
Sized Types for Typing Eden Skeletons⋆

Ricardo Peña and Clara Segura

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

e-mail: {ricardo,csegura}@sip.ucm.es

Abstract. The parallel-functional language Eden extends Haskell with
constructs to explicitly define and communicate processes. These exten-
sions allow the easy definition of skeletons as higher-order functions.
However, the programmer can inadvertently introduce busy loops or
deadlocks in them. In this paper a sized type system is extended in
order to use it for Eden programs, so that those well-typed skeletons are
guaranteed either to terminate or to be productive. The problems raised
by Eden features and their possible solutions are described in detail, and
several skeletons are manually type checked in this modified system such
as the parallel map, farm, pipeline, and replicated workers.

1 Introduction

The parallel-functional language Eden [BLOP98] extends the lazy functional lan-
guage Haskell with constructs to explicitly define and communicate processes. It
is implemented by modifying the Glasgow Haskell Compiler (GHC) [PHH+93].
The three main additional concepts are process abstractions, process instantia-

tions and the non-deterministic process abstraction merge. Process abstractions
of type Process a b can be compared to functions of type a -> b, and process in-
stantiations can be compared to function applications, the main difference being
that the former, when instantiated, are executed in parallel. An instantiation is
achieved by using the predefined infix operator (#) :: Process a b -> a -> b.
Each time an expression e1 # e2 is evaluated, a new parallel process is created
to evaluate (e1 e2). Non-determinism is introduced in Eden by means of a pre-
defined process abstraction merge :: Process [[a]] [a] which fairly interleaves
a set of input lists, to produce a single non-deterministic list.

These extensions allow the easy definition of skeletons as higher-order func-
tions [PR01]. A skeleton [Col89] is a generic scheme for solving in parallel a
particular family of problems. They are very useful because they are defined
once and reused many times. However the programmer can inadvertently intro-
duce busy loops, deadlocks or any other runtime error in them. So, it is very
important to formally verify that they are free from these undesirable problems.
The theory of sized types has been developed in recent years by John Hughes
and Lars Pareto [HPS96,Par97,Par00] to provide a framework in which type
checking based analysis of both program termination and program productivity
can be done. A simplified version of Haskell, Synchronous Haskell, is given a

⋆ Work partially supported by the Spanish-British Acción Integrada HB 1999-0102
and Spanish project TIC 2000-0738.

sized type system so that well-typed programs are guaranteed to be free from
runtime errors.

The objective of this paper is to prove Eden skeletons correct. As they are
not many, for the moment we will be glad with type checking them manually.
In the way of conjecturing and proving their types correct, we have found some
weaknesses in Hughes and Pareto’s system. Thus, another objective is to propose
extensions to the sized type system so that it could more be useful for typing
Eden programs. The problems due to Eden’s features and their possible solutions
are described in detail, and several skeletons are type ckecked in this modified
system.

The plan of the paper is as follows: Section 2 describes the theory of sized
types developed by Hughes and Pareto and the type system for Synchronous
Haskell. In Section 3 some problems introduced by Eden features are described
and the type rules are extended consequently. Two simple examples, a näıve
version of a parallel map skeleton and a pipeline are type checked using the
new rules. In Section 4 more complex skeletons, such as the farm skeleton and
the replicated workers topology are type checked. The problems posed by these
skeletons and their possible solutions are discussed. In Section 5 we draw some
conclusions and future work.

2 Huges and Pareto’s Sized Types

From a semantic point of view, the denotation of a sized type is an upwards
closed subset of a lattice which may not include ⊥, where ⊥ means at the same
time non-termination (for finite types) and deadlock (for infinite types). So,
if a function can be successfully typed in this system, it is sure that either
it terminates (if the function produces a finite value), or it is productive (if
it produces an infinite value). To this purpose, finite types must be carefully
distinguished from infinite ones. Additionally, types may have one or more size

parameters which carry size information. These can be constants, universally
quantified variables or, in general (restricted) expressions. Intuitively, the size
of a value of a certain type is the number of constructor applications needed
to construct the value. For instance, for a finite list, it is the number of cons

constructors plus one (the latter takes into account the nil constructor). For a
binary tree, it is the number of levels plus one, and so on.

2.1 The Syntax of Sized Types and Datatype Terms

Syntactically, finite non-recursive types are introduced by a data declaration,
finite recursive types by an idata declaration, and infinite ones by a codata dec-
laration. Figure 1 shows the syntax of signatures and type declarations. There,
τ, σ, s, k and t respectively denote types, type schemes, size expressions, size
variables and type variables. A size expression can be either finite, denoted i, or
infinite, denoted ω. In the former case, notice that they are restricted to be lin-
ear natural number expressions in a set of size variables. Size and type variables
can be universally quantified in a type scheme and in a type declaration. There
are some additional restrictions of well-formedness (e.g. that constructors must

τ ::= t | τ → τ | T s τ
σ ::= ∀t.τ | ∀k.τ | τ
s ::= w | i
i ::= k | n | p ∗ i | i + i

D ::= data E | idata E | codata E
E ::= L = R | ∀t.E | ∀k.E
L ::= T s τ
R ::= c1 τ1 | . . . | cn τn

Fig. 1. Syntax of syzed types and datatype definitions

be unique, or that mutually recursive definitions are not allowed), all of which
can be statically checked, in order that types have a well defined semantics. See
[Par00] for details. Examples of valid type declarations are:

data Bool = true | false, idata ∀a . List ω a = nil | cons a (List ω a),
idata Nat ω = zero | succ (Nat ω), codata ∀a . Strm ω a = make a (Strm ω a)

representing respectively, the boolean type, finite lists of any size, natural num-
bers of any size, and streams of any size. Examples of valid type schemes are:
List 3 (Nat ω), (a → b) → Strm k a → Strm k b, ∀a.∀k . List k a → Nat k.

