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Abstract. J. Launchbury gave an operational semantics for lazy eval-
uation and showed that it is sound and complete w.r.t. a denotational
semantics of the language. P. Sestoft then introduced several abstract
machines for lazy evaluation and showed that they were sound and com-
plete w.r.t. Launchbury’s operational semantics. We go a step forward
and show that the Spineless Tagless G-machine is complete and (al-
most) sound w.r.t. one of Sestoft’s machines. In the way to this goal
we also prove some interesting properties about the operational seman-
tics and about Sestoft’s machines which clarify some minor points on
garbage collection and on closures’ local environments. Unboxed values
and primitive operators are excluded from the study.

1 Introduction

One of the most successful abstract machines for executing lazy functional lan-
guages is the Spineless Tagless G-machine (STG machine) [6] which is at the
heart of the Glasgow Haskell Compiler (GHC) [7]. The compiler receives a pro-
gram written in Haskell [8] and, after some steps and intermediate transforma-
tions, produces a program in a very simple functional language called the STG
language. This is the input for the STG machine. The back-end then generates
imperative code emulating the transitions of the machine.

The STG machine has proved to be efficient compared with some other ma-
chines for lazy languages such as the G-machine [3] or the TIM (Three Instruc-
tions Machine) [2]. But until now there was no formal proof of its correctness.
A semi-formal one was provided by J. Mountjoy in [5]. There, the author starts
from Launchbury’s natural semantics for lazy evaluation [4] and transforms it to
successive more elaborated semantics. From these semantics he ‘derives’ a STG-
like machine with a single stack. Additionally, he proves that his first semantics
is in fact equivalent to Launchbury’s. In Section 6 we criticize Mountjoy’s work
in more detail.

Launchbury’s semantics is a good starting point because it has been accepted
by many people as the reference for defining the meaning of lazy evaluation. We
accept Launchbury’s semantics as the specification and we continue with the
abstract machines developed by Sestoft in [10] which were shown to be sound
and complete w.r.t. Launchbury’s semantics. The idea is to continue refining
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one of these machines in order to arrive to the STG. First, to have a common
language, we define a language similar to that of STG which can be considered
a subset of the language used by Sestoft’s machines. Then, we define and prove
a bisimulation between the Sestoft machine called Mark-2 and the STG. The
bisimulation holds for a single-stack STG machine. The one described in [6] and
implemented in the first versions of the GHC compiler had three separate stacks.
The recent version of GHC has moved towards a single-stack implementation [9].
Nevertheless, it does not exist yet an operational description for this machine in
the sense of the one given in [6]. We show that the three stack machine is not
sound w.r.t. to the semantics for some ill-typed programs.

Other contributions are: improvements to Sestoft’s semantics in order to solve
a small problem related to freshness of variables and to take into account garbage
collection. Also, a property about Sestoft’s machines environments is proved.

The plan of the paper is as follows: After this introduction, in Section 2
Launchbury’s semantics is summarized. Then, Sestoft’s and our improvements
are presented. Section 3 introduces Sestoft’s Mark-2 machine and presents our
proposition about its environments. Section 4 defines the STG-like language, the
single-stack STG machine and proves the bisimulation with the Mark-2 machine.
Section 5 shows that the three-stack STG machine is complete but not sound
w.r.t. the semantics. Finally, Section 6 mentions related work and draws some
conclusions. Propositions proofs can be found at [1].

2 Natural Semantics

2.1 Launchbury’s Original Proposal

A well-known work from Launchbury [4] defines a big-step operational seman-
tics for lazy evaluation. The only machinery needed is an explicit heap where
bindings are kept. A heap is considered to be a finite mapping from variables to
expressions, i.e. duplicated bindings to the same variable are disallowed. The lan-
guage used was a normalized λ-calculus, extended with recursive let, (saturated)
constructor applications and case expressions. To ensure sharing, arguments of
applications are forced to be variables. A grammar for this language is given
in Figure 1 where the overline notation Ai denotes a vector A1, . . . , An of sub-
scripted entities.

To avoid variable capture, the normalized language has the additional re-
striction that all bound variables (either lambda, let or case bound) in the ini-
tial expression must be distinct. (Weak head) normal forms are either lambda
abstractions or constructions. Throughout the paper, the symbol w will be used
to denote normal forms. The semantic rules are reproduced in Figure 2. There,
a judgement Γ : e ⇓ Θ : w means that expression e, with free variables bound in
heap Γ , reduces to normal form w and produces a final heap Θ. The notation
ŵ means expression w where all bound variables have been replaced by fresh
names. We say that Γ : e ⇓ Θ : w is a (successful) derivation if it can be proved
by using the rules. A derivation can fail to be proved for instance because of
entering in a blackhole. This would happen in rule Var when a reference to vari-
able x appears while reducing expression e and before reaching a normal form.
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e → x -- variable
| λx.e -- lambda abstraction
| e x -- application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression

Fig. 1. Launchbury’s normalized λ-calculus

Γ : λx.e ⇓ Γ : λx.e Lam

Γ : C xi ⇓ Γ : C xi Cons

Γ : e ⇓ ∆ : λy.e′ ∆ : e′[x/y] ⇓ Θ : w
Γ : e x ⇓ Θ : w App

Γ : e ⇓ ∆ : w
Γ ∪ [x �→ e] : x ⇓ ∆ ∪ [x �→ w] : ŵ V ar

Γ ∪ [xi �→ ei] : e ⇓ ∆ : w
Γ : letrec xi = ei in e ⇓ ∆ : w Letrec

Γ : e ⇓ ∆ : Ck xj ∆ : ek[xj/ykj ] ⇓ Θ : w

Γ : case e of Ci yij → ei ⇓ Θ : w Case

Fig. 2. Launchbury’s natural semantics

As this is done in a heap Γ not containing a binding for x, no rule can be ap-
plied and the derivation cannot be completed. Other forms of failure are those
corresponding to ill-typed programs or infinite loops.
The main theorem in [4] is that the operational semantics is sound and complete
with respect to a lazy denotational semantics for the language, i.e. if e is a closed
expression, then [[e]] ρ0 = v �= ⊥ if and only if there exist Θ and w such that
{ } : e ⇓ Θ : w and [[w]] ρΘ = v, being ρ0 the empty environment and ρΘ an
environment defining the free variables of w and obtained from heap Θ.

