A Tabulation Transformation Tactic Using Haskell Arrays

Cristébal Pareja-Flores*, Ricardo Pefia* and J. Angel Veldzquez-Iturbide

Abstract

In this paper we propose a transformation tactic that provides general tabulation of func-
tional algorithms. This tabulation tactic can be applied to dependency graphs in which
variable size cuts can be defined. The tactic can be considered a generalization of the tupling
tactic proposed by other authors. Tables are dynamically created and their sizes determined
at execution time. The tactic is greatly simplified by the use of the data type array present
in the functional language Haskell. According to the size of the tables used, two forms of
tabulation are distinguished, respectively named total and partial tabulation. Some signi-
ficative examples are developed using the tactic, including dynamic programming problems.
Finally, we apply the loop inversion tactic to the partially tabulated algorithms to show that,
in many cases, these algorithms can be transformed into tail recursive versions, similar to
their imperative counterparts.

Keywords: functional programming, tabulation, memoization, tupling, program transfor-
mation, dynamic programming, Haskell.

1 Introduction

Tabulation is a well-known technique to avoid redundant computations of recursive functions,
that is, to avoid that a recursive function is invoked more than once to solve the same subproblem.
This situation is typical in problems solved by the dynamic programming method. The tabulation
technique is based on storing in a table the result of an invocation so that the value of each
subproblem is computed only once.

The subject has been studied by several authors. In[Bir80] the main elements of the technique
are identified: first, the dependency (acyclic directed) graph of recursive calls developed during
a function invocation is studied; then, an order to solve the subproblems is established in such
a way that, when a subproblem is needed, it is already solved and stored; finally, an iterative
program solves the subproblems following such an order. In some complex cases, the author
recommends to use the original recursive function, together with a global table providing space
enough to keep the results of all the subproblems. This is called ezact tabulation in his paper,
and we will refer to it here as total tabulation.

In[Pet84] a transformation technique to avoid redundant computations for a class of functions
is proposed. The technique is called tupling and consists of defining a sequence of cuts in the
dependency graph of the original function in such a way that every cut (a cut is a tuple of
invocations) can be computed in terms of the precedent one. Then an auxiliary function, later

'Departamento de Informética y Automética, Universidad Complutense de Madrid, 28040 Madrid, Spain.
e-mails: {cpareja,ricardo}@dia.ucm.es

2Departamento de Lenguajes y Sistemas Informdticos, Universidad Politécnica de Madrid, 28660 Boadilla del
Monte, Madrid, Spain. e-mail: avelazquez@fi.upm.es

transformed into a linear recursive function, is defined as a tuple of invocations of the original
function. This one can be easily expressed in terms of the tupled one. For the strategy to be
applied, all the cuts are required to have the same number of nodes. The tuple representing the
cut plays the role of a table tabulating the results of the previously solved subproblems. In the
terminology we use in this paper, tupling is equivalent to partial tabulation using a fixed size
table.

Other relevant works on redundant computation removal, tabulation, and tupling are[Hug85,
Chi90, Kho90]. Memoization (e.g. see[Hug85, FH88, Kho90]) corresponds to total tabulation
implemented by a compiler.

In this paper we propose a transformation tactic to produce a tabulated version of a recur-
sive function with redundant calls, in which sizes of cuts can be determined at execution time.
Our motivation for this work is mainly methodological: we wish to study more general transfor-
mations than tupling. In particular, the classical imperative dynamic programming algorithms
should be systematically obtained by applying our techniques.

One extreme case of our technique is total tabulation, used when the dependency graph does
not admit sequences of cuts. The other extreme is tupling, used when cuts with a fixed (and
small) number of nodes can be defined in the dependency graph. In the general case, we have
partial tabulation in which a variable size table is used to record the results of a cut. Other
differences with respect to some of the previously mentioned approaches are: 1) we do not leave
in any respect the functional paradigm, and 2) the proposed transformations are carried out by
the programmer (not by the compiler).

Both purposes are eased by the use the data structure array present in the functional language
Haskell[HIW92]. Arrays in Haskell may be created, in a monolithic way, by using the function
mkArray that has as one of its parameters a creation function mapping indexes into values. In
our tactic, the original redundant function is transformed into the creation function of an array,
and array entries are made dependent on other entries of a different (or of the same) array, in
a recursive way. Updating in place will be almost never required in this tabulation technique,
so the compiler will only maintain a single copy of the current array and, consequently, the
constant access time of imperative arrays is retained by the approach.

