
A Polynomial-Cost Non-determinism Analysis⋆

Ricardo Peña and Clara Segura

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain

e-mail: {ricardo,csegura}@sip.ucm.es

Abstract. This paper is an extension of a previous work where two non-
determinism analyses were presented. One of them was efficient but not
very powerful and the other one was more powerful but very expensive.
Here, we develop an intermediate analysis in both aspects, efficiency and
power. The improvement in efficiency is obtained by speeding up the
fixpoint calculation by means of a widening operator, and the represen-
tation of functions through easily comparable signatures. Also details
about the implementation and its cost are given.

1 Introduction

The parallel-functional language Eden [2] extends the lazy functional language
Haskell by constructs to explicitly define and communicate processes. It is im-
plemented by modifying the Glasgow Haskell Compiler (GHC) [11]. The three
main new concepts are process abstractions, process instantiations and the non-
deterministic process abstraction merge. Process abstractions of type Process

a b can be compared to functions of type a -> b, and process instantiations
can be compared to function applications. An instantiation is achieved by using
the predefined infix operator (#) :: Process a b -> a -> b. Each time an ex-
pression e1 # e2 is evaluated, a new parallel process is created to evaluate (e1

e2). Non-determinism is introduced in Eden by means of a predefined process
abstraction merge :: Process [[a]] [a] which fairly interleaves a set of input
lists, to produce a single non-deterministic list.

The presence of non-determinism creates some problems in Eden: It affects
the referential transparency [8, 17] of programs and invalidates some optimiza-
tions done in the GHC [14]. Such problems were precisely described in [9]. In
[9] a solution was proposed to solve this problem: To develop a static analysis
to determine when an Eden expression is sure to be deterministic and when it
may be non-deterministic. Two different abstract interpretation based analyses
were presented and compared with respect to expresiveness and efficiency. The
first one [[·]]

1
was efficient (linear) but not very powerful, and the second one [[·]]

2

was powerful but less efficient (exponential). This paper presents an interme-
diate analysis [[·]]

3
that tries to be a compromise between power and efficiency

and describes its implementation. Its definition is based on the second analy-
sis [[·]]

2
. The improvement in efficiency is obtained by speeding up the fixpoint

calculation by means of a widening operator wop, and by using an easily com-
parable representation of functions. By choosing different operators we obtain

⋆ Work partially supported by the Spanish-British Acción Integrada HB 1999-0102
and Spanish project TIC 2000-0738.

different variants of the analysis [[·]]
3

wop
. The paper describes the analysis and

one particular variant [[·]]
3

W

in detail. It also describes an algorithm, written in
Haskell, that implements the analysis and annotates the program expressions
with non-determinism information, so that it can be used to avoid the harmful
transformations.

The plan of the paper is as follows: In Section 2 the language and the analysis
[[·]]

2
are briefly summarised (full details in [9, 16]). In Section 3 the new analysis

[[·]]
3

W

is described. First, some theoretical results that help in the implementation
of the analysis are presented, and then its relation with [[·]]

2
is studied. We

mention other variants of the analysis and their mutual relations. In Section 4 we
describe the annotation algorithm and its cost. In Section 5 some conclusions are
drawn. The proofs of all the propositions and examples of the output produced
by the algorithm can be found in [16].

2 A Non-determinism Analysis

2.1 The Language

The language being analysed is an extension of Core-Haskell [11], i.e. a sim-
ple functional language with second-order polymorphism, so it includes type
abstraction and type application. A program is a list of possibly recursive bind-
ings from variables to expressions. Such expressions include variables, lambda
abstractions, applications of a functional expression to an atom, constructor
applications Cj xj , primitive operators applications, and also case and let ex-
pressions. We will use v to denote a variable, k to denote a literal, and x to
denote an atom (a variable or a literal). Constructor and primitive operators ap-
plications are saturated. In case expressions there may be a default alternative,
denoted as [v → e] to indicate it is optional.

The variables contain type information, so we will not write it explicitly in
the expressions. When necessary, we will write e :: t to make explicit the type
of an expression. A type may be a basic type K, a type variable β, a tuple type
(t1, . . . , tm), an algebraic (sum) type T t1 . . . tm, a functional type t1 → t2 or
a polymorphic type ∀β.t. The new Eden expressions are a process abstraction
process v → e, and a process instantiation v # x. There is also a new type
Process t1 t2 representing the type of a process abstraction process v → e
where v has type t1 and e has type t2. Frequently t1 and t2 are tuple types and
each tuple element represents an input or an output channel of the process.

2.2 The analysis

In Figure 1 the abstract domains for [[·]]
2

are shown. There is a domain Basic

with two values: d represents determinism and n possible non-determinism, with
the ordering d ⊑ n. This is the abstract domain corresponding to basic types
and algebraic types. The abstract domains corresponding to a tuple type and a
function/process type are respectively the cartesian product of the components’
domains and the domain of continuous functions between the domains of the
argument and the result. Polymorphism is studied below.

Basic = {d, n} where d ⊑ n
D2K = D2T t1...tm

= D2β = Basic
D2(t1,...,tm) = D2t1 × . . . × D2tm

D2t1→t2 = D2Process t1 t2 = [D2t1 → D2t2]
D2∀β.t = D2t

Fig. 1. Abstract domains for the analysis

αt : D2t → Basic
αK = αT t1...tm = αβ = idBasic

α(t1,...,tm)(e1, . . . , em) =
⊔

i

αti
(ei)

αProcess t1 t2(f) = αt1→t2(f)
αt1→t2(f) = αt2(f(γt1(d)))
α∀β.t = αt

γt : Basic → D2t

γK = γT t1...tm = γβ = idBasic

γ(t1,...,tm)(b) = (γt1(b), . . . , γtm(b))
γProcess t1 t2(b) = γt1→t2(b)

γt1→t2(b) =

{

λz ∈ D2t1 .γt2(n) if b = n
λz ∈ D2t1 .γt2(αt1(z)) if b = d

γ∀β.t = γt

Fig. 2. Abstraction and concretisation functions, αt and γt

In Figure 3 the abstract interpretation for this analysis is shown. It is an
abstract interpretation based analysis in the style of [3]. We outline here only
some cases. The interpretation of a tuple is the tuple of the abstract values of
the components. Functions and processes are interpreted as abstract functions.
So, application and process instantiation are interpreted as abstract functions
applications. The interpretation of a constructor belongs to Basic, obtained as
the least upper bound (lub) of the component’s abstract values. But each compo-
nent xi :: ti has an abstract value belonging to D2ti

, that must be first flattened

to a basic abstract value. This is done by a function called abstraction function

αt : D2t → Basic, defined in Figure 2. The idea is to flatten the tuples (by ap-
plying the lub operator) and to apply the functions to deterministic arguments.