2.2 Sestoft’s Improvements

Sestoft introduces in [10] two main changes to the operational semantics of Fig-
ure 2: (1) to move the renaming of variables from the Var rule to the Letrec one,
and (2) to make in the Letrec rule the freshness condition locally checkable by
extending judgements with a set A of variables under evaluation. The first mod-
ification aims at getting the semantics closer to an implementation in terms of
abstract machines. In the usual implementations, fresh variables (i.e. pointers)
are created when introducing new closures in the heap in the Letrec rule. This is
also more economical than renaming all bound variables in a normal form. The
second modification makes more precise the definition of freshness: a variable is
fresh in a judgement Γ : e ⇓A Θ : w if it does not belong to either dom Γ or
A, and it is not bound either in range Γ or e. The modified rules can be seen in
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Γ : λx.e ⇓A Γ : λx.e Lam

Γ : C pi ⇓A Γ : C pi Cons

Γ : e ⇓A ∆ : λx.e′ ∆ : e′[p/x] ⇓A Θ : w
Γ : e p ⇓A Θ : w App

Γ : e ⇓A∪{p} ∆ : w

Γ ∪ [p �→ e] : p ⇓A ∆ ∪ [p �→ w] : w V ar

Γ ∪ [pi �→ êi] : ê ⇓A ∆ : w
Γ : letrec xi = ei in e ⇓A ∆ : w

where pi fresh
Letrec

Γ : e ⇓A ∆ : Ck pj ∆ : ek[pj/xkj ] ⇓A Θ : w

Γ : case e of Ci xij → ei ⇓A Θ : w Case

Fig. 3. Sestoft’s natural semantics

Figure 3. In the Letrec rule, the notation ê means the renaming e[pi/xi] where
pi are fresh variables in the judgement Γ : letrec xi = ei in e ⇓A ∆ : w. The
difference between the new rules and the ones in Figure 2 is the place where re-
naming is done. So, the only thing needed to prove the equivalence between the
two sets of rules is that there is neither name capture nor duplicated bindings
to the same variable.

Proposition 1. (Sestoft) Let e be a closed expression and {} : e ⇓{} Θ : w
a successful derivation. Then, in no instance of rule App there can be variable
capture in e′[p/x], and in no instance of rule Var is p already bound in ∆.

Moreover, Sestoft proves that, in every derivation tree, there is a clean distinction
between free variables and bound variables in expressions appearing in judge-
ments and in heaps. The first ones are always pointers (in Figure 3 and in what
follows, they are denoted by p), and they are either bound in the correspond-
ing heap, or they are under evaluation and belong to A. The second ones are
program variables belonging to the original expression (in Figure 3 and in what
follows, they are denoted by x or y).

Unfortunately, the proof of the theorem was done before introducing case
expressions and constructors and, when the latter were introduced, the theorem
was not redone. With the current Case rule the freshness property is not locally
checkable anymore. While reducing the discriminant in judgement Γ : e ⇓A ∆ :
Ck pj , fresh variables may be created with the same names as bound variables in
the alternatives, without violating the freshness condition. Then, in the second
part of the premise, name capture may occur in expression ek[pj/xkj ].

In the next section we introduce a modification to the rules in order to keep
the freshness locally checkable in presence of case expressions.

A problem not addressed by Sestoft is garbage collection. One invariant of
the derivation of any expression is that heaps always grow with new bindings,
i.e. in every judgement Γ : e ⇓A ∆ : w, it turns out that dom Γ ⊆ dom ∆.
We are interested in having a semantics reflecting that garbage collection may
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happen at any time without altering the result of the evaluation. To this aim,
we develop a set of rules in which all heaps are assumed to contain only live
bindings. The rules express the exact points where the garbage collector would
be mandatory in order to maintain minimal heaps along the computation. This
forces us to maintain new sets during a derivation in order to keep all the roots
of live bindings. This extension is also done in the next section.

2.3 A Modified Natural Semantics

To solve the first problem, i.e. having freshness locally checkable, we introduce a
multiset C of continuations associated to every judgement. The alternatives of
a case are stored in this multiset during the evaluation of the discriminant. We
say then that a variable is fresh in a judgement Γ : e ⇓AC ∆ : w if it does not
belong either to dom Γ or to A, and it is not a bound variable either in e, or in
range Γ , or in any continuation of C.

To provide for garbage collection, we must first decide which are the roots
of live closures. Of course, free variables of the current expression belong to the
set of roots. By observing the rules, it is clear that the continuations in set
C should also provide additional roots. Otherwise, a minimal heap during the
derivation of the discriminant might not include bindings for the free variables
of the alternatives. Symmetrically, during the derivation of the normal form of
function e in rule App, we should include the argument p of an application in the
set of roots. So, we introduce an additional multiset B in judgements standing
for arguments of pending applications. A judgement will have the following form:
Γ : e ⇓ABC ∆ : w where the intention is that Γ be minimal w.r.t. e,B and C, and
∆ be minimal w.r.t. w,B and C. They are multisets because identical arguments
or case alternatives may be stored in them several times and it seems clearer to
maintain several copies instead of just one.

