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Abstract

The Spineless Tag-less G-machine (STG machine) was defined as the target abstract
machine for compiling the lazy functional language Haskell. It is at the heart of the Glasgow
Haskell Compiler (GHC) which is claimed to be the Haskell compiler that generates the
most efficient code. A high-level description of the STG machine can be found at (Peyton
Jones, 1992; Marlow & Peyton Jones, 2004; Marlow & Peyton Jones, 2006). Should the
reader be interested in a more detailed view, then the only additional information available
is the Haskell code of GHC and the C code of its runtime system.

It is hard to prove that this machine correctly implements the lazy semantics of Haskell.
Part of the problem lies in the fact that the STG machine executes a bare-bones functional
language, called STGL, much lower level than Haskell. Therefore, part of the correctness
should be —and it is— established by showing that the translation from Haskell to STGL
preserves Haskell’s semantics.

The other part involves showing that the STG machine correctly implements the lazy
semantics of STGL. In this paper we provide a step-by-step formal derivation of the STG
machine and of its compilation to C, starting from a natural semantics of STGL. Thus,
our starting point is higher level than the descriptions found at (Peyton Jones, 1992) and
(Marlow & Peyton Jones, 2004), and our arrival point is lower level than those works.
Additionally, there has been substantial changes between the so-called push/enter model
of the STG machine described in (Peyton Jones, 1992), and the eval/apply model of the
STG machine described in (Marlow & Peyton Jones, 2004). So, in fact, we derive two
machines instead of one, starting from the same initial semantics.

At each step we provide enough intuitions and explanations in order to understand the
refinement, and then the formal definitions and statements proving that the derivation step
is sound and complete. The main contribution of the paper is to show that an efficient
machine such as the STG can be presented, understood, and formally reasoned about at
different levels of abstraction.

1 Introduction

The Spineless Tag-less G-machine (STG) (Peyton Jones & Salkild, 1989; Peyton

Jones, 1992; Marlow & Peyton Jones, 2004; Marlow & Peyton Jones, 2006) is at the
heart of the Glasgow Haskell Compiler (GHC) (Peyton Jones et al., 1993; Peyton

∗ Work partially supported by the Spanish project TIN2004 07943-C04-04. The first author has
also been supported by the MCYT project TIN2006-15578-C02-01 (WEST) and the second
author has also been supported by the Madrid Region project S-0505/TIC/0407 (PROMESAS).
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Jones, 1996) which is probably the Haskell compiler that generates the most effi-

cient code. For a description of the Haskell language see (Peyton Jones & Hughes,
1999). One of the reasons for this efficiency is the set of analyses and transforma-

tions carried out at the intermediate representation level (Peyton Jones & Santos,
1998; Peyton Jones & Marlow, 2002); another reason is the efficient design and

implementation of the STG machine.

A high-level description of the STG can be found at (Peyton Jones, 1992). Re-

cently, the machine has undergone important modifications (Marlow & Peyton

Jones, 2004; Marlow & Peyton Jones, 2006), in particular in the way function
applications are handled. The so-called push-enter model has been replaced by a

new one based on an eval-apply style; the efficiency of the generated code is ap-
proximately the same in both models, while the compiler is much simpler in the

new model.

However, the gap between these detailed machine descriptions and the language

semantics, is too wide to be brushed aside in a single step. Moreover, if somebody
is interested in learning how the language constructions are mapped into the target

language C,1 then the only information available is the Haskell code of GHC and

the C code of its different runtime systems, amounting to thousands of lines.

In this paper we provide a step-by-step formal derivation of the two STG ma-

chines, the old and the new one, starting from the standard Launchbury semantics
for lazy evaluation of the STGL language (Launchbury, 1993), passing through de-

scriptions at the same level as those of (Peyton Jones, 1992; Marlow & Peyton
Jones, 2006), and finally arriving at a description at the target language level. We

structure the presentation in such a way that the common parts of both machines

and of both translations to imperative code are highlighted. This, we hope, can help
to understand the differences and similarities between the two evaluation models.

There has been a previous attempt at formally deriving the STG machine by Jon
Mountjoy (Mountjoy, 1998) which, in our opinion, was not completely successful

but has strongly inspired the present work. Here, we go beyond his work in the
sense that we also provide a translation of the source language to imperative code.

Other attempts by ourselves resulted in (Encina & Peña, 2002) and (Encina & Peña,

2003). In the first one, we proved the equivalence between the old STG machine
and one of Sestoft’s machines in (Sestoft, 1997). In the second one we followed for

the old model a similar approach to the one followed here, but in this paper we
also introduce the new model and some important differences in the semantics, in

the machines and in the translation. Also, here we present the relevant parts of the

proofs. This paper can then be considered as an extended and corrected version of
(Encina & Peña, 2003).

As Mountjoy’s, our starting point is the commonly accepted operational seman-
tics for lazy evaluation provided by Peter Sestoft in (Sestoft, 1997) which in turn was

an improvement over John Launchbury’s well-known natural semantics (Launch-
bury, 1993). Then, we present the following refinements:

1 GHC targets not only C but also assembly language for some platforms and C--. For the sake
of simplicity we will assume in the following that C is the target language.



A Formal Derivation of two STG Machines 3

1. A new operational semantics, which we call semantics S3 —acknowledging

that semantics S1 and S2 were those defined by Mountjoy— where lambdas
and data constructions appear only in let bindings, and applications of n ar-

guments are done simultaneously. We formally prove the equivalence between
semantics S3 and Sestoft’s.

2. Two machines, called STGPE -1 and STGEA-1, respectively implementing the
push-enter and the eval-apply models, in which explicit substitution of point-

ers for variables is done in reductions, are derived from S3. We prove the
soundness and completeness of these two machines with respect to S3.

3. Then, two machines STGPE -2 and STGEA-2 are derived by introducing en-
vironments in closures, case alternatives, and in the control expression. We

prove the equivalence between these machines and their counterparts STGPE -
1 and STGEA-1.

4. Next, we derive two machines, called ISTGPE and ISTGEA (the ‘I’ stands
for imperative) with a very small set of elementary instructions, which can

be very easily implemented in a conventional language such as C. The two
imperative machines differ only in two instructions, clearly showing the low

level differences of the two evaluation models.

5. Finally, two translations from the source functional language to the impera-

tive languages of ISTGPE and ISTGEA are provided. We show how the data
structures of STGPE -2 and STGEA-2 are represented (or implemented) by

the imperative machines. We also prove the correctness of the translations.

By putting together all the proof steps, the imperative implementations are shown

correct with respect to Sestoft’s operational semantics.

Our main contribution is to show that an efficient machine such as the STG

can be presented, understood, and formally reasoned about at different levels of
abstraction. By introducing enough intermediate levels, we highlight where and

why the important decisions are taken, and also make the formal proofs relatively

simple. As an interesting byproduct, we show that both implementations, the old
and the new one, can be derived and proved correct starting from a single semantics

of the source language

The organization of the paper is as follows: after this introduction, in Section 2

we give an overview of Launchbury’s and Sestoft’s semantics. In Section 3 a new
language called Fun is introduced and its operational semantics, which we call S3,

is defined. Two theorems relating Sestoft’s original language and semantics to the

new ones are proven. Section 4 defines the four machines STGPE -1, STGEA-1,
STGPE -2, and STGEA-2. Some propositions show the consistency of the machines

and the soundness and completeness of STGPE -1 and STGEA-1 with respect to
S3. Section 5 defines machines ISTGPE and ISTGEA and the translation from the

source constructions to imperative code. Two invariants are proved which show

the correctness of the translation. Section 6 discusses the differences between our
translation and the actual implementation by GHC, surveys related work, and

concludes.
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2 Natural Semantics

2.1 Launchbury’s original proposal

We begin by reviewing the language and semantics given by Sestoft as an improve-
ment over Launchbury’s semantics. Both share the language given in Figure 1, that

from now on we will refer to as Basic, where Ai denotes a vector A1, . . . , An of sub-

scripted entities. When n is important, we will write Ai
n
. Unless otherwise stated

we will assume throughout the paper that n > 0, m > 0 and l ≥ 0. Also, xi will

denote a non empty vector, except for constructor applications or patterns such as
C xi.

Basic is a normalised λ-calculus, extended with recursive let, constructor appli-
cations and case expressions. The normalisation process forces constructor applica-

tions to be saturated, and all applications to only have variables as arguments. Weak

head normal forms, denoted by w, are either lambda abstractions or constructions.

Sestoft’s semantic rules are given in Figure 2. There, a judgement Γ : e ⇓A ∆ : w

denotes that expression e, with its free variables bound in heap Γ, reduces to normal
form w and produces the final heap ∆. When a fresh variable p is created (see rule

Letrec), freshness is understood w.r.t. the left configuration Γ : e ⇓A of the rule’s

consequent. More precisely p 6∈ var Γ ∪ var e ∪ A, where var denotes the set of all
variables occurring in heap Γ or in expression e. The set A contains the domain

variables p of the heap bindings [p 7→ e] under evaluation (see rule Var). We say
that freshness is locally checkable to indicate that a fresh variable can be created

by simply looking into the current rule components. Rule Letrec is the only one in

which fresh variables are created, and bindings are added to the heap. By e[p/x]
we denote the substitution of p for the free occurrences of x in e. The notation

Γ[p 7→ e] means that [p 7→ e] ∈ Γ, while Γ ⊎ [p 7→ e] denotes the disjoint union of Γ

and [p 7→ e].

We say that Γ : e ⇓ Θ : w is a successful derivation if it can be proved by using

the rules. For instance, a derivation can fail because a configuration gets stuck. This
would happen in rule Var when a reference to variable p appears while reducing

expression e and before reaching a normal form. As this is done in a heap Γ not
containing a binding for p, no rule can be applied and the derivation cannot be

completed. Other forms of failure are those corresponding to ill-typed programs or

infinite loops.

2.2 Sestoft’s improvements

Sestoft proved in (Sestoft, 1997) the following proposition:

Proposition 1 (Sestoft)

If Γ0 : e0 ⇓{} Θ : w0 is a successful derivation, in all judgements Γ : e ⇓A Θ : w of
the derivation tree the following properties hold:

1. (dom Γ) ∩ A = ∅.
2. fv e ⊆ (dom Γ) ⊎ A.

3. bv e ∩ ((dom Γ) ⊎ A) = ∅
4. For all [p 7→ e′] ∈ Γ we have fv e′ ∈ (dom Γ)⊎A and bv e′∩((dom Γ)⊎A) = ∅
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v → x -- bound variable
| p -- free variable

e → v
| λx.e -- lambda abstraction
| e v -- application
| letrec xi = ei in e -- recursive let
| C vi -- constructor application
| case e of Ci xij → ei -- case expression

w → λx.e -- weak head normal forms
| C vi

Fig. 1. Launchbury’s and Sestoft’s original language Basic

Γ : λx.e ⇓A Γ : λx.e Lam

Γ : C pi ⇓A Γ : C pi Cons

Γ : e ⇓A ∆ : λx.e′ ∆ : e′[p/x] ⇓A Θ : w

Γ : e p ⇓A Θ : w App

Γ : e ⇓A⊎{p} ∆ : w

Γ ⊎ [p 7→ e] : p ⇓A ∆ ⊎ [p 7→ w] : w Var

Γ ⊎ [pi 7→ ei[pi/xi]] : e[pi/xi] ⇓A ∆ : w pi ∈ fresh

Γ : letrec xi = ei in e ⇓A ∆ : w Letrec

Γ : e ⇓A ∆ : Ck pj ∆ : ek[pj/xkj ] ⇓A Θ : w

Γ : case e of Ci xij → ei ⇓A Θ : w Case

Fig. 2. Sestoft’s natural semantics

That is, in every judgement of the derivation tree, there is a clear distinction
between free variables and bound variables appearing in expressions, heaps and

judgements: the former are either bound in the corresponding heap or they are
under evaluation and belong to A, while the latter are program variables belonging

to the original expression written by the programmer. Occasionally, we will use the

term pointers to refer to dynamically created fresh variables, bound to expressions
in the heap, and the term program variables to refer to (lambda-bound, let-bound

or case-bound) program variables. We consistently use p, q, . . . to denote pointers
and x, y, . . . to denote program variables.

