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Abstract. Eden is a parallel functional language extending Haskell with
processes. This paper describes the implementation of an interface be-
tween the Eden language and the Maple system. The aim of this effort is
to parallelize Maple programs by using Eden as coordination language.
The idea is to leave in Maple the computational intensive functions of
the (sequential) algorithm and to use Eden skeletons to set up the par-
allel process topology in the available parallel machine. A Maple system
is instantiated in each processor. Eden processes are responsible for in-
voking Maple functions with appropriate parameters and of getting back
the results, as well as of performing all the data communication between
processes.
The interface provides the following services: instantiating and terminat-
ing a Maple system in each processor, performing data conversion be-
tween Maple and Haskell objects, invoking Maple functions from Eden,
and ensuring mutual exclusion in the access to Maple from different con-
current threads in the local processor.
A parallel version of Buchberger’s algorithm to compute Gröbner bases
is presented to illustrate the use of the interface.
Keywords: Functional parallel programming, skeletons, computer alge-
bra algorithms, foreign language interfaces.

1 Introduction

Computer algebra algorithms, usually programmed in specialized systems such
as Maple [8], are known to need much computer time. Many of these algorithms
run for hours, days and even weeks.

Eden is a parallel functional language extending Haskell with processes [2].
It runs on most Unix-like platforms supporting the PVM (Parallel Virtual Ma-

chine) library [14]. It has been shown that building parallel algorithms in Eden is
a rather easy task [7]. Moreover, Eden provides now a wide library of predefined
skeletons fitting most of the typical parallel applications [6, 7]. Doing parallel
programming with skeletons is as convenient as doing functional programming
with higher-order functions.

⋆ Work partially supported by the Spanish project TIC 2000-0738.



To try to bring together the advantages of both systems, Maple and Eden,
is a worthwhile effort. On the one hand, computer algebra specialists might
continue to use one of their favorite tools while getting the speedups of a parallel
implementation. With an appropriate parallel machine, they could easily cut the
running time of their algorithms. On the other hand, they would not have to deal
with complex parallel libraries such as PVM and the like to explicitly program
the parallel versions. In other words, they would not be forced to pay the effort
of an explicit parallel implementation. Instead, if Eden provides the appropriate
skeleton, only a few simple Haskell functions would have to be provided, as it
will be shown in the example of Section 5.

The idea is simple: to leave in Maple the complex algebraic computations
and to give to Eden the task of creating and communicating processes. The
idea of having a coordination language on top of a computation language is by
no means new (e.g., see [4, 9]) but this is the first time that the combination
Eden-Maple has been tried. Then, what is needed is an interface through which
Eden programs may invoke Maple functions. This paper explains in detail the
implementation of such an interface and its use in the development of a complex
hybrid Eden-Maple parallel algorithm.

The structure of the paper is as follows: In Section 2 we present previous work,
an interface Haskell-Maple, on which we have based our own interface. Section 3
gives a quick introduction to Eden and explains the parallel structure of hybrid
Eden-Maple algorithms. In Section 4, we give an account of the concurrency
problems which may arise in every single processor and of how we have solved
them. Section 5 presents the application example: computing the Gröbner basis
of a set of polynomials. Once the problem is introduced, we develop a new Eden
skeleton fitting the parallel structure of the algorithm. Then, the skeleton is
instantiated with problem dependent functions, so solving in parallel the Gröbner
basis problem. It is in some of these problem dependent functions where Maple
functions are invoked by using the Eden-Maple interface. Finally, Section 6 draws
some conclusions and future work.

2 The Sequential Interface

The starting point for our work has been an interface between GHC [11] and
Maple written by Wolfgang Schreiner and Hans-Wolgang Loidl [12] in order to
invoke Maple functions from Haskell. The versions used at that time were GHC-
4.08.1 and Maple 5.1, both running under Unix-like operating systems. They
tried also to build a parallel version to be able to interface Glasgow Parallel

Haskell programs [15] to Maple but, to our knowledge, this version was never
completed.

The main idea of the interface, which we have preserved in our version, is
to run Maple ‘as it is’ in a separate Unix process. All the interface to Maple is
done through the standard input and the standard output of this process, i.e.
the Haskell process simulates a user terminal for the Maple process. Addition-
ally, a small interpreter was written in the Maple side in such a way that, by
using a simple protocol through the standard input/ouput, Haskell could ask the



interpreter to invoke any Maple function and to translate data objects from ex-
ternal format to Maple internal format and the other way around. The idea was
to convert the initial data of a complex computer algebra algorithm to Maple
internal format; then, to invoke Maple functions by delivering their parameters
and recovering their results in internal format; and lastly, to convert the final
results of the algorithm to external, character oriented, format. In this way, the
total number of format conversions were minimized.

