
JFP 15 (4): 1–45, 2005. c© 2005 Cambridge University Press

DOI: 10.1017/S0956796805005526 Printed in the United Kingdom

1

Parallel functional programming in Eden

RITA LOOGEN

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,

Hans-Meerwein-Straße, D-35032 Marburg, Germany

(e-mail: loogen@mathematik.uni-marburg.de)
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Abstract

Eden extends the non-strict functional language Haskell with constructs to control parallel

evaluation of processes. Although processes are defined explicitly, communication and

synchronisation issues are handled in a way transparent to the programmer. In order to

offer effective support for parallel evaluation, Eden’s coordination constructs override the

inherently sequential demand-driven (lazy) evaluation strategy of its computation language

Haskell. Eden is a general-purpose parallel functional language suitable for developing

sophisticated skeletons – which simplify parallel programming immensely – as well as for

exploiting more irregular parallelism that cannot easily be captured by a predefined skeleton.

The paper gives a comprehensive description of Eden, its semantics, its skeleton-based

programming methodology – which is applied in three case studies – its implementation and

performance. Furthermore it points at many additional results that have been achieved in the

context of the Eden project.

1 Introduction

The exploitation of parallelism is a long pursued – and not yet convincingly met –

goal in programming. There is a trade-off between the efficient exploitation of

parallelism and the simplicity of the corresponding programs: the more control a

language has on process management, and on communication and synchronisation

aspects, the more complex and longer – and the less amenable for reasoning – are

the resulting programs. Imperative parallel programming is a good example for this.

Functional programming means expressing algorithms at a high level of abstrac-

tion, thereby substantially simplifying the task of programming and increasing the

programmer’s productivity. Abstraction, expressiveness, referential transparency, and

a clear semantic model lead to concise programs which can be developed in a short

time as well as analysed or optimised with powerful formal methods.

Research in parallel functional programming tries to provide these advantages

in the context of parallel program development as well. Following the idea of

declarative programming, the main task of a parallel programmer should be to

specify what has to be evaluated in parallel and not how the parallel evaluation has
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to be organised. Consequently, programmers should not deal with low level details of

process management such as process creation and placement, communication and

synchronisation, but instead concentrate on the decomposition of their problems

into parallel tasks.

During the last decades many parallel functional languages have been de-

signed and investigated, see e.g. the overviews given in Hammond & Michael-

son (1999) and by Trinder et al. Pointon (2002). Most languages extend a pure

functional computation language like Haskell or ML by a high-level coordina-

tion language. The coordination extensions range from purely implicit approaches

where the exploitation of parallelism is transparent to the programmer and man-

aged by a sophisticated compiler and runtime system, to completely explicit ap-

proaches where the programmer has to explicitly define the parallel behaviour,

i.e. thread creation and/or communication and synchronisation. Moreover, parallel

functional languages may differ in the supported paradigm: data parallelism or task

parallelism.

In this paper we describe Eden, an extension of the non-strict functional language

Haskell, covering its design, semantics, programming methodology, and implement-

ation. Parallel programming at a high level of abstraction is achieved in Eden by

defining processes explicitly, but at the same time keeping communication actions

implicit. The programmer only specifies which data a process depends on. Sending

and receiving data is performed automatically by the underlying Eden parallel

runtime system. Thus, Eden can be classified as a semi-explicit approach to parallel

functional programming. Task and data parallelism paradigms can be modelled in

Eden, and high-level parallelism abstractions like skeletons can be defined. They

simplify the task of parallel programming substantially.

Eden does not try to compete in performance with the combination of an

imperative language like C or C++ and a parallel library such as OpenMp (Chandra,

2000), PVM (1993) or MPI (1997). These approaches achieve high performance at the

price of investing a rather high effort in programming. Eden’s intended users are in

the first place functional programmers, which are willing to trade some performance

for easier and shorter programming. As a consequence, the comparisons we provide

in the related work section (see section 6) are between Eden and other parallel

functional languages.

Another question that may be raised is why have we chosen a lazy language

such as Haskell as the host language for a parallel extension. At first sight,

eagerness appears to be more suitable than laziness for parallelism. In fact, the

lazy option is a more challenging one. The main reason has been that we wanted to

preserve all the advantages that lazy languages, and Haskell in particular, offer to

programmers: non-strict functions, demand-driven evaluation, infinite objects, and

monads, especially the state transformer monad and the IO monad which allow

mutable arrays and purely functional IO, respectively. As an added value, we can

use infinite lazy streams to model process communication. Circular topologies of

processes connected by streams can be easily expressed as a set of mutually recursive

equations, which do not deadlock as it would be the case in a strict language. We

will show some examples of circular topologies in section 3.
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The paper is meant as a wrap-up of the Eden project. It sums up the main design

and implementation decisions, provides examples of skeletal parallel programming in

Eden, and points at papers describing further achievements of the Eden project. Most

of the information has been previously published in several workshop and conference

papers. However, a comprehensive journal publication on Eden is overdue. The paper

is intended to be self-contained, but a look into the rest of the given references will

provide a deeper insight into details.

Eden’s syntax, design decisions and the kernel part of its operational semantics

are described in the next section. The subsequent section presents the skeleton-based

programming methodology recommended for Eden programmers and shows skeleton

definitions in Eden. In section 4, an overview of Eden’s implementation is given.

Section 5 discusses three case studies where the skeleton methodology is applied to

parallelise functional programs. Runtime measurements show the speedups achieved

by the Eden system for these example programs. The next section gives pointers

to additional achievements of the Eden project, and Eden is compared with other

parallel functional languages. Finally, conclusions are drawn.

2 The language

The parallel functional language Eden (Breitinger et al., 1997b) extends the non-

strict functional language Haskell (Peyton Jones & Hughes, 1999) with syntactic

constructs for defining processes.

2.1 Basic constructs

Processes are defined by using the function

process :: (Trans a, Trans b) => (a -> b) -> Process a b

which embeds a function of type a -> b into a process abstraction of type Process

a b, where Process is a new type constructor. The type class Trans will be explained

later. A process abstraction process (\x -> e) of type Process a b defines the

behaviour of a process having the parameter x with type a as input and the

expression e with type b as output. The main difference between functions and

process abstractions is that the latter, when instantiated, are executed in parallel.

Processes are created by using the infix instantiation operator

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

which provides a process abstraction with actual input parameters. The evaluation of

a process instantiation (process (\x -> e1)) # e2 leads to the dynamic creation of a

process together with its interconnecting communication channels. The instantiating

or parent process is responsible for evaluating e2 and for sending the resulting value

v2 via an implicitly generated channel to the new child process which evaluates the

application (\x -> e1) v2 and returns the result via another implicitly generated

channel.
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Eden is explicit about processes and their incoming and outgoing data, but

it abstracts from the transfer of these data between processes and the necessary

synchronisation. Thus, an Eden program defines a system of processes which

exchange data via unidirectional channels which connect one writer to exactly one

reader. The data transfers are automatically done by the system and need not be

managed by the programmer. Communication channels are modelled by head-strict

lazy lists, as in stream-based I/O. The predefined type class Trans declared by

class NFData a => Trans a where (...)

provides functions used internally for the transmission of values on communication

channels. In principle, arbitrary values can be communicated. Their types must be

instances of this type class. Corresponding instance declarations will automatically

be derived by the compiler. The type class Trans is a subclass of the class NFData

(Normal Form Data) because all process outputs are evaluated to normal form

before being sent. In particular, communication is not demand-driven. Values are

sent to receiver processes without prior requests until a receiver notifies that it does

not need input values any more. In general terms, the system will push instead of

pull information. Evaluation to normal form and eager communication deviate from

Haskell’s demand-driven evaluation, but are essential to support parallelism (Klusik

et al., 2001a).

Example 1 (mergesort)

The following function creates a parallel sorting network which transforms an input

stream into a sorted output stream by subsequently merging sorted sublists with

increasing length:

mergesort :: (Ord a, Trans a) => [a] -> [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = sortmerge (process mergesort # xs1)

(process mergesort # xs2)

where (xs1,xs2) = unshuffle xs

Streams with at least two elements are split into two sub-streams using the function

unshuffle. The sub-streams are sorted by recursive instantiations of mergesort

processes. The sorted sublists are coalesced into a sorted result list using the function

sortmerge which is an ordinary Haskell function like unshuffle (both functions are

not shown here). The context Ord a ensures that an ordering is defined on type a.

The process system generated when mergesort is applied to a list with more than

two elements is a binary tree. �

If the output of a process is a tuple, an independent thread will be created for each

component of the tuple and the result of its evaluation will be sent on a separate

channel. The connection points of channels to processes are called inports on the

receiver side and outports on the sender side. There is a one-to-one correspondence

between the threads and the outports of a process while data that is received via

the inports is shared by all threads of a process. Only the first level of tuple outputs

will be evaluated concurrently, i.e. (e1, e2, e3) yields three threads while (e1, (e2, e3))
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would be evaluated by two threads. Analogously, several threads will be created in

a parent process for tuple inputs of a child process.

Example 2 (several outputs)

The following expression is a simple process abstraction defining a process with two

input streams and two output streams:

process (\ (xs,ys) -> (zipWith (+) xs ys, zipWith max xs ys))

It has the type (Num a, Ord a) => Process ([a],[a]) ([a],[a]). When instantiated

with a pair of lists, the process will deliver two outputs produced by two independent

threads. The first thread computes the element-wise sum of the input streams

while the second thread compares the input streams element-wise and outputs the

maximum values. Both threads share the input streams. �

Process abstraction and instantiation could have been coalesced into a single

binary operator

(#’) :: (Trans a, Trans b) => (a -> b) -> a -> b

f #’ x = let pf = process f in pf # x

which is a parallel version of the Haskell operator ($):: (a -> b) -> a -> b for

function application, and Eden could have been defined with only this operator. We

prefer, however, the clear distinction between process abstractions and functions,

which is also reflected in the new type Process a b. Process instantiations and

abstractions represent two different sides of process creation: the parent and the

child side, respectively. While process instantiation represents process creation on

the parent side, process abstractions represent the definition of a child process,

independently from its creation. In section 2.4, the operational semantics of Eden

is, however, discussed for a core language with the operator #’ only.