As the knowledgeable reader may have already noticed, set A is not an ad-
ditional source of roots. This set represents bindings currently under evaluation
or, in more operational terms, pending updates. If the only reference to a pend-
ing update is that of set A, this means that the value of the corresponding free
variable will not be used anymore in the future. So, the variable can be safely
deleted from A, and the corresponding update avoided1. Moreover, we want to
have also minimal sets of pending updates in our derivations. This means that
the set A associated to the initial expression of a given judgement needs not be
the same anymore than the set A′ associated to the final expression. To take
this into account, a last modification of judgements is needed. Their final form
is the following one:

ΓA : e ⇓BC ∆A′ : w

where Γ and A are minimal w.r.t. e,B and C, and ∆ and A′ are minimal w.r.t.
w,B and C. Its meaning is that expression e reduces to normal form w starting
with heap Γ and set A, and ending with heap ∆ and set A′.

That heaps and sets of pending updates are minimal is just a property that
must be proved. To preserve this property in derivations, garbage collections and
1 This trimming of the set of pending updates is done in the STG machine after each
garbage collection. See [6, Section 10.7].
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trimming of pending updates must be activated at certain points. The semantic
rules exactly clarify which these points are.

Definition 2. Given a heap Γ , an expression e, a multiset B of variables, and
a multiset C of continuations, we define the set of live variables of Γ w.r.t. B,C
and e, denoted liveBCe

Γ :

liveBCe
Γ = fix (λL . L ∪ fv e ∪ B ∪ fv C ∪

⋃

p∈L

{fv e′ | (p 	→ e′) ∈ Γ})

where fv e denotes the set of free variables of expression e, fv C is the obvious
extension to a continuation and fix denotes the least fixed-point.

Definition 3. Given a heap Γ , a set of pending updates A, an expression e, a
multiset B of variables, and a multiset C of continuations, we define the live
heap of Γ w.r.t. B,C and e, denoted ΓBCe

gc , and the subset of live updates of A
w.r.t. Γ,B,C and e, denoted AΓBCe

gc :

ΓBCe
gc = {p 	→ e | (p 	→ e) ∈ Γ ∧ p ∈ liveBCe

Γ }
AΓBCe

gc = A ∩ liveBCe
Γ

In a judgement ΓA : e ⇓BC ∆A′ : w, if a minimal heap and update set should
be ensured before the derivation starts, we will write ΓgcAgc : e ⇓BC ∆A′ : w,
meaning that the initial heap and update set should respectively be ΓBCe

gc and
AΓBCe

gc . These gc annotations exactly mark the points in a derivation where a
garbage collection or/and a trimming of the update set may be needed.

The new set of rules is shown in Figure 4. Some explanations follow:

Maintaining the correct set of roots. When evaluating the discriminant
of a case (see rule Case), the pending alternatives must be included in set C
in order to avoid losing bindings for the free variables of the alternatives. Also,
when evaluating the function of an application (see rules AppA and AppB), the
argument must be included in set B in order to avoid losing the binding for it.

Activating garbage collection in the appropriate points. The gc anno-
tation, meaning the trimming of a heap or of an update set, must be written in
those points where there may be the danger of dead bindings. These are:

– in rule AppB, when the parameter of the function does not appear in the
body. There is a danger that the binding for p in ∆ becomes dead.

– in rules VarA and VarB, when the reference to p disappears from the current
expression. There may be no other reference to p either in e,B or C.

– in rule Case, when a particular alternative is chosen. The discarded alterna-
tives may have free variables that now are dead.

Avoiding unnecessary updates. This is reflected in rule VarB. Assuming
that the pair (∆,A′) is minimal w.r.t. w,B and C, and knowing that p /∈ A′,
then the update for variable p may be safely discarded (compare with rule VarA).
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ΓA : λx.e ⇓BC ΓA : λx.e Lam

ΓA : C′ pi ⇓BC ΓA : C′ pi Cons

ΓA : e ⇓(B∪{p})C ∆A′ : λx.e′ x ∈ fv e′ ∆A′ : e′[p/x] ⇓BC ΘA′′ : w

ΓA : e p ⇓BC ΘA′′ : w AppA

ΓA : e ⇓(B∪{p})C ∆A′ : λx.e′ x 	∈ fv e′ ∆gcA
′
gc : e′ ⇓BC ΘA′′ : w

ΓA : e p ⇓BC ΘA′′ : w AppB

Γ (A ∪ {p})gc : e ⇓BC ∆ (A′ ∪ {p}) : w
Γ ∪ [p �→ e]A : p ⇓BC ∆ ∪ [p �→ w] A′ : w V arA

Γ (A ∪ {p})gc : e ⇓BC ∆A′ : w p 	∈ A′

Γ ∪ [p �→ e]A : p ⇓BC ∆A′ : w V arB

Γ ∪ [pi �→ êi] A : ê ⇓BC ∆A′ : w

ΓA : letrec xi = ei in e ⇓BC ∆A′ : w
where pi fresh

Letrec

ΓA : e ⇓B(C∪{alts}) ∆A′ : Ck pj ∆gcA
′
gc : ek[pj/xkj ] ⇓BC ΘA′′ : w

ΓA : case e of alts ⇓BC ΘA′′ : w Case

Fig. 4. A natural semantics with minimal heaps and minimal update sets

Assuming no dead code in letrec. Notice in the antecedent of rule Letrec that
no garbage collection is launched. So, we are assuming that all the new bindings
are live. This is not true if there exists dead code in the letrec expression. It
is easy for a compiler to eliminate unreachable bindings in a letrec. In what
follows we will assume that dead code has been eliminated in our programs.