This separation of Haskell and Maple in different processes simplifies many
problems concerning the memory management and the merging of both runtime
systems, problems that would have arisen in an alternative approach consisting
of running both systems as a single Unix process.

The sequential interface consists of a Haskell fragment and a C fragment. The
C part is mainly devoted to invoke Posix services. They are needed to initiate the
Maple process, to establish the pipe connections with it, and to send commands
to or to receive results from this process. The C part also provides static memory
to store Unix objects that must be preserved between calls. These are the file
descriptors of the pipes, the process identity of the Maple process, and some
buffers and global variables.

The Haskell part provides the interface functions to user programs and im-
plements the communication protocol with the Maple process. It invokes the
C functions by using the plain ccall facility of GHC. The main functions a
Haskell programmer may use are the following ones:

mapleEval :: String -> [MapleObject] -> MapleObject

mapleEvalN :: String -> [MapleObject] -> [MapleObject]

string2MapleExpr :: String -> MapleObject

mapleExpr2String :: MapleObject -> String

The first two allows Haskell programs to invoke any Maple function just by
giving the name and the list of its parameters as Maple objects. The second
version must be used to invoke Maple functions returning more than one object.
The other two provide conversion of Maple objects from external format to
internal one and the other way around. In addition, the Haskell program must
make an initial ccall to function mapleInit, and a final ccall to function
mapleTerm.

A Maple object is returned by (must be sent to) Maple as a sequence of
bytes. From the interface point of view, type MapleObject is defined as a Haskell
ByteArray, a type now deprecated but available in GHC-4.08. Other deprecated
Haskell types used by the interface were Addr and MutableArray. The type
MapleObject is exported to user programs as an abstract type.

We acknowledge the big effort and the good ideas contained in this interface.
But, from our point of view, this is only half of the way we have to go. Despite the
fact that a hybrid Haskell-Maple algorithm is executed by two Unix processes,
it is obvious that they will never be concurrently computing in the sense that,
while the Maple process is involved in a call, the Haskell process must wait for
the result before resuming it own computation, and while the Haskell process is
computing, the Maple process must also wait for the next command to arrive.



From this perspective, it is not dangerous to call Unix primitives such as sleep,
fwrite, fgets or select that completely block the calling process.

As we will see in the next sections, a hybrid Eden-Maple algorithm is more
complex. In principle, several computers (in what follows we will refer to them
as PEs, or processing elements) may participate in the computation and so a
Maple process should be available in each computer needing to access Maple.
Also, several concurrent Eden processes may be instantiated in the same PE.
Some of them may need to access Maple and some other not. As we will explain,
Eden processes, and Eden threads within a process, are lightweight, i.e. they do
not correspond to Unix processes. All Eden threads running in the same PE are
scheduled from inside a single Unix process. From this point of view, it is not
admissible to block the entire Unix process just because a thread is accessing
Maple. This will block the rest of the threads, what may lead the whole algorithm
to a deadlock.

3 The Parallel Structure of Eden-Maple Algorithms

3.1 Eden

The parallel-functional language Eden extends the lazy functional language Haskell
by constructs to explicitly define and communicate processes. The three main
new concepts are process abstractions, process instantiations and the non-determi-
nistic process abstraction merge.

A process abstraction expression of type Process a b defines the behaviour of
a process having as input a formal parameter of type a and returning as output
a result of type b. Process abstractions are created by the predefined function
process :: (a -> b) -> Process a b which converts a function into a process.
A process instantiation is achieved by using the predefined infix operator (#) ::

Process a b -> a -> b. The main difference between a process and a function is
that the former, when instantiated, is executed in parallel with the rest of the
computation.