2.2 Parallelism vs. laziness

Laziness has many advantages over eager evaluation, such as demand-driven

evaluation, infinite data structures, and the natural handling of partially available

data. The latter is especially important for parallel evaluation, since communication

channels can be modelled by lazy lists and circular topologies of processes connected

by such lists can be created. The demand-driven evaluation within processes

is important to avoid unnecessary computations. In particular, we will avoid

unnecessary blocking on non-available input, and consuming available but non-

needed data.

Nevertheless, lazy evaluation is changed to eager evaluation in two cases: processes

are eagerly created, and they produce their output even if it is not demanded.

Eager process creation means that process instantiations in local definitions (let-

and where-blocks) are treated in a special way: instead of creating a closure

representation in the heap, the process is immediately created. These modifications

aim at increasing the parallelism degree and at speeding up the distribution of the

computation. Even though, it is sometimes still necessary to produce additional
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demand in order to unfold certain process systems. In many cases the programmer

may experience distributed sequentiality, because demand-driven (lazy) evaluation

activates the parallel evaluation only when its result is already needed to continue

the overall computation, i.e. it immediately waits for the result. This situation is

illustrated by the next example:

Example 3 (parallel map)

Replacing the function application in the map function:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

by a process instantiation, leads to a simple parallel map function, in which a different

process is created for each element of the input list:

map_par_1 :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_par_1 f xs = [process f # x | x <- xs]

The process abstraction process f determines that the input parameter x, as well as

the result value, will be transmitted via channels. The types a and b should therefore

belong to the class Trans.

The problem with this definition is that for instance the expression sum (map par 1

square [1..10]) will create 10 processes, but only one after the other as demanded

by the sum function which sums up the elements of a list of numbers. Consequently,

the computation will not speed up by “parallel” evaluation, but slow down because

of the process creation overhead added to the sequential evaluation. �

Fortunately, it is easy to impose additional demand on expressions, e.g. by using

evaluation strategies (Trinder et al., 1998). Evaluation strategies (or simply strategies)

are functions which control the evaluation of expressions without producing a result

value1. They are applied by means of a function using, which first applies the

strategy to the input, and then returns the value of the input:

type Strategy a = a -> ()

using :: a -> Strategy a -> a

using x s = s x ‘seq‘ x

The evaluation itself is enforced by the operator seq :: a -> b -> b – defined in

the Haskell prelude – which evaluates its first argument to weak head normal form

(whnf) and then returns its second argument. As above, it is usually introduced to

overrule laziness for performance reasons.

Example 4 (parallel map with demand control )

The traversal of the spine of a list is achieved by the strategy spine defined as
follows:

1 Originally, they have been introduced to specify parallel behaviour of programs. However, we only use
them to control sequential evaluation.
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spine :: Strategy [a]

spine [] = ()

spine (_:xs) = spine xs

With this strategy, the map par function of Example 3 can be modified in such a way

that all processes are created as soon as there is demand for the evaluation of the

list.

map_par :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_par f xs = [process f # x | x <- xs] ‘using‘ spine

The spine strategy eagerly evaluates the spine of the process instantiation list. In

this way all processes will immediately be created. �

The function map par defines a basic scheme of parallel evaluation which eagerly

creates a set of independent processes. Such parallelism abstractions are an important

part of the Eden methodology and we elaborate on them in section 3.

2.3 Coordination aspects

In this subsection we provide an informal introduction to Eden’s semantics. A more

formal treatment is given in section 2.4.

Concurrent activities (processes and threads) are initiated when a process instan-

tiation is evaluated. We answer the following questions:

• When will a process instantiation be evaluated (a process be created)?

• To which degree will output expressions be evaluated?

• When will the results of output expressions be transmitted between processes?

Process creation. Local definitions of process instantiations in let or where blocks,

i.e. bindings of the form outp = pabs # inps, lead to the immediate creation of a

process when they are accessed during the evaluation. To look at this the other way

round, the instantiation of a process will be postponed when it does not appear at

“top-level”, namely when it occurs, for instance,

• as the body of a lambda abstraction or function definition: The instantiation

takes place as soon as the abstraction or function is fully applied and evaluated.

• as a component of a data structure: Its instantiation takes place as soon as

the corresponding component of the data structure is evaluated.

• in a branch of a case analysis: It will only be instantiated if this branch is

selected and evaluated.

A new process has a thread for each of its outports; moreover, the parent

process will initiate a thread to serve each of the inports of the newly created child

(communication from parent to child).

Eden has been designed to run in distributed settings, therefore a common shared

memory is not assumed. The concept of a virtually shared global graph is avoided,

to save the administration costs while paying the price of possibly duplicating work.

All bindings needed for the evaluation of the free variables in a process body will



8 R. Loogen et al.

be copied from the parent to the child. However, when the evaluation of the process

body depends on a value to be communicated from some other process, the process

creation is delayed until the necessary communications and instantiations have taken

place.

Example 5 (Delayed process creation)

In the Eden expression

let x out = (process x) # x in -- process X

in combine x out

((f x out) # y in) -- process Y

process X will be created when the let-expression is evaluated, while the second

process instantiation (f x out) # y in) yielding process Y is only performed when

it is needed by combine. If process Y is created before process X has completely

delivered its output, process Y’s creation must be postponed until X’s output is

available, because channel inports cannot be copied from parent to child heaps. �

Communication. Outport expressions are evaluated to normal form, except for

expressions with a function type, which are evaluated to weak head normal form. In

that latter case it is mandatory to copy – from the producer to the consumer – all

the bindings needed for the evaluation of the free variables in the abstraction. As in

the case of process creation, this copy can take place only if there is no dependency

on pending communications.

Results of the evaluation of outports are sent to the connected inports as soon as

they are available. A channel is closed when the output value has been completely

transmitted to the receiver.

Synchronisation. If a thread needs some input value that has not been received,

the thread is suspended until the corresponding producer sends the desired data.

Notice that communication through channels has non-blocking sending, but blocking

reception, and that process synchronisation is achieved exclusively by exchanging

data through the communication channels.

Termination. The execution of an Eden process is controlled by the evaluation of

its outports, so that execution will end as soon as the process has no more outports

or when its output is detected to be unnecessary (during garbage collection). Upon

termination of a process, its inports are closed immediately. Then the corresponding

outports will be closed in the producer processes, so that termination cascades

through the process network.

2.4 Formal semantics

The non-strict semantics of the Haskell subset is preserved in Eden. Considering

just the input-output behaviour, process abstractions and instantiations could be

identified with function definitions (λ-abstractions) and applications, respectively.

However, this view completely neglects parallelism and ignores issues like process



Parallel functional programming in Eden 9

Fig. 1. Eden core syntax.

creation and communication. In the following we define an operational semantics

in the style of Baker-Finch et al. (2000) which is based on Launchbury’s natural

semantics for lazy evaluation (Launchbury, 1993). The semantics handles process

creation and communication and is precise about expression scheduling and eval-

uation order. Therefore it is, for instance, suitable for measuring the amount of

speculative computation produced during program execution.

For simplicity, we define the semantics for a core language consisting of the

untyped λ-calculus just extended with local definitions (let) and the derived process

instantiation operator (#’). The (abstract) syntax, based on variables x ∈ Var and

expressions E ∈ Exp, is given in Figure 1.

Following Launchbury (1993), we assume a general renaming of variables which

avoids name clashes during expression evaluation. Moreover, the language is nor-

malised to a restricted syntax (see Figure 1) where all subexpressions, except for

the body of λ-abstractions, are replaced by variables defined in let-expressions.

An expression (E1 E2) with non-variable sub-expressions E1 and E2 will e.g. be

normalised to let x = Ẽ1; y = Ẽ2 in (x y), where Ẽ1 and Ẽ2 are the results of

normalising E1 and E2. In contrast to Launchbury, we replace not only the argument

expression in applications by variables, but also the functional expression as well as

the body of let-expressions. In this way, all subexpressions of any expression may

be shared and will be evaluated at most once. Additionally, the semantic definition

of evaluating an application (lazily) is simplified.

In Launchbury (1993), closures are modelled as variable-to-expression bindings

which are collected in a heap representing the program space. In Baker-Finch et

al. (2000), such bindings are also used to model threads, which share a unique heap

and are executed by the available processors. Due to the distributed nature of Eden,

each process is represented by a separate heap. Distinct variables c ∈ Chan are

introduced to represent communication channels, where Chan denotes the set of

channel identifiers. A process is represented by a pair 〈p,H〉, where p is a process

identifier and H is the bindings heap. As each binding is considered a potential

thread, a label indicates the thread’s state: x
α�→ e, where α ::= I |A|B corresponds

to Inactive (either not yet demanded or already completely evaluated), Active (or

demanded), and Blocked (demanded but waiting for the value of another binding),

respectively. Channel identifiers can appear on either side of a binding. On the left-

hand side, a channel identifier represents an outport of the corresponding process.

A channel identifier on the right-hand side denotes an inport of the process.
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Fig. 2. Local transition rules.

In the following, we will use x, y, z ∈ Var for “ordinary variables”, c ∈ Chan for

channels, where θ ∈ Var ∪ Chan , and p and q for process identifiers.