In a recursive let expression the fixpoint can be calculated by using Kleene’s
ascending chain. We have three different kinds of case expressions (for tuple,
algebraic types and primitive types). The more complex one is the algebraic
case. Its abstract value is non-deterministic if either the discriminant or any of
the expressions in the alternatives is non-deterministic. Note that the abstract
value of the discriminant e, let us call it b, belongs to Basic. That is, when it
was interpreted, the information about the components was lost. We want now
to interpret each alternative’s right hand side in an extended environment with
abstract values for the variables vij :: tij in the left hand side of the alternative.
We do not have such information, but we can safely approximate it by using the
concretisation function γt : Basic → D2t defined in Figure 2. Given a type t, it
unflattens a basic abstract value and produces an abstract value in D2t. The idea
is to obtain the best safe approximation both to d and n in a given domain. The
abstraction and concretisation functions are mutually recursive. In [9] they were
explained in detail and an example was given to illustrate their definitions. They
have some interesting properties (e.g. they are a Galois insertion pair [5]), studied
in [16, 15]. In abstract interpretation, abstraction and concretisation functions
usually relate the standard and abstract semantics. We use here the same names
for a different purpose because they are similar in spirit.

The abstract interpretation of a polymorphic expression is the abstract in-
terpretation of its ‘smallest instance’ [1], i.e. that instance where K (the basic

[[v]]2 ρ2 = ρ2(v)
[[k]]2 ρ2 = d
[[(x1, . . . , xm)]]2 ρ2 = ([[x1]]2 ρ2, . . . , [[xm]]2 ρ2)
[[C x1 . . . xm]]2 ρ2 =

⊔

i

αti
([[xi]]2 ρ2) where xi :: ti

[[e x]]2 ρ2 = ([[e]]2 ρ2) ([[x]]2 ρ2)
[[op x1 . . . xm]]2 ρ2 = (γtop(d)) ([[x1]]2 ρ2) . . . ([[xm]]2 ρ2) where op :: top

[[p#x]]2 ρ2 = ([[p]]2 ρ2) ([[x]]2 ρ2)
[[λv.e]]2 ρ2 = λz ∈ D2tv

.[[e]]2 ρ2 [v 7→ z] where v :: tv

[[process v → e]]2 ρ2 = λz ∈ D2tv
.[[e]]2 ρ2 [v 7→ z]

[[merge]]2 ρ2 = λz ∈ Basic.n
[[let v = e in e′]]2 ρ2 = [[e′]]2 ρ2 [v 7→ [[e]]2 ρ2]

[[let rec {vi = ei} in e′]]2 ρ2 = [[e′]]2 (fix (λρ′
2.ρ2 [vi 7→ [[ei]]2 ρ′

2]))

[[case e of (v1, . . . , vm) → e′]]2 ρ2 = [[e′]]2 ρ2 [vi 7→ πi([[e]]2 ρ2)]

[[case e of Ci vij → ei; [v → e′]]]2 ρ2 =

{

γt(n) if [[e]]2 ρ2 = n
⊔

i

[[ei]]2 ρ2i [⊔ [[e′]]2 ρ′
2] otherwise

where ρ2i = ρ2 [vij 7→ γtij
(d)], vij :: tij , ei :: t

ρ′
2 = ρ2 [v 7→ d]

[[case e of ki → ei; [v → e′]]]2 ρ2 =

{

γt(n) if [[e]]2 ρ2 = n
⊔

i

[[ei]]2 ρ2 [⊔ [[e′]]2 ρ′
2] otherwise

where ei :: t, ρ′
2 = ρ2 [v 7→ d]

[[Λβ.e]]2 ρ2 = [[e]]2 ρ2

[[e t]]2 ρ2 = γt′tinst([[e]]2 ρ2) where e :: ∀β.t′, tinst = t′[β := t]

Fig. 3. Abstract interpretation [[·]]2

type) is substituted for the type variables. This is the reason why the abstract
domain corresponding to a type variable β is Basic, and the abstract domain
corresponding to a polymorphic type is that of the type without qualifier.

When an application to a type t is done, the abstract value of the appro-
priate instance must be obtained. Such abstract value is in fact obtained as
an approximation constructed from the abstract value of the smallest instance.
From now on, the instantiated type t′[β := t] will be denoted as tinst. The ap-
proximation to the instance abstract value is obtained by using a polymorphic

concretisation function γt′tinst : D2t′ → D2tinst , which is defined in Figure 4
(where tinst i represents ti[β := t]). This function adapts an abstract value in
D2t′ to one in D2tinst. Another function, αtinst t′ : D2tinst → D2t′ , which we
will call the polymorphic abstraction function, is also defined in Figure 4. They
are a generalisation of αt and γt. These operated with values in Basic and D2t.
Now we operate with values in the domains D2t′ and D2tinst, that is, between
the domains corresponding to the polymorphic type and each of its concrete
instances. So in case t′ = β they will coincide with αt and γt. These functions
and their properties are described in detail in [16, 15].

3 The Intermediate Analysis

3.1 Introduction

The high cost of [[·]]
2

is due to the fixpoint calculation. At each iteration a com-
parison between abstract values is done. Such comparison is exponential in case

t′ = K, T t1 . . . tm (γt′tinst , αtinst t′) = (idBasic , idBasic)
t′ = (t1, . . . , tm) (γt′tinst , αtinst t′) = ×m((γt1tinst1 , αtinst1 t1), . . . , (γtmtinstm , αtinstm tm))
t′ = t1 → t2 (γt′tinst , αtinst t′) = → ((γt1tinst1 , αtinst1 t1), (γt2tinst2 , αtinst2 t2))
t′ = Process t1 t2 (γt′tinst , αtinst t′) = → ((γt1tinst1 , αtinst1 t1), (γt2tinst2 , αtinst2 t2))
t′ = β (γt′tinst , αtinst t′) = (γt, αt)
t′ = β′ (6= β) (γt′tinst , αtinst t′) = (idBasic , idBasic)
t′ = ∀β′.t1 (γt′tinst , αtinst t′) = (γt1tinst1 , αtinst1 t1)

×((fe, fc), (ge, gc)) = (fe × ge, fc × gc)
→ ((fe, fc), (ge, gc)) = (λh.ge · h · fc, λh′.gc · h′ · fe)

Fig. 4. Polymorphic abstraction and concretisation functions

functional domains are involved. So, a good way of speeding up the calcula-
tion of the fixpoint is finding a quickly comparable representation of functions.
Some different techniques have been developed in this direction, such as fron-
tiers algorithms [10] and widening/narrowing operators [4, 6, 12]. Here, we will
represent functions by signatures in a way similar to [12]. A signature for a
function is obtained by probing such function with some explicitly chosen com-
binations of arguments. For example, in the strictness analysis of [12], a function
f with m arguments was probed with m combination of arguments, those where
⊥ occupies each argument position and the rest of arguments are given a ⊤
value: ⊥,⊤, . . . ,⊤; ⊤,⊥,⊤, . . . ,⊤; . . . ; ⊤,⊤, . . . ,⊥. So, for example, the func-
tion f = λx :: Int.λy :: Int.y has a signature ⊤ ⊥.