The organization of the paper is as follows: after this introduction, in section 2 we define
and prove correct a schematic rule to transform the recursive version of a function into a to-
tally tabulated version. In section 3, the concept of cut and the partial tabulation tactic are
introduced. This tactic allows to reduce the amount of table space required, since the size of
the table depends in general of the current cut being processed. Both tabulation tactics are
based on the rules of the fold/unfold system[BD77]. In section 4, we show the application of
the inversion tactic to partially tabulated algorithms to produce tail recursive versions. In sec-
tion 5, two significative examples are developed using the tactics. Finally, section 6 contains
some conclusions.

2 Total tabulation
In Haskell[HJW92], the data type Array is defined as follows:
data (Ix a) => Array a b = MkArray (a,a) (a -> b)

The class Ix is that of array indexes. It is a subclass of the class Ord of types with an order
relation, and a number of additional operations are required for it:

range :: (a,a) -> [al --lists all indexes between bounds
index :: (a,a) -> a -> Int --converts an index into a position
inRange :: (a,a) -> a -> Bool --check an index to be in range

However, arrays are considered as abstract data types and the constructor MkArray is not ex-
ported. The programmer may create the array by using the predefined function array :: (Ix
a) => (a,a) -> [Assoc a b] -> Array a b which needs an association list. The data type
Assoc defines tuples of the form i := v, where i is an index and v is the value we wish to as-
sociate, in the new array, to index i. Alternatively, an array may be created using the function

mkArray :: (Ix a) => (a,a) -> (a -> b) -> Array a b

as defined in[HF92|, which takes as arguments the array bounds and a function from indexes
to values that we will call the creation function. In any of these ways, arrays are dynamically
created. Once created, they can be consulted or updated by using the predefined operations:

(1) :: (Ixa) => Array ab->a->b
(//) :: (Ix a) => Array a b -> [Assoc a b] -> Array a b

A reasonable implementation of the array feature will, of course, map an array into consecutive
memory locations so that operator (!) could execute in constant time. Also, compile time
analysis techniques are expected to detect those situations in which arrays can be safely updated
in place without generating fresh copies of them.

If a1, a2 are instances of the class Ix, so is the tuple (al,a2) formed by them. The range
function for tuples is defined in such a way that array elements are enumerated by rows. For
example, range ((0,4),(1,5)) produces the list:

[(0,4),(0,5),(1,4),(1,5)]

We make note that requiring the parameters of the function to belong to class Ix is not as a big
restriction as it may seem. Should the parameters be more complex, hashing techniques could
in most cases be used to map them into a subrange of integers. In this cases, parameters would
be kept in the array implementing the hash table, and the only requirement for them would be
to belong to class Eq.

The following definition introduces a schematic rule for total tabulation of redundant func-
tions, using arrays.

Definition 1 If £ p1...pn = rhs defines a recursive function f, t1 is the type of p1,..., tn
is the type of pn, and (Ix t1,...,tn) holds, we call the totally tabulated version of £ to the
following set of definitions:

f pl...pn = fTable ! (pl,...,pn)
where fTable mkArray b £’
£ (j1,...,jn) = rhs’

where b has the form ((11,...,1n),(ul,...,un)) and, for all i, 1i, ui are respectively the
lower and upper bounds of argument pi. They depend, in general, on the parameters pl...pn,
hence the definition of £Table in a local clause where the arguments pl...pn are visible. The
expression rhs’ is obtained from rhs by substituting ji for pi, for all i, and the subexpression
fTable! (el,...,en) for any recursive call in rhs of the form f el...en. We denote this fact
by rhs’d:ef rhs[j1,...,jn,fTable!(el,...,en)/pl,...,pn,f el...en].

3

O

Proposition 2 Given a recursive definition for a function £ and the definition of its totally
tabulated version, both compute the same function provided that Vi.1i < pi < ui is an invariant
of £. O

The term invariant is used here in the following sense: it is a property that can be shown holds
for any internal call to £ assuming it holds for f.

We can prove this proposition, i.e. that the transformation process preserves the semantics
of the original definition, by equational reasoning. In this proof we are using the fold/unfold
system of[BD77], whose rules can be summarized as follows:

Definition rule A new equation 1lhs = rhs is introduced so that 1hs is not an instance of a
left hand side of any other equation.