The evaluation of an expression e1 # e2 leads to the dynamic creation of
a process together with its interconnecting communication channels. The in-
stantiating or parent process is responsible for evaluating and sending e2 via an
implicitly generated channel, while the new child process first evaluates the ex-
pression e1 until a process abstraction process (\x -> e) is obtained and then
the application (\x -> e) e2, returning the result via another implicitly gener-
ated channel. For input tuples, independent concurrent threads are created in
the parent to evaluate each component. Also, if the output is a tuple, an in-
dependent thread is created in the child to evaluate each component. Once a
process is running, only fully evaluated data objects (or lambda abstractions)
are communicated. The only exceptions are lists, which are transmitted in a
stream-like fashion, i.e. element by element. Each list element is first evaluated
to full normal form and then transmitted. Concurrent threads trying to access
input which is not available yet, are temporarily suspended.

Lazy evaluation is changed to eager evaluation in two cases: Processes are
eagerly instantiated, and instantiated processes produce their output even if it



is not demanded. These modifications aim at increasing the parallelism degree
and at speeding up the distribution of the computation. The rest of the language
is as lazy as Haskell.

Non-determinism is introduced in Eden by means of a predefined process
abstraction merge :: Process [[a]] [a] which fairly interleaves a set of input
lists, to produce a single non-deterministic list. Its implementation immediately
copies to the output list any value appearing at any of the input lists. So, merge
can profitably be used to quickly react to requests coming in an unpredictable
order from a set of processes. This feature is essential in reactive systems and
very useful in some deterministic parallel algorithms (see skeleton in Section 5.2).

A last feature are dynamic reply channels. The predefined function new ::

(ChanName a -> a -> b) -> b creates a channel of type a whose name of type
ChanName a can be sent to a remote process, and then executes an expression
of type b. The creating process can receive data from the remote one by trying
to evaluate the created channel. The remote one can send a value of type a

through the channel by using its name and the predefined function parfill ::

ChanName a -> a -> c -> c. This function creates a concurrent thread to send
an expression of type a through the dynamic channel of type ChanName a and
then executes an expression of type c. As an example, consider the following
program where process one receives an integer from the remote process two by
using the dynamic channel c of name cn:

one :: Process Int Int

one = process (\x -> new (\cn c -> let nothing = two # cn in x + c))

two :: Process (ChanName Int) ()

two = process (\cn -> parfill cn 3 ())

The Eden runtime system runs on top of the parallel library PVM [14]. This
creates a parallel virtual machine by instantiating, previously to run time, a
number of PVM processes. A PVM process corresponds to a Unix process and,
ideally, only a PVM process should be instantiated in each PE (otherwise the
virtual machine would be concurrent rather than parallel). The correspondence
between Eden processes and PVM processes is as follows: all PVM processes
of the parallel virtual machine contains a copy of the Eden code. Initially, only
PVM process 0 has activity by executing the main Eden expression called main.
The rest of the PVM processes are in a quiescent state. Each time a new Eden
process is instantiated by the operator #, their threads are created in a different
PVM process which abandons its quiescent state. When/if the number of instan-
tiated Eden processes becomes bigger that the number of PVM processes, then
one or more PVM processes will be overloaded with new Eden processes. The
threads of all processes within a PVM process are managed by the Eden run-
time system. We call this runtime system a Dream (Distributed Eden Abstract

Machine). Summarizing, there is a bijective correspondence between PVM pro-
cesses and Dreams, a many-to-one correspondence between Eden processes and
Dreams, and a many-to-one correspondence between threads and Eden processes.
All threads within a Dream share the same heap but each one has its own stack.

Eden has been successfully used to implement many parallel algorithms using
machines with several dozens of processors. Good speedups have been obtained



and satisfactory comparisons with other parallel functional languages have been
established [5]. A number of skeletons [3] have been defined in Eden to fit most
of parallel algorithms [7]. Examples of useful skeletons are: parallel map, parallel

divide and conquer, parallel branch and bound, parallel iterate until, torus and

ring topologies, etc.. A distinguishing feature of Eden is that it gives programmers
the possibility to define their own skeletons or to adapt the existing ones to their
needs given that skeletons are just Eden programs.

3.2 Algorithms Eden-Maple

As it has been said in the introduction, the idea to parallelize computer al-
gebra algorithms is to use Eden as the coordination language and Maple as
the computing language. Eden would be responsible for instantiating processes,
communicating them and controlling the global load balancing of the parallel
algorithm. Ideally, this should be done in a problem independent way by using
or creating a polymorphic higher-order skeleton.

Maple functions would be responsible for doing the intensive algebraic com-
putations. All the problem specific aspects (data types, sequential algorithms,
etc.) should be coded into simple Haskell functions calling Maple functions
through the interface. These Haskell functions would be used to fit the param-
eters of the polymorphic skeleton. We believe that this separation of concerns
leads to a low-effort parallelization of computer algebra algorithms. In Section 5
we illustrate the methodology with a typical computer algebra problem.