2.2 Semantics of Sized Types

The first parameter of an idata or a codata type is a size expression bounding
the size of the values of that type. For idata it is an upper bound, and for codata

it is a lower bound. So, the type List 2 a denotes lists of zero or one value (i.e.
having at most two constructors), while Stream 2 a denotes streams of two or
more values (i.e. having at least two make constructors). Partial streams such as
1; 2;⊥ and infinite streams such as 1; 2; . . . (where ; is the infix version of make)
belong to this type. This size parameter can be instantiated with the infinite size
ω. For idata types such as List ω a this means finite lists of any size, while for
codata types such as Stream ω a this means strictly infinite streams.

A program consists of a set of well-formed type declarations followed by a
term written in an enriched λ-calculus having constructor applications, case

expressions, and letrec expressions, each one with a set of mutually recursive
simple bindings. In order to preserve type soundness, there is also the restriction
that all constructors of the corresponding type must appear exactly once in the
branches of every case expression.

The universe of values U is defined as the solution to the following isomor-
phism: U ∼ [U → U]⊥⊕(U × U)⊥⊕1⊥⊕ CON⊥, where CON is the set of
constructors. In this universe, the enriched λ-calculus is given a standard non-
strict semantics. The set of types T = {T | T is an upwards closed subset of U}
form a complete lattice under the subset ordering ⊆ where ⊤T = U is the top
element, ⊥T = ∅ is the bottom element, and ∪, ∩ are respectively the least
upper bound and greatest lower bound operators. It is a cpo but not a domain.
As types are upwards closed subsets of U, the only type containing ⊥U is just
U. In this cpo, recursive types are interpreted by using functionals F : T → T.
To define these functionals from type declarations, in [Par00] several type opera-
tors, × for non-strict cartesian products of types, + for sums of types, and → for
functions between types, are defined. It is proved that these operators preserve
the upwards closedness property.

From now on, we will use an overline to represent several elements. For ex-
ample, s represents that there exists some number l ≥ 0 such that s = s1 . . . sl.
The denotation of a recursive type constructor instantiation T s τ is the appli-
cation of a function that takes as parameters l−1 naturals corresponding to the
sizes s2, . . . , sl, j types corresponding to the types τ1, . . . , τj , and returns a type

iterator F : T → T. If all declarations respect the forementioned static seman-
tics restrictions, the resulting type iterators are continuous for idata declarations
and co-continuous for codata ones. This type iterator takes as parameter a type
corresponding to the recursive ocurrences of the type being defined, and returns
a new type corresponding to its right hand side definition. The first size parame-
ter s1 determines the number of times the iterator is applied (respectively to ⊥T
for idata or to ⊤T for codata). If it is applied k times, then values of at most
(at least, for codata) size k are obtained. In the limit (size ω), values of any size
(infinite size, for codata) are obtained. For inductive types (those defined by an
idata declaration) the interpretation is the least fixpoint of the iterator, while
for co-inductive types (those defined by a codata declaration) it is the greatest
fixpoint of the iterator. These fixpoints can respectively be reached by the limits
of the ascending chain F i(⊥T) and of the descending chain F i(⊤T).

A subtype relation can be defined between sized types with the same under-
lying type but different size. It is a subset based relation, that is, τ � τ ′ when
the interpretation of τ is a subset of the interpretation of τ ′. It is a monotone
relation with the sizes in idata types, while antimonotone in the codata types.
For example List 2 a�List 3 a, while Strm 3 a�Strm 2 a. In [Par00] the rules
for checking this subtyping relation are shown. They provide a way of weakening
size information. This weakening will be applied in [APP], [LET], [LETREC]
and [CASE] rules, see Figure 4.

The interpretation of type polymorphism is, as usual, the intersection of the
interpretations of every single type. In formal terms, if I denotes the interpreta-
tion function, γ is a type environment mapping type variables to types in T, and
δ is a size environment mapping size variables to sizes in INω, then I[[∀t.σ]] γ δ =
⋂

T ∈T I[[σ]] γ[T /t] δ. Similarly, size polymorphism is interpreted as the inter-
section of the interpretation for all sizes: I[[∀k.σ]] γ δ =

⋂

n∈IN I[[σ]] γ δ[n/k];
but in this case the intersection is restricted to finite sizes. The reason for that
is to be able to use induction on natural numbers to assign types to recursive
definitions. This restriction makes size instantiation of polymorphic types safe
only for finite sizes. Omega instantiation is not always safe. Indeed, there are
some types for which omega instantiation delivers a type smaller than the poly-
morphic one instead of bigger. An example is ∀k.(Stream ω (Nat k) → Bool)
substituting ω for k. In [Par00], a sufficient decidable condition (namely that a

type scheme is undershooting with respect to a size variable, denoted as σ
∪
∼k) is

given for a scheme to be able to be safely instantiated with ω.

2.3 Synchronous Haskell Type System

In [Par00] the programming language Synchronous Haskell is defined. This is
a simplified version of the functional language Haskell. Thanks to its demand

driven evaluation it can be seen as a concurrent language where programs are
visualized as networks of processes executing in parallel and communicating
through message channels.

A program consists of a set of type declarations followed by a term written
in an enriched λ-calculus. Each let and letrec binding is annotated by the
programmer with a type scheme to be (type) checked by the system. The whole
type system is not shown here as our extended type rules in Figures 4 are just an
extension of these. To recover the original type system, first eliminate [PABS],
[PINST] and [MERGE]. Then, eliminate the classes F and T in the type schemes
and the environments ΓT

T and ΓF
T in the type assertions. Finally, eliminate all

those conditions where t
F
, t

T
, ΓT

T , ΓF
T or any of their variants are involved. So

the type assertions are of the form Γ ⊢ e :: τ . In this section we only explain
[VAR] and [LETREC]. Different indexes will be used when different sequences
of elements appear in the same rule. We will not use i because it is reserved

for finite size expressions. So for example in [VAR], τ
∪
∼k′

j means that being

k′ = k′
1 . . . k′

n, then ∀j ∈ {1..n}.τ
∪
∼k′

j . There, instantiation of both type and size
variables takes place. We can only instantiate with ω the size variables k′

j such
that τ is undershooting w.r.t. them. In [Par00] sufficient conditions are given to
prove this property, which imply the definition of other relations between types

and size variables, such as monotonicity τ
+
∼k and antimonotonicity τ

−
∼k.