Unfortunately, the proof of the above theorem was completed before introducing

case expressions and constructors and, when the latter were introduced, the the-
orem proof was not rewritten. With the current Case rule the freshness property

is not locally checkable anymore: while reducing the discriminant in the judgement

Γ : e ⇓A ∆ : Ck pj , fresh variables with the same names as those bound in the
alternatives may be created without violating the freshness condition. Thus, free

variables may be captured.
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Γ : λx.e ⇓AC Γ : λx.e Lam

Γ : C pi ⇓AC Γ : C pi Cons

Γ : e ⇓AC ∆ : λx.e′ ∆ : e′[p/x] ⇓AC Θ : w

Γ : e p ⇓AC Θ : w App

Γ : e ⇓A⊎{p}C ∆ : w

Γ ⊎ [p 7→ e] : p ⇓AC ∆ ⊎ [p 7→ w] : w Var

Γ ⊎ [pi 7→ ei[pi/xi]] : e[pi/xi] ⇓AC ∆ : w pi ∈ fresh

Γ : letrec xi = ei in e ⇓AC ∆ : w Letrec

Γ : e ⇓AC⊎{Ci xij→ei}
∆ : Ck pj ∆ : ek[pj/xkj ] ⇓AC Θ : w

Γ : case e of Ci xij → ei ⇓AC Θ : w Case

Fig. 3. Sestoft’s natural semantics corrected

To make freshness locally checkable, we would need an additional set holding

the free and bound variables of the pending case alternatives. Adding a new set of
variables to the derivation arrow ⇓ would be enough but instead, in (Encina & Peña,

2002) we introduced a multi-set C of continuations associated to every judgement.

The alternatives of a case were stored in this multi-set during the evaluation of the
discriminant. We then said that a variable p is fresh in a judgement Γ : e ⇓AC ∆ : w

if p 6∈ var Γ ∪ var e ∪ A ∪ var C. The modified rules are shown in Figure 3. The
knowledgeable reader has probably recognised in these two sets A and C part of

the stack of an abstract machine, as they represent work remaining to be done after

reducing the current expression. In (Encina & Peña, 2002) we introduced a third set
B in which the argument p of an application was stored in rule App while reducing

the functional part e to normal form. The motivation for that was having available
in the sets A, B and C the roots of the live part of the heap, and to develop a

semantics in which we could reason about garbage collection. After that, the stack

of the abstract machine was derived from these sets.
After modifying Launchbury’s semantics, Sestoft derives in (Sestoft, 1997) several

abstract machines, respectively called Mark-1, Mark-2 and Mark-3. His technique
has inspired us the derivation of machines STG-1 and STG-2 in the present work.

3 A New Semantics for Lazy Evaluation

Before presenting our new semantics S3 we modify the input language Basic in the

following aspects:

1. We force λ-abstractions and constructor applications to appear only in letrec

bindings. Expressions will include neither λ-abstractions nor constructions.

We will use the term binding expression to refer either to the latter or to an
expression.

2. Correspondingly, normal forms are variables bound in the heap to either λ-

abstractions or constructions. During evaluation, a third kind of normal form,
partial application, may arise. It corresponds to a λ-abstraction applied to a

smaller number of actual than formal arguments.
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3. λ-abstractions may now have more than one formal argument. Consequently,

a function may apply now to more than one actual argument. Moreover, the
functional expression is restricted to be a variable.

As in Basic, constructor applications are assumed to be saturated, i.e. not partially

applied.

The syntax of the modified language, called Fun, is shown in Figure 4. The main
motivation for the changes of Fun w.r.t. Basic is to make Fun as close as possible

to the STG abstract machine language. The latter is supposed to be an inter-
mediate language which results from desugaring and transforming Haskell. Hence,

programmers are not expected to write their programs in such a bare functional

language. The actual STG language also includes primitive values such as integers
and float numbers, primitive operators, and a case expression for primitive val-

ues. Also, case expressions may provide a default alternative. If this alternative is

missing, the compiler will ensure that there is one for every constructor of the data
type. Should the programmer have not specified an alternative for a particular con-

structor, the compiler will provide one with an error expression that would cause
program abortion at runtime. In order to simplify the derivation of our machines,

we have preferred to ignore in Fun these ‘real life’ aspects of the STG language. We

believe that they would not add essential insight to the present work. Nevertheless,
we will assume in Fun that case expressions contains exactly one alternative for

every data constructor of the data type.

The reader may wonder why the STG and the Fun languages have the above

described restrictions. Once, in subsequent sections, the STG machines are derived

and the imperative translation of Fun is done, the reader will discover that having λ-
abstractions and constructions in the heap saves much trashing and copying between

the heap and the control expression. Rule Var in Sestoft’s semantics of Figure 2 can
give an idea of what we mean: each time a variable p is evaluated, the expression

e bound to it in the heap must be installed as the current control expression. If

e happens to be a normal form, this implies some kind of copying; also, when a
heap binding must be updated with a normal form w this must be copied from the

control expression to the heap.

Having applications to several actual arguments at once also leads to more effi-
cient compiled code. The decision of having a variable as the only allowed functional

part of applications is a different matter is; in previous versions of this work, we
allowed arbitrary expressions. We claimed that the resulting machine saved con-

structing some unneeded heap bindings w.r.t. the actual STG machine implemen-

tation. The counterpart was having a rather complex SLIDE machine instruction
in the imperative machine (see Section 5) to remove runtime environments from the

stack. Also, the new eval-apply model could not be implemented in such a simple
way should we allow any expression in the functional part of applications.

Fun’s operational semantics —called S3 acknowledging the two previous attempts

made by Mountjoy in (Mountjoy, 1998)— is given in Figure 5. There, a judgement
Γ : e ↓S Θ[p 7→ w] : p expresses that the initial configuration (Γ, e, S) is reduced

to the normal form configuration (Θ[p 7→ w], p, S), where S is a stack with the
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-- Variables
v → x -- bound variable

| p -- free variable
-- Expressions

e → v vi -- application
| v -- variable

| letrec xi = bei in e -- recursive let

| case e of alti -- case expression

alt → C xj
l → e -- case alternative

-- Binding expressions
be → λ xi.e -- lambda abstraction

| C vi
l -- constructor application

| e -- expression
-- Normal forms

w → λ xi.e -- lambda abstraction
| C vi

l -- constructor application
| pap(p pi) -- partial application (internal)

Fig. 4. Language Fun

Γ[p 7→ w] : p ↓S Γ : p Normal formS3

Γ : p ↓pi :S ∆[q 7→ w] : q ∆ : q pi ↓S Θ[t 7→ w′] : t

Γ[p 7→ e] : p pi ↓S Θ : t AppThunkS3

Γ : q qi pi ↓S ∆[t 7→ w] : t

Γ[p 7→ pap(q qi)] : p pi ↓S ∆ : t AppPapS3

n ≥ m Γ : e[pi/xi

m
] ↓pm+1...pn:S ∆[q 7→ w] : q ∆ : q pm+1 . . . pn ↓S Θ[t 7→ w′] : t

Γ[p 7→ λxi
m.e] : p pi

n ↓S Θ : t AppS3

n < m q ∈ fresh

Γ[p 7→ λxi
m.e] : p pi

n ↓S Γ ⊎ [q 7→ pap(p pi
n)] : q App′

S3

Γ : e ↓#p:S ∆[q 7→ w] : q

Γ ⊎ [p 7→ e] : p ↓S ∆ ⊎ [p 7→ w] : q VarS3

pi ∈ fresh Γ ⊎ [pi 7→ be i[pi/xi]] : e[pi/xi] ↓S ∆[p 7→ w] : p

Γ : letrec xi = bei in e ↓S ∆ : p LetrecS3

Γ : e ↓alti:S
∆[p 7→ Ck pj ] : p ∆ : ek[pj/ykj ] ↓S Θ[q 7→ w] : q

Γ : case e of alti ↓S Θ : q CaseS3

Fig. 5. Semantics S3
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following syntax:

S → pi : S

| alt i : S

| #p : S
| [ ]

The notation o : S means pushing the object o to the stack S. The stack is in-

troduced with two purposes: one is to precisely define freshness in rules App′
S3

and LetrecS3 , and the other to make the correctness of the first two machines

easier to prove. In a judgement Γ : e ↓S Θ[p 7→ w] : p, a variable q ∈ fresh if
q 6∈ var Γ∪ var e∪ var S. The stack contains three kinds of objects: (1) sequences

pi of arguments belonging to pending applications; (2) continuations alt i of case

expressions whose discriminant expression e is under evaluation; and (3) update
marks #p of bindings [p 7→ e] whose expression e is under evaluation.

The first rule expresses that normal forms are pointers to either λ-abstractions,

partial applications or constructions. The next four take care of function applica-
tions. Rule AppThunkS3 deals with the case in which the functional part is not in

normal form. In rule AppPapS3 the functional part is a partial application, while
in rules AppS3 and App′

S3 the functional part is a λ-abstraction. The latter ones

distinguish the case of having enough actual arguments from the case of not having

them, where a partial application normal form is generated in the heap. The last
three rules are almost identical to the corresponding ones of Sestoft’s semantics.

Notice that, in rule CaseS3 , expression ek represents the right-hand side expression
of the alternative altk.

The reader may wonder why this semantics generates a third kind of normal form

(partial applications) instead of generating just λ-abstractions, as Sestoft does.
The obvious answer is: because this is what the STG machine we are trying to

derive does. A more insightful answer is the following: generating λ-abstractions not

corresponding to those of the original program would probably imply generating
imperative code at runtime and this is something everyone would like to avoid.

Instead, a partial application contains a pointer to a known λ-abstraction whose
imperative code already exists. A partial application ‘just waits’ in the heap until

enough arguments to the original λ-abstraction are provided (see rule AppPapS3 ).

Then, the lambda is fully applied by using rule AppS3 . Notice also in rule AppPapS3

that, should a partial application be applied to a number of arguments not enough

to satisfy the arity of the lambda, then a new partial application would be generated
by rule App′

S3 . This new partial application would contain a copy of the arguments

of the first one, plus some additional arguments. A different design option could

have been generating an indirection to the previous partial application and not
replicating the arguments. At this level, we do not feel the need to be efficient and

we have chosen the first option; the second could be taken at the abstract machine

design level.

Language Fun is at least as expressive as Basic. The following normalising func-

tion transforms any Basic expression into a semantically equivalent Fun expression.

Definition 2
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The normalising function N : Basic→ FunExpression is defined as follows:

N x
def
= x

N (e x)
def
= (N e) x if e = e′ x′

N (e x)
def
= letrec y = N

′ e in y x if e 6= e′ x′, y 6∈ fv e

N (λ x.e)
def
= letrec y = N

′ (λ x.e) in y if y 6∈ fv (λ x.e)

N (C xi)
def
= letrec y = C xi in y if y 6∈ fv (C xi)

N (letrec xi = ei in e)
def
= letrec xi = N′ ei in N e

N (case e of Ci yij → ei)
def
= case N e of Ci yij → N ei

The auxiliary functions N
′, N

′′ : Basic→ FunBindingExpression are defined as
follows:

N
′ (C xi)

def
= C xi

N
′ e

def
= N

′′ e if e 6= C xi

N
′′ (λ x.e)

def
= λ x.N′′ e

N
′′ e

def
= N e if e 6= λ x.e′

3.1 Soundness and completeness of semantics S3

To see that both semantics reduce an expression to equivalent normal forms, we

first will prove that the normalisation does not change the meaning of an expression

within Sestoft’s semantics, and then that both semantics, Sestoft’s and S3, reduce
any Fun expression to equivalent normal forms, provided that such normal forms

exist.

To prove that the normalisation process does not change the meaning of an ex-

pression, first we define an equivalence between a normalised expression e∗ = N e,
and the original one e, in Sestoft’s semantics. The evaluation of the normalised

expression will create more heap bindings, as it has more letrec expressions. So,
our equivalence should take into consideration the live variables of the transformed

expression, the fact that the normalisation process produces a different expression,

and the names of the fresh variables, which could be different in the two semantics.
In the following, we will consistently use e∗ to denote normalised (i.e. Fun) expres-

sions, and e to denote Basic (i.e. possibly not normalised) expressions. We define

the equivalence in three steps:

• First, we define the live part of a heap.

• Then, we define the equivalence between two Sestoft configurations up to
α-renaming.

• Finally, we define the equivalence between two Sestoft configurations taking

into account the normalisation process.

An α-renaming is a bijection between two finite sets V and V ′ of variables which,

when applied to the bound variables of an expression, or of a binding (both to the

left and the right parts of it), does not produce capture of free variables. We are
interested in abstracting classes of configurations which are equivalent modulo an

α-renaming, as it is frequently done (Morrisett et al., 1995; Urban et al., 2004; Pitts,
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2005). We will use the notation β e and β Γ to respectively denote the α-renaming

of and expression e and of all the bindings of a heap Γ by the bijection β.

Definition 3

Given a heap Γ, an expression e, and a set P of variables, we define the live part

of Γ with respect to e and P , denoted ΓP,e
live , as follows:

ΓP,e
live = fix (λL . L ∪ {[p 7→ e′] ∈ Γ | p ∈ P ∨ p ∈ fv e ∨ (∃[q 7→ e′′] ∈ L . p ∈ fv e′′)}

where fix denotes the least fix point.

Definition 4

Let Γ : e and Γ′ : e′ be two Sestoft configurations, P a set of variables, and an

α-renaming β. We say that both configurations are P -equivalent, denoted Γ : e
β≡P

Γ′ : e′ , if ΓP,e
live : e = (β Γ′)P,β e′

live : β e′.