Instantiaton rule An equation lhs = rhs is derived from a previous one, where lhs and
rhs are respectively instances of its left and right hand sides such that 1hs is a pattern
expression.

Unfolding rule In the right hand side of an equation, a subexpression e which is an instance of
the left hand side of another equation is replaced by the corresponding instantiated right
hand side e’.

Folding rule In the right hand side of an equation, a subexpression e which is an instance of
the right hand side of another equation is replaced by the corresponding instantiated left
hand side e’.

Abstraction rule All the ocurrences of subexpressions el, . ..,en in a subexpression e of the
right hand side of an equation are abstracted in a where clause, resulting the new expres-
sion e[z1,...,zn/el,...,en] where (z1,...,zn) = (el,...,en), where z1,...,zn

are fresh variables.

Law rule It is an equality rewriting rule like the unfolding and folding rules, but the equation
referenced is an arbitrary algebraic law e = e’.

We need to use the following obvious algebraic law for arrays:
mkArray b f!i = f i provided inRange b i holds (1)
Then, the following derivation proves the proposition:

f pl...pn
= fTable!(pl,...,pn) {definition rule}
= mkArray b £’!(pi1,...,pn) {unfolding rule}
= f’ (p1,...,pn) {law rule, using law 1}
= rhs’[pl,...,pn/j1,...,jn| {unfolding rule}

= rhs {folding rule on f assuming the invariant holds}

Example 3 The following recursive function defines the combinatory number ():

comb m O =1
combmn | m==n-=1
| m>n = comb (m-1) (n-1) + comb (m-1) n

Applying the schematic rule given by proposition 2, we transform comb into the following totally
tabulated version:

comb m n = combTable! (m,n) where
combTable = mkArray ((0,0),(m,n)) comb’
comb’ (i,0) =1
comb’ (i,j) | i==3j =1
| i > j = combTable!(i-1,j-1) +
combTable! (i-1,3j)

3 Partial tabulation

In most cases, totally tabulated algorithms are too expensive in memory space. Our partial
tabulation tactic produces a tabulated algorithm using less space. In the tupling tactic, first the
redundancy structure of a given function is analyzed, and then an auxiliary function —defined
as a tuple of invocations of the original one— is transformed into a linear recursive function. In
our approach, the strategy is similar. The main difference is that we allow cuts to be of variable
size.

The dependency graph|Bir80] for a concrete function application is an acyclic graph obtained
from the tree of recursive calls by identifying nodes with identical arguments. A cut is a set of
nodes of the dependency graph such that, were these nodes —and their incident edges— deleted
from the graph, the result would be two disjoint graphs. A sequence of cuts c¢,,cp—1,...,¢o is
progressive if, for all i, 1 <4 < n, every node in cut ¢; can be computed from nodes in ¢; or in
¢i—1. To be more precise, we reproduce the definition given by Pettorossi[Pet84]:

Definition 4 A sequence of cuts ¢,,c¢,_1,...,cq is progressive if,
Vi, 1 <1< n.(ci 75 G Ne_1# Ci—l)
AYm € ¢; — ¢i—1.3n € ¢i_1.m—n) A (Vn € ¢i_1 — ¢;.3m € ¢;.m—n)

where m—n stands for “there exists a directed edge from node m to node n”. O

3.1 The partial tabulation tactic

For the sake of clarity, let us assume that the recursive function is defined by the single equation:
f pl..pn =rhs (2)

where rhs contains references to £. We will call res to the type of rhs.

The first step of this tactic is, like in the tupling technique, to define a progressive sequence
of cuts in the dependency graph. Now, however, we remove the limitation that all the cuts must
have a fixed number of nodes.

The second step consists of the proper transformation, similar to that developed within the
tupling tactic. First —by applying the definition rule (see section 2)— we introduce an eureka
equation with the following format:

combCut 5 2 2 w Kg{
combCut 4 1 2 \ 1)
combCut 3 02 1 () 6 G
combCut 2 0 2 ¢ ©)

combCut 1 0 1 ()

Figure 1: Cuts for the call combCut 5 2 2

fCut ql...qr = mkArray b £’ where f’ i = f el...en

where fCut ql...qr is the table to store the results of a cut, b::(a,a) are its bounds which,

in general, depend on q1,...,qr, £’ :: a -> res is its creation function, and el...en are
expressions depending on qi,...,qr and i. Since the cut table will store values computed by
f, one can expect that £’ will be initially defined in terms of £ (in some cases £’ even coincides
with £).
For any cut and using law 1, we have the property:
fCut ql...qr!i=fel...en provided inRange b i (3)
In particular, for the top level cut and for some actual parameters si1,...,sr and index s such
that inRange btop s, where btop depends on s1,...,sr, we have:
fCutsl...sr!s=fpl...pn (4)

The next steps consist of transforming the defined function into a linear recursive function by
replacing all references to f in the definition of £’ by recursive calls to £Cut. For this purpose,
we usually instantiate and unfold the definition of £’, we use property 3 to fold references to f
into references to a cut table, and we abstract references to the new cut table.