In [LETREC], induction on natural numbers is applied. To illustrate how
this rule works we will explain the typing of function map :: ∀a, b, k.(a → b) →
List k a → List k b, where map = λf.λxs.case xs of nil → nil; cons x xs′ →
cons (f x) (map f xs′). First of all we have to choose the size variable on
which the induction is made. In the rule it is always the first one kj in each
binding. Then the base case is studied σj [0] = U. This is called the bottom

check. The rules for checking it need the definition of other relations on types
as emptiness (= E) and non-emptiness (6= E); and some other on sizes, like
= 0 and 6= 0. All the rules are in [Par00], but we show the most useful ones in
Figure 2. In general, a codata type (TC) of size 0 denotes the universe, while
a idata type (TI) of size 0 denotes the empty type. Some examples where the
bottom check holds are: ∀k.Strm k a, ∀a, b, k.(a → b) → List k a → List k b
and ∀a, k.Strm k a → Strm k a. Then, assuming the induction hypothesis for
each j ∈ {1..n}: xj :: ∀kj .τj [k] we must prove that the types of the right hand
sides of the bindings ej are subtypes of τj [k + 1]. In the example, assuming that
map :: (a → b) → List k a → List k b we must prove that its body definition
has type (a → b) → List (k + 1) a → List (k + 1) b. This implies f :: a → b and
xs :: List (k + 1) a. In the case expression, if xs is an empty list, nil :: List 1 a
is returned, which is a subtype of List (k + 1) a as 1 ≤ k + 1. If it is non-
empty, the value is destroyed, so xs′ has one constructor less xs′ :: List k a.
By induction hypothesis then map f xs′ :: List k b, so adding a new element
gives us cons (f x) (map f xs′) :: List (k + 1) b, the desired type. Polymorphic
recursion in all the size variables but the inductive one is allowed, and it is quite
useful, for example to type the reverse function, as shown in [Par00].

τ2 = U

τ1 → τ2 = U

τ1 = E

τ1 → τ2 = U

s1 = 0

TC s τ = U

σ = U

∀t.σ = U

σ = U

∀k.σ = U

s1 = 0

TI s τ = E

Fig. 2. Rules for bottom check and one rule for emptiness check

3 New Problems Introduced by Eden

Eden is a parallel functional language where processes communicate through
channels, so it is very close to the view Synchronous Haskell provides to pro-
grams. However, some problems arise when trying to apply Synchronous Haskell
type system to Eden programs. If we take into account Eden features, some
extensions to the type system are needed. The most important features are the
way in which values are transmitted through the channels, the eager evalua-
tion of some expressions, and the use of lists to represent both Haskell lists and
stream-like transmission of values.

The instantiation protocol of e1 # e2 deserves some attention in order to
understand Eden’s semantics: (1) closure e1 together with all its dependent
closures are copied unevaluated to a new processor and the child process is
created there to evaluate it; (2) once created, the child process starts producing
eagerly its output expression; (3) expression e2 is eagerly evaluated in the parent
process. If it is a tuple, an independent concurrent thread is created to evaluate
each component (we will refer to each tuple element as a channel). Once a
process is running, only fully evaluated data objects are communicated. The only
exception are lists: they are transmitted in a stream-like fashion, i.e. element by
element. Each list element is first evaluated to normal form and then transmitted.

3.1 Transmission of Values

The communication of data through channels leads us to two different prob-
lems. Firstly, as values are evaluated to normal form before sending them, it is
necessary that the types of the communicated values are finite: tuple, data or
idata types with finite components and function types. Secondly, this implies
that instantiation of type variables must be restricted in some places to finite
types. We propose a mechanism similar to the class system of Haskell. We define
a finiteness relation ΓT⊢F τ , see Figure 3, where ΓT is a set of type variables
that may appear in τ . This assertion means that assuming the type variables in
ΓT can only be instantiated with finite types, τ is also a finite type. In Figure 3
we use a pseudo-variable F to substitute a finite type for the recursive positions
of an idata type, that is, to prove by structural induction that it is finite.

We use this relation to control the instantiation of variables. As there are
different ways of sending values, depending on the channel type, we can use
different types to represent a channel: if it is a single value channel, its type is
represented by the type of the value; if it is a stream-like channel, we can use
a List or a Strm type (see discussion below). This separation imposes different
restrictions: if it is a single value channel, its type must be finite, but if it is
a stream-like channel, only the type of the elements must be finite. This leads
us to introduce two different classes of values, F (from finite) and T (from

a ∈ ΓT

ΓT⊢F a

ΓT⊢F τ1 ΓT⊢F τ2

ΓT⊢F (τ1, τ2) ΓT⊢F τ → τ ′ ΓT⊢F F

ΓT⊢F R[τ/t][s/k]

ΓT⊢F Td s τ

ΓT⊢F S[F][τ/t][s/k]

ΓT⊢F Ti s1 s τ

∀j ∈ {1..n}, l ∈ {1..mj} ΓT⊢F τjl

ΓT⊢F c1 τ1 | . . . | cn τn

where data ∀k t.Td k t = R R = c1 τ1 | . . . | cn τn

idata ∀k t.Ti w k t = S[Ti w k t] S = c1 τ1 | . . . | cn τn

Fig. 3. Finiteness relation

transmission interface). The first one indicates that the type variable can only be
instantiated with finite types, and the second one that it can only be instantiated
with ‘interface’ types. An interface type is either a finite type (this includes the
List type with finite components) or a Strm with finite components. A process
usually has several input and output channels, represented by a tuple of channels,
so interface types must also include tuples of the two previous types. The types
are extended with these classes: τ ′ ::= τ | [T a], [F b] ⇒ τ ; and a new rule for
bottom check is needed, expressing that it is not affected by the contexts:

τ = U

[T a], [F b] ⇒ τ = U

Additionally, two new environments, ΓF
T and ΓT

T are introduced in the rules,
carrying the type variables that appear respectively in a F or a T context. So
our assertions are of the form ΓF

T , ΓT
T , Γ ⊢ e :: τ . The predicate P (ΓF

T , ΓT
T , τ),

defined in Figure 4 tells us whether τ is a interface type.
In Figure 4 the modified type rules are shown. We describe here only the

newly introduced elements. In [VAR] the instantiation of type variables is con-
trolled: those that appear in an F context are instantiated with finite types,
and those that appear in a T context are instantiated with a interface type. In
a Process τ τ ′ type, τ and τ ′ represent the communication interfaces, so in
[PABS] and [PINST] it must be checked that they are in fact interface types. In
[MERGE], the values transmitted through the channels must be of finite type.
We use angle brackets there to represent strict tuples, explained in Section 4.2.