Definition 5

Let be Γ : e and Γ∗ : e∗ two Sestoft configurations, P a set of variables, and an

α-renaming β. We say that they are

1. P -equivalent via normalisation, denoted Γ : e
β≡P,N Γ∗ : e∗, if N

′ Γ : N e
β≡P

Γ∗ : e∗.

2. P -equivalent normal forms via normalisation, denoted Γ : w
β≡P,N′ Γ∗ : w∗, if

N
′ Γ : N

′ w
β≡P Γ∗ : w∗.

The following theorem proves that the normalisation does not change the meaning
of an expression within Sestoft’s semantics.

Theorem 6 (Sestoft ⇔ Sestoft∗)

Let Γ : e and Γ∗ : e∗ be two Sestoft configurations, and P be a set of variables,
such that:

• fv e∗ ⊆ P

• ∃β.Γ : e
β≡P,N Γ∗ : e∗

Let A, A∗ (sets of variables) and C, C∗ (sets of case continuations), such that
P = A ∪ fv C, A∗ = β A, and C∗ = β(N C). Then:

1. If Γ : e ⇓AC ∆ : w then Γ∗ : e∗ ⇓A∗C∗ ∆∗ : w∗ and ∃β′.∆ : w
β′

≡P,N′ ∆∗ : w∗.

2. If Γ∗ : e∗ ⇓A∗C∗ ∆∗ : w∗ then Γ : e ⇓AC ∆ : w and ∃β′.∆ : w
β′

≡P,N′ ∆∗ : w∗.

Proof

1. By induction on the depth of e’s normal form ⇓ derivation.

2. By induction on the depth of e∗’s normal form ⇓ derivation.

Corollary 7

Given a closed expression e ∈ Basic:

{} : e ⇓{}{} ∆ : w iff {} : N e ⇓{}{} ∆∗ : N
′ w and ∃β.∆ : w

β≡{},N′ ∆∗ : w∗
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Before proving the equivalence between the two semantics, we must ensure that

there is no variable capture in S3. The following proposition, equivalent to Sestoft’s
Proposition 1, establishes that.

Proposition 8

If Γ : e ↓S Θ : w is a successful S3 derivation, and fv e ∩ bv e = ∅, and for all

[p 7→ e′] ∈ Γ, fv e′ ∩ bv e′ = ∅ holds, then:

1. fv w ∩ bv w = ∅, and

2. For all [p 7→ e′] ∈ Θ, fv e′ ∩ bv e′ = ∅ holds, and

3. The premise of the proposition, and (1), and (2) hold for every intermediate

judgement of the derivation.

Proof

By induction on the depth of the ↓S derivation.

The next theorem proves the equivalence between the two semantics. We con-
sider only Fun expressions because it has already been proved that the normalisation

does not change the Sestoft’s meaning of expressions. Now, we define an equivalence
between a Sestoft configuration and an S3 configuration. The definition takes into

account that Sestoft’s and S3’s heaps are different: Sestoft’s semantics applies func-

tions to the arguments one by one and does not create partial applications. On the
other hand, the control expression in S3 is never a λ-abstraction or a construction.

Also, an α-renaming is needed. In the following, e denotes a Fun expression reduced

within S3 semantics, and e∗ a Fun expression reduced within Sestoft’s semantics.
We define the equivalence in two steps:

• First, partial applications in S3 heaps are removed and replaced by their

equivalent λ-abstractions. It is clear that this operation does not change the
meaning of heap expressions.

• Then, an equivalence between Sestoft and S3 configurations is defined, by

taking into account only live variables and a possible α-renaming.

Definition 9

The partial-application removing function E : Heap → Heap is defined as follows:

E {} def
= {}

E (Γ[q 7→ λ xi
n.λ yi.e] ⊎ [p 7→ pap(q qi

n)])
def
= (E Γ) ⊎ [p 7→ λ yi.e[qi/xi

n
]]

E (Γ ⊎ [p 7→ e])
def
= (E Γ) ⊎ [p 7→ e] otherwise

Notice that function E does not change the number of bindings in the heap Γ.

Definition 10

Let Γ : e be an S3 configuration, Γ∗ : e∗ a Sestoft configuration, P a set of variables,
and β an α-renaming. We say that they are P -equivalent via partial application

elimination, denoted Γ : e
β≡P,E Γ∗ : e∗, if

1. E Γ : e
β≡P Γ∗ : e∗, or

2. e is a variable and E Γ : (E Γ) e
β≡P Γ∗ : e∗.
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Some particular cases of this definition are:

Γ[p 7→ C xi] : p
β≡P,E (E Γ) : C xi

Γ[p 7→ C xi] : p
β≡P,E (E Γ[p 7→ C xi]) : p

Γ[p 7→ λxi.e] : p
β≡P,E (E Γ) : λxi.e

Γ[p 7→ λxi
nλyi.e, q 7→ pap(p pi

n)] : q
β≡P,E (E Γ) : λyi.e[pi/xi]

Γ[p 7→ λxi.e] : p
β≡P,E (E Γ[p 7→ λxi.e]) : p

In order to prove the general theorem we need the following auxiliary lemmas:

Lemma 11

Let n and m satisfy n ≥ m > 0. If Γ : p ⇓{pi
n∪A}C ∆ : λxi

m.e and ∆ :

e[pi/xi

m
] pm+1 . . . pn ⇓AC Θ : w, then Γ : p pi

n ⇓AC Θ : w.

Proof

By induction on n.

Lemma 12

If Γ : p ⇓{pi
n∪A}C ∆ : λxi

n.λyi.e then Γ : p pi
n ⇓AC Γ : λyi.e[pi/xi

n
]

Proof

Trivial, by induction on n.

Lemma 13

If Γ : p pi
n ⇓AC Θ : w, then







Γ : p ⇓{pi
n∪A}C ∆ : λxi

m.e, and

if n ≥ m then ∆ : e[pi/xi

m
] pm+1 . . . pn ⇓AC Θ : w

else







λxi
m.e = λyi

n.λzi
m−n.e

w = λzi
m−n.e[pi/yi

n
]

∆ = Θ

Proof

By induction on n.

Lemma 14

If Γ : p ⇓{pi
n∪A}C ∆[q 7→ w] : w and ∆ : q pi

n ⇓AC Θ : w′ then, Γ : p pi
n ⇓AC Θ : w′

Proof

Trivial, by induction on n

Now, we can approach the proof of the main equivalence theorem. By upd S and

varalts S we respectively denote the set of variables included in update marks and

in case alternatives stored in stack S.

Theorem 15 (Sestoft∗ ⇔ S3)

Let Γ : e be an S3 configuration, Γ∗ : e∗ be a Sestoft configuration, and P be a set

of variables such that:

1. fv e∗ ⊆ P , and

2. ∃β.Γ : e
β≡P,E Γ∗ : e∗
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Then, for all A (set of variables), C (set of case continuations), and S (stack), such

that P = A ∪ fv C, and A ∪ var C = β(upd S ∪ varalts S), we have:

1. If Γ∗ : e∗ ⇓AC ∆∗ : w∗ then Γ : e ↓S ∆[p 7→ w] : p and ∃β′.∆ : p
β′

≡P,E ∆∗ : w∗

2. If Γ : e ↓S ∆[p 7→ w] : p then Γ∗ : e∗ ⇓AC ∆∗ : w∗ and ∃β′.∆ : p
β′

≡P,E ∆∗ : w∗

Proof
1. By induction on the depth of e∗’s normal form ⇓ derivation.
2. By induction on the depth of e’s normal form ↓ derivation.

As an example of the proof technique, we will show in the proof of (2), the case

where the initial S3 configuration has an application in the control expression:
Γ[p 7→ e] : p pi

n. By hypothesis, we know:

H1 Γ : p pi
n

β≡P,E Γ∗ : e∗ and {p, pi} ⊆ P
H2 Γ : p pi

n ↓S Θ[t 7→ w′] : t
H3 By H1 and by applying the S3 AppThunkS3 rule, we also know:

Γ : p ↓pi
n:S ∆[q 7→ w] : q and ∆ : q pi

n ↓S Θ[t 7→ w′] : t

By H1 and by Definition 10, we have ΓP,p pi
n

live : p pi
n = (β Γ∗)

P,(β e∗)
live : (β e∗),

then e∗ = p∗ p∗i
n

and p pi
n = β (p∗ p∗i

n
). From this we can conclude Γ : p

β≡P,E

Γ∗ : p∗.

By induction hypothesis on H3, we have:

Γ∗ : p∗ ⇓AC ∆∗ : w∗ and ∃β′.∆[q 7→ w] : q
β′

≡PE ∆∗ : w∗

Now there are two possibilities: q ∈ dom (β′ ∆∗)
P,(β′ w∗)
live or q /∈ dom (β′ ∆∗)

P,(β′ w∗)
live

(i.e. β′−1 q is either live or dead in ∆∗ : w∗). We will prove the case where
q∗ = β′−1 q is live in ∆∗ : w∗ and will indicate how to prove the other.

By ∆[q 7→ w] : q
β′

≡PE ∆∗ : q∗ and q∗ live in ∆∗ : w∗, we have:

∆[q 7→ w] : q pi
n β′

≡(P∪{q})E ∆∗ : q∗ p∗i
n

and ∆∗[q∗ 7→ w∗]

Then, by induction hypothesis on H3, we get ∆∗ : q∗ p∗i
n ⇓AC Θ∗ : w′∗ and

∃β′′.Θ[t 7→ w′] : t
β′′

≡ (P∪{q})E Θ∗ : w′∗. So, Θ[t 7→ w′] : t
β′′

≡PE Θ∗ : w′∗. Then, by
Lemma 14 we finally get Γ∗ : e∗ ⇓AC Θ∗ : w′∗.

The case where β′−1 q is not live in ∆∗ : w∗ is slightly more complicated. First,
we need to add a new closure to ∆∗ pointing to the normal form w∗ and then to

extend β′ in order to get a new equivalence
β′′

≡ . The rest of the proof is very similar

to the previous one.

Corollary 16
Given a closed expression e ∈ Fun:

1.If {} : e ⇓{}{} ∆∗ : w∗, then {} : e ↓[] ∆[p 7→ w] : p, and ∃β.∆ : p
β≡{},E ∆∗ : w∗

2.If {} : e ↓[] ∆[p 7→ w] : p, then {} : e ⇓{}{} ∆∗ : w∗, and ∃β.∆ : p
β≡{},E ∆∗ : w∗
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The above theorems allow us to transform Basic programs, with the usual Sestoft’

s semantics, into Fun ones with the new —and equivalent— S3 semantics. Once
adapted the source language and its semantics to the ‘STG world’, we are ready to

derive our first STG-like machines.

4 Deriving two abstract STG machines

During the last years, the STG machine has undergone some changes, the main
one being the way it reduces applications. The initial evaluation strategy was a so-

called push/enter model. It works as follows: in order to reduce the application, the

machine first pushes the arguments onto the stack and then enters the closure where
the λ-abstraction is. The λ-abstraction is responsible for analysing whether there

are enough arguments or not in order to perform the β reduction. The principal
advantages of the model are:

• The machine enters the closure without further analysis or delay. This scheme

is also followed for the rest of the closures (constructions, partial applications,
and thunks). The closure code is responsible for what must be done upon

entering, so closures need not be tagged. In fact, the surname ’tag-less’ makes

reference to this important feature of the machine.
• In certain cases the machine does not need to create intermediate partial

applications.

The main drawback, as the authors explain in (Marlow & Peyton Jones, 2004),

is the difficulty of navigating through the stack. While other stack objects like
update frames or case continuations have a clear layout and size, easily known by

the runtime system, pending arguments represent a complex issue as they must be

dealt with one by one. In the several situations in which the stack must be walked
through (e.g. garbage collection, stack migration, etc.), pending arguments much

complicate the runtime system code or lead to an inefficient one.
Currently the STG machine implements the so-called eval/apply model. In this

model, the responsibility for checking the correct number of arguments is delegated

to the application code: if there are enough arguments, then the λ-abstraction
closure is entered; otherwise, a partial application is created. In this model, the

closure must be inspected in order the application site to know the exact number

of arguments needed by the λ-abstraction. The code of the latter is liberated from
the argument satisfaction check that is typical of the push-enter model. The main

advantages of eval-apply are:

• When pending arguments must be left in the stack —for instance, when the
function to be applied consists of an unevaluated thunk— they are packed

in a regular stack frame, much in the same way as the update and the case

continuation frames. Its layout is known by the whole runtime system and the

navigation through the stack is much simpler than in the push-enter model.
• A lot of optimisations can be done in the application site when the number

of arguments needed by the λ-closure is known at compile time.