If we probe only with some arguments, different functions may have the same
signature and consequently some information is lost. Then the fixpoint calcula-
tion is not exact, but just approximate. A compromise must be found between
the amount of information the signature keeps and the cost of signatures com-
parison. Several probings can be proposed. Here we concentrate on the one we
have implemented, and just mention other possibilities. We probe a function of
m arguments with m+1 combinations of arguments. In the first m combinations,
a non-deterministic abstract value (of the corresponding type) γti

(n) occupies
each argument position while a deterministic abstract value γti

(d) is given to
the rest of the arguments: γt1(n), γt2(d), . . . , γtm

(d); γt1(d), γt2(n), . . . , γtm
(d);

. . . ; γt1(d), γt2(d), . . . , γtm
(n). In the m + 1-th combination, all the arguments

are given a deterministic value: γt1(d), γt2(d), . . . , γtm
(d). This additional com-

bination is very important for us, as we want the analysis to be more powerful
than [[·]]

1
, where the functions were probed with only this combination.

3.2 The Domain of Signatures

In Figure 5 the domains St of signatures are formally defined. The domain cor-
responding to a basic or an algebraic type is a two-point domain, very similar
to the Basic domain. However we will use uppercase letters D and N when
talking about signatures. The domain corresponding to a tuple type is a tuple of
signatures of the corresponding types, for example we could have (D,N) for the
type (Int, Int). The ordering between tuples is the usual componentwise one.

SK = ST t1...tm = Sβ = {D, N}where D � N
S(t1,...,tm) = St1 × . . . × Stm

S∀β.t = St

St = {s1 s2 . . . sm sm+1 |
∀ i ∈ {1..(m + 1)}.si ∈ Str ∧ sm+1 � si}

where t = t1 → t2, P rocess t1 t2
m = nArgs(t), tr = rType(t)

HK = HT t1...tm = Hβ = 1
H(t1,...,tm) =

∑m

i=1
Hti

H∀β.t = Ht

Ht = (m + 1) Htr

where
t = t1 → t2, P rocess t1 t2
m = nArgs(t), tr = rType(t)

Fig. 5. The domain of signatures and its height Ht

The domain corresponding to a polymorphic type is the domain correspond-
ing to the smallest instance. With respect to the functions some intuition must
be given. First of all, we will say that a type t is functional if t = t1 → t2,
t = Process t1 t2 or t = ∀β.t′ where t′ is functional. If a type t is functional we
will write fun(t); otherwise we will write nonfun(t). If a function has m argu-
ments then its signature is composed by m+1 signatures, each one corresponding
to the (non-functional) type of the result. By m arguments, we mean that tak-
ing out all the polymorphism qualifiers, and transforming the process types into
functional types, the type is t1 → . . . → tm → tr, where tr is not functional. We
will call this type the unrolled version of the functional type. As an example, the
unrolled version of Int → (∀β.Process β (β, Int)) is Int → β → (β, Int). Three
useful functions, nArgs, rType and aTypes, can be easily defined (for lack of
space they do not appear here). Given a type t, the first one returns the number
of arguments of t; the second one returns the (non-functional) type of its result
(it is the identity in the rest of cases); and the third one returns the list (of
length nArgs(t)) of the types of the arguments. Then the unrolled version of a
type t has nArgs(t) arguments of types aTypes(t), and rType(t) as result type.
In order to make the signatures for a function type readable, in the examples the
last component is separated with a + symbol. So, an example of signature for
the type Int → (Int, Int) could be (N,D) + (D,D). But not every sequence of
signatures is a valid signature. As we have previously said, the last component
is obtained by probing the function with all the arguments set to a determinis-
tic value, while the rest of them are obtained by probing the function with one
non-deterministic value. As the functions are monotone, this means that the last
component must always be less than or equal to all the other components. The
ordering between the signatures (�) is componentwise, so least upper bound
and greatest lower bound can also be obtained in the same way. It is easy to
see that with this ordering, the domain of signatures St for a given type t is a
complete lattice of height Ht, see Figure 5.

3.3 The Probing

In this section we define the probing function ℘t :: D2t → St, that given an
abstract value in D2t, obtains the corresponding signature in St. In Figure 6 the
formal definition is shown. The signature of a basic value b is the corresponding
basic signature B, that is, if b = d then B = D and if b = n then B = N . The
signature of a tuple is the tuple of signatures of the components. And finally,
the signature for a function or a process f :: t is a sequence of m + 1 signatures,

℘t :: D2t → St

℘K(b) = ℘T t1...tm
(b) = ℘β(b) = B

℘(t1,...,tm)(e1, . . . , em) = (℘t1
(e1), . . . , ℘tm

(em))

℘∀β.t = ℘t

℘t(f) = ℘tr
(f γt1(n) γt2(d) . . . γtm(d)) ℘tr

(f γt1(d) γt2(n) . . . γtm(d)) . . .
℘tr

(f γt1(d) γt2(d) . . . γtm(n)) ℘tr
(f γt1(d) γt2(d) . . . γtm(d))

where t = t′1 → t′2, P rocess t′1 t′2, tr = rType(t), [t1, . . . , tm] = aTypes(t)

Fig. 6. The probing function

ℜt :: St → D2t

ℜK(B) = ℜT t1...tm(B) = ℜβ(B) = b
ℜ(t1,...,tm)(s1, . . . , sm) = (ℜt1(s1), . . . ,ℜtm(sm))
ℜ∀β.t = ℜt

ℜt(sj) = λzj ∈ D2tj
.