The semantics consists of a two-level transition system: the lower level handles

local effects within processes, while the upper level describes the effects global to

the whole system (the set of all parallel processes), like process creation and data

communication. In order to avoid writing multiple similar transition rules, we allow

a binding to appear with several labels, corresponding to the different possibilities

admitted by the rule. Thus, if for instance x
IAB�−→ E appears on the left-hand side of a

rule, and x
ABA�−→ E ′ on the right-hand side, this means that the thread corresponding to

the closure x �→ E becomes active in the case it was either inactive or blocked, while

it becomes blocked if it was previously active. Besides, notation H + {x α�→ E} means

that the heap H is extended with the binding x
α�→ E, while H : x

α�→ E means that

the binding for x is the one which guides the application of the corresponding rule.

2.4.1 Local process evolution

Local transitions express the reduction of an active thread in the context of a single

process. This internal activity affects only the corresponding heap: bindings may be

created, modified, blocked or activated. The evaluation of an expression terminates

when a weak head normal form (whnf) value (v ∈ Val ) has been reached. Local

transitions take the form H : x
A�→ E −→ H ′, which is read as “the evaluation of the

active thread x
A�→ E transforms the heap H + {x A�→ E} into H ′ ”. The rules given in

Figure 2 express how lazy evaluation progresses under demand.

Whenever the evaluation of an expression finishes, the resulting whnf value

is shared with other bindings. By applying the rule (value), the value is copied

and bound to the demanding variable. The corresponding binding remains active,

because bindings blocking on it must be unblocked before the binding is deactivated.

Unblocking and deactivation is performed by scheduling rules which will be
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Fig. 3. Rule parallel-p: concurrent thread evolution within a single process p.

introduced later. The rule (demand) handles the case where the demand is issued

before the value has been obtained; then, the demanding binding is blocked while

the demanded one is activated (or remains blocked if it was already blocked).

The rule (blackhole) deals with cyclic dependencies. In an application, demand is

propagated to the variable corresponding to the abstraction (rule (app-demand)).

The application of the obtained abstraction is specified by the rule (β-reduction). A

local declaration introduces new bindings in the heap (rule (let)); all of them are

labelled as inactive, as they have not been demanded yet. To avoid name clashes,

the local variables xi are renamed by fresh variables yi using the substitution σ.

All these local evolutions are considered to occur simultaneously, entwined in

a parallel (global) step. At the lower level, we consider the evolution of parallel

threads inside a process with a common heap Hp. The corresponding rule (parallel-p)

is given in Figure 3. Let ET(Hp) denote the set of active threads in process p that

may evolve (as defined in Subsection 2.4.3), and np = |ET(Hp)| be the number of

“evolutionary” threads. All threads share a common heap Hp and modify this heap

without any interference. Therefore, we can decompose the common heap, for each

thread i with 1 � i � np, into three parts: H (i,1)
p is the part of Hp that remains

unchanged during the application of the corresponding local rule, while H (i,2)
p is the

part that will be modified into K (i,2)
p . The third part is the active thread binding

which must be a member of ET(Hp). The parallel execution of the active threads

keeps all parts of the heap which are not changed at all (∩np
i=1H

(i,1)
p ) and adds every

modification that has been done by any rule (∪np
i=1K

(i,2)
p ).

2.4.2 Global system evolution

The upper level defines global transitions between process systems (S ), i.e. sets of

processes. A global transition takes the general form:

{〈p,Hp〉}p∈S



=⇒ {〈p,H ′
p〉}p∈S∪S ′

where each heap Hp (associated to a process p in S) is transformed to H ′
p, while

new processes (in S ′) may be created. The diamond 
 is a place-holder for the name

of the rule. As a first global transition we consider the parallel evolution of all the

processes within the system S , shown in Figure 4.

After each process has internally evolved, the following tasks have to be done at the

system level: process creation, interprocess communication and state management

(thread unblocking and deactivation). In general, these tasks imply multiple single
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Fig. 4. Rule (parallel): parallel process evolution.

Fig. 5. Process creation rule.

steps, each involving at most two processes. Let S be a process system, and 
 the

name of a rule, for each single-step rule S

−→ S ′ we can define a multi-step rule

S



=⇒ S ′ satisfying:

1. S

−→

∗
S ′ and,

2. there is no S ′′ such that S ′ 
−→ S ′′.

The application of a single-step rule 
 to a binding in some process, may enable the

application of the same rule 
 to other bindings – in the same or in other processes –

but it can never disable applications of rule 
 which were enabled before the former

application.

Process creation. When evaluating E1#’E2, a new child process q is created and fed

with the value of E2 by its parent process p via an input channel. It evaluates E1 E2

and returns the result (to its parent) via an output channel. The following diagram

illustrates this:

p E1#’E2−→

p

�E1E2�E2

q

The process creation can only take place, if the body E1 does not depend on

a channel variable, i.e. on some value which has not been communicated yet. The

rule for process creation is given in Figure 5. Speculative parallelism is achieved by

applying this rule to inactive bindings.

For a normalised expression x#’y, the argument y is evaluated by the parent

(p), while the body x as well as the application, x y, are evaluated by the new-born

child (q). Two channels are introduced: one is used to communicate the value of the

argument from the parent to the child process; the result of the child is returned to

the parent process via the other channel. The two bindings with the new channel
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Fig. 6. Value communication rule.

variables on their left-hand side are active and will be evaluated if there are enough

resources.

The initial heap of the child process contains all the bindings needed for the

evaluation of the dependent variables in the process body; these are copied, in an

inactive state, from the parent to the child heap by the function nh (needed heap):

nh(x,H) collects all the bindings in H that are reachable from x. A renaming η with

fresh variables is applied to avoid name clashes. As mentioned before, a process

creation is blocked if there is a dependency on values that have to be communicated.

A predicate noChan checks whether the heap needed by the process body does not

depend on a channel variable.

The process creation rule introduces new bindings and modifies only the one

corresponding to the #’-expression. As a consequence, the creation of a process

cannot disable the creation of other processes. On the contrary, it may even bring

new top-level #’-expressions. Even then, the number of processes that can be created

in one multi-step is always finite, and thus, the corresponding multi-step rule
pc

=⇒,

which carries out every possible process creation, is well defined.

Communication. The rule for value communication between processes is given in

Figure 6. In this simple calculus, values are always abstractions, and it is mandatory

to copy – from the producer’s heap to the consumer’s heap – all the bindings needed

for the evaluation of the dependent variables in the communicated abstraction.

Again, this copy can only take place if the abstraction does not depend on pending

communications; a renaming substitution (η) is applied to the transferred heap, and

bound variables are replaced by fresh variables.

Although a communication may enable additional ones, this never leads to an

infinite number of communications (in one system step) because there is always

only a finite number of communication channels in the system. The corresponding

multi-step rule
com
=⇒, which carries out every possible communication, is therefore

well defined. The order of communications is not relevant, because variables that

are already bound to values are not affected by communications.

Scheduling. Once all the enabled process creations and communications have been

done, the following tasks have to be executed:

• Unblocking bindings depending on a variable bound to a whnf value mean-

while.

• Deactivating bindings to values in whnf.

• Blocking process creations that could not be executed.
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Fig. 7. Rules for scheduling.

The corresponding rules are given in Figure 7, where Ex
B denotes an expression that

is immediately blocked on the variable x, i.e. either x or x y, with y being an arbitrary

variable.

The sequential execution of the rules in Figure 7 gives a new global rule:

Unbl
=⇒ =

wUnbl
=⇒;

deact
=⇒;

bpc
=⇒ .

For each multi-step rule in
Unbl
=⇒ it can be proven: (1) that a single step never disables

any other rule application enabled before, and (2) that the number of steps is always

finite.

The global system evolves by applying each of the global transition rules that

have been introduced so far:

sys
=⇒ =

comm
=⇒;

pc
=⇒;

Unbl
=⇒

The order of rule applications is not arbitrary; a communication may enable a

pending process creation, but not the other way around, because when a new

process is created no communication can take place without at least a local value

transition.

Finally, each transition step of the system is defined as follows:

=⇒ =
par
=⇒;

sys
=⇒ .

2.4.3 Speculative parallelism

The evaluation of an Eden program may give rise to different computations.

The exact amount of speculative parallelism depends on the number of available

processors, the scheduler decisions and the speed of basic instructions. Hence, the

execution of a program may range from reducing the speculation to the minimum –

only what is effectively demanded is computed – to expanding it to the maximum –

every speculative computation is carried out. While the former would be equivalent

to executing the program on a single processor with the scheduler giving priority

to the demand originated by the main expression, the latter would correspond to

having an unlimited set of processors for evaluating the output of every generated
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process. Moreover, if a reduction sequence for a program expression E is defined as

a – finite or infinite – sequence of configurations

〈p0, {main
A�→ E}〉 =⇒∗ 〈p0, H + {main

I�→ v}〉, 〈p1, H1〉, . . . , 〈pn, Hn〉 =⇒∗

then, in a minimal semantics, the final configuration is the first one where the main

variable becomes inactive, while in the case of a maximal semantics, the execution

continues until every process that has been created is finished or blocked, i.e. until

there are not active threads in the system.

Minimal semantics. We need a way to give preference to demands originating from

the main expression. An auxiliary function pre (preference) not shown here collects

all bindings that are demanded by a variable x (or by a channel c) for its immediate

evaluation within a process 〈p,H〉 and a system S . For a minimal evaluation, we

start from the variable main:

pm(S) = pre(main , 〈p0, H0〉, S)

where 〈p0, H0〉 is the main process, i.e. the one which contains the variable main .

Finally, we define the set of evolutionary threads of a heap H (used in the rule

parallel-p) as ETmin(H) = H ∩ pm(S). Notice that in this semantics a process can be

speculatively created, but its body will be evaluated only if its output is demanded.

Maximal semantics In this case, all the active bindings in the system evolve in parallel

at each step. We simply define ETmax(H) as the set of all active bindings in H .