The main disadvantages of this model are that in some programs it produces more
partial applications closures than the push/enter model, and that it needs closures

to be tagged.
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Heap Control Stack rule

Γ letrec xi = bei in e S letrec (1)

→ Γ ⊎ [pi 7→ be i[pj/xj ]] e[pi/xi] S

Γ case e of Ci yij → ei S case1
→ Γ e Ci yij → ei : S

Γ[p 7→ Ck pi] p Ci yij → ei : S case2

→ Γ ek[pi/yki] S

Γ ⊎ [p 7→ e] p S var1 (2)
→ Γ e #p : S

Γ[q 7→ w] q #p : S var2
→ Γ ⊎ [p 7→ w] q S

(1) pi fresh w.r.t. Γ, letrec {xi = be i} in e, and S
(2) e 6= w

Fig. 6. The STG-1 common Machine

At first sight, the eval-apply model looks simpler to implement but leading to a
less efficient code. This was probably the reason why the authors decided to imple-

ment the push-enter model in the beginning. However, the actual tests published
in (Marlow & Peyton Jones, 2004; Marlow & Peyton Jones, 2006) show that the

eval/apply model is even a little more efficient than the push/enter model in the

majority of the (large number of) programs tested. Given these results, the current
STG machine implements eval-apply.

We consider that both models deserve to be formally derived from our S3 se-

mantics. One reason is to show that a single semantics can lead to two different

machines, and to different imperative code. The other reason is to highlight the
similarities and the differences of two successful, industrial-strength, Haskell imple-

mentations.

Following an approach similar to Sestoft’s derivation of his MARK-1 machine

(Sestoft, 1997), we first introduce a very simple STG-1 machine for each model
—which we respectively call STGPE -1, and STGEA-1— in which explicit substitu-

tions of pointers for program variables are done. The only difference between the

push/enter and the eval/apply models is the way they deal with applications. So,
it can be expected that both machines have a (rather large) common part and a

specific part. We will present first the rules which are common to both models.
These rules are shown in Figure 6.

A configuration in an STG-1 machine is a triple (Γ, e, S), where Γ represents the
heap, e is the control expression and S is the stack. As in the S3 semantics, the

heap Γ binds pointers to either expressions or normal forms which, in turn, may

contain other pointers. The expression e is any Fun expression. The stack S stores
for the moment two kinds of objects: case continuations, alts of pending pattern

matchings, and marks #p of pending updates.
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The common machine rules look very close to the lazy semantics S3 rules pre-

sented in Section 2. For instance, the machine rule for letrec in Figure 6 is a literal
transcription of the LetrecS3 rule of Figure 5. As there, freshness of variables is

understood with respect to the current control expression, heap and stack. The
semantic rule for case is split into the two rules case1 and case2 in the machine.

The semantic rule for a variable is also split into two in order to take care of updat-

ing the closure. So, in principle, the execution of the STG-1 machine on an initial
expression e0 could be regarded as the linearisation of the S3 semantics derivation

tree for e0, by using the stack as the source of pending work.
In the next two subsections, we will show the specific rules for the push/enter

and the eval/apply models.

4.1 The push/enter machine

As we have previously mentioned, in the push/enter model the arguments of an

application are pushed to the stack and the function closure is entered. This is

reflected in rule appPE1 of Figure 7. The function is responsible for testing whether
there are enough arguments in the stack. If this is the case, the β reduction is

performed (rule appPE2). Otherwise, a partial application is created (rule appPE4).

If after applying rule appPE4 the stack S is not empty, then a number of update
marks will follow. Rule var2 will perform the necessary updates with the partial

application just created and will remove those marks. If the binding itself is a partial
application and there is at least one pending argument in the stack, the partial

application arguments are pushed on top of the pending arguments (rule appPE3),

and the λ-abstraction the partial application comes from is entered. Then one of the
rules appPE2 or appPE4 could be used. The net effect of this combination of rules

is that, if the whole set of arguments for a λ-abstraction are separated by update
marks, the machine will remove the marks trying to put all arguments together. In

the mean time, it will create partial application bindings and use them for updating

the marked bindings.
The stack may contain now a third kind of object: a pending argument p of a

function under evaluation. Notice that each pending argument is in the stack by
itself, not being part of a packet. A set of arguments can be pushed early in a

computation and consumed much later and separately by different functions.

4.2 The eval/apply machine

As explained, the eval/apply machine pushes/pops arguments to/from the stack

in packets of n > 1 arguments, denoted •pi
n. So, this is a third kind of objects

present in the STGEA-1 stack. Notice that this object is different from n pending
arguments pi

n in the STGPE -1 stack.

The specific rules for this model are presented in Figure 8. Given an application

in the control expression, five cases may happen when inspecting the functional
binding:

1. It is an unevaluated thunk. In this case, a packet with the n arguments is
pushed to the stack (rule appEA1) and the thunk is entered (by using rule

var1 of the common part).
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Heap Control Stack rule

Γ p pi S appPE1
→ Γ p pi : S

Γ[p 7→ λxi
n.e] p pi

n : S appPE2

→ Γ e[pi/xi

n
] S

Γ[p 7→ pap(q qi)] p pi : S appPE3
→ Γ q qi : pi : S

Γ[p 7→ λxi
n.λyi.e] p pi

n : S appPE4 (1)
→ Γ ⊎ [q 7→ pap(p pi

n)] q S

(1) pi
n is the whole set of pointers on top of the stack and

q fresh w.r.t. Γ, p, and pi
n : S

Fig. 7. The specific part of machine STGPE -1 (push/enter)

2. It is a λ-abstraction and there are enough actual arguments. Then, a β re-
duction is performed (rule appEA2). The remaining actual arguments, if any,

are pushed to the stack in a packet. It should be understood that l = 0 means

that no packet is pushed.
3. It is a lambda and there are not enough actual arguments. Then, a partial

application is created (rule appEA4).

4. It is a partial application. Then it is copied to the control expression and the
actual arguments are appended to the partial application ones (rule appEA3).

5. The control is a variable pointing either to a lambda or to a partial application

and there is a packet on top of the stack. Then, the packet is migrated to the
control expression as arguments (rule appEA5).

4.3 Soundness and completeness

In this section we prove that every derivation which is possible in semantics S3 can

be emulated by any of the two STG-1 machines and the other way around. To this

aim, we first define an equivalence relation between S3 and machine configurations.
We prove separately the push/enter and the eval/apply machines.

4.3.1 The push/enter machine

The first observation is that both the S3 semantics and the STGPE -1 derivations
generate partial application bindings in the heap but, due to rule App′

S3 , the se-

mantics generates more partial applications than the machine. For this very same
reason, in some points of the derivation the semantics will have in the control ex-

pression a variable pointing to a partial application binding, while the machine will

have instead a variable pointing to a λ-abstraction and there will be some pending
arguments in the machine stack. In other points of the derivation the semantics will

have in the control expression an application, while the machine will have instead
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Heap Control Stack rule

Γ[p 7→ e] p pi
n S appEA1 (1)

→ Γ p •pi
n : S

Γ[p 7→ λxi
n.e] p pi

n qi
l S appEA2

→ Γ e[pi/xi

n
] •qi

l : S

Γ[p 7→ pap(q qi
m)] p pi

n S appEA3
→ Γ q qi

m pi
n S

Γ[p 7→ λxi
n.λyi

m.e] p pi
n S appEA4(2)

→ Γ ⊎ [q 7→ pap(p pi
n)] q S

Γ[p 7→ w] p •pi
n : S appEA5 (3)

→ Γ p pi
n S

(1) e 6= w
(2) q fresh w.r.t. Γ, p pi

n, and S
(3) w 6= C pi

l

Fig. 8. The specific part of machine STGEA-1 (eval/apply)

a variable pointing to a λ-abstraction and there will be some pending arguments in

the machine stack.
Fortunately, the excess partial application bindings in S3 heap have a short life-

time. They become dead bindings when rule AppPapS3 is applied. So, we only need
to take into account the live parts of the heaps and the α-renaming which make

these equivalent. We include in the S3 configurations the stack S′ associated to ↓
in the judgement.

Definition 17
Let be Γ′ : e′ ↓S′ an S3 configuration, and (Γ, e, qi

l : S) an STGPE -1 configuration.
We say that they are equivalent, denoted Γ′ : e′ ↓S′≡ (Γ, e, qi

l : S), if there exists

an α-renaming β such that,

• either l = 0, and Γ : e
β≡fv S Γ′ : e′, and S′ = β S,

• or l > 0, e is a variable, S′ = β S, and

— either e′ is a variable, Γ′ e′ = pap(p′ p′i
l
), and Γ : e qi

l
β≡fv S Γ′ : p′ p′i

l
,

— or e′ = q′ q′i
l
and Γ : e qi

l
β≡fv S Γ′ : e′.

Now, we establish a correspondence between a derivation subtree in S3 and a

partial derivation in STGPE -1. In S3 we notice that the stack associated to ↓ is
the same in the initial and final configurations of any judgement. It may grow and

shrink up in the tree, but when the initial expression reaches its normal form, the
stack is again the initial one. Moreover, up in the tree it never shrinks below its

initial value. The following definitions capture this idea.

Definition 18
Given a fixed stack S, we denote by (Γ[p 7→ w], p, p∗ : S) one of the following

STGPE -1 configurations:
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1. (Γ[p 7→ w], p, S), or
2. (Γ[p 7→ λyi

n.λxi.e], p, pi
n : S).

In both cases we say that (Γ[p 7→ w], p, p∗ : S) is a normal form of STGPE -1 with

respect to S.

Definition 19
We define a normal form derivation of STGPE -1 with respect to S, denoted (Γ, e, S′++S)

→∗
S (Γ[p 7→ w], p, p∗ : S), as a derivation (Γ, e, S′++S) →∗ (Γ[p 7→ w], p, p∗ : S) end-

ing in a normal form with respect to S, in which the stack of all the intermediate

configurations contains S as a suffix.

The following theorem establishes the soundness and correctness of STGPE -1
with respect to S3.

Theorem 20
Let be Γ′ : e′ ↓S′ an S3 configuration and (Γ, e, zi

l : S) an STGPE -1 configuration
such that Γ′ : e′ ↓S′≡ (Γ, e, zi

l : S). Then:

Γ′ : e′ ↓S′ ∆′[p′ 7→ w′] : p′ iff (Γ, e, zi
l : S) →∗

S (∆[p 7→ w], p, t∗ : S)

and ∆′[p′ 7→ w′] : p′ ↓S′≡ (∆[p 7→ w], p, t∗ : S)

Proof
⇒ By induction on the depth of the ↓S′ derivation.
⇐ By induction on the number of steps of STGPE -1.
As an example of the proof technique, we will show the proof of the case where the

initial configuration has an application in the control expression and the functional

variable is pointing to a partial application binding.

(S3 ⇒STGPE -1) These are the hypothesis:

H1 Γ′[p′ 7→ pap(q′ q′i
m

)] : p′ p′i
n ↓S′≡ (Γ, e, zi

l : S)

H2 Γ′[p′ 7→ pap(q′ q′i
m

)] : p′ p′i
n ↓S′ ∆′[t′ 7→ w′] : t′

The proof proceeds through the following steps:

P1 By H1 and by the S3 rule AppPapS3 we know that:

Γ′ : q′ q′i
m

p′i
n ↓S′ ∆′[t′ 7→ w′] : t′

P2 By definition of ≡, there exists two possibilities: (a) e is a variable, and l = n;

and (b) e is an equivalent partial application via the α-renaming used in ≡, and
l = 0. We will consider the second case as the other one appears as a subset of

it. In this case, we know that ∃β. Γ : e
β≡fv S Γ′[p′ 7→ pap(q′ q′i

m
)] : p′ p′i

n
. Then:

Γ : e = Γ[p 7→ pap(q qi
m)] : p pi

n, p pi
n = β (p′ p′i

n
) and q qi

m = β (q′ q′i
m

)

So, we can build the equivalent configurations Γ : q qi
m pi

n
β≡fv S Γ′ : q′ q′i

m
p′i

n

P3 By making evolve the STGPE -1 machine, we have:

(Γ, q qi
m pi

n, S)
appPE1−→ (Γ, q, qi

m : pi
n : S)

Notice also that:

(Γ, p pi
n, S)

appPE1−→ (Γ[p 7→ pap(q qi
m)], p, pi

n : S)
appPE3−→ (Γ, q, qi

m : pi
n : S)
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P4 By P3 and by induction hypothesis on H1, we have:

(Γ, q, qi
m : pi

n : S) →∗
S (∆, t, t∗ : S and ∆′[t′ 7→ w′] : t′ ↓S′≡ (∆, t, t∗ : S)

P5 Finally, by P3 and P4, we get: (Γ, p pi
n, S) →∗

S (∆, t, t∗ : S)

(STGPE -1⇒ S3) These are the hypothesis:

H1 Γ′ : e′ ↓S′≡ (Γ[p 7→ pap(q qi
m)], p pi

n, S)

H2 (Γ, p pi
n, S) {appPE1}

→ (Γ[p 7→ pap(q qi
m)], p, pi

n : S) {appPE3 }
→ (Γ, q, qi

m : pi
n : S)

→∗
S (∆[t 7→ w], t, t∗ : S)

The proof proceeds through the following steps:

P1 By H1, ∃β. Γ[p 7→ pap(q qi
m)] : p pi

n
β≡fv S Γ′ : e′. Then:

Γ′ : e′ = Γ′[p′ 7→ pap(q′ q′i
m

)] : p′ p′i
n
, p pi

n = β (p′ p′i
n
) and q qi

m = β (q′ q′i
m

)

So, we can build the equivalent configurations: Γ : q qi
m pi

n
β≡fv S Γ′ : q′ q′i

m
p′i

n
.