ℜtr (sm+1) if

m
∧

j=1

zj ⊑ γtj
(d)

ℜtr (si) if

m
∧

j=1,j 6=i

zj ⊑ γtj
(d) ∧ zi 6⊑ γti

(d) ∀i ∈ {1..m}

γtr (n) otherwise (m > 1)
where sj = s1 . . . sm sm+1, t = t′1 → t′2, P rocess t′1 t′2

m = nArgs(t), tr = rType(t), [t1, . . . , tm] = aTypes(t)

Fig. 7. The concretisation function corresponding to the probing

where m = nArgs(t), that are obtained by probing f with the combinations of
arguments we have previously mentioned.

We have already said that in the probing process some information is lost.
This means that a signature represents several abstract values. When we want
to recover the original value, we can only return an approximation. This is what
the signatures concretisation function ℜt :: St → D2t does. This function is
defined in Figure 7. All the cases but the functional one are simple. Given a
signature s = s1 . . . sm sm+1, where s ∈ St, ℜt(s) is a function of m arguments
zi ∈ D2ti

. We know that the last element sm+1 was obtained by probing the
original function with γti

(d), i ∈ {1..m}. So, if all the arguments are less than
or equal to the corresponding γti

(d), then the concretisation of sm+1 can be
safely returned. The original function might have more precise information for
some of the arguments combinations below γti

(d), but now it is lost. We already
know that si was obtained by probing the original function with γti

(n) value
for the ith argument and γtj

(d) for the rest of them (j ∈ {1..m}, j 6= i). So, if
all the arguments but the ith one are less than or equal to the corresponding
γtj

(d), then we can safely return the concretisation of si. Again we are losing
information. If there is more than one value that is not less than or equal to the
corresponding γtj

(d), we can only return the pessimistic value γtr
(n), as we do

not have information for these combinations of arguments in the signature.

We have said that we will use a widening operator to speed up the fixpoint
calculation. This is defined as Wt = ℜt · ℘t. In fact we will prove that Wt is
an upper closure operator (Wt ⊒ idD2t

). The definition of a widening operator
is more general [4], but given an upper closure operator Wt, we can define a
corresponding widening operator ∇t = λ(x, y).x ⊔Wt(y), as done in [6]. So we
will use the word widening operator instead, as in [12].

The analysis The analysis is very similar to the second analysis, presented in
Section 2. We will use a 3 underscript to identify it. The only expression where
there are differences is the recursive let expression where a fixpoint must be cal-
culated: [[let rec {vi = ei} in e′]]

3
ρ3 = [[e′]]

3
(fix (λρ′3.ρ3 [vi 7→ Wti

([[ei]]3 ρ′3)])),
where ei :: ti. Notice that by modifying the widening operator we can have sev-
eral different variants of the analysis. We can express them parameterised by the
(collection of) widening operator wopt, [[·]]

3

wop
.

3.4 Some Theoretical Results

In this section we will prove some properties of the functions defined in the previ-
ous section and some others that will help in the implementation of the analysis.
Proposition 1 tells us that ℘t and ℜt are a Galois insertion pair, which means
that ℜt recovers as much information as possible, considering how the signature
was built. As a consequence, Wt is a widening operator. Proposition 2 tells us
that γt(d) and γt(n) can be represented by their corresponding signatures with-
out losing any information, which will be very useful in the implementation of
the analysis. Finally, Proposition 3 tells us that the comparison between an ab-
stract value and γt(d) can be done by comparing their corresponding signatures,
which is much less expensive. This will be very useful in the implementation, as
such comparison is done very often. In the worst case it is made in Ht steps.

Proposition 1 For each type t,

(a) The functions ℘t, ℜt, and Wt are monotone and continuous.

(b) Wt ⊒ idD2t
.

(c) ℘t · ℜt = idSt
.

Proposition 2 For each type t, Wt · γt = γt.

Proposition 3 For each type t, ∀z ∈ D2t.z ⊑ γt(d) ⇔ ℘t(z) � ℘t(γt(d)).

3.5 Polymorphism

We would like to have a property similar to Proposition 2, Wtinst · γt′tinst =
γt′tinst so that we could represent the instantiations’ abstract value by its sig-
nature, but this is not true. We show a counterexample. Let the polymorphic
type ∀β.t′, where t′ = (β, β) → β, be instantiated with the type t = Int → Int.
Then tinst = t′[t/β] = (Int → Int, Int → Int) → Int → Int. To abbreviate, we
will call Ep to Basic×Basic and Fp to [Basic → Basic]× [Basic → Basic]. Let
f ∈ D2t′ be f = λp ∈ Ep.π1(p). By definition we have that γt′tinst(f) = λp ∈
Fp.γt2tinst2(f (αtinst1 t1(p))). Also by definition we have that

Wtinst(γt′tinst(f)) = λp ∈ Fp.

{

λu ∈ Basic.u if p ⊑ (λz ∈ Basic.z, λz ∈ Basic.z)
λu ∈ Basic.n otherwise

Let q = (λz ∈ Basic.z, λz ∈ Basic.n). Then

γt′tinst(f) q = λu ∈ Basic.u < λu ∈ Basic.n = (Wtinst(γt′tinst(f))) q

[[·]]2

[[·]]3
Wb

[[·]]3
Wc [[·]]3

W

[[·]]3
Wd [[·]]1

Fig. 8. A hierarchy of analyses

e = let rec

f = λp.λx.case p of

(p1, p2) → case p2 of

0 → (p1, x)
z → (f (p1 ∗ p1, p2 − 1)) (x ∗ p2)

in let

f1 = (f (q, 3)) 4
f2 = (f (1, 2)) q
x1 = case f1 of (f11, f12) → f12

x2 = case f2 of (f21, f22) → f21

in (x1, x2)

Fig. 9. An example expression e

3.6 A Hierarchy of Analyses

This analysis was intended to be an intermediate one between the two analyses
presented in [9]. In this section we study its relation with [[·]]

2
. It can also be

proved that some of its variants are better than [[·]]
1
, see [16, 15]. First, Proposi-

tion 4 tells us that the third analysis is less precise than the second one. This is
true for any variant of the third analysis, and in particular for the one we have
described. Also, Proposition 5 tells us that given two comparable widening op-
erators, the corresponding variants of the third analysis are also comparable. In
[16] other variants (Wb, Wc and Wd) of the third analysis were presented. The
relations between them and with [[·]]

1
and [[·]]

2
are shown in Figure 8. The main

difference between them lies in their treatment of tuples, in the argument and/or
in the result of the functions, either as indivisible entities or as componentwise
ones.