In [LET] ([LETREC] is similar), the bindings are annotated with their types.
If a universally quantified type variable is qualified by a class F or T , we force
the programmer to indicate the same quantification in all the annotations where
such variable appears free (tT ⊆ ΓT

T and tF ⊆ ΓF
T). Additionally, the class

information needed to type the right hand side of a binding is extracted from its

annotation (ΓT
T

′
= b and ΓF

T

′
= c). The rest of rules (λ-abstraction, application

and case) are similar to the original ones.

3.2 Eager Evaluation

In Eden, lazy evaluation is changed to eager in two cases: (1) processes are
eagerly instantiated when the expression under evaluation demands the creation
of a closure of the form o = e1#e2, and (2) instantiated processes produce their
output even if it is not demanded. These semantics modifications are aimed at

σ = ∀a k k
′

.T b, F c ⇒ τ

tT = a ∩ b tF = a ∩ c t = a\(tT ∪ tF)

τ
∪

∼k′

j Γ F
T ⊢F τF

m P (Γ F
T , Γ T

T , τT
l)

Γ F
T , Γ T

T , Γ ∪ {x :: σ} ⊢ x :: τ [i/k][s/k
′

][τ/t][τT /tT][τF /tF]
VAR

Γ F
T , Γ T

T , Γ ∪ {x :: τ} ⊢ e :: τ ′ P (Γ F
T , Γ T

T , τ) P (Γ F
T , Γ T

T , τ ′)

Γ T
T , Γ T

T , Γ ⊢ process x → e :: Process τ τ ′
PABS

Γ F
T , Γ T

T , Γ ⊢ e1 :: Process τ τ ′ Γ F
T , Γ T

T , Γ ⊢ e2 :: τ ′′ τ ′′
� τ

P (Γ F
T , Γ T

T , τ) P (Γ F
T , Γ T

T , τ ′)

Γ F
T , Γ T

T , Γ ⊢ e1#e2 :: τ ′
PINST

Γ F
T , Γ T

T , Γ ⊢ e :: 〈Strm k1 τ, . . . ,Strm kn τ〉 Γ F
T ⊢F τ

Γ F
T , Γ T

T , Γ ⊢ merge#e :: Strm (
∑n

j=1
kj) τ

MERGE

σ = ∀a k.T b, F c ⇒ τ a, k 6∈ FV (Γ)

tT = b\a tF = c\a Γ T
T

′

= b Γ F
T

′

= c

Γ F
T , Γ T

T , Γ ∪ {x :: σ} ⊢ e′ :: τ ′ Γ F
T

′

, Γ T
T

′

, Γ ⊢ e :: τ ′′ τ ′′
� τ

tT ⊆ Γ T
T tF ⊆ Γ F

T

Γ F
T , Γ T

T , Γ ⊢ let x :: σ = e in e′ :: τ ′
LET

j ∈ {1..n}, σj [kj] = ∀aj kj .T bj , F cj ⇒ τj [kj] aj , kj , kj 6∈ FV (Γ)

Γ ′ = Γ, x1 :: ∀k1.τ1[k] . . . xn :: ∀kn.τn[k]
Γ ′′ = Γ, x1 :: ∀k1.σ1[k1] . . . xn :: ∀kn.σn[kn]

Γ T
T

′

= b1 ∪ . . . ∪ bn Γ F
T

′

= c1 ∪ . . . ∪ cn t = a1 ∪ . . . ∪ an

tT = Γ T
T \t tF = Γ F

T \t tT ⊆ Γ T
T tF ⊆ Γ F

T

σj [0] = U Γ F
T

′

, Γ T
T

′

, Γ ′ ⊢ ej :: τ ′

j τ ′

j � τj [k + 1] Γ F
T , Γ T

T , Γ ′′ ⊢ e :: τ

Γ F
T , Γ T

T , Γ ⊢ letrec x1 :: ∀k1.σ1[k1] = e1 . . . xn :: ∀kn.σn[kn] = en in e :: τ
LETREC

Γ F
T , Γ T

T , Γ ∪ {x :: τ1} ⊢ e: : τ2

Γ F
T , Γ T

T , Γ ⊢ λx.e :: τ1 → τ2

ABS

Γ F
T , Γ T

T , Γ ⊢ e1 :: τ1 → τ2 Γ F
T , Γ T

T , Γ ⊢ e2 :: τ3 τ3 � τ1

Γ F
T , Γ T

T , Γ ⊢ e1 e2 :: τ2

APP

⊢= τ = c1 τ1 | . . . | cn τn

Γ F
T , Γ T

T , Γ ⊢ e :: τ Γ F
T , Γ T

T , Γ ∪ {xj1 :: τj1, . . . , xjnj
:: τjnj

} ⊢ ej :: τ ′

j(∀j) τ ′

j � τ ′(∀j)

Γ F
T , Γ T

T , Γ ⊢ case e of c1 x1 → e1 . . . cn xn → en :: τ ′
CASE

P (Γ F
T , Γ T

T , τ) = if (τ = Strm s τ ′) then Γ F
T ⊢F τ ′

else if (τ = (τ1, . . . , τn) then ∀j.
if τj = Strm sj τ ′

j then Γ F
T ⊢F τ ′

j

else Γ F
T ∪ Γ T

T ⊢F τj

else Γ F
T ∪ Γ T

T ⊢F τ

Fig. 4. Type rules

increasing the degree of parallelism and at speeding up the distribution of the
computation.