We notice that:

(Γ, q qi
m pi

n, S)
appPE1−→ (Γ, q, qi

m : pi
n : S)

P2 Now, by induction hypothesis on H2, we have Γ′ : q′ q′i
m

p′i
n ↓S′ ∆′[t′ 7→ w′] : t′

and ∆′[t′ 7→ w′] : t′ ≡ (∆[t 7→ w], t, t∗ : S).

P3 By applying rule AppPapS3 , we finally get: Γ′ : p′ p′i
n ↓S′ ∆′[t′ 7→ w′] : t′

As a consequence of the theorem, we have the following corollary:

Corollary 21

Given a closed Fun expression e,

{} : e ↓[ ] ∆′[p′ 7→ w′] : p′ iff ({}, e, [ ]) →∗ (∆[p 7→ w], p, [ ])

and ∆′[p′ 7→ w′] : p′ ↓[ ]≡ (∆[p 7→ w], p, [ ])

Let us observe that both the machine (rule appPE4 for partial applications) and

the semantics end up with an empty stack.

4.3.2 The eval/apply machine

In this case, the equivalence between S3 and the machine is simpler. Both the

machine STGEA-1 and the semantics build the same number of heap bindings and
they are of the same type. So, we do not even need to restrict ourselves to the live

parts of the heaps: they should be identical, modulo an α-renaming.

Definition 22

Let be Γ′ : e′ ↓S′ an S3 configuration, and (Γ, e, S) an STGEA-1 configuration.
We say that they are equivalent, denoted Γ′ : e′ ↓S′≡ (Γ, e, S), if there exists an

α-renaming β such that Γ′ : e′ = β Γ : β e and S′ = β S.
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The definitions of normal form and normal form derivation with respect to a stack

are simpler than Definitions 18 and 19 we used for the push/enter machine. The
soundness and correctness theorem is very similar.

Definition 23

Given a fixed stack S, we say that an STGEA-1 configuration of the form (Γ[p 7→
w], p, S) is in normal form with respect to S.

Definition 24

We define a normal form derivation of STGEA-1 with respect to S, denoted (Γ, e, S′++S)
→∗

S (Γ[p 7→ w], p, S), as a derivation (Γ, e, S′++S) →∗ (Γ[p 7→ w], p, S) ending in a

normal form with respect to S, in which the stack of all the intermediate configu-

rations contains S as a suffix.

Theorem 25

Let be Γ′ : e′ ↓S′ an S3 configuration and (Γ, e, S) an STGEA-1 configuration such

that Γ′ : e′ ↓S′≡ (Γ, e, S). Then,

Γ′ : e′ ↓S′ ∆′[p′ 7→ w′] : p′ iff (Γ, e, S) →∗
S (∆[p 7→ w], p, S)

and ∆′[p′ 7→ w′] : p′ ↓S′≡ (∆[p 7→ w], p, S)

Proof

⇒ Trivial, by induction on the depth of the ↓S′ derivation.

⇐ Trivial, by induction on the number of steps of STGEA-1.

As a consequence, we have the corollary:

Corollary 26

Given a closed Fun expression e,

{} : e ↓[ ] ∆′[p′ 7→ w′] : p′ iff ({}, e, [ ]) →∗ (∆[p 7→ w], p, [ ])
and ∆′[p′ 7→ w′] : p′ ↓[ ]≡ (∆[p 7→ w], p, [ ])

Also in this case, the machine and the semantics end up with an empty stack.

4.4 Adding environments to the machines

Following Sestoft’s derivation of his MARK-2 machine, in this section we introduce

two STG-2 machines, respectively called STGPE -2 and STGEA-2, having runtime
environments instead of doing explicit substitution of pointers for variables. Now,

expressions and normal forms keep their original Fun variables, and the associated

environments E maps them to pointers p pointing to heap bindings. Environments
are associated to the control expression, to pending alternatives living in the stack,

and to expressions stored in heap bindings, which from now on will be called clo-

sures.
In principle, environments E are finite functions mapping all variables in scope

in an expression to their corresponding heap pointers. However, most of variables in

scope are not frequently free in the expression. In order to minimise the amount of
information stored in the heap and in the stack, and also to save copying time, the

environments living there will be trimmed to the corresponding set of free variables.
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Heap Control Environment Stack rule

Γ letrec xi = be i in e E S letrec (1)

→ Γ ⊎ [pi 7→ (bei, E′ |ti)] e E′ S

Γ case e of Ci yij → ei E S case1 (2)
→ Γ e E (Ci yij → ei, E |

t) : S

Γ[p 7→ (Ck xi, {xi 7→ pi})] x E{x 7→ p} (Ci yij → ei, E
′) : S case2

→ Γ ek E′ ⊎ {yki 7→ pi} S

Γ ⊎ [p 7→ (e, E′)] x E{x 7→ p} S var1 (3)
→ Γ e E′ #p : S

Γ[q 7→ (w, E′)] x E{x 7→ q} #p : S var2
→ Γ ⊎ [p 7→ (w, E′)] x E S

(1) ti = fv bei, E′ = E ⊎ {xi 7→ pi}, and pi fresh w.r.t. Γ, letrec xi = bei in e, and S
(2) t = fv (Ci yij → ei)
(3) e 6= w

Fig. 9. The STG-2 common machine with environments

A trimmer t is just a collection of variable names. The notation E |t expresses the
trimming of environment E to the trimmer t. We include trimmers in our STG-2

machines because they are used in the actual STG implementation and also because

they will have some impact in the imperative translation provided in Section 5.4.

A configuration of an STG-2 machine is a quadruple (Γ, e, E, S), where E is the
environment of e. Now the alternatives in the stack are pairs (alts , E), and the

heap bindings are of the form [p 7→ (e, E)] or [p 7→ (w, E)]. A pair (e, E) is a thunk
closure and a pair (w, E) is a normal form closure. The common part of our two

STG-2 machines is shown in Figure 9. By E{x 7→ p} we just highlight that the

mapping x 7→ p belongs to E. Notice that trimming is used in the evaluation of
case expressions in order to reduce the environment stored in the stack, and in

letrec expressions for reducing the environment stored in the heap closures.

4.4.1 The push/enter machine with environments

The specific rules for the push/enter machine STGPE -2 are shown in Figure 10.
Since it will have an important impact in how the translation to imperative code

will be done in Section 5.4, we highlight how is the environments ‘life’ in machine
STGPE -2:

1. A new environment is installed in the control expression whenever a closure
is entered. This happens in rules case2, var1, appPE2, appPE3, and appPE4.

2. In these rules, the previous control environment dies.

3. Environments are duplicated in rule case1, as the current control environment
must be (trimmed and) copied to the stack.

4. Environments are extended in rules letrec, and case2.

5. Control environments remain unmodified in rules case1, var2, and appPE1.
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Heap Control Environment Stack rule

Γ x xi E{x 7→ p, xi 7→ pi} S appPE1
→ Γ x E pi : S

Γ[p 7→ (λxi
n.e, E′)] x E{x 7→ p} pi

n : S appPE2
→ Γ e E′ ⊎ {xi 7→ pi

n} S

Γ[p 7→ (pap(y yi), {y 7→ q, yi 7→ qi})] x E{x 7→ p} pi : S appPE3(1)
→ Γ z {z 7→ q} qi : pi : S

Γ[p( 7→ λxi
n.λyi.e, E

′)] x E{x 7→ p} pi
n : S appPE4 (2)

→ Γ ⊎ [q 7→ (pap(y yi
n), {y 7→ p, yi 7→ pi

n})] z {z 7→ q} S

(1) n > 0 and z fresh w.r.t. Γ, x, and pi
n : S

(2) pi
n is the whole set of pointers on top of stack S and z, q fresh w.r.t. Γ, x, and pi

n : S

Fig. 10. The specific part of machine STGPE -2 (push/enter) with environments

Heap Control Environment Stack rule

Γ[p 7→ (e, E′)] x xi
n E{x 7→ p, xi 7→ pi

n} S appEA1
→ Γ x E •pi

n : S

Γ[p 7→ (λxi
n.e, E′)] x xi

n yi
l E



x 7→ p, xi 7→ pi
n

, yi 7→ qi
l

ff

S appEA2

→ Γ e E′ ⊎ {xi 7→ pi
n} •qi

l : S

Γ[p 7→ (pap(y yi
m), E′)] x xi

n E{x 7→ p, xi 7→ pi
n} S appEA3(1)

→ Γ y yi
m xi

n E′ ⊎ {xi 7→ pi
n} S

Γ[p 7→ (λxi
n.λyi.e, E

′)] x xi
n E{x 7→ p, xi 7→ pi

n} S appEA4(2)
→ Γ ⊎ [q 7→ (pap(x xi

n), E′′)] y {y 7→ q} S

Γ[p 7→ (w, E′)] x E{x 7→ p} •pi
n : S appEA5(3)

→ Γ x xi
n E ⊎ {xi 7→ pi

n} S

(1) E′ = {y 7→ p, yi 7→ pi
n}

(2) E′′ = {x 7→ p, xi 7→ pi
n}, y, q fresh w.r.t. Γ, dom E, and S

(3) xi
n fresh w.r.t. Γ, dom E, and •pi

n : S

Fig. 11. The STG-2 specific machine with environments (eval/apply)

4.4.2 The eval/apply machine with environments

The specific rules of the eval/apply STGEA-2 machine are shown in Figure 11.
Similarly to machine STGPE -2, new environments are installed in rules appEA2,

appEA3, and appEA4, and the environment is preserved in rule appEA1. In rule
appEA5, the environment E is extended with new bindings for the arguments of

the application.

4.4.3 Soundness and completeness of the STG-2 machines

Adding runtime environments to the STG-1 machines is a transformation aiming to

improve their efficiency, and at the same time to preserve their correctness. In fact,

environments can be just seen as delayed substitutions of pointers for variables.
So, we will be more informal in this section, just providing the essential ideas of

machine equivalence and the formulation of the main correctness theorem.
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The difference between an STG-1 configuration (Γ, e, S) and an STG-2 equivalent

one (Γ′, e′, E, S′) is that the second includes environments associated to the control
expression e′, to the heap expressions in Γ′ and to the alternatives in stack S′. It can

be expected that, if we replaced all expressions e in Γ′, e′ and S′ by explicitly sub-
stituted expressions E e, being E the environment associated to e, we would arrive

to equivalent configurations, modulo and appropriate α-renaming β. This idea can

be easily formalised and we can arrive to the definition of an equivalence relation
between an STG-1 configuration and an STG-2 one. We will denote this equivalence

by (Γ, e, S) ≡ (Γ′, e′, E, S′). Then, the soundness and correctness theorem for each
pair of corresponding STG-1 and STG-2 machines looks as follows:

Theorem 27
Let (Γ, e, S) be an STG-1 configuration and (Γ′, e′, E, S′) be an STG-2 configuration

such that (Γ, e, S) ≡ (Γ′, e′, E, S′). Then,

(Γ, e, S) −→ (Γ1, e1, S1) iff (Γ′, e′, E, S′) −→ (Γ′
1, e

′
1, E1, S

′
1)

and (Γ1, e1, S1) ≡ (Γ′
1, e

′
1, E1, S

′
1)

Proof
By cases on the respective machine rules.

5 Deriving two imperative STG machines

In this Section we introduce two imperative, STG-like, virtual machines, one for
each evaluation model, respectively called ISTGPE for push/enter, and ISTGEA for

eval/apply. We define the machines using a small step operational semantics, by

formally describing for each machine instruction the state transition produced by
it.

These machines try to provide an intermediate level of reasoning between the
STG-2 machine and the final C implementation. In the actual GHC implementation,

‘below’ the operational description of (Peyton Jones, 1992; Marlow & Peyton Jones,

2004) the only formal description we find is the compiler code producing a direct
translation to C. By looking at the compiler and at the runtime system listings,

one can grasp some details, but many others are lost. We think that the distance

to be saved is too high. Moreover, it is not possible to reason about the correctness
of the implementation when so many details are introduced at once.

An ISTG machine configuration consists of a 5-tuple (is , S,node, Γ, cs), where
the syntax and meaning of each component is as follows:

• is is a machine instruction sequence implementing the control expression of

the STG-2 machines. It can be thought of as a list of instructions from one
of the sets shown in figures 12 and 13. By i : is we highlight that i is the

first instruction to be executed and is is the rest. As we will see, there are no

branch instructions in a sequence is , except at the end.
• S is the stack, which is a list of the following types of objects :

a pointer to a heap closure

p pointer to a vector is i
n

of n code sequences stored in cs
#a update mark with a pointer to the closure a to be updated

•ai
m packet of arguments (ISTGEA machine only)
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• node is a heap pointer pointing to the closure under execution, which is the

one that is belongs to.