A first version of this operational semantics was presented in Hidalgo-Herrero &

Ortega-Mallén (2001). In Hidalgo-Herrero & Ortega-Mallén (2002) it was re-

elaborated and extended with streams for communication and the language features

introduced in the next subsection: dynamic channels and nondeterminism. For more

details, such as correctness proofs, examples and applications, the reader is referred

to Hidalgo-Herrero (2004). A denotational semantics for Eden has been defined in

Hidalgo-Herrero & Ortega-Mallén (2003). A more detailed version extended with

communication streams is given in Hidalgo-Herrero (2004). This semantics addresses

three different aspects: (1) functionality: the final value computed; (2) parallelism:

the process system topology and its corresponding interactions generated by the

computation; and (3) distribution: the degree of speculation.

2.5 Extra-functional features

To make programming in Eden more convenient and to improve the expressive power

of the language, two additional constructs have been added to the language: dynamic

reply channels which simplify the creation of complex communication topologies and

reactive process systems, and many-to-one communication using a non-deterministic

fair merge process.
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Fig. 8. Pipeline topologies.

2.5.1 Dynamic channels

With the Eden constructs introduced up to now, communication channels are only

established between parent and child processes during process creation. This results

in purely hierarchical process topologies.

Example 6 (Pipeline)

Consider the following straightforward definition of a process pipeline2:

pipe :: Trans a => [a -> a] -> a -> a

pipe [] vals = vals

pipe (p:ps) vals = pipe ps (process p # vals)

The process evaluating a pipe application will create all processes of the pipeline

and consequently, the topology shown in Figure 8(a) will be produced. Data is

passed from one pipeline stage to the next via the parent process, which causes a

big communication overhead and contradicts the intention of the programmer. In

an alternative definition each pipeline process creates its successor process.

pipeC :: Trans a => [a->a] -> a -> a

pipeC [] vals = vals

pipeC ps vals = process (generatePipe ps) # vals

generatePipe :: Trans a => [a->a] -> a -> a

generatePipe [p] vals = p vals

generatePipe (p:ps) vals = (process (generatePipe ps)) # (p vals)

2 An equivalent, much shorter definition of pipe would be pipe = flip (foldl ((#).process))
but for didactic reasons we prefer the explicit version.
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The cascading pipe pipeC is defined using the auxiliary function generatePipe which

will be executed by each pipeline process causing the creation of a successor process

only if its list parameter contains at least two elements. Note that generatePipe

will always be called with a non-empty list parameter. Evaluating an application of

pipeC yields the process topology shown in Figure 8 (b). This is still not an optimal

realisation of a pipeline, because the pipeline results must be passed through all

pipeline stages before reaching the originating process, but it is the best we can

achieve with only tree-shape process topologies. �

To establish direct channel connections between arbitrary processes, Eden has been

extended with dynamic channel creation. An Eden process may explicitly generate a

new dynamic input channel whose name can be communicated to another process.

The receiving process may then either use the name to return some information

directly to the sender process (receive and use), or pass the channel name further on

to another process (receive and pass). Both possibilities exclude each other, and a

runtime error will occur if a channel name is used more than once.

Eden introduces a unary type constructor ChanName for the names of dynamically

created channels. Moreover, it adds an operator

new :: Trans a => (ChanName a -> a -> b) -> b

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a new

channel name ch name is declared as reference to the new input channel via which

the values ch vals will eventually be received in the future. The scope of both is the

body expression e, whose value is the result of the whole expression. The channel

name must be passed to another process to establish the direct communication. A

process receiving a channel name ch name, and wanting to reply through it, uses the

function

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating an expression parfill ch_name e1 e2 means: Before e2 is evaluated, a

new concurrent thread for the evaluation of e1 is generated, whose normal form

result is transmitted via the dynamic channel. The result of the overall expression

is e2. The generation of the new thread is a side effect. Its execution continues

independently from the evaluation of e2.

Example 7 (Pipeline, continued )

By passing a dynamic reply channel through the pipeline the last process can

directly send the final results to the originator process. This yields the intended

process topology shown in Figure 9

pipeD :: Trans a => [a->a] -> a -> a

pipeD [] vals = vals

pipeD ps vals = new (\ chan res ->

(process (generatePipeD ps chan)) # vals

‘seq‘ res)

generatePipeD :: Trans a => [a->a] -> ChanName a -> a -> ()

generatePipeD [p] c vals = parfill c (p vals) ()

generatePipeD (p:ps) c vals = (process (generatePipeD ps c)) # (p vals)
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Fig. 9. Intended pipeline topology.

It is obvious that the amount of communications is substantially reduced in this

version. �

The ring topology described in section 3 is another example where the direct

dynamically-established channel connections increase the performance substantially.

Although dynamic channels are a non-functional feature, they do not extend the

expressiveness of Eden. They have been introduced to improve the efficiency of

programs, but any program that correctly uses dynamic channels can be rewritten

into a program that shows the same input/output behaviour with only hierarchical

communication. This can be seen from the following argumentation. There will

always be a “first” dynamic channel whose channel name has been passed through

a purely “static” network, i.e. without using dynamic channel connections. By

introducing new reverse static channel connections along the path of the channel

name leads to an indirect connection between the sender and the receiver of the

dynamic channel which can be used instead for message transfer. Thus the dynamic

channel can be eliminated from the program. Using this method, all dynamic

channels can be systematically eliminated from a program, when they are used

correctly. Consequently, dynamic channels do not extend the expressiveness of the

language, but they are an important optimisation technique. However, the problem

with extra-functional features, such as this, is that they allow the programmer to

write subtly broken programs that would not have been possible before.

2.5.2 Merge

Many-to-one communication is an essential feature for many parallel applications,

but, unfortunately, it introduces non-determinism and, in consequence, spoils the

purity of functional languages. In Eden, the predefined process abstraction

merge :: Trans a => Process [[a]] [a]

is used to instantiate a process which does a fair merging of several input streams

into a single (non-deterministic) output stream. The incoming values are passed to

the output stream in the order in which they arrive. A merge process can profitably

be used to react quickly to requests coming in an unpredictable order from a set

of processes. This is the only way to enable dynamic load balancing of parallel

programs in a master-worker scheme:



Parallel functional programming in Eden 19

Fig. 10. Master-worker process topology.

(finalresult,taskss) = master (merge # [worker # tasks | tasks <- taskss])

The resulting process topology3 shown in Figure 10 is utilised in the replicated

workers skeleton described in section 3. Note that the above definition is recursive,

because the master and the workers mutually depend on each other.

Although merge is of great worth, because it is the key to specify many reactive

systems, one has to be aware that functional purity and its benefits are lost when

merge is being used in a program. Trying to encapsulate the non-deterministic

merge into a monad in order to isolate the non-functional behaviour would severely

restrict its usability, since mutually recursive value-passing as seen above can only

be expressed with special monadic fixpoint operators. Functional purity can still be

preserved in most portions of an Eden program. In particular, it is possible to use

sorting in order to force a particular order of the results returned by a merge process.

The Eden constructs are summarised in Figure 11. Sections 3 and 5 give evidence

that a powerful and flexible extension for parallelism has been achieved with only

five new functions.

3 Skeleton-based programming methodology

Skeletons (Cole, 1989) provide commonly used patterns of parallel evaluation and

simplify the development of parallel programs, because they can simply be used

in a given application context. A good example is the well-known map function,

which applies its argument function to each element of a given list. As each of these

calculations is independent, the evaluation of each element of the result list can be

done in parallel (see Examples 3 and 4). Normally, a skeleton can be implemented

in several ways. Implementations may differ in the process topology created, in the

granularity of tasks, in the load balancing strategy or in the target architecture

used to run the program. So, the implementation hides many details from the

potential user, and also determines the efficiency of the program. One of the main

3 The communication between merge and the processes feeding it is always direct.
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Fig. 11. Eden constructs.

characteristics of skeletons is that it is possible to predict the efficiency of their

applications. This can be done by providing a cost model for a particular skeleton

implementation. A cost model is just a formula stating the predicted parallel time

of the algorithm, which will be parameterised by some constants that may depend

either on the problem to be solved, on the underlying parallel architecture, or on

the runtime system (RTS).

For a functional programmer, a skeleton is nothing but a polymorphic higher-

order function which can be applied with different types and parameters. Thus,

programming with skeletons follows the same principle as programming with higher-

order functions (in fact the principle used in any abstraction): To define each concept

once and to reuse it many times.

Eden is one of the few functional languages in which skeletons can be both used

and implemented. In other approaches like Darlington et al. (1993) or Michaelson

et al. (2001), the creation of new skeletons is considered as a system programming

task or even as a compiler construction task. Skeletons are implemented by using

imperative languages and parallel libraries. Therefore, these systems offer a closed

collection of skeletons which the application programmer can use, but without the

possibility of creating new ones, so that adding a new skeleton usually implies a

considerable effort. Describing both the functional specification and the parallel

implementation of a skeleton in the same language context has several advantages.

First, it constitutes a good basis for formal reasoning and correctness proofs. Second,

it provides much flexibility, as skeleton implementations can easily be adapted

to special cases, and if necessary, new skeletons can even be introduced by the

programmer himself. In this section we present a selection of typical Eden skeletons.

For details on Eden skeletons (their specification, implementation and cost models),

the reader is referred elsewhere to Loogen et al. (2002).
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Fig. 12. Farm skeleton.

3.1 Task farms

In most parallel implementations of the well-known map function, the input list

is considered as a task queue that can be processed using several processor

elements (PEs). In Examples 3 and 4 we have already developed a straightforward

parallelization of map, map par, which creates a new process for each task. This

simple approach is not always well-suited, especially in the presence of many fine-

grained or irregular tasks. Alternative parallel implementations of map use a fixed

number of worker processes, each processing a subset of tasks.