Finally, if we have succeeded in the previous steps, we eliminate equation 2 and replace it
by a right to left version of property 4:

fpl ... pn=fCut sl ... sr ! s

Example 5 In example 3 the result for comb m n depends, for all m> 0, on two values belonging
to the previous row of the Pascal triangle. So, the rows in the Pascal triangle form a progressive
sequence of cuts. In fact, analyzing the dependency graph of the function, it can be seen that
only a portion of each row in the triangle is needed. We define a cut as the values from a lower
bound j1 to an upper bound j2 of row i. Figure 1 illustrates this idea. So, we give the following
eureka equation:

combCut i j1 j2 = mkArray (j1, j2) comb’ where comb’ k = comb i k (5)
and obtain the following two laws:

combCut i j1 j2 ! k = comb i k Vke{jl...j2}

combCut mnn! n = combmn
The transformation based on equation 5 produces the following tabulated version of comb:

combmn = combCut mnn ! n
combCut 0 0 0 = mkArray (0,0) (const 1)
combCut (i+1) j1 j2 = mkArray (j1,j2) comb’
where comb’ k | k==0 || k==(i+1) 1
| otherwise upRow ! (k-1) + upRow ! k
upRow = combCut i (max 0 (j1-1)) (min j2 i)

The transformation is straightforward, with the exception of the limits of the cuts, which require

additional reasoning. O

4 Loop inversion

In this section, we apply the tactic known as loop inversion[Boi92, Par90] to our partial tabulated
algorithms. This tactic transforms a non-tail linear recursive function into a tail recursive one
corresponding to the ascending loop of the first function. For this tactic to be applied, some
conditions must hold. The transformation is contained in the following

Proposition 6 Let a non tail linear recursive function £ be defined as:

fxlpx=qx
| otherwise = x @ f (t x)

where @ is a (not necessarily associative) binary operator. Then, if the following conditions
hold,

1. It is possible to determine a unique base case, x¢iy for every initial value xjp4¢-
2. The descent function t admits inverse function. We denote it by t°.

we have:

f Xinit = 8 Xtriv (4 Xtriy) where
g x fx | x == x4pj¢= £x
| otherwise = let x’ = t’ x in g x’ (x’ & £x)

O

Note that x¢riy and t’ may depend on the argument xipi¢. If they do, the dependencies
should be through constant-time functions for this proposition to be useful.

The tail recursive algorithms we obtain by loop inversion are similar to the iterative algo-
rithms obtained by tabulation in the imperative paradigm.

Example 7 The application of loop inversion to our partial tabulated version of combinatory
numbers yields the following program:

comb mn = combCut mnn ! n

combCut O 0 O mkArray (0,0) (const 1)

combCut m n n combLoop 1 0 1 (mkArray (0,1) (const 1)) where
combLoop 1 jl1 j2 irow

| 1i==m = irow
| otherwise = combLoop i’ j1’ j2’ (mkArray (j1’,j2’) £°)
where 1’ = i+l

j1’ = max (n-m+i’) O

j2° = min n 1’

f2ok |l k==01[]l k==1> =1

| otherwise = irow!(k-1) +
irow'k

5 Cases study

5.1 0/1-knapsack problem

This is the well-known problem[AHU83, HS90] of finding the maximum profit we can get by
introducing some subset of n objects with given weights and profits in a knapsack with fixed
capacity c. For simplicity, we assume the existence of two global arrays ws, ps :: Array Int
Int, of length n, respectively containing the weights and profits of the n objects. The initial
recursive algorithm follows:

knapsack O c=0
knapsack (n+1) c
| c<ps!(n+1) = knapsack n c
| otherwise = max (knapsack n c)
(knapsack n (c-ws!(n+1)) + ps!(nt+1))

where the solution to our problem is given by the call knapsack n c.