• Γ is the machine heap, binding pointers a to closures. We explain closure

syntax below.

• cs is the code store. It can be thought of as a finite mapping from code
pointers p, either to instruction sequences such as is , or to vectors is i

n
of

code sequences. The code store is the result of compiling Fun programs to
machine code. This translation is presented is Section 5.4.

We use the following notation: a, b for pointers to closures in Γ, as , bs and ws for

lists of such pointers, and p for pointers to code fragments in cs . By cs [p 7→ is ] we
denote that cs maps p to the instruction sequence is and, by cs[p 7→ is i

n
], that cs

maps p to a vector of instruction sequences is1, . . . , isn, each one corresponding to
an alternative of a case expression with n constructors C1, . . . , Cn. We assume that

each case has a complete set of alternatives and that the constructors appear in

the order of their declaration in the algebraic datatype definition. By Cl
k we denote

a data constructor C with arity l which appears the k-th in its data declaration.

Also, S ! i will denote the i-th element of the stack S, counting from the top
and starting at 0. Likewise, nodeΓ ! i will denote the i-th free variable of the clo-

sure pointed to by node in Γ, this time starting at 1. A closure is at least a pair
(p,ws) where p is a pointer to an instruction sequence is in cs , and ws is the clo-

sure environment, having a heap pointer for every free variable in the expression

whose translation is is . In the eval/apply model, closures may contain additional
information. We explain the specific details of each model below.

5.1 The push/enter imperative machine ISTGPE

In this machine, closures need not be tagged. In the actual GHC implementation

they can be considered to be tagged because the compiler adds to each one the

so-called ‘info-table’ in which a lot of information about the type and layout of the
closure is kept. This is needed for garbage collection and other side activities, but

not for evaluation. So, we consider closures in this machine as having the general
form (p, ai

l) where p is a code pointer to the closure code, and ai
l, l ≥ 0, is its

runtime environment.

In Figure 12, the syntactic and operational description of the ISTGPE machine in-

structions its shown. The heap and stack groups, and the RETURNCON instruc-
tion in the control group are in common with the instruction set of the ISTGEA

machine, except for the fact that closures are slightly different in this latter machine.

We will explain their meaning only in this section.

Instructions ALLOC and BUILDCLS implement heap closure creation in the

letrec rule of STG-2. Both BUILDENV and BUILDCLS make use of a list of pairs,
each pair indicating whether the source variable is located in the stack or in the

current closure. Of course, it is not intended this test to be done at runtime. An
efficient translation of these ‘machine’ instructions to an imperative language will

generate the appropriate copy statement for each pair.

Instructions PUSHALTS and UPDTMARK roughly correspond to the two pos-

sible pushing actions of the common machine STG-2. Instruction BUILDENV is
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Instructions Stack Node Heap Code

heap
ALLOC l : is S node Γ cs (1)

=⇒ is al : S node Γ′ cs

BUILDCLS i p zi
l : is S node Γ cs[p 7→ is] (2)

=⇒ is S node Γ[S!i 7→ (p, ai
l)] cs

stack
BUILDENV zi

n : is S node Γ cs (2)
=⇒ is ai

n : S node Γ cs

PUSHALTS p : is S node Γ cs[p 7→ isi
n
]

=⇒ is p : S node Γ cs

UPDTMARK : is S node Γ[node 7→ (p, ws)] cs
=⇒ is #node : S node Γ[node 7→ (pbh, ws)] cs

SLIDE n m : is ai
n : bj

m
: S node Γ cs

=⇒ is ai
n : S node Γ cs

control
[RETURNCON Cl

k] p : S node Γ cs[p 7→ isi
n
]

=⇒ isk S node Γ cs

[RETURNCON Cl
k] #a : S node Γ[a 7→ (pbh, as),

node 7→ (p,ws)] cs
=⇒ [RETURNCON Cl

k] S node Γ[a 7→ (p,ws)] cs

[ENTER] a : S node Γ[a 7→ (p,ws)] cs[p 7→ is]
=⇒ is S a Γ cs

ARGCHECK m : is ai
m : S node Γ cs

=⇒ is ai
m : S node Γ cs

ARGCHECK m : is ai
n : [ ] node Γ cs n < m

=⇒ ARGCHECK m : is [ ] a Γ ⊎ [a 7→ (pn+1
pap ,node : ai

n)] cs fresh a

ARGCHECK m : is #b : S node Γ[b 7→ (pbh, as),
node 7→ (p,ws)] cs

=⇒ ARGCHECK m : is S node Γ[b 7→ (p,ws)] cs

ARGCHECK m : is ai
n : #b : S node Γ[b 7→ (pbh, ws)] cs n < m

=⇒ ARGCHECK m : is ai
n : S node Γ[b 7→ (pn+1

pap ,node : ai
n)] cs

⊎[a 7→ (pn+1
pap ,node : ai

n)] fresh a

(1) al is a pointer to a new closure with space for l free variables, and Γ′ is the resulting
heap after the allocation

(2) ai =



S!j if zi = (stack , j)
node!j if zi = (node , j)

Fig. 12. The push/enter ISTG machine

used in the ISTGPE machine with two purposes: on the one hand, to push environ-

ment fragments to the stack; this use is in common with the ISTGEA machine; on
the other hand, to push arguments of pending applications to the stack; this use

is specific of the ISTGPE machine. The SLIDE instruction has no clear correspon-
dence in the STG-2 machine. As we will see in Section 5.4, it will be used to delete

fragments of the current environment when a new closure is entered.

Instruction RETURNCON is common to both ISTG machines. It implements
pattern matching and updates with constructions normal forms.

Instructions ENTER and ARGCHECK are specific of the ISTGPE machine.
The first one is typical of the old implementation of the STG machine as described

in (Peyton Jones, 1992), and implements a jump to a new closure. Instruction
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ARGCHECK , which implements updates with partial applications, is here at the

same level of abstraction as the rest of instructions. It does not appear in (Peyton
Jones, 1992) but this action can be recognised when looking at the compiler code.

The last rule of ARGCHECK implements the sequence of rules appPE4, var2 and
appPE3 of machine STGPE -2, avoiding to pop and push again arguments in the

stack. It creates two partial application closures, as STGPE -2 does. In reality, only

the second one is created, as updates are always done by indirection in GHC.
It is interesting to note that it has been possible to describe the STG-2 machine

without any reference to either RETURNCON or ENTER, while these instructions
were rather central to the STG machine, as described in (Peyton Jones, 1992). In

our view, these instructions belong to ISTG, i.e. to a lower level of abstraction

than STG-2. Also, we make note that the field node is only modified by ENTER,
when jumping into a new closure, but it never comes back to a previous value. This

indicates that ISTG is a ‘jumping’ machine which does not follow the call/return

scheme of virtual machines for imperative languages. It can also be regarded as a
continuation passing style machine where the next action to be performed is always

in the stack.
We are assuming in both ISTG machines that there is always enough space to

update closures in place. As we have said, in the actual implementation updates

are always made by indirections and all update-able closures have enough space for
storing an indirection.

Predefined code is stored in cs for partial applications with m arguments, for
a finite set of values of m, and for a black-hole. The latter is a transient closure

used to temporarily update a closure under evaluation. If a black-hole is entered,

this means infinite recursion and the machine should stop. The corresponding code
pointers are respectively called pm+1

pap and pbh in figures 12 and 13. This trivial code

is the following:

cs[pbh 7→ [ ]]

cs[pm+1
pap 7→ [BUILDENV (node, i)

m+1
,ENTER]]

5.2 The eval/apply imperative machine ISTGEA

In this machine closures are tagged. As we have explained, actual closures in GHC

are also tagged, but tags are not needed for evaluation in the push/enter model.
Here, they are needed. Closures syntax is as follows:

closure → FUN (n, p,ws) -- λ-abstraction closure
CONS (p,ws) -- construction closure

PAP (ppap ,ws) -- partial application closure
THUNK (p,ws) -- unevaluated expression closure

In closure FUN , the field n represents the number of formal arguments of the λ-
abstraction. In all closure types, p or ppap represent the code pointer and ws the

runtime environment.

In Figure 13, the syntactic and operational description of the ISTGEA machine
instructions its shown. As we said, the rules in the groups heap and stack, and

the RETURNCON instruction in the group control are almost identical to the
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corresponding ones in the ISTGPE machine. The only differences are, on the one

hand that we make explicit in the rules the closure tag, and on the other the addition
of an argument t to instruction BUILDCLS for indicating the tag of the closure

being created. Also, the predefined code for a partial application closure with m
arguments is now:

cs[pm+1
pap 7→ [BUILDENV (node, i)

m+1
,EVAL m]]

The ENTER instruction of ISTGPE is not needed here. That represented an

unconditional jump to the closure code, because that code was responsible for

whatever action was necessary. Now, the situation is different: a functional closure
must not be entered, unless the machine can ensure that there are enough arguments

in the stack. For the same reason, the ISTGPE ARGCHECK instruction is not
useful now. To replace both, the ISTGEA machine provides the EVAL instruction.

It has a natural number m as argument whose meaning is the number of unpacked

arguments which are waiting in the stack. The EVAL instruction can be seen as a
kind of loop that takes all the actions needed in order to ensure that the closure

code will be able to successfully process the information in the stack. That loop
exits in the following three cases:

• When a FUN closure with n formal arguments must be entered and there are

exactly n unpacked arguments waiting in the stack.

• When a THUNK closure must be entered.

• When a CONS closure must be entered.

The EVAL instruction is used to implement all the specific rules of the STGEA-2
machine depicted in Figure 11. These rules correspond to the first six cases of EVAL

shown in Figure 13. More precisely, cases 1st and 2nd implement the appEA2 rule;

case 3rd, the appEA1 rule; case 4th, appEA4 ; case 5th, appEA3 ; and case 6th,
appEA5 . The last three cases respectively correspond to the rules var2, var1 and

case2 of the common STG-2 machine of Figure 9. Notice also the packing and

unpacking of arguments in the stack. The property we want to preserve is the
following: when arguments are unpacked, they are part of the runtime environment

of the closure being entered; when they are packed, they constitute a stack frame
that will be processed as a whole by a future closure still not created.

5.3 Translation to C

After having presented the two imperative machines ISTGPE and ISTGEA, we

would like to add a word about the implementation of these machines in a conven-
tional imperative language such as C. Now, we believe that the distance to be saved

between the machine instructions and the implementation language is small enough

so that no further proofs of correctness would be needed. Rather than providing a
procedure for each machine instruction, the idea would be to implement them as

macros which would be expanded into small fragments of C code. If the stack and
the heap were represented as C arrays, the expected code would be as follows:

• ALLOC would just be a simple manipulation of the heap pointer.
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Instructions Stack Node Heap Code

heap
ALLOC l : is S node Γ cs (1)

=⇒ is al : S node Γ′ cs

BUILDCLS t i p zi
l : is S node Γ cs[p 7→ is] (2)

=⇒ is S node Γ[S!i 7→ t (p, ai
l)] cs

stack
BUILDENV zi

n : is S node Γ cs (2)
=⇒ is ai

n : S node Γ cs

PUSHALTS p : is S node Γ cs[p 7→ isi
n
]

=⇒ is p : S node Γ cs

UPDTMARK : is S node Γ[node 7→ THUNK (p, ws)] cs
=⇒ is #node : S node Γ[node 7→ THUNK (pbh , ws)] cs

SLIDE n m : is ai
n : bj

m
: S node Γ cs

=⇒ is ai
n : S node Γ cs

control
[RETURNCON Cl

k] p : S node Γ cs[p 7→ isi
n
]

=⇒ isk S node Γ cs

[RETURNCON Cl
k] #a : S node Γ[a 7→ THUNK (pbh, as),

node 7→ CONS (p, ws)] cs
=⇒ [RETURNCON Cl

k] S node Γ[a 7→ CONS (p,ws)] cs

[EVAL m] a : ai
m : S node Γ[a 7→ FUN (m,p, ws)] cs[p 7→ is]

=⇒ is ai
m : S a Γ cs

[EVAL m] a : ai
m : S node Γ[a 7→ FUN (n, p, ws)] cs[p 7→ is] m > n

=⇒ is ai
n : •{an+1..am} : S a Γ cs

[EVAL m] b : ai
m : S node Γ[b 7→ THUNK (p, ws)] cs[p 7→ is]

=⇒ is •ai
m : S b Γ cs

[EVAL m] a : ai
m : S node Γ[a 7→ FUN (n, p, ws)] cs m < n

=⇒ [EVAL 0] b : S node Γ[b 7→ PAP (pm+1
pap , a : ai

m)] cs fresh b

[EVAL m] b : ai
m : S node Γ[b 7→ PAP (a bi

n
)] cs

=⇒ [EVAL (m + n)] b : bi
n

: ai
m : S node Γ cs

[EVAL 0] b : •ai
m : S node Γ[b 7→ FUN /PAP ] cs

=⇒ [EVAL m] a : ai
m : S node Γ cs

[EVAL 0] b : #a : S node Γ[b 7→ FUN /PAP ] cs
=⇒ [EVAL 0] b : S node Γ[a 7→ FUN /PAP ] cs

[EVAL 0] b : S node Γ[b 7→ THUNK (p, ws)] cs[p 7→ is]
=⇒ is S b Γ cs

[EVAL 0] b : S node Γ[b 7→ CONS (p, ws)] cs[p 7→ is]
=⇒ is S b Γ cs

(1) al is a pointer to a new closure with space for l free variables, and Γ′ is the resulting
heap after the allocation

(2) ai =



S!j if zi = (stack , j)
node!j if zi = (node , j)

Fig. 13. The eval/apply ISTG machine

• BUILDENV and BUILDCLS will essentially produce a sequence of C assign-

ments, each one copying a word from the stack —if the source pointer belongs

to the stack environment—, or from the heap —if it belongs to the current
closure environment—, to the stack in the case of BUILDENV , or to the heap

in the case of BUILDCLS .
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• PUSHALTS and UPDTMARK would be simple C assignments copying pieces

of information to the stack.
• SLIDE would be a small C loop moving information from one part of the

stack to another.