Eager evaluation does not affect the type rules. From the type system point
of view, eagerness means that some values of interface types, like o in o = e1#e2,
are produced without being demanded. If o is finite, its type gives us an upper
bound of its size. With lazy evaluation, this size needs not be reached in all cases,
while with eager evaluation, this size is probably reached all times the expression
e1#e2 is evaluated. If o is a stream, its type gives a lower bound of the number
of elements produced, provided there is demand for them. With eager evaluation
the only difference is that this demand is guaranteed.

3.3 Types List and Strm

In Eden, the list type [τ] is used both for Haskell lists and for stream-like chan-
nels, and they are transformed from one to the other in a way transparent to the
programmer. However, in this type system it is necessary first to divide Haskell
lists into finite ones (List type) and partial or infinite ones (Strm type). This is
a problem inherited from Haskell. A List type gives us a proof of termination,
while a Strm type gives us a proof of productivity. Additionally it is necessary
to identify the stream-like channels. We usually want to prove the productivity
of our skeletons, so we will use mainly the Strm type in such cases. But there
are some skeletons that work with finite types and require a version with List

of another skeleton. In such cases we would like to have both versions of the
skeleton, one for lists and another one for streams, so that both termination
and productivity are proved. In some cases we obtain the two versions for free,
thanks to polymorphism, as in the näıve map and pipe skeletons shown below.

3.4 Two Simple Examples

We study now two simple examples of skeletons that illustrate some of the ideas
shown in this section. In the following section we will study more complex skele-
tons and the problems they produce. In all of them, we first show the Eden
skeleton as it is written in [PR01] and then the sized typed version appears.
The latter is usually modified somehow for different reasons we will explain in
turn. Similarly to Hughes and Pareto’s system there is not an automatic way of
transforming the programs (so that they are easier to type) or of conjecturing a
correct type in a first attempt.

In order to abbreviate type proofs, in those functions and skeletons where, to
type them, induction has been used, we will write as a subscript the size of those
program variables whose type contains the size variable over which we are doing
induction. Sometimes we will write the size of a complete expression. When a
compound type is used, as in List k (Strm l a), we will use brackets to represent
the size, in the example k[l]. In the original text [PR01] a Transmissible class
(abbreviated Tr here) is used. It subsumes both the T and F classes used in the
type system.

A Näıve Implementation of a Parallel Map Skeleton We first show a
näıve implementation of a map skeleton:

map_naive :: (Tr a, Tr b) => (a -> b) -> [a] -> [b]

map_naive f xs = [pf # x | x <- xs] where pf = process x -> f x

For each element of the list, a different process instantiation is done, where each
process simply applies the function f to the corresponding input.

The ZF notation is rewritten into a simple map and the where clause into
a let. The type is obtained by composing functions:

map naiveL :: ∀a, b, k.T a, b ⇒ (a → b) → List k a → List k b
map naiveL = λf.λxs.let g :: T a, b ⇒ a → b

g = λx.(process y → f y)#x
in map g xs

A Pipeline Skeleton Now we show a pipeline skeleton instantiating a different
process to evaluate each of the pipeline stages. Each process in the pipe creates
its successor process:

pipe :: Tr a => [[a] -> [a]] -> [a] -> [a]

pipe fs xs = (ppipe fs) # xs

ppipe :: Tr a => [[a] -> [a]] -> Process [a] [a]

ppipe [f] = process xs -> f xs

ppipe (f:fs) = process xs -> (ppipe fs) # (f xs)

The following type can be checked by induction on the length k of fs:

ppipe :: ∀a, k, l.F a ⇒ List k (Strm l a → Strm l a) → Process (Strm l a) (Strm l a)
ppipe = λfsk+1.case fsk+1 of

nil → process s → s
cons f fs ′k → process s → (ppipe fs ′k)#(f s)

pipe :: ∀a, k, l.F a ⇒ List k (Strm l a → Strm l a) → Strm l a → Strm l a
pipe = λfs.λs.(ppipe fs)#s

In this example we have encountered and solved a couple of problems. First,
the empty list case is not included in the original ppipe, which violates the
restrictions for case. So it is added as the identity process in order to be able to
type the skeleton.

Second, we have chosen to represent the processes as consuming and pro-
ducing a stream of data in order to study its productivity. This means that
the type a cannot be an interface type, but must be a finite type, so the
context in this case is F and not T . However we could have given less re-
strictive types: ppipe :: ∀a, k, l.T a ⇒ List k (a → a) → Process a a and
pipe :: ∀a, k, l.T a ⇒ List k (a → a) → a → a, using T class. By instantiating a
with F a ⇒ Strm l a we obtain the previous type.

4 Skeletons in Eden

4.1 The Farm Implementation of the Parallel Map Skeleton

The map naive version can be improved by reducing the number of worker pro-
cesses to be created. In a map farm a process is created for every processor, tasks
are evenly distributed between processors, and the results are collected. Here is
its implementation in terms of map naive:

map_farm :: (Tr a,Tr b) => (a -> b) -> [a] -> [b]

map_farm = farm noPe unshuffle shuffle

farm :: (Tr a, Tr b) => Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) ->

(a -> b) -> [a] -> [b]

farm np unshuffle shuffle f tasks =

shuffle (map_naive (map f) (unshuffle np tasks))

where noPe is a constant giving the number of available processors. Different
strategies to split the work into the different processes can be used provided
that, for every list xs, (shuffle . unshuffle) xs == xs. For instance, the
following scheme distributes the tasks using a round-robin strategy:

unshuffle :: Int -> [a] -> [[a]]

unshuffle n ins

| length firsts < n = take n (map (:[]) firsts ++ repeat [])

| otherwise = zipWith (:) firsts (unshuffle n rest)

where (firsts, rest) = splitAt n ins

shuffle :: [[a]] -> [a]

shuffle = concat . transpose

In Figure 5 the typings of auxiliary functions used in the farm skeleton are shown.
Function zipWiths (we only show its type), takes, drops and (++)s are proved
by induction on k. Notice the use of the subtyping relation �. In Figure 6 the
modified farm skeleton is shown with its type. There, functions unshufflesn and
shuffles are proved by induction on l.