New definition of freshness. In the consequent of rule Letrec a set pi of fresh
variables is created. A variable is fresh in judgement ΓA : e ⇓BC ∆A′ : w if it
does not belong to either dom Γ or A, and it is not bound either in range Γ , e
or C.

We will see now that the properties desired for our semantics in fact hold.

Definition 4. Given a judgement ΓA : e ⇓BC ∆A′ : w, we say that the config-
uration Γ : e is ABC-good, if

1. A ∩ dom Γ = ∅
2. liveBCe

Γ = A ∪ dom Γ
3. (bv Γ ∪ bv e ∪ bv C) ∩ (A ∪ dom Γ ) = ∅
where bv e denotes the bound variables of expression e, bv Γ its extension to all
expressions in range Γ , and bv C its extension to a continuation.

The first property has a similar counterpart in Sestoft’s semantics and it
asserts that variables under evaluation are not at the same time defined in the
heap. The second one asserts that every free variable is either defined in the
heap or is under evaluation and also that the pair (Γ,A) is minimal w.r.t. B,C
and e. The third one asserts that free variables are different from bound ones.
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Definition 5. A judgement ΓA : e ⇓BC ∆A′ : w is promising if the configura-
tion Γ : e is ABC-good.

This definition ensures that the starting point of a derivation already meets the
requirements we want for the whole derivation. The following proposition and
corollary establish that the desired properties in fact hold.

Proposition 6. Let ΓA : e ⇓BC ∆A′ : w be a derivation using the rules of the
semantics. If it is a promising judgement, then

1. The configuration ∆ : w is A′BC-good
2. A′ ⊆ A
3. Every judgement in the derivation is a promising one.

Corollary 7. Let e be a closed expression and Γ{} : e ⇓{}{} ∆A : w be a
derivation. Then,

1. In no instance of rules AppA and Case there can be variable capture in
substitutions of the form e[p/x].

2. In no instance of rule VarA is p already bound in ∆.

The differences between our semantics and Sestoft’s are two:

1. Sestoft’s rules App and Var have been split into two in our semantics. In
the first case, the distinction is due to the desire of not launching garbage
collection when it is not needed, but in fact both rules could be combined in
the following single one:

ΓA : e ⇓(B∪{p})C ∆A′ : λx.e′ ∆gcA
′
gc : e′[p/x] ⇓BC ΘA′′ : w

ΓA : e p ⇓BC ΘA′′ : w

In the second case, our rule VarB does not add to the heap a binding [p 	→ w]
that is known to be dead.

2. Our heaps and update sets are minimal in the corresponding judgements.

Otherwise, the semantic rules are the same. Once we have proved that free
variables in judgements are either defined in the heap, or they belong to the
pending updates set, both semantics produce exactly the same derivations.

3 Sestoft’s Machine Mark-2

After revising Launchbury’s semantics, Sestoft introduces in [10] several abstract
machines in sequence, respectively called Mark-1, Mark-2 and Mark-3. The one
we will use for deriving an STG-like machine is Mark-2. There, a configuration
consists of a heap Γ , a control expression e possibly having free variables, an
environment E mapping free variables to pointers in the heap, and a stack S.
The heap Γ is a function from pointers to closures, each one (e, E) consisting
of an expression e and an environment E binding its free variables to pointers.
The stack contains three kinds of objects: (1) arguments of pending applications,
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Heap Control Environment Stack rule

Γ (e x) E ∪ [x �→ p] S app1
=⇒ Γ e E ∪ [x �→ p] p : S

Γ λy.e E p : S app2
=⇒ Γ e E ∪ [y �→ p] S

Γ ∪ [p �→ (e′, E′)] x E ∪ [x �→ p] S var1
=⇒ Γ e′ E′ #p : S

Γ λy.e E #p : S var2
=⇒ Γ ∪ [p �→ (λy.e, E)] λy.e E S

Γ letrec {xi = ei} in e E S letrec (∗)
=⇒ Γ ∪ [pi �→ (ei, E′)] e E′ S

Γ case e of alts E S case1
=⇒ Γ e E (alts, E) : S

Γ Ck xi E ∪ [xi �→ pi] (alts, E′) : S case2 (∗∗)
=⇒ Γ ek E′ ∪ [yki �→ pi] S

Γ Ck xi E #p : S var3
=⇒ Γ ∪ [p �→ (Ck xi, E)] Ck xi E S

(∗) pi are distinct and fresh w.r.t. Γ , letrec {xi = ei} in e, and S. E′ = E ∪ [xi �→ pi]
(∗∗) Expression ek corresponds to alternative Ck yki → ek in alts

Fig. 5. Abstract machine Mark-2

represented by pointers; (2) continuations of pending pattern matchings, each
one consisting of a pair (alts, E) where alts is a vector of case alternatives and
E is an environment binding its free variables; and (3) update markers of the
form #p, where p is a pointer.

The reader may have already recognized that stack S represents in fact the
union of sets B,C and A we introduced in the revised semantics of Section 2.3.
The main difference now is that these entities form a list instead of a set or
a multiset, and that they appear ordered from more recent to older ones. In
Figure 5 the operational rules of Mark-2 machine are shown.