So, in the worst case, a Maple process is needed in each PE. It makes no sense
to have several Maple processes in the same PE as only one of them would be
computing at a given time. So, we establish a bijective correspondence between
PVM processes needing Maple and Maple processes. We will call the Maple
process the companion process of the corresponding Dream. Two unidirectional
pipes will connect each Dream to its companion as in the sequential interface
described in Section 2. Figure 1 shows the process topology.

The interface will create the companion process and establish the pipes the
first time an Eden thread calls the initialization function, called now mapleInitPE.
Accordingly, it will kill the companion process when the last thread using Maple
calls the termination function, called now mapleTermPE.

In order to upgrade the interface to this new environment, the first important
change has been to replace the intermediate C functions calling Unix by calls to
the Posix package supported by GHC. The following functions are called:

forkProcess :: IO (Maybe ProcessId)

createPipe :: IO (Fd, Fd)

dupTo :: Fd -> Fd -> IO ()

executeFile :: FilePath->Bool->[String]->Maybe [(String,String)]-> IO ()

signalProcess :: Signal -> ProcessId -> IO ()

They are responsible for instantiating the companion, establishing the pipe con-
nections, instructing the OS to initialize the companion with a Maple executable,
and killing the companion when Maple is no longer needed. However, we refuse
to use functions used by the sequential interface such as fdRead, fdWrite and
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Fig. 1. Process topology of a hybrid Eden-Maple program

fdClose which block the calling Unix process. Instead, we lift Unix objects such
as Fd (file descriptor of a pipe) to Haskell’s world by using the conversion

fdToHandle :: Fd -> IO Handle

and then calling the standard Haskell I/O functions hGetLine, hPutStrLn and
hClose which use a Handle as parameter. It must be said that the protocol with
the Maple process is line-oriented, although a ‘line’ may as long a needed. These
functions have been designed for a concurrent runtime system and only block
the calling thread. Fortunately, the Eden runtime system is an extension of the
Concurrent Haskell one [10] and these primitives still work with Eden.

For the same reason, we have replaced calls to Unix sleep :: Int -> IO ()

by calls to Concurrent Haskell threadDelay :: Int -> IO ().
Altogether, these changes have allowed us to eliminate most of the ccall

and a big portion of the C part (the number of C pages has decreased from 11
to only 2 in the new interface), achieving a more compact and legible code.

4 Concurrency Issues within a Processor

The next group of changes deals with providing mutual exclusion in the access to
Maple from different Eden threads. We have established the following protocol
for an Eden process p to access Maple functionality:

p :: Process a b

p = process (\x -> unsafePerformIO $

do mapleInitPE

let y = · · · compute result from x using Maple · · ·
mapleTermPE ‘demanding‘ rnf y

return y)



The function rnf reduces result y to normal form. This one and the demanding

function are defined in module Strategies developed by the creators of GpH
(see [16] for details). They are needed to ensure that no calls to Maple are made
after the call to mapleTermPE, as it would be the case if we allowed the result y

to be lazily evaluated.
At runtime, there may be many Eden processes in the same PE following this

protocol. So, the first problem to be solved is to initialize the companion Maple
process only once, namely when the first call to mapleInitPE is received. The rest
of the calls to mapleInitPE are just counted in order to know how many Eden
threads are concurrently using Maple. When calls to mapleTermPE are received,
the counter is decreased. Only when the counter becomes 0 (meaning that no
more threads are using the interface) should the companion process be killed.

To this aim, the interface provides a global variable in C static memory
counting the number of threads allowed to use the Maple interface. The same
variable is also used to provide a primitive form of mutual exclusion during the
transient state in which the first thread is creating the companion process but it
is not still available. This may take a noticeable time during which the interface
must not allow the remaining threads to proceed.

Once the interface is stable, the second problem is to make calls to Maple
functions atomic, i.e. a critical region should be created from the call to the
interface up to the returning of results to the user program. We remind the reader
that Maple may need a noticeable time to reply to a call because Maple functions
are assumed to perform the computation intensive parts of the algorithm.