The main process of the farm implementation creates as many processes as

processors are available, distributes the tasks evenly amongst the processes, and

collects the results. Each process applies the parameter function to each task it

receives, and sends the results back to the main process. The number np of workers,

and the distribution and collection functions unshuffle and shuffle are parameters

of farm (see Figure 12). The map par skeleton is used to create as many processes as

the number of task lists into which the original list is decomposed.

noPe is an Eden constant giving the number of available processors. Different

strategies to split the work into the different processes can be used provided that

(shuffle . unshuffle n) xs == xs holds for every list xs. The farm implementation

is appropriate when task granularity is uniform, and when an even distribution of

tasks amongst all the processors can be achieved.

In Eden’s skeleton library there is a variant of map farm in which the list of tasks

is passed to each worker as a free variable instead of through a channel. This may

imply the duplication of work (see section 2.4) but nevertheless this approach often

reduces the total execution time, as the amount of communication is much lower.

When the evaluation of the task list is cheaper than communicating the evaluated

list (or parts of it), it is better to allow the workers to evaluate the list of tasks on

their own and to select their part of it. The resulting skeleton is called self-service

farm implementation of map.

3.2 Replicated workers

Load balancing is a crucial issue when developing parallel programs. A bad load

balance will cause poor speedups for an otherwise elegant parallel algorithm. The

farm implementation is appropriate only if the different tasks in the list can be
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guaranteed to have a regular granularity. Besides irregular task granularity, a non-

homogeneous processor architecture or additional load on some processors may

require to distribute work on demand. In this case, a new task will be assigned to a

process only when it has finished its previous task. Thus, some processors may solve

a few complex tasks while others solve many small ones. The amount of work done

by each processor will be approximately equal.

This idea gives rise to the replicated workers skeleton (Klusik et al., 2002). Initially,

the manager assigns one or more tasks to each of the workers. By assigning several

tasks, idle time between tasks is minimised. Each time a worker finishes a task, it

sends an acknowledgement message to the manager including the result, and then

a new task (if available) is assigned to that process. The computation finishes when

the manager has received all the results. The programmer cannot predict the order

in which processes are going to finish their works, as this depends on runtime issues.

By using the reactive process merge, results from different processes can be received

by the manager in the order in which they arrive. Thus, if each result contains the

identity of the sender process, the list of merged results can be scrutinised to know

who has sent the first message, and a new task can be assigned to it. Notice that

this approach could not be used in a purely functional language, as process merge is

not functional (see section 2.5.2).

The input parameters of the skeleton shown in Figure 13 are: (1) the number

of worker processes to be used; (2) the size of workers’ pre-fetching buffer; (3) the

worker function; and (4) the list of tasks.

Notice that the output of the list of workers, outss, is used in two different ways:

1. An instance of merge is applied to it in order to obtain a list unordResult

containing the order in which the results are generated. This list is used by

distribute to assign new tasks to processors which have delivered a result.

2. The final result is obtained by applying sortMergeByTid to it, which is a simple

Haskell function (not shown) merging the workers lists (each of them already

sorted) into a single list sorted by task identity.

Sorting the results guarantees that, seen from the outside, the skeleton is completely

deterministic. In order to implement map, a worker is created for every processor.

3.3 Divide-and-conquer

Divide-and-conquer is a well-known scheme in sequential programming: The prob-

lem is split into one or more smaller subproblems. Once they are recursively solved,

their results are combined to produce the solution of the original problem. The

splitting process stops when a subproblem is trivial enough to be solved without

recursively invoking the function. The Haskell version of this scheme is the following

polymorphic higher-order function:

dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> (a -> [b] -> b) -> a -> b

dc is_trivial solve split combine x

| is_trivial x = solve x

| otherwise = combine x children

where children = map (dc is_trivial solve split combine) (split x)
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Fig. 13. Replicated workers skeleton.

Notice that the resulting call tree may be non-homogeneous, and that trivial solutions

may appear at any level of the tree. The easiest way to parallelise the dc scheme in

Eden is to replace map by map par and to stop the parallel unfolding at a given level

d. A dynamic tree of processes will then be created with each process connected to

its parent. An additional integer parameter d determines the maximum level after

which no more child processes are generated, and the sequential version is used

instead. We call the resulting skeleton dc par.

Using the rw implementation of map allows however a better control over process

granularity and distribution, and a better load balance. The process creation

overhead will be decreased as well, since only one process per processor will be

created. The original task is split up to a given depth, and a subtask is created

for every subtree at this depth. The list of subtasks is given to a map rw skeleton

in which the worker function is just the sequential algorithm (see Figure 14). To

be able to appropriately combine the results returned by the parallel processes, the

tree shape of splitting the task must be saved as well. Function generateTasks does

the splitting job, while function combineTop combines the results level-wise from the

leaves of the tree to the top. (These are simple Haskell definitions which are not

shown here.) Notice that the initial splitting and the final combination are done in

the manager processor, while solving the leaves is done in the worker processors.

Due to the laziness of the language, part of the splitting and of the combination can
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Fig. 14. Divide-and-conquer skeleton.

be done in parallel with solving the leaves. In any case, this load should be small

enough to avoid a bottleneck in the manager processor.

3.4 Replicated workers with dynamic task creation

Many problems are well-suited for a replicated workers implementation. For in-

stance, searching problems in which a huge-space state-tree has to be searched in

parallel to find one (or: the optimal) solution. In these problems the initial set of

tasks is small (it may even be only one initial task) but the number of tasks increases

as long as subproblems are solved. We have investigated several variants of the basic

replicated workers scheme in which workers are allowed to dynamically generate

new tasks. These variants are appropriate to solve depth-first and branch-and-bound

search problems. To complicate things, in some of these problems, the workers must

maintain an internal state (for instance, the cost of the best solution found up to

now) so that the result of the task at hand depends not only on the task itself but

also on the worker state. The manager may update the state from time to time when

new data are received from other workers.

We sketch a skeleton called stateful replicated workers implementing all these

features. The details of this skeleton can be found in (Martı́nez & Peña, 2004).

Figure 15 shows only the type of strw in Eden. We maintain the parameters of the

stateless replicated workers skeleton seen before: the number of workers to be created

by the skeleton, and the size of the prefetch buffer. The next four parameters are the

problem-dependent functions delivered to the skeleton. The implementation of strw

follows similar patterns to those of the basic skeleton presented in Figure 13. A new

main concern is termination, as tasks are now dynamically created. The manager has

to ensure that it triggers termination, only if no more new tasks will be created. This

is handled by the function distribute which has now eight parameters instead of

two in the basic version (see Figure 13). The purposes of distribute are manifold:
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Fig. 15. The type of the Eden skeleton strw (stateful replicated workers).

1. It detects when a worker has finished a task and assigns a new one, as in the

basic rw skeleton.

2. It computes the list of pending updates for each individual worker and

combines it with the newly assigned task.

3. It detects termination. To this aim, it controls the number of tasks generated

by the skeleton, the number of tasks distributed to workers, and the number of

results received from workers. Termination can be triggered, as soon as these

numbers are equal.

3.5 Ring

Many parallel algorithms arrange processes in a unidirectional ring, where each

process – apart from sending and receiving values to and from the parent – is

connected to only two neighbours: the previous link, from which it receives values,

and the next link, to which it sends values. By using dynamic channels to provide

direct connections between processes, the ring skeleton defined in Figure 16 creates

the desired topology. Each ring process pring receives an input from the parent,

and a channel name used to send values to its successor in the ring. It produces

an output sent to the parent, and a channel name used to receive inputs from its

predecessor in the ring.

The parameters of the skeleton are the number n of ring processes, a function

distribute to distribute the input data to the ring processes, a function combine to

combine the outputs produced by the ring processes into a final result, a function f

to be performed in each ring process and the input data. As the type of function f

shows, each ring process receives data of type a from the parent, and data of type

[c] from its predecessor process. It produces output of type [c] for its successor

and a result of type b for the parent. Function mzip is a more lazy variant of the

standard function zip.

4 Implementation

Eden’s compiler4 has been developed by extending the Glasgow Haskell Compiler

(GHC, 1993). The GHC has been chosen as the basis of our compiler because of its

4 Available at http://www.mathematik.uni-marburg.de/˜eden
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Fig. 16. Ring skeleton.

efficiency and portability. Moreover, Haskell features and extensions supported by

the GHC may be used in Eden.

4.1 Extending the Glasgow Haskell Compiler

The GHC translates Haskell programs into abstract C-Code which is flattened into

proper C using macro definitions of the runtime system. A standard C compiler

(Gnu) translates the resulting C code into native code which is finally linked with the

runtime system code to give the executable (see Figure 17). The GHC runtime system

(RTS) implements an abstract graph reduction machine, called the STG machine

(Peyton Jones, 1992). The compilation into STG-code is a chain of transformations,

finally resulting in a C representation (abstract C) (Peyton Jones, 1996).

The GHC allows to extend the functionality of its runtime system by defining

additional primitive operations, i.e. functions directly implemented in C by the

compiler. They provide basic atomic actions which are performed directly in the

runtime system. The Eden compiler uses the eight primitive operations shown in

Figure 18 to provide the additional functionality needed by the Eden constructs. The

type class Trans, the type constructors Process and ChanName as well as the new Eden

functions like process and # have been defined in a special module, called the Eden

module, which has to be imported by every Eden program. The definitions are based

on the Eden-specific primitive operations. To give an impression of how the Eden

module realizes parallelism control, we show the definition for process abstraction

(see Figure 19) which defines how a new process is set up in a remote environment.

A process abstraction of type Process a b is implemented by a function f remote

which will be evaluated remotely by a corresponding child process. The function’s

parameter are two channel names: the first outDCs (of type ChanName b) is a channel

for sending its output while the second chanDC (of type ChanName (ChanName a))
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Fig. 17. Overview of the GHC with extensions for Eden.

Fig. 18. Primitive operations for Eden.