The first thing to decide is which list types are finite lists and which ones
are streams. In order to study the productivity we have chosen stream types
for the input [a] and output [b] lists in the skeleton. As the number of pro-
cesses is finite, the distribution of tasks between processes is considered a list
of streams. This decision leads us to slightly change the definitions of shuffle
and unshuffle, so they have now a different type. In particular, shuffle needs
an auxiliary stream in order to cope with a possibly empty list of channels,
even though this situation will never arise in practice, as it would correspond to
having zero processors.

Some problems have been found when typing this skeleton: The first one
arises when typing unshuffle. We are dividing a stream of elements into n
lists of streams. This means that the original stream should have at least n ∗ k
elements, so that we obtain n lists of at least k elements. This implies a product of
size variables, which is not allowed by the type system. There are two possibilities
to solve this. One is to define a family unshufflesn of functions, one for each fixed
number of processes n, so that n∗k is a product of a constant and a variable. This
means that the natural parameter would disappear, and consequently farmn and
map farmn would also be a family of functions. The drawback of this alternative
is that we need to define many versions of the same skeleton for several values of
n. The other possibility is to allow products of two (or more) variables, or size
expressions, in order to obtain a parametric skeleton. In this case some new rules

(not shown) for checking the relations = 0, 6= 0,
+
∼k and

−
∼k should be added.

The drawback of this alternative is that products of variables are not included
in the type checking algorithm, and they may even make it undecidable.

sidata sList w a = snil | scons a (sList w a)
zipWiths :: ∀a, b, c, k.(a → b → c) → sList k a → sList k b → sList k c
takes :: ∀a, k, l.Nat k → Strm (k + l) a → sList k a
takes = λnk+1.λs.case nk+1 of zero → snil1�k+1

succ n′

k → case sk+l+1 of

x; s′k+l → (scons x (takes n′

k s′k+l)k)k+1

drops :: ∀a, k, l.Nat k → Strm (k + l) a → Strm l a
drops = λnk+1.λsk+l+1.case nk+1 of zero → sk+l+1�l

succ n′

k → case sk+l+1 of

x; s′k+l → (drops n′

k s′k+l)l

splitAts :: ∀a, k, l.Nat k → Strm (k + l) a → (sList k a,Strm l a)
splitAts = λn.λs.(takes n s, drops n s)
(++s) :: ∀a, k, l.sList k a → Strm l a → Strm l a
xsk+1 ++s s = case xsk+1 of snil → sl; scons x xs′k → (x; (xs′k ++s s)l)l+1�l

Fig. 5. Auxiliary functions for the farm skeleton

The second problem is also related to unshuffle. Its resulting type is a list
of streams. The bottom check fails when l = 0, as List n U 6= U. This problem
arises when we use a list or a tuple to represent several channels coming out of
a process. As a simpler example with tuples we show the following version of
unshuffle for two streams:

unshuffle2 :: ∀a, k.Strm (2k) a → 〈Strm k a,Strm k a〉
unshuffle2 = λs2(k+1).case s2(k+1) of

x; s′2k+1 → case s′2k+1 of

y; s′′2k → let 〈s1k, s2k〉 = unshuffle2 s′′2k in ((x; s1)k+1, (y; s2)k+1)

A similar problem arised in [Par00] when trying to type mutually recursive
definitions. This was solved by building a special fixpoint definition for a set
of simultaneous equations. A function from tuples to tuples would not work in
principle as the bottom check fails because (U,U) 6= U. The solution we propose
is to untag the tuples, that is, to define strict tuples. We define strict data, sdata

(Ts), and idata, sidata (Tsi). We add a new rule to represent the strictness, and
another one to establish when an sidata is empty:

∃i.τi = U

Ts/Tsi s τ = U

s1 = 0

Tsi s τ = E

From now on angle brackets will represent strict tuples. These were also used in
rule [MERGE], see Figure 4. Strict lists are defined in Figure 5. In order to make
the previous strictness rule semantically correct we define a new type operator

×′ used to interpret this kind of types: T1 ×′ T2 =

{

T1 × T2 if T1, T2 6= U

U otherwise

4.2 Replicated Workers Topology

We now show a replicated workers implementation [KPR00] of the parallel map
skeleton that distributes work on demand, i.e. a new task is assigned to a process
only if it is known that it has already finished its previous work. The programmer
cannot predict in advance the order in which processes are going to finish their
works, as this depends on runtime issues.

farmn :: ∀a, b, l.F a, b ⇒ (Strm (n ∗ l) a → sList n (Strm l a)) →
(sList n (Strm l a) → Strm l b → Strm l b) →
(a → b) → Strm l b → Strm (n ∗ l) a → Strm l b

farmn = λunshufflen .λshuffle.λf.λaux.λs.shuffle (map naiveLs (mapS f) (unshufflen s)) aux

map farmn :: ∀a, b, k.F a, b ⇒ (a → b) → Strm k b → Strm (n ∗ k) a → Strm k b
map farmn = farmn unshufflesn shuffles

unshufflesn :: ∀a, l.Strm (n ∗ l) a → sList n (Strm l a)
unshufflesn = λsn(l+1).let (firstsn, restnl) = splitAts n sn(l+1)

in (zipWiths (;) firstsn (unshufflesn restnl)n[l])n[l+1]

shuffles :: ∀a, l, k.sList (k + 1) (Strm l a) → Strm l b → Strm l b
shuffles = λxsk+1[l+1].λauxl+1.case xsk+1[l+1] of

snil → auxl+1

scons sl+1 xs′k[l+1] → case sl+1 of

x; s′l → let headsk = map hdS xs′k[l+1]

in let tlsk+1[l] = map tlS xsk+1[l+1]

in (x; (headsk ++s (shuffles tlsk+1[l] aux)l)l)l+1

Fig. 6. The farm skeleton

By using the reactive (and non-deterministic) process merge, acknowledg-
ments from different processes can be received by the manager as soon as they
are produced. Thus, if each acknowledgment contains the identity of the sender
process, the list of merged results can be scrutinized to know who has sent the
first message, and a new work can be assigned to it:

rw :: (Tr a, Tr b) => Int -> Int -> (a->b) -> [a] -> [b]

rw np prefetch fw tasks = results where

results = sortMerge outputsChildren

outputsChildren = [(worker fw i) # inputs

|(i,inputs) <- zip [0..np-1] inputss]

inputss = distribute tasksAndIds

(initReqs ++ (map owner unorderedResult))

tasksAndIds = zip [1..] tasks

initReqs = concat (generate prefetch [0..np-1])

unorderedResult = merge # outputsChildren -- Non-deterministic!!