To solve this problem we rely on Eden dynamic reply channels (see Sec-
tion 3.1). For each Eden thread calling Maple when the interface is busy, the
latter creates a reply channel by using Eden function new and blocks the thread
on it. When the interface becomes idle again, the first waiting thread is awaked
by sending a value through its corresponding channel using the Eden function
parfill. These synchronizations create the desired critical region around each
call. Reply channels must be stored somewhere between calls to the interface, so
they are kept in C static memory. Conversions between Haskell objects and C
data types are done through the facilities of GHC’s Ptr library:

newStablePtr :: a -> IO (StablePtr a)

deRefStablePtr :: StablePtr a -> IO a

freeStablePtr :: StablePtr a -> IO ()

We have also developed an alternative mutual exclusion mechanism by using
the Concurrent Haskell MVar [10]. A nonempty MVar is created by the interface
at initialization time by using the function newMVar. Critical regions are created
by executing takeMvar at the beginning of each Maple call, and putMVar at the
end. This is transparent to the programmer: the MVar is created by the interface
and stored in static memory between calls; calls to takeMvar and putMVar are
done from inside the interface. Concurrent Haskell MVar works properly with
Eden runtime system. The interface version with MVar could of course be used
by Concurrent Haskell programs.

The part of the interface devoted to the proper shyncronization of the con-
current calls has been the more involved, and is responsible for half of the code.



function Buchberger (F = {f1, . . . , fs}) return G

G := F ; P := {(fi, fj) | fi, fj ∈ F, i 6= j};
while P 6= ∅ do

(f, g)← chooseAPair (P ); P := P − {(f, g)}

S(f, g)
G
−→∗ h such that h is reduced w.r.t. G

if h 6= 0 then

P := P ∪ {(u, h) | u ∈ G};
G := G ∪ {h}

end if

end while

return G

end function

Fig. 2. Buchberger’s sequential algorithm computing a Gröbner basis

5 Case Study: Gröbner Bases

5.1 The sequential algorithm

Gröbner bases computation is a very well-known algorithm for computer algebra
researchers. Gröbner bases have plenty of applications in commutative algebra,
geometry and systems theory. The problem can be explained in the following
terms: Given a finite set of polynomials F = {f1, . . . , fs} in n indeterminates
x1, . . . , xn, a Gröbner basis is another finite set of polynomials G = {g1, . . . , gt}
determining the same ideal and satisfying an additional canonical property.

The ideal I determined by a set S of polynomials, denoted I = 〈S〉 is the
smallest set containing S and closed under polynomial addition and product:

〈S〉
def
= {

∑

fi∈S

uifi | ui ∈ P [x1, . . . , xn]}

being P [x1, . . . , xn] the set of all polynomials in n indeterminates.
Given an ideal I determined by a finite set F of polynomials, there exists

an algorithm due to B. Buchberger [1] which computes a Gröbner basis G for I

starting from F . It is shown in Figure 2. It makes intensive use of two elementary
steps: computing to so called called S-polynomial of two polynomials f and g,
denoted S(f, g), and the reduction of a polynomial r to normal form h with

respect to a set G of polynomials, denoted r
G

−→∗ h If G is finite, being s its

cardinality, the algorithm for computing r
G

−→∗ h is quadratic. More precisely, it
belongs to O(ms) in the worst case, being m the length of the maximum strictly
decreasing chain of power products that can be constructed starting with the
leading term of f . This, in turn, is related to the degree of f and the number n

of indeterminates. The cost of computing S(f, g) is in O(n).
It has been proved that the algorithm always terminates and that its cost

is in O(msp), where m, s are as before —now, they are considered to be worst
case values for the polynomials and the cardinality of G—, and p is the number



of pairs in the final G. The value of p is a priori unknown and depends on the
form of the initial polynomials in F . In the worst case, p can be exponential on
the cardinality of F .

Maple systems usually provide a sub-library to compute Gröbner bases. But
they also provide the elementary steps of the algorithm as individual functions.
In particular, there exists a function called spoly computing the S-polynomial of
two given polynomials, and a function called normalf computing the reduction
of a polynomial to normal form with respect to a set of polynomials.

5.2 The stateful replicated workers skeleton

As we (as Eden programmers) are not interested in doing polynomial crunching
in Haskell, the idea for the parallel version of Buchberger’s algorithm is to leave

in Maple the computation of S(f, g)
G

−→∗ h and to compute this reduction to
normal form in parallel for different pairs (f, g). The order in which such pairs are
chosen is not important for the correctness and the termination of the algorithm,
so they can safely be done in parallel. The granularity of such computation is
large enough to justify the communication of the polynomials f and g. So, the
strategy chosen is to have a manager process communicating pairs (f, g) to a
fixed set of worker processes, and getting back the results h of such reductions.
If the result is 0, the manager just moves to the next pair. If it is different from
0, the manager computes additional pairs which are joined to the list of pending
pairs.