Fig. 19. Haskell definition of Eden process abstraction.

is an administrative channel to return the names of input channels to the parent

process. The exact number of channels which are established between parent and

child process does not matter in this context, because the operations on dynamic
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Fig. 20. Layer structure of the Eden system.

channels are overloaded. The definition of process shows that the remotely evaluated

function, f remote, creates its input channels via the function createDC which is a

wrapper function for the corresponding primitive operation. Moreover, a function

writeDCs which is defined using the primitive operations setChan#, sendHead#, and

sendVal#, is used twice: the dynamically created input channels of the child, inDCs,

are sent to the parent process via the channel chanDC and the results of the process

determined by evaluating the expression (f invals) are sent via the channels

outDCs.

Note that, although the language definition introduces merge as a process ab-

straction, the current implementation provides it as a function merge :: Trans a =>

[[a]] -> [a] implemented by a primitive operation. Thus, a merge is tightly coupled

with the receiver process, enabling direct channel connections from the producer

processes to the receiver and avoiding any additional process creation overhead.

The main advantage of using primitive operations and the Eden module is

that Eden programs can be passed through the GHC front-end without any

changes. In particular, the original type inference algorithm checks the types of Eden

programs. An additional transformation on the core language level, called the eager

transformation, moves top-level process instantiations into a strict context where they

will be evaluated eagerly, as described in section 2.3. The most important changes

of the GHC concern the back end of the compiler and mainly the runtime system

(RTS). The necessary modifications have been designed as orthogonal additions

to the existing implementation. The implementation re-uses simplified kernel parts

of the parallel functional RTS GUM, the implementation of GpH (Trinder et al.,

1996).

The layered implementation of Eden, shown in Figure 20, achieves more flexibility

and improves the maintainability of this highly complex system (Berthold et al.,

2003). By lifting aspects of the RTS into the Eden module, basic work-flows can be

defined on a high level of abstraction. The layer structure makes the development of

extensions much easier once the RTS support is implemented. It takes complexity

out of the low-level RTS and simplifies its maintenance.
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Fig. 21. DREAM instances and their interconnections.

4.2 DREAM – The DistRibuted Eden Abstract Machine

Eden’s RTS is an implementation of the DREAM abstract machine (Breitinger

et al., 1997a), a parallel version of the sequential STG-machine. Each Eden process

is executed by its own instance of an extended STG-machine. It consists of one or

more concurrent threads of control. These threads, which evaluate different output

expressions, are independent of each other, but use a common heap with shared

information. Input is also shared among all threads in a process. As explained before,

the channels are represented by their ends which are called inport on the receiver

side and outport on the sender side. The inport points at heap locations where the

incoming data should be stored. Until the data arrives, a Queue-Me closure (QM)

blocks any demanding thread. Every thread is associated with its own outport via

which it will send the result of its computation. Each inport knows from which

sending thread (referred to by its outport) it will receive the values (see Figure 21).

The necessary information is kept in an inport table mapping inport ids to the heap

addresses of Queue-Me closures, and an outport table mapping outport ids to the

destination inport.

In contrast to the operational semantics shown in Subsection 2.4, the formalisation

of the DREAM concept makes these port connections explicit in the state of a

process. The generated process system is a collection of inter-related DREAM

instances. The state of a process includes information common to all threads and

the states of the threads. The shared part includes the heap and the inport table.

The state of a thread comprises the state of an STG-machine and the associated

outport referencing the connected inport.

We do not go further into the details of the DREAM model, the interested reader

is referred to the original paper (Breitinger et al., 1997a).
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Fig. 22. Runtime tables per PE.

4.3 The parallel runtime system

To map arbitrary process systems on a finite machine, multiple processes have to

be evaluated in an interleaved manner on the same processor element (PE). For

the purpose of keeping process creation as cheap as possible, the RTS provides

only one instance of DREAM per PE, which can execute several Eden processes

concurrently. Processes executed on the same PE share the scheduler and the runtime

tables. Thus, there is only one instance of the inport and outport tables per PE (see

Figure 22). The inport table maps locally unique inport identifiers to the heap

addresses of the corresponding Queue-Me closures and to the global references to

the connected outports. The outport references are used for the propagation of

termination information. The outport table maps locally unique outport identifiers

to the corresponding address of the thread state object (TSO) which represents a

thread in the heap. The outport table is used for system management, i.e. garbage

collection, termination, error detection, etc. A process table provides for each process

the number of inports and the number of threads, which is equal to the number of

outports.

The 1:1 channels allow to notify and in consequence to terminate the sending

thread when an inport is closed. Thus, local garbage collection (GC) may have

global effects. When the last thread of a process terminates, the whole process is

terminated and its remaining inports are closed. Otherwise the inports would be

kept alive until the next GC.

Eden uses a fair round-robin scheduling of threads to guarantee that threads

waiting for input are not blocked too long. To reduce the communication costs,

several messages addressed to the same PE can be put together into a single packet.
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This leads to a dynamic adaptation of the message granularity in the runtime system

(Berthold, 2004).

For the moment, Eden’s RTS supports two modes to map processes to processors,

which can be chosen by the user for each execution. Round-robin mode: If several

processes are instantiated from a PE p, they are mapped to consecutive processors

starting with p + 1. Random mode: Each processor maps instantiated processes

to randomly chosen processors. Notice that the round-robin mode allows the

programmer to control the mapping of processes to some extent, as it may be

achieved that different processes will be placed on different processors. This is,

for example, the case for the farm and replicated workers skeletons introduced in

section 3. Eden’s primitive for process instantiation allows explicit process placement

and we are currently experimenting with this feature to extend skeletons with explicit

placement instructions.

To sum up, the overall setting is to have one instance of the executable on each

PE, one of which is called the mainPE as it starts the execution by evaluating

the expression main. For the inter-processor communication, either PVM (1993) or

MPI (1997) can be used. As only very basic message passing operations are used,

they could readily be substituted by any other message passing library. The current

compiler uses PVM. The interested reader is referred to Breitinger et al. (1998),

Klusik et al. (1999) and Berthold et al. (2003) for details on the implementation of

the parallel Eden RTS.

5 Case studies and performance results

This section is devoted to three case studies which make use of the skeletons

previously introduced. The main objective here is to show how easy it is to express

parallel algorithms in Eden, once you are provided with a library of skeleton

implementations. A second objective is to show performance results in the form of

relative speedup curves for some concrete examples. This means that the reference

sequential program is the parallel Eden program running on a single processor.

So, the graphics will show how efficiently the algorithm scales with the number of

processors.

The case studies have been chosen as representatives of the kind of parallel

problems that can be solved in Eden. The first one, called pair interaction, is

a typical systolic example in which a ring of processes performs a regular and

highly synchronised computation. The second one is Karatsuba’s algorithm for

multiplying very large integers. It is a parallel divide and conquer problem with

irregular parallelism, both in the created topology and in the task granularity. This

is due to the different length of the initial numbers. The main difficulty here is to

map the tree-shaped process topology to a fixed number of processors. The third

case study parallelises Buchberger’s algorithm from the field of computer algebra. Its

granularity is irregular. Additionally, the number of parallel tasks is not known in

advance, as they are dynamically created. Therefore the stateful replicated workers

skeleton is applied.
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The experiments for the first two case studies have been performed with a Beowulf

cluster at the University of St. Andrews. Nodes are 450 MHz Pentium II running

Linux RedHat 5.2, with 348 MB of DRAM and connected through a CISCO 2984 G

full duplex 100 Mb/s fast Ethernet switch, the latency being δ = 142 µs. So, it is a

low cost environment with high latencies. The third case study has been measured

on a local Beowulf cluster with five processors.

5.1 Pair interactions

Let us assume that we want to determine the force undergone by each particle in a

set of n atoms. The total force vector fi acting on each atom xi, is

fi =

n∑

j=1,j =i

F(xi, xj)

where F(xi, xj) denotes the attraction or repulsion between atoms xi and xj . This

constitutes an example of pairwise interactions. For a parallel algorithm, we may

consider n independent tasks, each devoted to compute the total force acting on a

single atom. Thus, task i handles atom xi and computes {F(xi, xj) | j ∈ {1, . . . , n},
j = i}.

A separate process for each task would generate a big overhead, when dealing

with a large set of particles. Therefore, we partition the set of atoms into as many

subsets as the number of available processors. Each processor must compute the

interaction between each of its local particles and all the rest. This is a quadratic

computation. In order to minimise the amount of communications, we arrange the

processors into a ring and make the atoms information flowing around the ring. In

this way, after n− 1 rounds, all the processors will complete the computation of the

interactions. At the first iteration, each processor will compute the forces between

the local particles assigned to it. Then, at each subsequent iteration, it will receive a

new set of particles, and compute the forces between its own particles and the new

ones, adding the forces to the ones already computed in the previous iterations:

force :: [Atom] -> [ForceVec]

force xs = ring noPe splitIntoN concat (force’ noPe) xs

force’ :: Int -> ([Atom],[[Atom]]) -> ([ForceVec],[[Atom]])

force’ np (local,ins) = (total,outs)

where outs = take (np - 1) (local : ins)

total = foldl1’ f forcess

f acums news = zipWith addForces acums news

forcess = [map (faux ats) local | ats <- (local:ins)]

faux xs y = sumForces (map (forcebetween y) xs)

sumForces l = foldl’ addForces nullvector l

Function splitIntoN distributes the n particles to the noPe processors; function

forcebetween computes the forces betweeen two single particles; the list forcess

has type [[ForceVec]], and each of its blocks represents the forces undergone by

the local particles caused by the particles of a foreign block; function addForces ::

ForceVec -> ForceVec -> ForceVec simply adds two forces.
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Fig. 23. Speedups of pair interactions.

Figure 23 shows the speedups determined with up to 30 Beowulf nodes for an

input size of 7000 particles. We have obtained a relative speedup of 25 with 30

processors. This corresponds to an efficiency of 83,3% with 30 PE. The execution

time of the parallel program in one processor was 194.86 seconds. Notice that the

total communications of each process are in O(n), while its computations are in

O(n2/noPe).