We have followed Sestoft’s convention that program variables are denoted by
x or y, and pointers by p. The machine never makes explicit substitutions of
pointers for program (free) variables as the semantics does. Instead, it maintains
environments mapping program variables to pointers. Environments can be seen
as delayed substitutions. To maintain them is much more efficient than doing
substitutions. If e is a closed expression, the initial configuration is ({}, e, {}, [ ]).
The machine stops when no rule can be applied. If the final configuration has
the form (Γ,w,E, [ ]), then w has been successfully derived from e and we write
({}, e, {}, [ ]) ⇒∗ (Γ,w,E, [ ]).

The main theorem proved by Sestoft, is that successful derivations of the
machine are exactly the same as those of the semantics.

Proposition 8. (Sestoft) For any closed expression e, then

({}, e, {}, [ ]) ⇒∗ (Γ,w,E, [ ]) if and only if {} e :⇓{} Γ : w

It is worth to note that the soundness and completeness of machine Mark-2 w.r.t.
the operational semantics (by transitivity, w.r.t. the denotational semantics),
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does not rely on programs being well typed. All ill-typed programs in a certain
type system will be treated in the same way by both the semantics and the
machine. For instance, a case with a lambda in the discriminant will make both
the semantics and the machine to get blocked and not to reach a normal form.

3.1 Some Properties of Environments

Mark-2 environments have a complex evolution: they grow with lambda applica-
tions, pattern matching and letrec execution; they are stored either in closures
or in the stack in some transitions, and they are retrieved from there in some
other transitions. It is natural to wonder about how much can they grow.

Definition 9. A closure (e, E), is consistent if

1. fv e ∩ bv e = ∅ and all variables in bv e are distinct.
2. fv e ⊆ dom E.
3. bv e ∩ dom E = ∅
This definition can be easily extended to a continuation of the form (alts, E)
and to a heap Γ consisting of a set of closures.

Definition 10. A configuration (Γ, e, E, S) of machine Mark-2 is consistent if

1. Γ is consistent.
2. The pair (e, E) is consistent.
3. All continuations (alts, E) ∈ S are consistent.

These definitions only take care of program variables being well defined in envi-
ronments. That pointers are well defined in the heap (or they belong to stack S
as update markers) was already proved by Sestoft for all his machines.

Proposition 11. Let e be a closed expression in which all bound variables are
distinct, and ({}, e, {}, [ ]) ⇒∗ (Γ, e′, E, S) any (possibly partial) derivation of
machine Mark-2. Then,

1. (Γ, e′, E, S) is consistent.
2. E exactly binds all variables in scope in expression e′.
3. In any closure (ei, Ei) ∈ Γ , Ei exactly binds all variables in scope in ei.
4. In any pair (alts, E) ∈ S, E exactly binds all variables in scope in alts.

4 The Abstract Machine STG-1S

4.1 The Common Language

In order to get closer to the STG machine, firstly we define a common λ-calculus
for both machines, Mark-2 and STG. This is presented in Figure 6 and we call
it FUN. It is equivalent to the STG language (STGL) but expressed in a more
traditional λ-calculus syntax. The differences with STGL are:

– In FUN there are no unboxed values, primitive operators or primitive case
expressions. These have been excluded from our study.
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e → x xi
n -- n ≥ 0, application/variable

| letrec bind i in e -- recursive let
| C xi -- constructor application
| case e of alti |t -- case expression

bind → x = lf |t
lf → λ xi

n.e -- n ≥ 0, lambda form
alt → C xj → e

Fig. 6. Definition of FUN

– In FUN the default alternative in case is missing. This could be added
without effort.

– In STGL there is a flag \π in lambda forms to indicate that some updates
can be safely avoided. This is an efficiency issue. Nevertheless, we modify the
Mark-2 to suppress updates in the obvious cases of bindings to normal forms.

– In STGL there is a non-recursive let. This can obviously be simulated by
FUN’s letrec.

– In STGL a program is a list of bindings with a distinguished variable main
where evaluation starts. This can be simulated by letrec bind i in main.

Compared to the original Mark-2 λ-calculus (see Figure 1), it is clear that
FUN is just a subset of it, having the following restrictions: that lambda abstrac-
tions may only appear in bindings and that applications have the form x xi

n

understood by Mark-2 as (. . . (x x1) . . .) xn.
The notation λ xi

n.e is an abbreviation of λxn. · · · .λx1.e, where the argu-
ments have been numbered downwards for convenience. In this way, λ xi

n−1.e
means λxn−1. · · · .λx1.e and x xi

n−1 means x x1 . . . xn−1. When n = 0 we will
simply write e instead of λ xi

n.e and x instead of x xi
n.

A last feature added to FUN is trimmers. The notation lf |t means that a
lambda form is annotated at compile time with the set t of its free variables. This
set t was called a trimmer in [10]. It will be used when constructing a closure in
the heap for the lambda form. The environment stored in the closure will only
bind the variables contained in the trimmer. This implies a small penalty in
terms of execution time but a lot of space saving. Analogously, alti |t means the
annotation of a set of case alternatives with the trimmer t of its free variables.
When alti is pushed into the stack, its associated environment will be trimmed
according to t. Both optimizations are done in the STG machine, even though
the second one is not reflected in the rules given in [6].