In Eden we have developed several versions of a skeleton called replicated

workers [6], which fits this idea of a manager process distributing work to a
fixed number of workers. The main interesting property of the skeleton is that
it achieves a very good load balancing as work is distributed to workers on
demand: as soon as a worker finishes a task, it is fed with a new one, if there is
one available. So, it may be the case that a worker solves a few big granularity
tasks, while another one solves many small granularity tasks.

We have adapted one version of the replicated workers skeleton to fulfill the
following new needs:

1. Worker processes must maintain an internal state. Notice that workers must
reduce a pair (f, g) with respect to a polynomial set G which is changing
along time.

2. There must be provisions to update from time to time workers’ internal state.
3. The manager has also an internal state updatable as a consequence of a

worker result.
4. The algorithm output depends on the final state reached to by the manager.

We call the resulting skeleton stateful replicated workers, abbreviated strw.
This insistence in developing first a problem independent skeleton and then in-
stantiating it with problem dependent parameters is just a separation of concerns
strategy common to all areas of software development. In doing so, we concen-
trate first on the parallel nature of the problem, i.e. on the process topology and
the load balancing issues of the algorithm and then, as a separate activity, on



strw :: (Trans tsk, Trans act, Trans res, Trans wl) =>

Int -> -- no. of PE

Int -> -- buffer size

(inp -> Int -> ([wl],[tsk],ml)) -> -- split function

(wl -> tsk -> [act] -> (res,wl)) -> -- worker function

(ml -> res -> Int -> ([[act]],[tsk],ml)) -> -- combine function

(ml -> result) -> -- result function

inp -> -- skeleton input

result -- skeleton result

strw np prefetch split wf combine rf inp = r

where

(iniwls,iniTasks,iniml) = split inp np

outss = [process (worker i wf) # (wl,actsks) |

(i,wl,actsks)<-zip3 [0..np-1] iniwls actskss]

‘using‘ spine

unorderedResults = merge # outss

(moreReqs,results) = unzip unorderedResults

(moreTks,asss,moreGns,r) = manager np combine rf iniml results

iniReqs = concat (replicate prefetch [0..np-1])

iniGens = concat (replicate prefetch (replicate np 0))

tasks = iniTasks ++ moreTks

actskss = distribute np 0 (length iniTasks)

(replicate np 0) tasks asss

(zip iniReqs (repeat 0)++zip moreReqs [1..])

(iniGens ++ moreGns)

Fig. 3. The Eden skeleton strw of Stateful Replicated Workers

problem specific issues. There are also advantages in the testing phase: first we
test the skeleton with a toy problem and, once the skeleton is properly working,
we feed it with the (more complex) Gröbner basis computation problem.

Figure 3 shows the type and the implementation of strw in Eden. We begin
by explaining the type. Eden type class Trans includes all types which can be
transmitted in messages. Essentially, they are those for which a normal form can
be computed. The first two parameters are the number of workers to be created
by the skeleton and the size of the prefetch buffer. We usually create a worker
per PE and leave the manager process to share a PE with one of the workers.
The load on the manager is low and it does not justify a complete PE for it.
The worker sharing its PE with the manager will do less work than the others,
but this is not important as PE loads are dynamically balanced by the manager.
The prefecth buffer size is the number of tasks initially assigned to each worker.
We usually choose this parameter to be 2 so that, when a worker finishes the
current task asking for a new one, and while this one arrives, it may work on
the task in the buffer. As a consequence, workers idle times are minimized.

The next four parameters are the problem dependent functions delivered to
the skeleton. The split function is initially called by the skeleton to get the



initial state of each worker, the initial set of tasks and the initial state of the
manager. It receives as parameters the input data inp of the skeleton, and the
number np of workers. The worker function wf is called by the skeleton to solve
each individual task. It receives as parameters the current state of the worker,
the task to be solved, and a list of pending updates. It delivers a result and an
updated internal state. The manager is responsible for accumulating the pending
updates for each individual worker. The updates are generated as a consequence
of results received from other workers in the meantime while the worker is solving
a task. The combine function receives the manager internal state, a worker’s result
and the number np of workers, and computes three results: a list of updates, one
for each worker, a list of new tasks, and a new internal state for the manager. The
internal list in the type [[act]] is used as a Maybe type: an empty list means no
update; otherwise, the list contains a single update for the worker. The combine

function is called by the skeleton each time a worker’s result is received. Finally,
the result function rf is called at the end of skeleton’s execution to compute the
output of the algorithm from the final internal state of the manager.