Proposition 4 Let W ′

t : D2t → D2t be a widening operator for each type t. Let

ρ2 and ρ3 be such that for each variable v :: tv ρ2(v) ⊑ ρ3(v). Then for each

expression e :: te, [[e]]
2

ρ2 ⊑ [[e]]
3

W
′

ρ3

Proposition 5 Let W ′

t, W
′′

t be two widening operators for each type t. Let ρ3,

ρ′3 such that for each variable v :: tv, ρ3(v) ⊑ ρ′3(v). If for each type t, W ′

t ⊑ W ′′

t ,

then for each expression e :: te, [[e]]
3

W
′

ρ3 ⊑ [[e]]
3

W
′′

ρ′3

An example In Figure 9 an example expression e :: (Int, Int) shows the dif-
ference in power between [[·]]

1
, [[·]]

3

W

and [[·]]
2
. In order to save some space, the

syntax is sugared. Given a pair of integers (p1, p2) and another integer x, the
function f :: t, where t = (Int, Int) → Int → (Int, Int), calculates the pair
(p1

2∗p2 , x ∗ p2!). q is a free variable in e. Let us assume that in our abstract
environment it has an abstract value n, that is, ρ = [q 7→ n]. Then, by ap-
plying the analyses definitions (see [9] for the details of [[·]]

1
) we obtain that

[[e]]
1

ρ = (n, n) = [[e]]
3

W

ρ = (n, d) = [[e]]
2

ρ = (d, d).

av → b
| (av1, . . . , avm)
| λv.(e, ρ)
| G t′ t′[t/β] av
| A t′[t/β] t′ av
|
⊔

F [av1, . . . , avm]
| aw

b → | d
| n

aw → | b
| (aw1, . . . , awm)
| <t, aw1 . . . awm + aw>
| <t, + aw>

Fig. 10. Abstract values definition

γ′
t :: Basic → St

γ′
t(b) =

B if t = K, t = T t1 . . . tm, t = β
(γ′

t1(b), . . . , γ
′
tm

(b)) if t = (t1, . . . , tm)
γ′

t1(b) if t = ∀t.t1

<t, γ′
tr

(n) (m). . . γ′
tr

(n) + γ′
tr

(b)> if t = t1 → t2, P rocess t1 t2
where m = nArgs(t), tr = rType(t)

Fig. 11. The signatures corresponding to γt(n) and γt(d).

4 Implementation of the analysis

4.1 Introduction

In this section we describe the main aspects of the analysis implementation. The
algorithm we describe here not only obtains the abstract values of the expres-
sions, but it also annotates each expression (and its subexpressions) with its
corresponding signature. A full version of this algorithm has been implemented
in Haskell. The implementation of the analysis includes also a little parser and
a pretty printing [7]. It is important to annotate the subexpressions, even inside
the body of a lambda-abstraction. In [9] we explained that the full laziness trans-
formation [13] may change the semantics of a program when non-deterministic
expressions are involved. Given an expression f = λy.let x = e1 in x + y,
where e1 does not depend on y, the full laziness transformation would produce
f ′ = let x = e1 in λy.x + y. It was shown that the problem appears when e1 is
non-deterministic. So the annotation of expressions inside functions is necessary.

In the algorithm we make use of the fact that it is implemented in a lazy
functional language. The interpretation of a lambda λv.e in an environment ρ
is an abstract function. We will use a suspension λv.(e, ρ) to represent the ab-
stract value of λv.e. Only when the function is applied to an argument, the
body e of the function will be interpreted in the proper environment, emulating
in this way the behaviour of the abstract function. So, we use the lazy evalu-
ation of Haskell as our interpretation machinery. Otherwise, we should build a
whole interpreter which would be less efficient. But this decision introduces some
problems. Sometimes we need to build an abstract function that does not come
from the interpretation of a lambda in the program. There are several situations
where this happens. One of these is the application of γt(b) when t is a function
or a process type. By Proposition 2 we can use the corresponding signature to
represent γt(b) without losing information. So, in this case we do not need to
build a function. Given a basic value b, function γ′

t = ℘t · γt, see Figure 11,
returns the signature of γt(b).

γ′
t′tinst : D2t′ → D2tinst α′

tinst t′ : D2tinst → D2t′

t′ = K, T t1 . . . tm, γ′
t′tinst = idBasic α′

tinst t′ = idBasic

β′(6= β)
t′ = (t1, . . . , tm) γ′

t′tinst(av1, . . . , avm) = α′
tinst t′(av1, . . . , avm) =

(γ′
t1tinst1

(av1), . . . , γ
′
tmtinstm

(avm)) (α′
tinst1 t1

(av1), . . . , α
′
tinstm tm

(avm))
t′ = t1 → t2, γ′

t′tinst(av) = G t′ t′[t/β] av α′
tinst t′(av) = A t′[t/β] t′ av

Process t1 t2
t′ = β γ′

t′tinst = γ′
t α′

tinst t′ = αt

t′ = ∀β′.t1 γ′
t′tinst = γ′

t1tinst1
α′

tinst t′ = α′
tinst1 t1

Fig. 12. Implementation of functions αtinst t′ and γt′tinst

This also happens when computing αtinst t′(av) and γt′tinst(av) where t′ is
a function or a process type. But in this case, as we saw in Section 3.5, we
cannot represent these values by their signatures without losing information.
So we build two new suspensions A t′[t/β] t′ av and G t′ t′[t/β] av to represent
them, see Figure 10. In Figure 12 the implementation of functions γt′tinst and
αtinst t′ , respectively called γ′

t′tinst and α′

tinst t′ are shown. In the functional case
they just return the suspension. Only when they are applied to an argument,
their definitions are applied, see Figure 14.

We also need to build a function when computing a lub of functions. In this
case, we also use a new suspension

⊔

F [av1, . . . , avm], see Figure 10. When the
function is applied, the lub will be computed, see Figure 14.

4.2 Abstract values definition

In the implementation of the analysis, signatures are considered also as ab-
stract values, where a signature s ∈ St is just a representation of the abstract
value ℜt(s). In Figure 10 the abstract values are defined. They can be basic
abstract values d or n, that represent both a true basic abstract value or a basic
signature. Tuples of abstract values are also abstract values. A functional ab-
stract value may have several different representations: It may be represented
by a signature or as a suspension. In Figure 10 a functional signature is either
<t, aw1 . . . awm + aw> or <t,+ aw>. The first one is a normal signature. The
signature <t,+ aw> represents a function returning aw when all the arguments
are deterministic (that is, less than or equal to γti

(d)) and γtr
(n) otherwise.