• RETURNCON , ARGCHECK , and EVAL are more complex instructions as
they take care of updates, pattern matching, and of the generation of partial

application closures. Even though, each one could be implemented by a single

C loop.
• Finally, ENTER would essentially be a jump within the code area.

The translation to C offers some opportunities for code optimisations. For instance,
an instruction SLIDE n 0, or a BUILDENV instruction with an empty list should

generate no code at all.

5.4 Formal translation from STG-2 to ISTG

In this Section, we provide the translation schemes from Fun programs to ISTG

machine code. As there are many details which are similar in both models, we
introduce first some common design decisions and the common translation schemes,

and then the specific translation schemes for each model.

5.4.1 Design decisions

The main decisions influencing the translation are the following three:

1. The ISTG stack will contain not only the STG-2 stack, but also part of the

environment E of the control expression.
2. The rest of the environment E will be kept in the closure under evaluation

(the one pointed to by the node register). The translation knows where each

free variable is located by maintaining two compile-time environments ρ and
η. The first one ρ corresponds to the part of the environment kept in the stack,

while the second one η corresponds to the free variables accessed through the
node register.

3. The duplication of environments in rule case1 of the STG-2 machine (see

Figure 9) will be implemented by making the alternatives to reuse the con-

trol expression environment. So, that part of the environment must not be
removed from the stack when leaving the current closure.

By observing Fun expressions evaluation in both machines and their effect in the
current environment, as explained in sections 4.4.1 and 4.4.2, we see that:

1. Expressions letrec and case either extend or preserve the current environ-

ment and proceed with the evaluation of a subexpression.

2. Expressions x xi
n and x remove the current environment and install a new

one. At the same time they jump to a different expression, the one in the

closure being entered.

This leads us to conjecture the following invariant that will be formally proved

below: The stack can be considered as divided into two big blocks; the upper block,
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which is described by ρ and contains (part of) the environment of the current

expression, and the lower part, which contains other things such as update frames,
pending arguments and case alternatives with their own environment. The upper

part is divided into a possibly empty top environment and a sequence of case

alternatives, each one with its own environment. The following regular expression

syntax formalises this invariant for any stack S:

S → upper lower

upper → E alt∗

lower → (update | args | alt)∗
alt → p E
args → ai -- push/enter only

| •ai -- eval/apply only

update → #a
E → ai

Notice than an environment E and a set ai of arguments in the push/enter

machine are indistinguishable. Both consist of a sequence of heap pointers. In fact,
we will exploit this equivalence in the translation by making that a set of arguments

pushed to the stack become part of the environment of the λ-abstraction being

entered. This is the most efficient way of implementing rule appPE2 of Figure 10.

When an expression x xi
n, with n ≥ 0, is evaluated, the ENTER instruction —

in the ISTGPE machine— or the EVAL instruction —in ISTGEA— are executed.

Then the top environment E of the upper block of the stack must be removed,
but the environments associated to case alternatives must be left alone. This stack

restructuring is accomplished by a SLIDE operation with appropriate arguments.

As we have said, the compile time environment ρ describes the part of the control

expression environment which resides in the stack, i.e. the upper block of the stack.
We will assume that both a code pointer p and a heap pointer a use one word

of memory. Them ρ can be thought as a sequence of small blocks (δi, mi) each
one describing the length mi in words of that part of the stack, and a proper

environment δi mapping program variables to stack offsets.

Definition 28

A stack environment ρ is a list [(δk, mk), . . . , (δ1, m1)] of environments, being (δk, mk)

the topmost one. It maps program variables to positions in the stack counting from
the top, i.e. if ρ x = j, then the runtime value of x is S!j. In an environment (δ, m),

δ maps m − 1 program variables to disjoint numbers in the range 1..m − 1, except

for the topmost environment (δk, mk) which maps exactly mk program variables to
the range 1..mk. The empty environment, denoted ρ∅, is the list [({}, 0)].

An environment (δ, m) describes a small block of the stack upper block. All

small blocks except the topmost one correspond to case alternatives. They are
topped with a code pointer p pointing to the alternatives. Because the topmost

environment belongs to the expression under evaluation, it can be extended (this

would be the case if it happens to be a letrec expression). The rest of small blocks
cannot be extended. Should the upper block be extended, then the offset of its

free variables will change. For this reason, numbers are assigned to the variables
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ρ

S δk

blk

.
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b1

lk
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δk−1
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b1 1
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b1 1

altsk−1
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Fig. 14. Correspondence between the compile time environment and the stack

from the bottom of the environment. The offset of a given variable can always be

computed by knowing the length of its block, and those of the blocks above it. For
a better understanding, see Figure 14.

With these conventions, the offset of a variable x in ρ from the top of the stack,
denoted ρ x, is formally given by:

ρ x
def
=(

k∑

i=j

mi) − δj x, being x ∈ dom δj , 1 ≤ j ≤ k

The following operations with stack environments are defined. The first one cor-

responds to extending the topmost environment, and it will be used when compiling
letrec expressions. The second one corresponds to closing the topmost environment

with a code pointer, and it it will be used when compiling case expressions.

Definition 29

1. ((δ, l) : ρ) + ({xi 7→ ji
n}, n)

def
= (δ ∪ {xi 7→ l + ji

n}, l + n) : ρ

2. ((δ, l) : ρ)++
def
= ({}, 0) : (δ, l + 1) : ρ

The rest of the control expression environment is located in the current closure.

The node register is pointing to it while the instruction sequence is of the closure
expression is being executed. The compile-time environment η knows the position

of each free variable in the closure.

Definition 30
A closure environment η with n ≥ 0 variables is a mapping from these variables to

disjoint numbers in the range 1..n.
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If the initial closed Fun expression to be translated uses different names for all

bound variables, then the compile time environments ρ and η will always be disjoint.
We will prove below that every free variable of the expression being compiled will

necessarily be either in dom ρ or in dom η, and never in both. This allows us to
introduce the notation (ρ, η) x, whose meaning is:

(ρ, η) x
def
=

{

(stack , ρ x) if x ∈ dom ρ

(node, η x) if x ∈ dom η

We will use in our examples a special error variable which can be free in any

expression. This variable is supposed to be used by the compiler to complete miss-
ing alternatives in case expressions written by the programmer. Its semantics is

to abort the program, but for the purposes of translation this free variable is lo-

cated neither in the stack nor in the closure environments. In order to preserve
our invariants, we will consider that the runtime value of error is located in the

heap and its address e in known statically. We write then (ρ, η) error
def
=(static, e).

This extension to the convention should be taken into account when translating the

argument list of the instructions BUILDCLS and BUILDENV to C.
In GHC there exists a third kind of environment which describes the static ad-

dresses of the top-level bindings. The program is considered to be a set of static
bindings instead of a top-level letrec expression. The access to these variables is

different from that of other free variables: they are accessed directly by using a

pointer to the static memory. Our error variable could provide an example of this
kind of access.

5.4.2 Common translation schemes

In Figure 15 we present the translation schemes from Fun to machine code which

are common to both machines ISTGPE and ISTGEA.
Function trE translates a Fun expression into a sequence of machine instructions.

Function trAs translates a set of alternatives into a pointer to a vector of machine

instruction sequences in the code store. The code store cs can be considered as a
global variable of the translation. The notation & cs[p 7→ is ] expresses that, as a

side effect of the translation, the instruction sequence is is added to the code store
cs and is pointed to by the fresh pointer p.

The translation presented for letrec is the one corresponding to the ISTGEA

machine, because it is more general and closer to what GHC does: it includes
tags for the closures being built. Notice that function trB returns a pair whose

first component is the closure tag. The second component is the code pointer of

the instruction sequence to which the binding expression has been translated. Our
push/enter machine will simply ignore these tags.

The environments of the closures being created in the heap are trimmed to the
free variables yij

li of the corresponding binding expression bei, as it was suggested

in rule letrec of Figure 9. The environment ρ′ used to translate the main expression

e is the original environment ρ extended with the locations of the new free variables
xi

n introduced by the letrec.

The translation of case closely follows the rule case1 of Figure 9. Notice that the
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first BUILDENV instruction saves into the stack those variables of the environment

belonging to the current closure. Otherwise the alternatives would not be able to
find these variables when they were activated, as the current closure at that time

would be a different one. Notice also that the stack environment of the alternatives
is not trimmed, contrarily to what it was suggested in Figure 9. It could be, but this

would be in contradiction with reusing that part of the control expression environ-

ment. The translation of the alternatives uses the environment ρ′, an extension of ρ,
for the variables located in the stack, and an environment η = {xi 7→ i

n} to access

the pattern variables xi because, when the alternative expression e is executed, the
current closure will be a construction C xi

n. Finally, the environment ρ′++ used

to translate the discriminant expression takes into account that a code pointer has

been pushed to the stack.
The translation of a binding is straightforward. The RETURNCON instruction

used for constructions ensures that the pending updates will be performed before

jumping into a case alternative. The UPDTMARK instruction at the beginning
of a non-normal-form expression translation ensures that an update mark will be

pushed to the stack, as the rule var1 of the STG-2 machine prescribes. The stack
environment ρ∅ used to compile a closure expression is the empty one, and the

closure environment η is the same built by BUILDCLS when it created the closure.

Notice that the translation of a λ-abstraction binding is missing in this common
part as it would be done in a different way for every ISTG machine.

5.4.3 The push/enter specific translation schemes

The specific translation schemes for the ISTGPE machine are presented in Figure 16.

The translation of an application starts by pushing to the stack the actual ar-
guments and the functional closure pointer, followed by a SLIDE instruction in

order to remove the topmost part of the current environment. Finally, an ENTER
instruction is generated in order to jump to the functional closure.

The translation of a single variable is very similar. The only difference is that

there are no arguments to push to the stack. If the closure being entered is a thunk
or a construction, the translation given in the common part for these binding types

is enough to perform the required actions: respectively, pushing an update mark

and performing a pattern matching after possibly performing some update actions.
The translation of a λ-abstraction binding starts in this machine by the ARGCHECK

instruction which ensures that there are enough arguments on top of the stack,
possibly performing pending updates before entering the λ-abstraction body. The

translation proceeds with the body expression by using a stack environment ρ which

expects the arguments in the stack (x1 in the top, x2 below it, and so on), and an
environment η expecting the free variables in the closure environment.

In order to illustrate the translation, in Figure 17 we show to the left a small Fun

program, and to the right its translation to ISTGPE machine code.

5.4.4 The eval/apply specific translation schemes

The specific translation schemes from Fun to ISTGEA are presented in Figure 18.

The difference now when translating applications or variables is that the ENTER
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trE (letrec xi = be i
n

in e) ρ η = [ALLOC ln, . . . ,ALLOC l1]++

[BUILDCLS tagi (i− 1) pi zsi

n
]++

trE e ρ′ η
where ρ′ = ρ + ({xi 7→ n− i + 1

n
}, n)

(tag i, pi) = trB bei, i ∈ {1..n}

zsi = (ρ′, η) yij

li
, i ∈ {1..n}

yij
li = fv bei, i ∈ {1..n}

trE (case e of alts) ρ η = [BUILDENV zs ,
PUSHALTS p]++

trE e ρ′++ (η − xs)
where p = trAs alts ρ′

ρ′ = ρ + ({xsj 7→ l′ − j + 1
l′

}, l′)
zs = [(node, η x) | x← xs ]
l′ = |xs |
xs = [x | x← xi

l ∧ x ∈ dom η]
xi

l = fv alts

trAs (alt i
n
) ρ = p & cs[p 7→ trA alti ρ

n
]

trA (C xi
n → e) ρ = trE e ρ {xi 7→ i

n
}

trB (Cn
k xi

n) = (CONS , p) & cs[p 7→ [RETURNCON Cn
k ]]

trB (e) = (THUNK , p) & cs[p 7→ [UPDTMARK ]++ trE e ρ∅ η]
where η = {yj 7→ j

n
}

yj
n = fv e

Fig. 15. Common code generation for Fun expressions

instruction of the ISTGPE machine has been replaced by an EVAL n instruction,

being n the number of actual arguments. As we have seen, this instruction is re-

sponsible for ensuring the correct number of arguments on top of the stack for
the corresponding lambda, and for the rest of the specific rules for applications of

the ISTGEA machine. The difference in the translation of a λ-abstraction bind-
ing is that the ISTGPE ARGCHECK instruction is now missing. The rest of the

translation is identical to that of the ISTGPE machine.