In the analysis phase, we observe that its dependency graph is a submatrix of an n x ¢ matrix,
whose items represent the values of knapsack i j, for 0 < i <mn and 0 < j < ¢. Therefore, we
foresee an array with these bounds for the total tabulation version. By applying proposition 2,
we obtain:

knapsack n ¢ = knapsackTable!(n,c) where
knapsackTable = mkArray ((0,0),(n,c)) knapsack’
knapsack’(0 ,j) =0
knapsack’ (i+1,j) | j<ws!(i+1) = knapsackTable! (i, j)
| otherwise = max (knapsackTable!(i,j))
(knapsackTable! (i,j-ws!(i+1))
+ ps!(i+1))

We can also partially tabulate the algorithm by choosing cuts corresponding to rows of the total
table. The cut for row i fixes an object index i and let the capacity to vary between 0 and c.
The definition representing this idea is:

knapsackCut i ¢ = mkArray (0,c) f’ where £’ j = knapsack i j
Instantiating laws 3 and 4, we have the laws:

knapsackCut i c!j =knapsack i j Vje€{0...c} (6)

knapsackCut n c!c = knapsack n ¢ (7)

To transform f’, we instantiate equation 6 according to the definition of knapsack

knapsackCut 0 ¢ = mkArray (0,c) f’ where
f> j = knapsack 0 j = O {by unfolding}
knapsackCut (i+1) ¢ = mkArray (0,c) f’ where
f’ j = knapsack (i+1) j

Now, the transformation of the £’ local to the scope of knapsackCut (i+1) c results in:

£f2 j | j < ws!(i+l) = knapsack i j
=knapsackCut i c!j {by law 6}
| otherwise = max (knapsack i j)
(knapsack i (j-ws!(i+1)) + ps!(i+1))
=max (knapsackCut i c!j) {by law 6}
(knapsackCut i c!(j-ws!(i+1)) + ps!(i+1))

Finally, we apply the abstraction rule and obtain:

knapsack n ¢ = knapsackCut n c ! c
knapsackCut 0 ¢ = mkArray (0,c) (const 0)
knapsackCut (i+1) c = mkArray (0,c) f’ where
f2 j | j < ws!(i+l) = previousRow!j
| otherwise = max (previousRow!j)
(previousRow! (j-ws! (i+1)) + ps!(i+1))
where previousRow = knapsackCut i c

Inverting the function knapsackCut is straightforward, since the descent function is \i -> i-1.

knapsack n ¢ = knapsackCut n c ! ¢

knapsackCut n ¢ = knapsackLoop O (mkArray (0,c) (const 0)) where
knapsackLoop i row

| i ==n = row

| otherwise = knapsackLoop i’ (mkArray (0,c) f’) where
i’? = i+l
£f2 j | j <ws!'i’ = row!j

| otherwise = max (row!j)

(row! (j-ws!i’) + ps!'i’)

5.2 Fibonacci sequence

We include this well-known example to show that tupling can be considered as a particular case
of partial tabulation.

fib 0 =1
fib 1 =1
fib (n+2) = fib n + fib (n+1)

Here, we are only interested in the partially tabulated version. The obvious cut is a pair of
consecutive Fibonacci numbers.

fibCut n = mkArray (n,n+1) fib’ where fib’ i = fib i

so the following law holds:
fibCut n ! i =fib i (8)

for i =n and i = n + 1. Now, we instantiate £ibCut n for two patterns of n and fib’ for the
two values of i, namely n+1 and n+2, in the second equation of £ibCut, resulting in:

fibCut O = mkArray (0,1) fib’ where fib’ i =1
fibCut (n+1) = mkArray (n+1,n+2) fib’
where fib’ i | i==n+1= fib (n+1)
= fibCut n ! (n+1) {by law 8}
| i==n+2 = fib (n+2)
fib n + fib(n+1) {by unfolding}

fibCut n!n + fibCut n!(n+1) {by law 8}
Finally, by the abstraction rule, we obtain:

fib n = fibCut n ! n
fibCut O = mkArray (0,1) (const 1)
fibCut (n+1) = mkArray (n+1,n+2) fib’ where
fib’ i | i==n+1 = prevCut ! (n+1)
| i==n+2 = prevCut ! n + prevCut ! (n+1)
where prevCut = fibCut n