The implementation of strw presents the aspect of a set of mutually recursive
definitions. These are needed to establish a circular communication topology be-
tween the manager and the workers. The communication channels are essentially
lists: a worker receives a list of tuples, each one containing a list of pending up-
dates and a task, while the manager receives a list of unordered results coming
from the workers. The results are received in the temporal order in which they
are produced. To achieve this goal, it is essential the application of the reac-
tive process merge to the list of lists outss of outputs produced by the workers.
Strategy spine is used to eagerly instantiate the worker processes.

Perhaps the most important auxiliary function of the skeleton is distribute

whose details are shown in Figure 4. Its purposes are:

1. To detect when a worker has finished a task and to assign it a new one.
2. To compute the list of pending updates for each individual worker and to

include it together with the new assigned task.
3. To detect the termination of the skeleton. To this aim, it controls the number

ngen of tasks generated by the skeleton, the number ndis of tasks distributed
to workers, and the number nrec of results received from workers. The ter-
mination condition is ngen == ndis && ndis == nrec.

5.3 The problem dependent functions

First, we instantiate the polymorphic types of the skeleton for our problem:

inp
def
= {f1, . . . , fs} ⊆ P [x1, . . . , xn]

wl
def
= G ⊆ P [x1, . . . , xn]

tsk
def
= (f, g) ∈ P [x1, . . . , xn] × P [x1, . . . , xn]

ml
def
= G ⊆ P [x1, . . . , xn]

res
def
= [ ], [h] ∈ List (P [x1, . . . , xn])

act
def
= h ∈ P [x1, . . . , xn]

result
def
= G ⊆ P [x1, . . . , xn]



distribute :: Int -> Int -> Int -> [Int] -> [tsk] -> [[[act]]] ->

[(Int,Int)] -> [Int] -> [[([act],tsk)]]

distribute np ndis ngen cs ts asss ((i,nrec):is) (n:ns)

|ngen’ == ndis && ndis == nrec = replicate np []

|ngen’ == ndis && ndis > nrec = distribute np ndis ngen’ cs ts asss is ns

where ngen’ = ngen + n

distribute np ndis ngen cs (t:ts) asss ((i,nrec):is) (n:ns) =

insert i (as,t) (distribute np (ndis+1) (ngen+n) cs’ ts asss’ is ns)

where ndif = nrec - cs !! i

(ass1,ass2) = splitAt ndif (asss !! i)

as = concat ass1

cs’ = replace i nrec cs

asss’ = replace i ass2 asss

replace 0 e ~(x:xs) = e : xs

replace (n+1) e ~(x:xs) = x : replace n e xs

insert 0 e ~(x:xs) = (e:x) : xs

insert (n+1) e ~(x:xs ) = x : insert n e xs

Fig. 4. Distribution function of skeleton strw

By looking at the sequential algorithm of Figure 2, it is straightforward to define
the four problem dependent functions. We give them in a schematic way as the
coded version would exhibit more (non essential) details:

split F np
def
= ([

np

︷ ︸︸ ︷

F, . . . , F ], [(fi, fj) | fi, fj ∈ F, i 6= j], F )

wf G (f, g) [h1, . . . , hr]
def
= (res, G′) where

G′ = G ∪ {h1, . . . , hr}

res =







[ ] , if S(f, g)
G′

−→∗ 0

[h] , if S(f, g)
G′

−→∗ h 6= 0

combine G res np
def
= ([

np

︷ ︸︸ ︷
res, . . . , res], tsks, G′) where

(tsks, G′) =

{
([ ], G) , if res = [ ]
([(u, h) | u ∈ G], G ∪ {h}) , if res = [h]

result G
def
= G

The worker function wf does its work by delegating to Maple the computation

of S(f, g)
G′

−→∗ h. To this aim, it calls through the interface the Maple functions
spoly and normalf, respectively computing the S-polynomial of f and g and
its reduction to normal form with respect to the updated set of polynomials G′.