4.2 Mark-2 Machine for Language FUN

In Figure 7, the transition rules of Mark-2 for language FUN are shown. Let us
note that the control expression is in general a lambda form lf . In particular, it
can also be an expression e, if lf = λxi

0.e. Also, all occurrences of superscripts n
are assumed to be n > 0. Note that, this is not a different machine, but just the
same machine Mark-2 executed with a restricted input language. Additionally,
there are some optimizations which do not essentially affect the original behavior:
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Heap Control Environment Stack Last rule

Γ x xi
n E ∪ [xn �→ p] S l app1

=⇒ Γ x xi
n−1 E ∪ [xn �→ p] p : S app1

Γ λxi
n.e E p : S l app2

=⇒ Γ λxi
n−1.e E ∪ [xn �→ p] S app2

Γ ∪ [p �→ (λxi
n.e′, E′)] x E ∪ [x �→ p] S l var1a

=⇒ Γ ∪ [p �→ (λxi
n.e′, E′)] λxi

n.e′ E′ S var1a
Γ ∪ [p �→ (C xi, E

′)] x E ∪ [x �→ p] S l var1b
=⇒ Γ ∪ [p �→ (C xi, E

′)] C xi E′ S var1b
Γ ∪ [p �→ (e′, E′)] x E ∪ [x �→ p] S l var1c (∗)

=⇒ Γ e′ E′ #p : S var1c
Γ λxi

n.e E #p : S l var2
=⇒ Γ ∪ [p �→ (λxi

n.e, E)] λxi
n.e E S var2

Γ letrec xi = lf i |ti in e E S l letrec (∗∗)
=⇒ Γ ∪ [pi �→ (lf i, E

′ |ti)] e E′ S letrec
Γ case e of alts |t E S l case1

=⇒ Γ e E (alts, E |t) : S case1
Γ Ck xi E ∪ [xi �→ pi] (alts, E′) : S l case2 (∗∗∗)

=⇒ Γ ek E′ ∪ [yki �→ pi] S case2
Γ Ck xi E #p : S l var3

=⇒ Γ ∪ [p �→ (Ck xi, E |{xi})] Ck xi E S var3

(∗) e′ 	= C xi and e′ 	= λxi
n.e

(∗∗) Variables pi are distinct and fresh w.r.t. Γ , letrec xi = lf i |ti in e, and S, E′ = E ∪ [xi �→ pi]
(∗∗∗) Expression ek corresponds to alternative Ck yki → ek in alts

Fig. 7. Abstract machine Mark-2 for FUN

– Original rule var1 has been split into three: the one corresponding to the
original var1 is now called var1c; the two other rules are just special cases
in which the expression referenced by pointer p is a normal form. The orig-
inal Mark-2 machine will execute in sequence either rule var1 followed by
rule var2, or rule var1 followed by rule var3. These sequences have been
respectively subsumed in the new rules var1a and var1b.

– Trimmer sets have been added to lambda forms and to continuations. En-
vironments are trimmed to the set of free variables when new closures are
created in the heap in rules letrec and var3, and also when continuations are
stored in the stack in rule case1. This modification only affects to the set
of live closures in the heap which now is smaller. Otherwise, the machine
behavior is the same.

In Figure 7, a new column Last has been added recording the last rule executed
by the machine. This field is important to define stable configurations, which will
be used to compare the evolution of Mark-2 and STG-1S (see Section 4.3).

Definition 12. A configuration (Γ, lf , E, S, l) of machine Mark-2 is stable if
one of these two conditions hold:

1. lf = e ∧ l /∈ {app1 , var3}, or
2. S = [ ] ∧ ((lf = λxi

n.e ∧ n > 0) ∨ lf = C xi)

In the STG machine, lambda abstractions never appear in the control expression,
so it seems natural to exclude lambda abstractions from stable configurations.



100 Alberto de la Encina and Ricardo Peña

If the last rule executed is app1, then Mark-2 is still pushing arguments in the
stack and it has not yet evaluated the variable x corresponding to the function to
be applied. In the STG all these intermediate states do not exist. If the last rule
applied is var3, then the STG is probably still doing updates and, in any case,
pattern matching has not been done yet. As we want to compare configurations
in which a FUN expression appears in the control, all these states must be
regarded as ‘internal’. The second possibility is just a termination state.

Definition 13. Let us assume that m and m′ are stable configurations of Mark-
2 machine, and m ⇒+ m′, (i.e. there must be at least one transition) and there
is no other stable configuration between m and m′. We will say that m evolves
to m′ and will denote it by m ⇒+

s m′.

4.3 The Machine STG-1S

In this section we define an abstract machine very close to the STG [6] and
show that it is sound and complete w.r.t. Mark-2 of Figure 7. We call it STG-1S
because the main difference with the actual STG is that it has one stack instead
of three. The single stack of STG-1S, contains the three usual kind of objects:
arguments of applications, continuations and update markers. Being faithful to
STGL, the control expression of STG-1S may have three different forms:

– Eval e E, where e is a FUN expression (we recall that this excludes lambda
forms) and E is an environment mapping e’s free variables to heap pointers.

– Enter p, where p is a heap pointer. Notice that there is no environment.
– ReturnCon C pi, where C is a data constructor and pi are its arguments

given as a vector of heap pointers. Also, there is no environment here.

We will call each of these expressions an instruction, and use the symbol i to
denote them. In order to better compare it with the Mark-2 machine, we will
consider a configuration of the STG-1S to be a 4-tuple (Γ, i, E, S), where Γ
is a heap mapping pointers to closures, i is the control instruction, E is the
environment associated to instruction i in case the instruction is of the form Eval
e, and the empty environment {} otherwise, and S is the stack. In Figure 8, the
transition rules of STG-1S are shown.

