corresponding matters using them.

As we said in the introduction, the course has not been fully implemented
yet. An important drawback of it, when integrated with the normal student
curriculum, is that no provision is made to translate the structures and the
algorithms covered by the course, to the imperative paradigm. We have claimed
in this paper that these topics are better taught using a functional language,
but we are not proposing that the imperative implementations should not be
taught at all. In their professional lives, students will surely have to program in
imperative languages. So, some functional to imperative translation techniques
should be provided somewhere. To cover them, we suggest to arrange a separated
short module running in parallel with the last part of the course (perhaps as
part of the laboratory topics). In essence, the module would include techniques
to implement recursive types by means of linked structures, to appropriately
translate the corresponding algorithms, and to transform recursive algorithms
into iterative ones.
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