So, it is just a particular case of < t, aw1 . . . awm + aw > where awi = γtr
(n)

(i ∈ {1..m}). A function may also be represented as a suspension. As we have
previously said, it can be a suspended lambda abstraction λv.(e, ρ), a suspended
lub

⊔

F [av1, . . . , avm] or a polymorphism suspension.
In Figure 13 the lub operator between abstract values is defined. For basic

values/signatures and tuples it is simple. In the functional case, if both functions
are represented by a signature then we just apply the lub operator component-
wise. If one of the functions is a suspension, then the result is a lub suspension.

4.3 Abstract application of a function

In Figure 14 the definition of the application of an abstract function to an
abstract argument is shown. In case the abstract function is a signature of the

n ⊔ b = n
d ⊔ b = b
(av1, . . . , avm) ⊔ (av′

1, . . . , av′
m) = (av1 ⊔ av′

1, . . . , avm ⊔ av′
m)

<t, aw1 . . . awm + aw> ⊔ <t, aw′
1, . . . , aw′

m + aw′ > =
<t, (aw1 ⊔ aw′

1) . . . (awm ⊔ aw′
m) + (aw ⊔ aw′)>

<t, + aw> ⊔ <t, + aw′ > = <t, + (aw ⊔ aw′)>
<t, aw1 . . . awm + aw> ⊔ <t, + aw′ > = <t, + aw′ > ⊔ <t, aw1 . . . awm + aw>

= <t, + (aw ⊔ aw′)>
(
⊔

F avs) ⊔ av = av ⊔ (
⊔

F avs) =
⊔

F av : avs
av ⊔ λv.(e, ρ) = λv.(e, ρ) ⊔ av =

⊔

F [av, λv.(e, ρ)]
(G t′ t′[t/β] av) ⊔ av′ = av′ ⊔ (G t′ t′[t/β] av) =

⊔

F [av′, G t′ t′[t/β] av]
(A t′[t/β] t′ av) ⊔ av′ = av′ ⊔ (A t′[t/β] t′ av) =

⊔

F [av′, A t′[t/β] t′ av]
⊔ [av1, . . . , avm] = av1 ⊔ . . . ⊔ avm

Fig. 13. Lub operator definition

form <t1 → . . . → tm → tr, aw1 . . . awm + aw> we check if the argument av′ is
less than or equal to γt1(d). This is done by comparing their signatures, ℘t1

(av′)
and γ′

t1
(d) (this can be done by Proposition 3). Should this happen, then we

discard the first element aw1 of the signature and return < t2 → . . . → tm →
tr, aw2 . . . awm + aw >, as these elements have been obtained by giving the
first argument a value γt1(d). Otherwise, we can return aw1 as result of the
function, only if the rest of the arguments are deterministic, so a signature
<t2 → . . . → tm → tr,+aw1 > is returned. If the abstract function is a signature
<t1 → . . . → tm → tr, + aw>, only if all the arguments are deterministic (that
is, less than or equal to γti

(d)) the value aw is returned. If any of them is not,
a non-deterministic result is returned.

The suspensions are just a way of delaying the evaluation until the arguments
are known. The application of a suspended function to an argument evaluates
the function as far as it is possible, until the result of the function or a new
suspension is obtained. If it is a suspension λv.(e, ρ), we continue by evaluating
the body e with the interpretation function [[·]]

′

, studied in the following section.
The environment ρ keeps the abstract values of all the free variables but v in e.
So we just have to add a mapping from v to the abstract value of the argument.

If it is a suspended lub, we apply each function to the argument and then
try to calculate the lub of the results. If it is a polymorphism suspension then
we continue by applying the (temporally suspended) definition of γt′tinst and
αtinst t′ . The algorithm proceeds by suspending and evaluating once and again.

4.4 The algorithm

In the algorithm there are two different interpretation functions [[·]]
′

and [[·]].
Given a non-annotated expression e and an environment ρ, [[e]] ρ returns a pair
(av, e′@aw) where av is the abstract value of e, e′ is e where all its subex-
pressions have been annotated, and aw is the external annotation of e. While
annotations in the expressions are always signatures, the first component of the
pair is intented to keep as much information as possible, except in the fixpoint
calculation where it will be replaced by its corresponding signature. In Figure 15
the algorithm for [[·]] is shown in pseudocode. The one for [[·]]

′

is very similar:

(λv.(e, ρ)) av = [[e]]′ ρ[v 7→ (av, aw, b)] where v :: tv, aw = ℘tv
(av), b = αtv (av)

(
⊔

F [av1, . . . , avm]) av′ =
⊔

[av1 av′, . . . , avm av′]
(G t′ t′[t/β] av) av′ = γ′

t2tinst2
(av (α′

tinst1 t1
(av′)))

(A t′[t/β] t′ av) av′ = α′
tinst2 t2

(av (γ′
t1tinst1

(av′)))
<t1 → . . . → tm → tr, aw1 . . . awm + aw> av′ (m > 1)

| ℘t1
(av′) � γ′

t1(d) = <t2 → . . . → tm → tr, aw2 . . . awm + aw>
| otherwise = <t2 → . . . → tm → tr, + aw1 >

<t1 → tr, aw1 + aw> av′

| ℘t1
(av′) � γ′

t1(d) = aw
| otherwise = aw1

<t1 → . . . → tm → tr, + aw> av′ (m > 1)
| ℘t1

(av′) � γ′
t1(d) = <t2 → . . . → tm → tr, + aw>

| otherwise = γ′
t2→...→tm→tr

(n)
<t1 → tr, + aw> av′

| ℘t1
(av′) � γ′

t1(d) = aw
| otherwise = γ′

tr
(n)

Fig. 14. Application of abstract functions

[[e]]
′

ρ returns just the abstract value of the expression. The rest of computations
of [[e]] ρ are not done. In an environment ρ, there is a triple (av, aw, b) of abstract
values associated to each program variable v. The first component av is the ab-
stract value of the expression, aw is the corresponding signature ℘t(av), and b is
the basic abstract value corresponding to αt(av). As these three values may be
used several times along the interpretation, they are calculated just once, when
the variable is bound, and used wherever needed.

The computation of the first component of the result av follows the definition
of [[·]]

3

W

, so we just explain the annotation part. In general, to annotate the
expression we first recursively annotate its subexpressions and then calculate
the annotation for the whole expression by probing the resulting abstract value
(the first component) of the expression. But, in many cases the annotations of
the subexpressions are used to build the annotation of the whole expression,
which is more efficient.