We have numbered the rules with the same numbers used in [6] for easy
reference. As there is no explicit flag \π in FUN lambda forms in order to avoid
unnecessary updates, rules 2 and 2′ reflect that no update frame is pushed in
the stack when explicit normal forms in the heap are referenced. Rule 2′ does
not appear in [6], but it is implicit in rule 2.

Now we proceed with the comparison. As in Mark-2, we first define stable
configurations in STG-1S. A stable configuration corresponds either to the eval-
uation of a FUN expression or to a termination state.

Definition 14. A configuration s = (Γ, i, E, S) of machine STG-1S is stable if

1. i = Eval e for some e, or
2. s = (Γ,ReturnCon C pi, {}, [ ]), or
3. s = (Γ ∪ [p 	→ (λxi

n.e, E′)],Enter p, {}, [p1, . . . , pk]) ∧ n > k ≥ 0.
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Heap Control Environment S rule

Γ Eval (x xi
n) E ∪ [x �→ p, xi �→ pi] S 1

=⇒ Γ Enter p {} pi : S
Γ ∪ [p �→ (λxi

n.e, E)] Enter p {} pi
n : S 2

=⇒ Γ ∪ [p �→ (λxi
n.e, E)] Eval e E ∪ [xi �→ pi] S

Γ ∪ [p �→ (C xi, E)] Enter p {} S 2′

=⇒ Γ ∪ [p �→ (C xi, E)] Eval (C xi) E S

Γ Eval (letrec {xi = lf i |ti} in e) E S 3 (1)
=⇒ Γ ∪ [pi �→ (lf i, E

′ |ti)] Eval e E′ S

Γ Eval (case e of alts |t) E S 4
=⇒ Γ Eval e E (alts, E |t) : S

Γ Eval (C xi) E ∪ [xi �→ pi] S 5
=⇒ Γ ReturnCon C pi {} S

Γ ReturnCon Ck pi {} (alts, E) : S 6 (2)
=⇒ Γ Eval ek E ∪ [yki �→ pi] S

Γ ∪ [p �→ (e, E)] Enter p {} S 15 (3)
=⇒ Γ Eval e E #p : S

Γ ReturnCon C pi {} #p : S 16 (4)
=⇒ Γ ∪ [p �→ (C xi, [xi �→ pi])] ReturnCon C pi {} S

Γ ∪ [p �→ (λnxi.e, E)] Enter p {} pi
k : #p′ : S 17 (5)

=⇒ Γ ′ Enter p {} pi
k : S

(1) Variables pi are distinct and fresh w.r.t. Γ , letrec xi = lf i |ti in e, and S, E′ = E ∪ [xi �→ pi]
(2) Expression ek corresponds to alternative Ck yki → ek in alts
(3) Expression e 	= C xi and e 	= λxi

n.e′

(4) In rule 16, xi are arbitrary distinct variables.
(5) k < n and Γ ′ = Γ ∪ [p �→ (λnxi.e, E), p′ �→ (λn−kxi.e, E ∪ [xi �→ pi

k])]

Fig. 8. Abstract machine STG-1S

Configurations 2 and 3 correspond to termination states. Notice in 3 that the
STG-1S may successfully stop with a non-empty stack. This would happen when
the initial expression evaluates to a lambda abstraction. As in Mark-2 machine,
we will use s ⇒+

s s′ to denote the evolution between two stable configurations
in STG-1S with no intermediate stable ones, and say that s evolves to s′. The
notion of consistent configuration for the STG-1S machine is the same given in
Definition 10 for machine Mark-2.

We will now compare two evolutions, one in each machine starting from
equivalent states, and show that they exactly pass through the same number of
stable configurations and that the corresponding configurations are equivalent.
This amounts to saying that there exists a bisimulation between the machines.
To simplify to notion of configuration equivalence, we will assume that both
machines use exactly the same fresh name generator in rule letrec. So, if the
generator is given the same inputs (i.e. the same control expression, heap and
stack), it will generate the same set of fresh variables.

Definition 15. A configuration m = (Γ, lf , E, S, l) in a stable state of machine
Mark-2 and a configuration s = (Γ ′, i, E′, S′) in a stable state of machine STG-
1S are said to be equivalent, written m ≡ s, if

– Γ = Γ ′, and
– one of the following possibilities holds:
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1. i = Eval e ∧ lf = e ∧ E = E′ ∧ S = S′
2. i = ReturnCon C pi ∧ lf = C xi ∧ pi = E xi ∧ S = S′ = [ ]
3. i = Enter p ∧ Γ ′ p = (λxi

n.e, E′′) ∧ S′ = [p1, . . . , pk] ∧ n > k ≥
0 ∧ lf = λxi

n−k.e ∧ E [xn, . . . , xn−k+1] = [p1, . . . , pk] ∧ S = [ ]

The following proposition and corollary establish that STG-1S and Mark-2 ma-
chines bisimulate each other. By transitivity this shows that STG-1S is sound
and complete w.r.t. Launchbury’s natural semantics.

Proposition 16. Given two stable and consistent configurations m and s in
respectively Mark-2 and STG-1S machines such that m ≡ s,

1. If m ⇒+
s m′, then there exists a stable and consistent configuration s′ such

that s ⇒+
s s′ and m′ ≡ s′.

2. If s ⇒+
s s′, then there exists a stable and consistent configuration m′ such

that m ⇒+
s m′ and m′ ≡ s′.

Corollary 17. If e is a closed FUN expression, then ({}, e, {}, [ ],⊥) ⇒∗ mf

in Mark-2 machine with mf = (∆,w,E, [ ]) if and only if there exists a stable
configuration sf such that ({},Eval e, {}, [ ]) ⇒∗ sf in STG-1S and mf ≡ sf .