In this way, £ibCut (n+1) is defined in terms of fibCut n. This program can be straightfor-
wardly transformed into the well known tupled version:

fib n = fst (fibPair n)

fibPair 0 = (1,1)
fibPair (n+1) = (v,u+v) where (u,v) = fibPair n

10

6 Discussion

We may distinguish three classes of tabulation for functional algorithms. Tupling is characterized
by the existence of a progressive sequence of cuts of fixed size. Partial tabulation is similar, but
cuts are allowed to have variable size. Finally, total tabulation is a brute-force tabulation solution
to be used where progressive sequences of cuts cannot be found. Both partial and total tabulation
are relatively simple to apply, although some nontrivial steps may be needed in some problems
(cut limits, inverses of descent functions, trivial cases). These tactics transform the redundant
algorithm in different ways: total tabulation provides a fixed schematic transformation rule
whereas partial tabulation begins with an eureka definition and follows with its subsequent
fold /unfold transformation.

The use of Haskell arrays allows a concise presentation of both tabulation tactics and tab-
ulated algorithms. However, by using lists, the main ideas are as well applicable to languages
lacking arrays. Of course, some efficiency may be lost. If they provides list comprehensions, the
transformation and the final algorithms are very similar.

An interesting aspect regarding partially tabulated algorithms is that they are linear recursive
and can usually be inverted. So, the consecutive application of the partial tabulation and
of the function inversion tactics produces tail recursive algorithms. These algorithms can be
straightforwardly transformed into imperative ones.

We have applied tabulation to a number of redundant algorithms, including several dynamic
programming ones. Some of them have been included in the paper; others are the minimal
triangulation problem[AHUS83| and the multistage graph problem[HS90].

Two last comments about the influence of lazy evaluation in tabulated algorithms follow.
Lazy evaluation does not compute the values of £’ until they are required. As a consequence, the
resulting totally tabulated algorithms are equivalent to the corresponding imperative memoized
ones[Hug85, FH88, Kho90] except for the fact that the first are functional.

A second remark on lazy evaluation is related to space efficiency. With eager evaluation,
the memory space required for inverted partially tabulated algorithms is an order of magnitude
less than that for totally tabulated ones. Cuts are computed in sequence, so only two cuts
—but not the whole table— are required to be simultaneusly in memory. With lazy evaluation,
computations for all the cuts are interleaved and, in tests carried out by the authors, the space
improvement is smaller than somebody may expect. Nevertheless, as remarked in the introduc-
tion, the actual gain comes from the transformation of the inverted versions to the imperative
paradigm.

7 Acknowledgements
This work was partially supported by the spanish agency CICYT, projects TIC91-0111 and
TIC95-0967-CO02.

References

[AHU83] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley,
1983.

[BD77] R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive Pro-
grams. Journal of the ACM, 24(1):44-67, January 1977.

11

[Bir80]
[Boi92]
[Chi90]

[FHSS]
[HF92

[HIW92]
[HS90]
[Hug85)
[Kho90]
[Par90]

[Pet84]

R. S. Bird. Tabulation Techniques for Recursive Programs. Computing Surveys, 12(4):403-417,
December 1980.

E. A. Boiten. Improving Recursive Functions by Inverting the Order of Evaluation. Science of
Computer Programming, 18:139-179, 1992.

Wei-Ngan Chin. Automatic methods for program transformation. Ph. D. Thesis, Imperial
College, University of London, 1990.

A. J. Field and P. G. Harrison. Functional Programming. Addison-Wesley, 1988.

P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices, 27(5),
May 1992.

P. Hudak, S. L. Peyton Jones, and P. Wadler. Report on the Functional Programming Language
Haskell. version 1.2. ACM SIGPLAN Notices, 27(5), May 1992.

E. Horowitz and S. Sahni. Fundamentals of Data Structures in PASCAL. Computer Science
Press, 3rd edition, 1990.

J. Hughes. Lazy memo-functions. In Conf. on Functional Programming and Computer Archi-
tecture. Lecture Notes in Computer Science 201, Springer Verlag, 1985.

H. Khoshnevisan. Efficient Memo-Table Management Strategies. Acta Informatica, 28:43-81,
1990.

H. A. Partsch. Specification and Transformation of Programs. Springer-Verlag, 1990. Capitulos
4y 6.

A. Pettorossi. A Powerful Strategy for Deriving Efficient Programs by Transformation. In
ACM Symposium on Lisp and Functional Programming, Austin,Texas, 6-8 Aug., pages 273—
281, 1984.

12