4.5 Cost of the Analysis

Analysing the cost of the interpretation algorithm has proved to be a hard task.
This is due to the fact that many of the functions involved —in particular [[·]], [[·]]

′

,
abstract application, γ′

ttinst , ℘t, α′

tinst t′ , and α′

t— are heavily mutually recursive.
Fortunately, there are small functions whose cost can be directly computed. For
instance, a comparison between two signatures in St, or computing their lub, can
be done in O(Ht). So, the lub of m abstract values of type t is in O((m−1) Ht).
The cost of γ′

t(b) is in O(m + Htr
), being m = nArgs(t) and tr = rType(t).

To analyse the cost of the main interpretation functions we define in [16] two
functions s, s′ : Expr → Int respectively giving the ‘size’ of an expression e when
interpreted by [[·]] and by [[·]]

′

. Then [[e]]
′

ρ ∈ O(s′(e)) and [[e]] ρ ∈ O(s(e)). Most
of the time, s(e) and s′(e) are linear with e using any intuitive notion of size of
an expression and including in this notion the size of the types involved. There
are three exceptions to this linearity: (1) Applications: Interpreting a lambda
binding with [[·]]

′

costs O(1) because a suspension is immediately created. But

the body of this lambda is interpreted as many times as the lambda appears
applied in the text, each time with possibly different arguments. Being eλ the
body of a lambda, the algorithm costs O(s′(eλ)) each time the lambda is applied.
(2) Probing a function: It is heavily used by [[·]] to annotate expressions with
signatures and also by both [[·]] and [[·]]

′

in fixpoints. The cost of ℘t(e) involves
m + 1 abstract applications, each one to m parameters, being m = nArgs(t).
Calling eλ to e’s body, the cost will be in O((m + 1) s′(eλ)). (3) Fixpoints

Assuming a recursive binding v = e of functional type t, being m = nArgs(t),
tr = rType(t), and eλ the body of e, algorithm [[·]]

′

will compute a fixpoint in
a maximum of Ht = (m + 1) Htr

iterations. At each iteration, the signature of
e is obtained, so the cost of fixpoints is in O(m2 Htr

s′(eλ)). The annotation
algorithm [[·]] will add to this cost that of completely annotating e, which involves
m probings more, each one with one parameter less, i.e. in total O(m2 s′(eλ)).

Summarizing, the complete interpretation/annotation algorithm is linear with
e except in applications —where the interpretation of the body must be multi-
plied by the number of applications—, in the annotation of functions —where
it is quadratic because of probing—, and in fixpoints where it can reach a cubic
cost. We have tried the algorithm with actual definitions of typical Eden skele-
tons. For files of 3.000 net lines and 80 seconds of compilation time in a SUN 4
250 MHz Ultra Sparc-II, the analysis adds an overhead in the range of 0.5 to 1
second, i.e. less than 1 % overhead.

5 Conclusions

This paper has presented a non-determinism analysis, both from a theoreti-
cal and from a practical point of view. Although the main motivation for this
work has been the correct compilation of our language Eden, most of the work
presented here can be applied to any other non-deterministic polymorphic func-
tional language. A possible application of the analysis could be to annotate a
source text written in such a language with deterministic annotations, showing
the programmer where equational reasoning would still be possible.

In [9] we presented two other analyses for this problem and related them
to other abstract interpretation based analyses, such as strictness analysis. The
first one had linear cost but it lost most of the information collected for a func-
tion when the function was applied. The second one has been summarized in
Section 2. It is very powerful but has exponential cost. The one explained here
represents a balance between power and cost: It needs polynomial time, and
compared to the second analysis, it only loses information in the fixpoints. We
have tried it with many example programs keeping a trace of the number of
iterations at every fixpoint, and the results show that the upper bound Ht is
almost never reached. So, for our purposes, this work closes the initial problem:
We have achieved a powerful enough analysis with an acceptable cost. We have
not found any previous analyses for this problem in the literature.

The implementation itself deserves a closing comment: Implementing the
analysis in a lazy functional language such as Haskell has offered some ad-
vantages. The first one is that an abstract function can be represented by a
suspended interpretation. Related to it, abstract interpretation can make use

of abstract application and the other way around without any danger of non-
termination, thanks to lazy evaluation. Also, [[·]] and [[·]]

′

have in fact been im-
plemented by a single Haskell function. [[·]]

′

is just a call to [[·]] after which the
second component is simply ignored. Lazy evaluation actually does not compute
this component in these calls. All this would have not been so easy in an eager
and/or imperative language. Other features such as higher-order, polymorphism
and overloading has contributed to a compact algorithm: The whole interpreta-
tion fits in a dozen of pages including comments.

References

1. G. Baraki. Abstract Interpretation of Polymorphic Higher-Order Functions. PhD
thesis, University of Glasgow, February 1993.

2. S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña. Eden: Language Defini-
tion and Operational Semantics. Technical Report, Bericht 96-10. Revised version
1.998, Philipps-Universität Marburg, Germany, 1998.

3. G. L. Burn, C. L. Hankin, and S. Abramsky. The Theory of Strictness Analysis for
Higher Order Functions. In H. Ganzinger and N. D. Jones, editors, Programs as
Data Objects, volume 217 of LNCS, pages 42–62. Springer-Verlag, October 1986.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In
Proceedings of the 4th ACM Symposium on Principles of Programming Languages,
pages 238–252. ACM, 1977.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the 6th Annual ACM Symposium on Principles on Program-
ming Languages, pages 269–282. ACM, 1979.

6. C. Hankin and S. Hunt. Approximate fixed points in abstract interpretation. In
B. Krieg-Brückner, editor, ESOP ’92, 4th European Symposium on Programming,
volume 582 of LNCS, pages 219–232. Springer, Berlin, 1992.

7. J. Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of LNCS, pages 53–96.
Springer Verlag, 1995.

8. R. J. M. Hughes and J. O’Donnell. Expressing and Reasoning About Non-
Deterministic Functional Programs. In Functional Programming: Proceedings of
the 1989 Glasgow Workshop, pages 308–328. Springer-Verlag, 1990.

9. R. Peña and C. Segura. Non-Determinism Analysis in a Parallel-Functional Lan-
guage. In 12th International Workshop on Implementation of Functional Lan-
guages, IFL00, volume 2011 of LNCS, pages 1–18. Springer-Verlag, 2001.