distribute [] _ = generate np []

distribute (e:es) (i:is) = insert i e (distribute es is)

where insert 0 e ~(x:xs) = (e:x):xs

insert (n+1) e ~(x:xs) = x:(insert n e xs)

worker :: (Tr a, Tr b) => (a->b) -> Int -> Process [(Int,a)] [ACK b]

worker f i = process ts -> map (\(id_t,t) -> ACK i id_t (f t)) ts

data ACK b = ACK Int Int b

owner (ACK i _ _) = i

The skeleton receives as input parameters (1) the number of worker processes to
be used; (2) the size of workers’ prefetching buffer; (3) the worker function that
will perform the actual computation on the tasks; and (4) the list of tasks into

data ACK k b = ACK (Nat k) b
generate :: ∀k.Nat k → Strm k (Nat k)
generate = λnk+1.case nk+1 of zero → zerosω[1]�k+1[k+1];

succ n′

k → (nk+1; (generate n′

k)k[k])k+1[k+1]

zipS :: ∀a, b, k.Strm k a → Strm k b → Strm k (a, b)
zipS = λsk+1.λtk+1.case sk+1 of x; s′k → case tk+1 of y; t′k → ((x, y); (zipS s′k t′k)k)k+1

owner :: ∀b, k.ACK k b → Nat k
owner (ACK i) = i
result :: ∀b, k.ACK k b → b
result (ACK b) = b

worker :: ∀a, b, k, l.F a, b ⇒ (a → b) → Nat k → Process (Strm l a) (Strm l (ACK k b))
worker = λf.λn.process ts → let f ′ :: F a, b ⇒ a → ACK k b

f ′ = λt.ACK n (f t)
in (mapS f ′ ts)

maptn :: ∀a, b, k1, . . . , kn.F a, b ⇒ (a → b) → 〈Strm k1 a, . . . ,Strm kn a〉 →
〈Strm k1 (ACK n b), . . . ,Strm kn (ACK n b)〉

maptn = λw.λ〈s1, . . . , sn〉.〈(worker w 0)#s1, . . . , (worker w (n − 1))#sn〉

Fig. 7. Auxiliary functions for the replicated workers topology

which the problem has been split. See [KPR00] for details. In Figure 7 the types of
auxiliary functions used in this topology are shown. Functions generate and zipS
are proved by induction on k. Notice that we make use of subtyping in generate.
We are assuming that mapS :: ∀a, b, k.(a → b) → Strm k a → Strm k b.

In Figure 8 a modified version of the topology is given a type. We have
simplified some aspects. The prefetch parameter has been eliminated. The task
identity has also been eliminated from the ACK type so we eliminate the sorting
function and just return the unordered result. Several problems have been found
when typing this skeleton. The first one is the following. As this is a topology
where work is distributed on demand, the sizes of the streams communicating
the processes are not necessarily the same, so working with lists of streams is not
appropriate, as too much information would be lost. So we have decided to use
instead strict tuples of streams of different sizes: 〈Strm k1 a, . . . ,Strm kn a〉.
This means that the topology is in fact a family of functions, one for a different
number of processors. So the natural number parameter is eliminated.

The second problem is that typing the recursive let implies proving that all
the streams grow at least in one element, and this is not true for outputChildren
for example. However it can be noticed that once distribute is applied, at least
one task will be given to a process in inputss so that the topology keeps running.
Then, we redefine the recursive let by defining a single recursive binding for
inputss in terms of the rest of the bindings. So it is only necessary to prove
that inputss grows. This is true at the beginning of the execution thanks to the
initial list of requests initReqs. The rest of requests are appended after these:
initReqs ++ map owner unorderedResult.

The third problem arises in this append function. We have to append a finite
list of length n to a stream of at least, say, k elements. In the type system

List n a means that the list has a length of at most n, so we cannot safely say
that the resulting stream has at least n + k elements. We need to use a stream
also for the first parameter. This is generate n in Figure 8. It generates the
first n requests and then adds an infinite number of 0’s at the end. So, given
two streams, the new append function, takes n elements from the first one and
puts them at the beginning of the second one. But again this is not inmediate,
because we have to take n elements from the first stream, and again the natural
numbers are inductive. So, we need to define a (inductively defined) family of
append functions {++j :: ∀a, k.Strm j a → Strm k a → Strm (k + j) a}

j∈IN+ ,

where now each function is defined in terms of the previous one:

++1 :: ∀a, k.Strm 1 a → Strm k a → Strm (k + 1) a
s ++1 s′ = case s of x; s′′ → x; s′

++j+1 :: Strm (j + 1) a → Strm k a → Strm (k + j + 1) a
s ++j+1 s′ = case s of x; s′′ → x; (s′′ ++j s′)

The last problem arises in function distribute. This function provides new
tasks to idle processes. This means that the streams are not uniformly increased.
So it is not possible to type the distributen function of Figure 8 as we do not
know which stream will be increased. But we are sure that one of them will
be. We need then to make induction over the sum of the stream sizes and not
separately on one of them. This is not supported by the type system. The pro-
cess would be the following. First the bottom check:

∑n

j=1
kj = 0 implies that for

each j = 1, . . . , n, kj = 0. This means that Strm kj a = U and the use of strict
tuples leads us to 〈Strm k1 a, . . . ,Strm kn a〉 = U. The induction hypothesis is
that distributen :: Strm w a → Strm(

∑n

j=1
kj) (Nat n) → 〈Strm k1 a, . . . ,Strm kn a〉

where
∑n

j=1
kj = k. We have to prove that distributen :: Strm w a → Strm(

∑n

j=1
k′

j)

(Nat n) → 〈Strm k′
1 a, . . . ,Strm k′

n a〉 where k + 1 =
∑n

j=1
k′

j =
∑n

j=1
kj + 1. So let

s1 :: Strm w a and s2 :: Strm (
∑n

j=1
kj + 1) (Nat n). Then, by applying the case

rule, s′1 :: Strm w a and s′2 :: Strm (
∑n

j=1
kj) (Nat n), so applying the induction

hypothesis we obtain that distributen s′1 s′2 :: 〈Strm k1 a, . . . ,Strm kn a〉; and then,
for each j = 1, . . . , n, tj :: Strm kj a. In each branch of the if expression one of
the components is increased by one element, that is, each branch has a type
where the sum of sizes is k + 1, so the whole expression has a type where the
sum of sizes is k + 1. This is what we wanted to prove. This kind of induction
should be also applied to inputss. This is still not included in the extended type
system and should be formalised as a new way of induction.