5.2 Karatsuba’s algorithm

Karatsuba’s algorithm (e.g. see Horowitz & Sahni 1978) computes the product of

two large integers using a divide-and-conquer approach. Let us assume that a long

integer is represented in base b as a list of “digits” di, where for all i we have

0 � di < b. If two large integers x and y are to be multiplied, the algorithm works

as follows:

• Let n be half of the length of the longest of the two integers.

• Let x1 = x/bn, x2 = x mod bn, y1 = y/bn and y2 = y mod bn.

• Let u = x1y1, v = x2y2, w = (x1 + x2)(y1 + y2).

• The result of the multiplication is ub2n + (w − u − v)bn + v.

Notice that it is not necessary to perform any division to obtain x1, x2, y1 and y2.

It is enough to cut the lists representing x and y into two halves. The multiplication

with bn and b2n only needs appending zeros to the corresponding list. Therefore, only

three multiplications are needed, i.e. three subproblems of length n/2 are generated

when splitting a problem. Combining the subresults has a cost in O(n). This leads

to an overall complexity in O(nlog23).

This algorithm perfectly fits into a divide-and-conquer scheme. Notice that the

granularity of the subtasks may not be uniform as the three multiplications are

possibly applied to integers of different lengths. Also, trivial nodes may appear at

any depth in the tree. The implementation of the Karatsuba algorithm in terms of
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Fig. 24. Speedups of the Karatsuba algorithm.

the divide-and-conquer skeleton dc rw is as follows:

type LongInteger = [Int]

karat :: LongInteger -> LongInteger -> LongInteger

karat i1 i2 = dc_rw depth trivial solve split combine (i1,i2)

where depth = ceiling (logBase 3 (10*noPe))

trivial (i1,i2) = null i1 || null i2

solve _ = []

split :: ([Int],[Int]) -> [([Int],[Int])]

combine :: ([Int],[Int]) -> [[Int]] -> [Int]

where the code of split and combine follows the patterns described above.

Both the dc rw and the dc par version of the divide-and-conquer skeleton have

been tested for the same input data. The execution time of the parallel program in

one processor was 440 seconds. The speedups obtained for both skeletons can be

seen in Figure 24. As expected, the näıve implementation of the skeleton is worse

and also more irregular than the other, the main reason being that the load balance

is poorer and more random. Moreover, the overhead for creating processes is greater.

For the dc rw skeleton, we have obtained a relative speedup of 20 with 38 PE. This

corresponds to an efficiency of 52,6% with 38 PE. A reason for this sub-optimal

speedup can be found in Amdahl’s law (Amdahl, 1967), as there is an inherent

and not negligible sequential part in this algorithm: the initial computation of the

subtasks and the final combination of the results.

5.3 Gröbner bases

Gröbner bases computation is a computer algebra algorithm with plenty of applic-

ations in commutative algebra, geometry and systems theory. The problem can be

explained in the following terms: Given a finite set of polynomials F = {f1, . . . , fr}
in n indeterminates x1, . . . , xn, a Gröbner basis is another finite set of polynomials

G = {g1, . . . , gt} determining the same ideal and satisfying an additional canonical

property. The ideal I determined by a set S of polynomials, denoted I = 〈S〉 is the
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Fig. 25. Buchberger’s sequential algorithm computing a Gröbner basis.

smallest set containing S and closed under polynomial addition and product:

〈S〉 def
= {

∑

fi∈S
uifi | ui ∈ P [x1, . . . , xn]}

with P [x1, . . . , xn] being the set of all polynomials in n indeterminates.

Given a finite set F of polynomials, there exists an algorithm by B. Buchberger

(Adams & Loustaunau, 1994) which computes a Gröbner basis G for the ideal

I determined by F . It makes intensive use of two elementary steps: computation

of the S-polynomial of two polynomials f and g, denoted S(f, g), and reduction

of a polynomial f to normal form with respect to a set G of polynomials,

denoted f
G

−→∗ h. These operations involve linear combinations of polynomials.

The sequential Buchberger algorithm is shown in Figure 25.

It has been proven that the algorithm always terminates and that its cost is in

O(msp), where m and s are the worst case values for the length of the reduction

chains of S-polynomials and the cardinality of G, respectively. Value p is the number

of pairs in the final G. It is a priori unknown and depends on the form of the initial

polynomials in F . In the worst case, p can be exponential in the cardinality of F .

The parallel algorithm surveyed here has been run in a hybrid Eden-Maple system

by using an interface developed as part of the Eden project. The idea for the parallel

version of Buchberger’s algorithm is to compute the reduction to normal form

S(f, g)
G

−→∗ h in parallel for different pairs (f, g). The order in which such pairs are

chosen is not important for the correctness and the termination of the algorithm.

The granularity of such decomposition is large enough to justify the communication

of the polynomials f and g. This problem perfectly fits the stateful replicated worker

skeleton strw described in section 3.4. So, the strategy chosen has been to have a

manager process communicating pairs (f, g) to a fixed set of worker processes, and

getting back the results h of such reductions. If the result is 0, the manager will just

move to the next pair. Otherwise, the manager will compute additional pairs and

add them to the list of pending pairs.
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Fig. 26. Problem-dependent functions of strw for Gröbner problem.

Fig. 27. Speedups of the parallel algorithm computing a Gröbner basis.

Each Eden worker process has an auxiliary Maple process to which it delegates

the computation of S(f, g)
G

−→∗ h. Maple systems usually provide a sub-library to

compute Gröbner bases sequentially. However, they also provide the elementary

steps of the algorithm as individual functions. In particular, there exists a function

called spoly computing the S-polynomial of two given polynomials, and a function

called normalf computing the normal form of a polynomial with respect to a set of

polynomials. By looking at the sequential algorithm of Figure 25, it is easy to define

the four problem-dependent functions. They are shown in Figure 26.

We have run the skeleton, the problem-dependent functions and the Eden-Maple

interface in a small Beowulf cluster with five processors. The absolute and relative

speedups are shown in Figure 27. The reference sequential version for the absolute

speedup is Buchberger’s algorithm written completely in Maple. Its sequential time

was 212 sec. Notice that the Eden version running in one processor is about 32%

slower (280 sec.) than the pure Maple version. We find this overhead acceptable as
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the combination of the two languages, one of them functional, the interface itself,

which communicates Eden and Maple via a Unix pipe, and the Eden RTS, which

creates threads and processes, constitute enough reasons for it. The relative speedup

is however rather good: 4,91 with 5 PE, or 98,2% efficiency with 5 PE. This means

that the skeleton strw provides a very good load balance and that there are no

sequential bottlenecks in the algorithm.

The three case studies have shown that programs can easily be parallelised using

pre-defined skeletons and that good speedups can be achieved offhand.

6 Related work

This section is divided into three parts. First, we describe Eden-specific related

work, i.e. we shortly sketch further achievements of the Eden project which are

out of the scope of this paper. Then, we give an overview of other parallel or

concurrent functional languages. Finally, we discuss Eden in the context of these

other approaches, thereby pointing at similarities and explaining essential differences.

6.1 Further achievements

In this paper, we have given a survey on Eden’s design, the semantics, the

programming methodology, the implementation, and some runtime experiments.

Further work has been done on program analysis, profiling, automatic skeleton

selection by meta-programming techniques, and an interface between Eden and the

Maple system which has been used in the case study on Gröbner bases. In this

subsection, we want to point the interested reader at the corresponding publications.

Analyzing Eden programs. The GHC follows the principle “compilation by pro-

gram transformation” (Peyton Jones, 1996). Some optimizing transformations may

however affect the semantics of Eden programs, in particular in the presence of

non-determinism. Fortunately, the critical GHC transformations tend to reduce the

degree of non-determinism in Eden programs, i.e. the number of different behaviours

(Pareja et al., 2001). Non-determinism analyses have been investigated by Peña and

Segura (2004).

Another Eden-specific analysis tries to find out whether incoming data will

immediately be transferred to other processes without any local evaluation depending

on them. This is e.g. the case for the cascading pipe described in section 2.5 (see

Figure 8 (b)). Automatically bypassing such roundabout ways improves the overall

communication topology (Klusik et al., 2000).

Automatic skeletons. Haskell has recently been extended with compile-time meta-

programming facilities, called Template Haskell (Sheard & Peyton-Jones, 2002). A

system for automatically deriving Eden implementation skeletons from high-level

skeleton specifications has been described in Hammond et al. (2003). The approach

uses Template Haskell to automatically transform high-level skeletons into good

parallel implementations on the basis of static cost information.



38 R. Loogen et al.

Profiling. It is not easy to write efficient parallel programs, or to reason about their

runtime behaviour. Some kind of feedback is needed in order to check whether

programs are well-parallelised or to understand the reasons of possible inefficiencies.

PARADISE (PARAllel DIstribution Simulator for Eden) is a simulator tool for

profiling Eden programs (Hernández et al., 2000). It substantially modifies GranSim

(Hammond et al., 1995), a corresponding simulator for Glasgow parallel Haskell

(GpH). Unfortunately, the paradise simulator is only available for an older version

of the Eden compiler (version 3.02) which is no longer supported. Instead, the Eden

runtime system has been instrumented by trace outputs which are protocolled per

processor and combined into a single trace file after program termination. This

trace file can then be analysed with a separate trace-viewer tool (Roldán Gómez,

2004) which displays interactive diagrams of machine, process and thread activities,

as well as their communication. Trace viewing allows to observe and analyse the

real parallel runtime behaviour of Eden programs, while PARADISE only simulated

parallel execution.

Eden-Maple interface. The Eden-Maple interface briefly mentioned in section 5.3

allows the parallelization of computer algebra algorithms, which are known to be

computation-intensive. The idea is to use Eden as a coordination layer running

on top of multiple Maple systems, all of them running in parallel in the available

processors. The computation intensive functions are kept in the Maple processes

and these are called from the Eden layer. The interface and its use are described in

detail in Martı́nez & Peña (2004)5.