10. S. L. Peyton Jones and C. Clack. Finding fixpoints in abstract interpretation.
In S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative
Languages, chapter 11, pages 246–265. Ellis-Horwood, 1987.

11. S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler.
The Glasgow Haskell Compiler: A Technical Overview. In Joint Framework for
Inf. Technology, Keele, DTI/SERC, pages 249–257, 1993.

12. S. L. Peyton Jones and W. Partain. Measuring the effectiveness of a simple strict-
ness analyser. In Glasgow Workshop on Functional Programming 1993, Workshops
in Computing, pages 201–220. Springer-Verlag, 1993.

13. S. L. Peyton Jones, W. Partain, and A. L. M. Santos. Let-floating: Moving Bindings
to give Faster Programs. Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming, ICFP’96, pages 1–12, 24-26 May 1996.

14. S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser for
Haskell. Science of Computer Programming 32(1-3):3-47, September 1998.

15. R. Peña and C. Segura. A Comparison between three Non-determinism Analyses
in a Parallel-Functional Language. In Selected papers in Primeras Jornadas sobre
Programación y Lenguajes, PROLE’01, 2001.

16. R. Peña and C. Segura. Three Non-determinism Analyses in a Parallel-Functional
Language. Technical Report 117-01 (SIP). Universidad Complutense de Madrid,
Spain, 2001. (http://dalila.sip.ucm.es/miembros/clara/publications.html).

17. H. Søndergaard and P. Sestoft. Referential Transparency, Definiteness and Unfold-
ability. Acta Informatica, 27(6):505–517, May 1990.

[[·]]′ :: Expr → Env → AbsVal
[[e]]′ ρ = π1([[e]] ρ)
[[·]] :: Expr() → Env → (AbsVal , Expr AbsVal)
[[v]] ρ = (av, v@aw)

where (av, aw,) = ρ(v);
[[k]] ρ = (d, k@d)
[[(x1, . . . , xm)]] ρ = ((av1, . . . , avm), (x′

1, . . . , x
′
m)@(aw1, . . . , awm))

where (avi, x
′
i) = [[xi]] ρ; xi@awi = x′

i

[[C x1 . . . xm]] ρ = (aw, C x′
1 . . . x′

m@aw) {xi :: ti}
where (avi, x

′
i) = [[xi]] ρ; aw = ⊔m

i=1 bi; bi = if isvar(xi) then (π3(ρ(xi))) else d
[[op x1, . . . , xm]] ρ = (aw, op x′

1 . . . x′
m@aw) {op :: top}

where (avi, x
′
i) = [[xi]] ρ; aw = γ′

top(d) aw1 . . . awm; awi = if isvar(xi) then (π2(ρ(xi))) else d
[[λv.e]] ρ = (a, (λv@awv.e′)@aw) {v :: tv, (λv.e) :: t}

where a = λv.(e, ρ); aw = ℘t(a); awv = γ′
tv

(n); (, e′) = [[e]] ρ[v 7→ (awv, awv, n)]
[[process v → e]] ρ = (a, (process v@awv → e′)@aw) {v :: tv, (process v → e) :: t}

where a = λv.(e, ρ); aw = ℘t(a); awv = γ′
tv

(n); (, e′) = [[e]] ρ[v 7→ (awv, awv, n)]
[[e x]] ρ = (a, (e′ x′)@aw) {(e x) :: t}

where (ae, e′) = [[e]] ρ; (ax, x′) = [[x]] ρ; a = ae ax; aw = ℘t(a)
[[v#x]] ρ = (a, (v′#x′)@aw) {(v#x) :: t}

where (av, v′) = [[v]] ρ; (ax, x′) = [[x]] ρ; a = av ax; aw = ℘t(a)
[[merge]] ρ = (aw,merge@aw) {merge :: tmerge}

where aw = γ′
tmerge

(n)
[[let bind in e]] ρ = (a, (let bind′ in e′)@aw) {e :: t}

where (ρ′, bind′) = [[bind]]
B

ρ; (a, e′) = [[e]] ρ′ e′′@aw = e′

[[case e of (v1, . . . , vm) → e′]] ρ = (a, (case (e1@awe) of (v′
1, . . . , v

′
m) → (e′1@aw))@aw) {vi :: ti}

where (ae, e1@awe) = [[e]] ρ; awi = πi(awe); v′
i = vi@awi; avi = πi(ae);

bi = αti
(avi); (a, e′1@aw) = [[e′]] ρ[vi 7→ (avi, awi, bi)] ;

[[case e of alti]] ρ = (av, (case e′ of alt′i)@aw) {case e of alti :: t}
where (ae, e′) = [[e]] ρ; (avi, alt′i) = [[alti]]A ae ρ; Ci vi1 . . . vimi

→ (ei@wai) = alt′i;
aw = if ae = n then γ′

t(n) else ⊔m
i=1 awi ; av = if ae = n then γ′

t(n) else ⊔m
i=1avi

[[Λβ.e]] ρ = (av, (Λβ.e′)@awv)
where (av, e′) = [[e]] ρ; e′′@awv = e′

[[(e t)]] ρ = (av, e′ t@aw) {e :: (∀β.t′), tinst = t′[t/β]}
where (av′, e′) = [[e]] ρ; av = γ′

t′tinst(av′); aw = ℘tinst(av)
[[v = e]]B ρ = (ρ[v 7→ (av, aw, b)], v@aw = e′@aw)

where (av, e′@aw) = [[e]] ρ; b = αtv (av)

[[rec vi = ei]]B ρ = (ρf ix, rec v′
i = e′′i) {vi :: ti}

where ρf ix = fix f init; init = ρ[vi 7→ (awi, awi, d)]; awi = γ′
ti

(d)

fρ′ = ρ′[vi 7→ (aw′
i, aw′

i, bi)] where av′
i = [[ei]]

′ ρ′; aw′
i = ℘ti

(av′
i); bi = αti

(av′
i)

(, e′′i) = [[ei]] ρfix; (, awi,) = ρfix (vi); v′
i = vi@awi

[[C v1 . . . vm → e]]A avd ρ = (av, C v′
1 . . . v′

m → e′) {vi :: ti}

where awi = γ′
ti

(avd); (av, e′) = [[e]] ρ[vi 7→ (awi, awi, avd)]; v′
i = vi@awi

[[v → e]]A avd ρ = (av, v′ → e′)
where (av, e′) = [[e]] ρ[v 7→ (avd, avd, avd)]; v′ = v@avd

Fig. 15. The expressions annotation algorithm