In order to initialize and to finalize the interface, skeleton strw has been
slightly modified. On the one hand, the predefined function process called in
line 4 of strw definition in Figure 3, has been replaced by function mapleProcess

defined as follows:

mapleProcess :: (Trans a, Trans b) => (a -> b) -> Process a b

mapleProcess f = process (\x -> unsafePerformIO $
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Fig. 5. Absolute and relative speedups for Grobner basis using strw

do mapleInitPE

let res = f x

return res)

On the other hand, the first line of the definition of function worker, which rep-
resents the termination of the worker process, has been replaced by the following
fragment:

worker i wf (local,[]) = unsafePerformIO $ do mapleTermPE

return []

These modifications do not exactly match the process scheme at the be-
ginning of Section 4. The reason has to do with preserving the laziness of the
lists produced by the workers. Should we add to mapleProcess a line mapleTermPE

‘demanding‘ rnf res before return res, the entire skeleton would become blocked
(in fact, we have ‘seen’ this deadlock while debugging the skeleton). The interface
must be closed when worker’s output list has been completely produced.

5.4 Performance results

We have run all the pieces together —the skeleton, the problem dependent func-
tions and the Eden-Maple interface— in a home-made Beowulf cluster with five
processors at 233 Mhz CPU and 64 Mb RAM, running i386-mandrake7.2-linux,
Eden compiler mec-5.02.3, Maple 7, and PVM 3.4. The final Gröbner basis had
33 polynomials with a worst case of 4 indeterminates and a leading term of de-
gree 8. A total of 528 tasks were generated and the absolute sequential time of
the pure Maple algorithm was 212 sec. The speedups obtained can be seen in
Figure 5. We have got an absolute speedup of 3.72 with 5 processors with respect
to the pure Maple sequential version, and a rather good relative speedup of 4.91
with respect to the parallel version running on one processor. This one is already



32% slower than the reference Maple version, so better absolute speedups cannot
be expected. This 32% overhead is due to having two Unix processes communi-
cated by pipes, to the format conversions and to the Eden runtime system. All
this machinery is absent in the Maple version.

So, we do not claim that parallelizing Maple using Eden is optimal compared
to other approaches. In [13] a survey of many other strategies to parallelizing
Maple programs can be found. All of them require some extra programming effort
for splitting the work into parallel tasks, assigning tasks to processors or/and
sending explicit messages between tasks. Perhaps [13] is one of the most implicit
programming models we have found but, nevertheless, it requires new Maple
primitives for launching remote tasks and for waiting for results. Our claim is
that parallelizing with Eden is easier compared to more explicit approaches and,
however that, acceptable speedups (as opposed to optimal ones) can be obtained.

The scalability of the replicated workers skeleton is good up to around 20
processors, depending on the concrete problem (see [7]). For a bigger number of
processors the manager process becomes a bottleneck and the speedup decreases.
We plan to do more complete masurements in the near future.

6 Conclusions

The first contribution of the paper is the engineering effort of developing the in-
terface. In doing this work, we have put into action many different technologies.
Firstly, we have achieved that two systems so distant from each other such as
Maple and Eden may work together in a single problem. Also, while building
the interface, we have made use of GHC libraries such as Posix, Ptr, Concurrent
Haskell functions and Glasgow Parallel Haskell Strategies. Standard Haskell in-
put/output with handles has also found its place in the interface. Finally, we
have needed some knowledge of Unix functions, on how to interface Haskell to
C, and on how to set up PVM.

With respect to the original sequential interface, the changes has been of
three types: a) eliminating the old types and libraries in order to port the code
to the new version of GHC; b) replacing primitives blocking the Unix process
by primitives blocking only the current thread; and c) introducing several kinds
of locks and synchronization primitives in order to cope with concurrent calls to
the interface. As a whole, less than 10% of the original code remains.

The second contribution has been the parallelization of a non trivial computer
algebra algorithm and showing that all the pieces, Eden, Maple and the interface,
fit together. Now that the interface is running, we hope to reinforce our links with
the computer algebra department of our university and to be able to parallelize
some of their interesting algorithms. The proposed strategy is the cooperation
between functional and computer algebra groups. Functional people would be
responsible for understanding the sequential algorithm and for providing the
appropriate Eden skeleton, while algebra people would implement the problem
dependent functions of the skeleton and the Maple side of the algorithm.
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