5 Conclusions and Future Work

Eden is a parallel functional language that is sufficiently expressive that the
programmer may introduce deadlocks and non-termination in programs. Having
a proof that these unwanted effects are not present is highly desirable. Such
proofs are even more essential for skeletons because the latter represent parallel
topologies reused many times in different applications.

We have extended sized types by Hughes and Pareto in several directions in
order to make them more useful for typing our skeletons, and proved that the

rwn :: ∀a, b.F a, b ⇒ (a → b) → Strm w a → Strm w b
rwn = λf.λtasks.

let initReqs :: Strm n (Nat n)
initReqs = generate n

in let rec

inputss :: ∀k1 . . . kn.F a ⇒ 〈Strm k1 a, . . . ,Strm kn a〉
inputss = let oChildren :: F b ⇒ 〈Strm k1 (ACK n b), . . . ,Strm kn (ACK n b)〉

oChildren = maptn f inputss
in let unordered :: F b ⇒ Strm (

∑n

i=1
ki) (ACK n b)

unordered = merge#oChildren
in let restReqs :: Strm (

∑n

i=1
ki) (Nat n)

restReqs = mapS owner unordered
in let requests :: Strm (

∑n

i=1
ki + n) (Nat n)

requests = initReqs++nrestReqs
in distributen tasks requests

in let

outputChildren :: ∀k1 . . . kn.F b ⇒ 〈Strm k1 (ACK n b), . . . ,Strm kn (ACK n b)〉
outputChildren = maptn f inputss

in mapS result (merge#outputChildren)

distributen :: ∀a, k1, . . . kn.Strm w a → Strm(
∑n

k=1
ki) (Nat n) → 〈Strm k1 a, . . . ,Strm kn a〉

distributen = λs1.λs2.case s1 of x1; s
′

1 → case s2 of x2; s
′

2 →
case (distributen s′1 s′2) of 〈t1, . . . , tn〉 →

if (x2 == 0) then 〈x1; t1, . . . , tn〉
. . .
else {−(x2 == n − 1)−} 〈t1, . . . , x1; tn〉

Fig. 8. The replicated workers topology

skeletons are free from abnormal termination and busy loops. Firstly, we have
introduced type classes for restricting the instantiation of some type variables.
In this way, it can be proved that only finite values are communicated between
processes. Secondly, we have added to the system strict types, and their corre-
sponding typing rules, in order to be able to do induction proofs for processes
receiving or/and producing tuples or finite lists of channels. Thirdly, we suggest
to incorporate products of size variables in size expressions. This would make
the type system much more expressive so that many more algorithms could be
typed. In the general case the extension would probably make type checking
undecidable, but surely many useful subcases could be encountered in which
the algorithm is still decidable. Our map farm and map rw skeletons provide real
examples showing that this extension is clearly needed. Finally, we propose to
extend the induction proof embedded in rule [LETREC] to cope with doing
induction on expressions such as the sum of size variables rather than only on
single variables.

Even though the proposed extensions can automate the proofs, the program-
mer is still responsible for conjecturing a type for his/her program and for re-
formulating it in order to get a proof. We have typed other skeletons not shown
here such as different versions of divide and conquer.

There are other techniques to prove termination and productivity of pro-
grams. Between the first ones they may be cited the big amount of work done
in term rewriting systems and, in the functional field, proposals such as that of
David Turner [Tur95], were all programs terminate by construction. On produc-

tivity, it may be cited [Sij89]. In Pareto’s thesis [Par00] more exhaustive related
work can be found.

As future work we plan in the first place to continue trying the typing of
other (more complex) skeletons such as the ring and torus. We would also like
to work in better formalizing the new features and in extending the current
implementation of sized types with them in order to check automatically the
proofs presented in this paper.

References

[BLOP98] S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña. Eden: Language
Definition and Operational Semantics. Technical Report, Bericht 96-10.
Revised version 1.998, Philipps-Universität Marburg, Germany, 1998.

[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Research monographs in parallel and distributed computing. Pitman,
1989.

[HPS96] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In Conference Record of POPL ’96: The 23rd

ACM SIGPLAN-SIGACT, pages 410–423, 1996.
[KPR00] U. Klusik, R. Peña, and F. Rubio. Replicated Workers in Eden. In 2nd

International Workshop on Constructive Methods for Parallel Programming
(CMPP 2000). To be published by Nova Science, 2000.

[Par97] L. Pareto. Sized types. Licenciate Dissertation, Chalmers University of
Technology, Göteborg, Sweden, 1997.

[Par00] L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of
Technology and Göteborg University, Sweden, 2000.

[PHH+93] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L.
Wadler. The Glasgow Haskell Compiler: A Technical Overview. In Joint
Framework for Inf. Technology, Keele, pages 249–257, 1993.

[PR01] R. Peña and F. Rubio. Parallel Functional Programming al Two Levels
of Abstraction. In Principles and Practice of Declarative Programming,
PPDP’01. To appear in ACM Press, 2001.

[Sij89] B. A. Sijtsma. On the Productivity of Recursive List Definitions. ACM
Transactions on Programming Languages and Systems, 11(4):633–649, Oc-
tober 1989.

[Tur95] D. A. Turner. Elementary Strong Functional Programming. In Functional
Programming Languages in Education, FPLE’95, pages 1–13. LNCS 1022,
Springer, 1995.