6.2 The spectrum of parallel functional languages

As functional languages offer good opportunities for parallelism due to the freedom

in the evaluation order of their subexpressions, there have been many different

approaches to parallel functional programming. Comprehensive overviews have

been given in Hammond & Michaelson (19999) and by Trinder et al. (2002).

The exploitation of implicit parallelism is challenging, but time has shown that

implicit parallelism is simply too much to be exploited effectively. There is a high

risk to produce a large number of fine-grained parallel activities in such a way

that the benefits of parallelism are lost in creating and communicating processes.

For this reason, many of the more recent approaches rely on the programmer to

decide which expressions deserve the effort of creating a parallel process for their

evaluation. The degree of explicitness chosen in the various proposals is however

different. We distinguish between the following two language groups:

Transformational languages: In a parallel transformational system, inputs are trans-

formed to outputs functionally depending on them. The main purpose of parallel-

ism is to speed up the computation. The programmer adds special expressions to

a purely functional program, either written as annotations interspersed in the text

5 The sources of the interface are available at http://dalila.sip.ucm.es/~ricardo.
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or provided as specialised wiring functions, which abstractly specify where and

when processes should be created. The denotational semantics of a program with

these specialised expressions is (almost) the same as the semantics without them.

An important semantic difference might be the order of evaluating subexpressions.

We refine this group further into three subgroups:

Annotated languages: These are languages like Concurrent Clean (Nöcker et al.,

1991), Glasgow parallel Haskell (GpH) (Trinder et al., 1998), or Caliban (Kelly,

1989).

Skeleton languages: Here we include most of the work done on skeletons. Typical

examples are: Bratvold (1993), Darlington et al. (1993), Bacci et al. (1999),

Herrmann (2000), Hamdan (2000) and Michaelson et al. (2001).

Data-parallel languages: Examples are NESL (Blelloch, 1996), pH (Nikhil et al.,

1995), Sisal (Gaudiot et al., 2001) and SaC (Scholz, 1996).

Reactive languages Reactive systems are different from transformational ones: usu-

ally they do not have clear notions of inputs and outputs or even of termination.

The purpose of parallelism, often called concurrency in this context, is to maintain

a set of separate tasks interacting with an external environment. Of course, reactive

constructs can also be used to express parallel transformational systems but the

set of possible systems is wider than in the previous group. Non-determinism

inevitably appears in these systems and the referential transparency of functional

languages may be lost.

Typically, languages in this group offer constructs not only for the creation of

processes but also for communicating and synchronising them. Most parallelism

issues are treated explicitly on a low level of abstraction. Languages in this group

are, for example, FACILE (Giacalone et al., 1990),Concurrent ML (Reppy, 1991),

Erlang (Wikström, 1994), Concurrent Haskell (Peyton Jones et al., 1996) and its

distributed variant Glasgow distributed Haskell (GdH) (Pointon et al., 2001).

Classifying Eden into these groups poses some difficulties discussed in the following.

6.3 Discussion

Considering only process abstractions and instantiations, Eden could be classified

into the group of transformational languages, in particular into the sub-group of

annotated languages, because its basic coordination constructs can be viewed as spe-

cial annotations. Whereas GpH and Concurrent Clean use parallelism annotations

indicating only potential parallelism, which need not be exploited by the runtime

system, Eden’s process instantiation will definitely lead to the creation of a new

process. This gives the programmer direct control over parallel evaluation and an

indirect control over data distribution. Caliban introduces separate wiring constructs

which are combined with application code to construct static process networks. As

in Eden, processes and their topology are explicitly handled in Caliban, but the focus

is on extracting the static process topology during compile time and on computing

an optimal mapping on the parallel destination architecture. In contrast to Caliban,

Eden – and also GpH and Concurrent Clean – supports the dynamic creation of
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parallel threads or processes, which gives the flexibility needed for handling irregular

or dynamically evolving parallel systems.

Skeletons can be defined in Eden as abstractions over lower-level definitions of

process systems, but Eden is not a skeleton language in the usual sense, because

there are no pre-defined skeletons with a specialised implementation. Most skeleton

languages work with pre-defined, specially supported sets of skeletons, and much

care has been taken to identify minimal sets of skeletons (Cole, 2003). New classes

of applications may, however, require new skeletons to obtain the best performance.

Therefore, in our opinion, the best minimum set of skeletons is the one which is

required to introduce and control parallelism in the host language. Higher-level

patterns can then be constructed from this basic mechanism as we have shown in

section 3.

Data-parallelism can be expressed in Eden, as the Eden skeleton map and other

show. Also, data distribution can be specified by the programmer by controlling

the free variables of process abstractions and the data communicated to processes

through channels. Eden is, however, neither a data-parallel language, because it has

no special support for data-parallel distribution primitives.

Because of merge, Eden can also be classified into the reactive languages group.

Note, however, that a lot of typical low-level features of coordination languages such

as sending and receiving messages are missing in Eden. In this respect, we agree with

S. Gorlatch, who argues in a recent note (Gorlatch, 2004) that low-level coordination

constructs like send and receive should be considered harmful and should be hidden

inside higher-level schemes like collective communication operations or skeletons.

Note that the merge process enables Eden to express reactive systems like the

replicated-workers skeleton which implements a dynamic load balancing scheme. It

is not possible to express this scheme in pure functional languages.

Summarising, Eden – a language with processes as first class values – perfectly

fits in both subgroups of our classification.

Many publications on Eden, like Klusik et al. (2001b), Peña & Rubio (2001)

and Loogen et al. (2002) show good runtime performance and speedups, most

of them obtained on a high-latency Beowulf cluster. Comparative measurements

of Eden and its sibling language GpH in Loidl et al. (2001) showed that the

explicit process model favoured by Eden gave better parallel performance for coarse-

grained applications running on a Beowulf cluster. The subsequent journal article

(Loidl et al., 2003) additionally considers the parallel functional ML-based language

PMLS (Michaelson et al., 2001) and compares the three languages with respect to

their coordination constructs, runtime performance and programmer productivity.

All three languages aim to provide higher-level models of parallelism, with the

objective of reducing programmer overhead. In contrast to GpH and Eden, PMLS

is a strict skeleton language which provides a set of pre-defined skeletons with

associated parallel behaviours. As said before, skeleton languages are less flexible

than general-purpose parallel languages like GpH and Eden, but will cause the

lowest programmer overhead when applying a known scheme covered by the pre-

defined skeletons. As anticipated, PMLS showed the lowest runtimes for the three

benchmarks considered in the paper. Eden also showed good speedup results, but
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worse absolute sequential and parallel runtimes than GpH. The latter was due

to different versions of the Glasgow Haskell compiler whose runtime system was

substantially revised from version 3 (underlying the Eden compiler) to version 4

(underlying the GpH system). The article also contains comparative results with

C+PVM benchmarks for parallel matrix multiplication. While the runtime of the

sequential C program is a factor 4–6 less than the runtimes of the functional

programs, the code size increases by the same factor. The speedup values progress in

a similar way to the functional programs, but the ratio of lines-of-code of the parallel

program versus the sequential program, which somehow indicates the development

costs of the parallel programs is about 1:4 for the C + PVM programs and varies

between 1:1.1 and 1:1.5 for the parallel functional programs. Thus, there is a clear

trade-off between performance and productivity.

7 Conclusions

Eden has been designed in such a way that programmers get a reasonable degree

of control over parallelism, but without low-level coordination constructs, which

would make programs longer and more difficult to understand. Eden can be seen as

a compromise between several extreme alternatives in the design space of parallel

functional languages, e.g. implicitness vs. explicitness, laziness vs. eagerness, or

determinism vs. nondeterminism.

Eden programs are not intended to be written always from scratch. In a way

similar to the rich set of higher-order functions provided by Haskell’s prelude, a rich

set of skeletons is provided by Eden’s library. They cover many common patterns of

parallel algorithms such as parallel map, parallel divide-and-conquer, map-and-reduce,

parallel search, iterate-until and others, as well as typical process topologies like grids,

tori, rings, pipelines, and the like. For the vast majority of problems, the task of the

Eden programmer is to choose or to adapt one of the predefined skeletons and to

instantiate it with appropriate problem-dependent parameters. Only a few problems

may require the explicit definition of process abstractions and instantiations in the

program text. Even in this case, the recommended methodology is to try to separate

the problem-dependent aspects from the coordination aspects. The latter can then

be embedded in a polymorphic problem-independent skeleton which can be added

to Eden’s library to be used in future programs. This separation of concerns is also

useful for reasoning, documentation, and testing purposes.

A big advantage of Eden is the replicated workers skeleton, which provides dy-

namic load balancing and often yields substantial performance gains in comparison

with purely static schemes like tasks farms. Eden gets this additional expressive

power in comparison to other transformational functional languages like GpH or

Concurrent Clean from its non-deterministic merge process.

No special parallel hardware is required to run Eden programs. A couple

of personal computers, connected by a mini-hub or by ethernet, and running

Linux + PVM is sufficient. In the near future it will be more and more common to

have desktop computers with two or four processors. Eden provides an easy way
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of exploiting the power of these machines. Computation-intensive Haskell programs

will easily be converted into parallel Eden programs.

When compared to their counterpart programs directly written in C + PVM, there

will be some runtime overhead due to the more sophisticated runtime system. This

is the typical trade-off between low-level control and high-level expressiveness. The

main advantage of the latter lies in the higher productivity of programmers, as

programs can be easier developed, verified and maintained. Consequently, we can

state that. in Eden, parallel functional programs which show good speedups can be

obtained with low effort.
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Roldán Gómez, P. (2004) The Eden Trace Viewer Tool. Diploma Thesis, Philipps-University

Marburg and Universidad Complutense de Madrid.

Scholz, S.-B. (1996) Single Assignment C – Entwurf und Implementierung einer funktionalen
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