5 The Abstract Machine STG

It has three stacks: the argument stack as containing arguments for pending
applications; the return stack rs containing pairs (alts, E); and the update stack
us containing update frames. An update frame is a triple (as, rs, p) consisting of
an argument stack, a return stack and a pointer p to the closure to be updated.
We do not show the STG rules as they can be easily derived from those of
STG-1S. A configuration will be a 6-tuple (Γ, i, E, as, rs, us).

The two differences with the STG-1S machine of previous section are:

– Pushing and popping is done in the appropriate stack according to the rule.
– Instead of pushing update markers, the STG machine pushes update frames

and leaves empty argument and return stacks in the configuration. When a
normal form is reached with empty stacks, or in the case of a lambda with
less actual arguments than formal ones, an update is triggered.

Apparently, these differences are not essential and one may think that the be-
haviours of both machines are the same. This is not the case as we will see in a
moment. The splitting of the single stack into three has the unfortunate conse-
quence of losing the temporal order of events between stacks as and rs. Then, a
continuation pushed into rs before an argument is pushed into as can be retrieved
also before the argument is retrieved from as instead of after, as it would be the
case in the STG-1S machine. Consider the following ill-typed program:

e = letrec y1 = Nil
id = λx.x

in case y1 y1 of
Nil → id
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which has no semantics. The STG machine reduces it as follows:

({}, e, {}, [ ], [ ], [ ])
⇒ (Γ1, Eval (case y1 y1 of Nil → id), E1, [ ], [ ], [ ])
⇒ (Γ1, Eval (y1 y1), E1, [ ], [(Nil → id, E1)], [ ])
⇒ (Γ1, Enter p1, {}, [p1], [(Nil → id, E1)], [ ])
⇒ (Γ1, Eval Nil, {}, [p1], [(Nil → id, E1)], [ ])
⇒ (Γ1, ReturnCon Nil {}, [p1], [(Nil → id, E1)], [ ])
⇒ (Γ1, Eval id, E1, [p1], [ ], [ ])
⇒ (Γ1, Enter p2, {}, [p1], [ ], [ ])
⇒ (Γ1, Eval x, [x 	→ p1], [ ], [ ], [ ])
⇒ (Γ1, Eval Nil, {}, [ ], [ ], [ ])
⇒ (Γ1, ReturnCon Nil {}, [ ], [ ], [ ])

where Γ1 = [p1 	→ (Nil, {}), p2 	→ (λx.x, {})] and E1 = [y1 	→ p1, id 	→ p2].
So, the soundness of the STG machine with three stacks relies on programs

being well-typed. This was not the case with the STG-1S machine: if a program
is ill-typed, both Launchbury’s semantics and STG-1S will be unable to derive
a normal form for it.

However, the STG is complete in the sense that every successful derivation
done by the STG-1S can obviously be done by the STG. For every configuration
of the STG-1S we can exactly compute a single equivalent configuration in the
STG machine. The opposite is not true, i.e. given the three stacks as, rs and us
of STG, many different stacks for the STG-1S can be constructed by interleaving
the contents of the corresponding sections of stacks as and rs.

6 Related Work and Conclusions

There are some differences between this work and that of Mountjoy [5]:

1. Mountjoy refines Launchbury’s semantics into two more elaborated ones.
The first one excludes lambda abstractions from the control expressions and
considers variables pointing to lambda abstractions as normal forms. The
second one generalizes applications to n arguments at once.

2. From these semantics he ‘derives’ two STG-like abstract machines, the latter
being very close to our STG-1S machine.

The first semantics is proven equivalent to Launchbury’s (Proposition 4, [5])
but there is no such proof for the second one. In fact, there are some mistakes in
this semantics. For instance, rule AppM (Figure 5, [5]) contains a λ-abstraction
in the control expression and this was previously forbidden. Normal forms in
this setting should be variables pointing to a lambda or a constructor. So that
the semantics get blocked at this point and no normal form can be reached.
The abstract machines are derived from the semantics but not formally proven
sound and complete w.r.t. them. The machines introduce enough concepts not
appearing in the semantics, such as environments and update marks, that the
equivalence in not self-evident.

Our proof has followed all the way from an abstract operational semantics for
lazy evaluation such as Launchbury’s, to a very concrete and efficient abstract
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machine such as the STG. Part of that way had already been followed by Sestoft
in [10]. We have started at one of his machines, the Mark-2, and have shown that
a STG machine with one stack can be derived from it, and that a bisimulation
can be defined between both.

We have solved a small problem of Sestoft’s semantics regarding freshness of
variables and also added some garbage collection considerations to his semantics.
As a result, the stack of Sestoft’s machines appears very naturally as a trans-
formation of some sets A,B and C needed by the semantics in order to have a
complete control over freshness and over live closures. It is interesting to note
that the optimization of not using the set of update markers as roots for the
garbage collector can be easily understood at the semantic level.

We have also shown that the soundness of the three stacks STG machine
as described in [6] relies on program being well-typed. This was an underlying
assumption which was not explicitly stated in that description.

The obvious solution to this ‘problem’ is to come back to a single stack ma-
chine, and this seems to be the option recently chosen by GHC’s implementors
(although probably due to different reasons) [9]. Having only one stack com-
plicates the garbage collector task because pointers and non-pointers must be
clearly distinguished. The presence of unboxed primitive values in the stack
makes the problem even worse. In compensation, update markers are smaller
than update frames and, most important of all, the temporal order of events is
preserved.
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