In order to also illustrate the schemes, in Figure 19 we show the translation to
ISTGEA machine code of the Fun program of Figure 17.

5.5 Soundness and completeness of the ISTG machines

In this Section, we will prove that the previous translations correctly implements the

STGPE -2 and the STGEA-2 machines on top of the corresponding ISTG machines.

As there are not many differences between the ISTGPE and the ISTGEA machines,
we will proceed with both at the same time, interleaving the differences as required.

We will need some properties of the translation itself, given by the following:

Proposition 31 (Static invariant)
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trE (x xi
n) ρ η = [BUILDENV ((ρ, η) x : (ρ, η) xi

n
),

SLIDE (n + 1) m,
ENTER]

where ( , m) : = ρ

trE x ρ η = [BUILDENV [(ρ, η) x],
SLIDE 1 m,
ENTER]

where ( , m) : = ρ

trB (λxi
n.e) = (FUN , p) & cs[p 7→ [ARGCHECK n]++ trE e ρ η]

where ρ = [({xi 7→ n− i + 1
n
}, n)]

η = {yj 7→ j
l
}

yj
l = fv (λxi

n.e)

Fig. 16. Specific code generation for the ISTGPE machine

letrec

head = \xs.case xs of

Nil -> error

Cons y ys -> y

list = Cons x1 x2

x1 = One

x2 = Nil

in

head list

[ ALLOC 0, ALLOC 0, ALLOC 2, ALLOC 0,

BUILDCLS 0 p1 [],

BUILDCLS 1 p2 [(stack,2),(stack,3)],

BUILDCLS 2 p3 [],

BUILDCLS 3 p4 [],

BUILDENV [(stack,0)(stack,1)],

SLIDE 2 4,

ENTER

]

cs[p1]=[ARGCHECK 1, BUILDENV [], PUSHALTS pa,

BUILDENV [(stack,1)], SLIDE 1 0, ENTER]

cs[p2]=[RETURNCONS Cons]

cs[p3]=[RETURNCONS One]

cs[p4]=[RETURNCONS Nil]

cs[pa]=[[BUILDENV [(static,e)], SLIDE 1 1, ENTER],

[BUILDENV [(node,1)], SLIDE 1 1, ENTER]]

Fig. 17. A code generation example for the ISTGPE machine

trE (x xi
n) ρ η = [BUILDENV (((ρ, η) x) : (ρ, η) xi

n
),

SLIDE (n + 1) m,
EVAL n]

where ( , m) : = ρ

trE x ρ η = [BUILDENV [(ρ, η) x],
SLIDE 1 m,
EVAL 0]

where ( , m) : = ρ

trB (λxi
n.e) = (FUN , p) & cs[p 7→ trE e ρ η]

where ρ = [({xi 7→ n− i + 1
n
}, n, 0)]

η = {yj 7→ j
l
}

yj
l = fv (λxi

n.e)

Fig. 18. Specific code generation for the ISTGEA machine
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[ ALLOC 0, ALLOC 0, ALLOC 2, ALLOC 0,

BUILDCLS FUN 0 p1 [],

BUILDCLS CONS 1 p2 [(stack,2),(stack,3)],

BUILDCLS CONS 2 p3 [],

BUILDCLS CONS 3 p4 [],

BUILDENV [(stack,0)(stack,1)],

SLIDE 2 4,

EVAL 1

]

cs[p1]=[BUILDENV [], PUSHALTS pa,

BUILDENV [(stack,1)], SLIDE 1 0, EVAL 0]

cs[p2]=[RETURNCONS Cons]

cs[p3]=[RETURNCONS One]

cs[p4]=[RETURNCONS Nil]

cs[pa]=[[BUILDENV [(static,e)], SLIDE 1 1, EVAL 0],

[BUILDENV [(node,1)], SLIDE 1 1, EVAL 0] ]

Fig. 19. A code generation example for the ISTGEA machine

Given a closed expression e0 with different names for all bound variables and an
initial call trE e0 ρ∅ {}, we have:

1. It is an invariant precondition of any call to trE e ρ η that dom ρ∩dom η = ∅,
and ∀x ∈ fv e . x 6= error → x ∈ dom ρ ∨ x ∈ dom η.

2. It is an invariant postcondition of trE e ρ η that the last instruction generated

is ENTER (in the push/enter machine), or EVAL (in the eval/apply machine),

and this instruction may not appear in any other place of the sequence.

Proof
1. By induction on the tree structure of calls to trE
2. By structural induction on Fun expressions.

To prove the equivalence between a functional and an imperative machine is not

an easy task, since the translation, the functional semantics, and the imperative
semantics must be handled at the same time. The main idea is to define an equiva-

lence relation between STG-2 and ISTG configurations and then to show that both
machines evolve through equivalent configurations.

The machines cannot be compared at any point in their respective evolutions as

one STG-2 step will correspond in general to several ISTG steps. So, we first define
some states of the STG-2 machine in which the comparison with ISTG makes sense.

We call these configurations stable. In essence, they correspond to ISTG machine
configurations (is , SI ,node, ΓI , cs) in which is is the translation of some expression

e, so the control expression e in the STG-2 configuration should be one of the

expressions written by the programmer in the original Fun program. The following
definition makes this idea precise.

Definition 32
Given a closed expression e0:

1. The initial configuration ({ }, e0, { }, [ ]) of the STG-2 machine is stable.
2. If (Γ, e, E, S) → (Γ′, e′, E′, S′) then (Γ′, e′, E′, S′) is stable if the rule applied

in the step is letrec, case1, case2, var1, appPE2 (push/enter), or appEA2

(eval/apply).



A Formal Derivation of two STG Machines 39

It is not necessary to independently define the stable configurations in ISTG.

Instead, we define an equivalence relation between STG-2 stable configurations
and ISTG configurations. Then the ISTG stable configurations would be those

equivalent to the STG-2 stable ones.
First, we define the equivalence between STG-2 and ISTG runtime environments.

Essentially, an STG-2 environment E corresponds to the imperative environments ρ

and η. As the environment ρ refers to positions in the stack and the environment η
refers to positions in the heap closure pointed to by node, we need these components

in the definition.

Definition 33
An STG-2 environment E is equivalent to an ISTG environment defined by ρ, η, SI ,

ΓI and node, via an α-renaming β, and denoted E
β≡ (ρ, SI , η, ΓI ,node), if dom E ⊆

(dom ρ ∪ dom η) and

∀x ∈ dom E .

{

E x = β (SI ! (ρ x)) if x ∈ dom ρ

E x = β (nodeΓI
! (η x)) if x ∈ dom η

Notice that, if η = {}, then the values ΓI and node do not matter. The following

definition establishes the equivalence between STG-2 and ISTG stacks. Basically,

it says that the environment on top of the ISTG stack should be ignored and that
the rest of stack frames in equivalent positions of both stacks should be equivalent.

The code store of the ISTG machine is needed in the definition.

Definition 34
An STG-2 stack S is equivalent to an ISTG stack defined by a triple (ρ, SI , cs), via

an α-renaming β, and denoted S
β≡ (ρ, SI , cs), if ρ = (δ, m) : ρ′, SI = ai

m : S′
I , and

S
β≡aux (S′

I , cs), where S
β≡aux (S′

I , cs) is defined as follows:

1. If S = (alt i
n
, E) : S′, then SI = palts : S′

I and there exists ρalts such

that cs(palts) = trA alt i ρalts
n
. Also, E

β≡ (ρalts , S
′
I , {}, , ), and S′ β≡

(ρalts , S
′
I , cs)

2. If S = #p : S′, then SI = #a : S′
I , p = β a, and S′ β≡aux (S′

I , cs)

3. (eval/apply) If S = •ai
n : S′, then SI = •β ai

n
: S′

I , and S′ β≡aux (S′
I , cs)

4. (push/enter) If S = ai
n : S′, then SI = β ai

n
: S′

I , and S′ β≡aux (S′
I , cs)

5. Additionally, [ ]
β≡aux ([ ], )

Leaving apart environments and α-renaming, there is a non-essential difference

between the STG-2 and the ISTG heaps: closures under evaluation in STG-2 are

removed from the heap, while they are ‘black-holed’ in ISTG. So, we give the
following equivalence definition:

Definition 35
An STG-2 heap Γ is equivalent to the ISTG pair (ΓI , cs), via an α-renaming β,

and denoted Γ
β≡ (ΓI , cs), if for all p ∈ dom Γ we have:

1. ΓI [a 7→ (q,ws)] iff Γ[β a 7→ (be, E)], ( , q) = trB be, xi
n = fv be,

β ws = E xi
n
, q 6= pbh and q ∈ dom cs
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2. ΓI [b 7→ (pn+1
pap , a :ai

n)] iff Γ[β b 7→ PAP (y yi
n, E)], β (a :ai

n) = E y : E yi
n

Additionally, for every closure [a 7→ (qbh ,ws)] ∈ ΓI , we have β a /∈ dom Γ.

Finally, we define the following equivalence relation between an STG-2 stable
configuration and an ISTG configuration.

Definition 36

An STG-2 stable configuration is equivalent to an ISTG configuration, denoted
(Γ, e, E, S) ≡ (is , SI ,node, ΓI , cs), if there exists an α-renaming β and two compile-

time environments ρ and η such that:

1. Γ
β≡ (ΓI , cs)

2. is = trE e ρ η

3. E
β≡ (ρ, SI , η, ΓI ,node)

4. S
β≡ (ρ, SI , cs)

Stable configurations do not cover normal forms of both machines, so we extend
the previous definition to normal forms.

Definition 37

A normal form STG-2 configuration is equivalent to a normal form ISTG configu-

ration, denoted (Γ[p 7→ w], x, E[x 7→ p], [ ]) ≡ (is , [ ],node, ΓI , cs), if there exists an
α-renaming β such that:

1. Γ
β≡ (ΓI , cs)

2. β node = p

In the following theorem, by conf
STG-2

+

−→ conf ′ we denote the minimum non-empty

possible evolution of the STG-2 machine in order to reach a stable configuration
conf ′ from a stable configuration conf , if there are more than one stable config-

uration after conf , or to reach a normal form conf ′ if there is only one stable

configuration after conf . This apparently awkward definition is needed because the
STG-2 machine goes through a last stable configuration before stopping in a normal

form, and this stable configuration has no counterpart in the ISTG machine, which
directly stops in a normal form configuration.

Theorem 38 (Dynamic invariant)

Let (Γ, e, E, S) be an STG-2 stable configuration, and (is , SI ,node, ΓI , cs) be an
ISTG configuration such that (Γ, e, E, S) ≡ (is , SI ,node, ΓI , cs). Then:

1. If (Γ, e, E, S)
STG-2

+

−→ (Γ′, e′, E′, S′), then there exists (is , SI ,node, ΓI , cs) ⇒+

(is ′, S′
I ,node ′, Γ′

I , cs) such that (Γ′, e′, E′, S′) ≡ (is ′, S′
I ,node ′, Γ′

I , cs)

2. If (Γ, e, E, S) cannot evolve either to a stable point or to a normal form, then

(is , SI ,node, ΓI , cs) cannot evolve either to a stable point or to a normal form.

Proof



A Formal Derivation of two STG Machines 41

By cases on stable configurations of the STG-2 machine. As there many cases and

subcases, we sketch the general proof and then present in detail two of them. In
the second one we do the proof separately for STGPE -2 and STGEA-2.

In a stable STG-2 configuration, the control expression may be any Fun expres-

sion. If it is a letrec or a case, after a single transition (respectively, a Letrec or a
Case1 one), the machine reaches another stable configuration. If it is an application

or a variable, there may be many transitions before STG-2 reaches a new stable
configuration. The idea of the proof is to make evolve the STG-2 configuration

until a new stable state is reached. Then we make evolve the translated code in

the ISTG machine until an equivalent configuration is reached. During both evo-
lutions, we keep track of the fresh variables created in the machines in order to

define the appropriate α-renaming. We present below the proof for letrec and for

applications.

letrec We know by hypothesis:

H1 confSTG2 = (Γ, letrec xi = bei
n

in e, E, S) ≡ (is , SI ,node, ΓI , cs) = confISTG .

Let us call β to the α-renaming establishing this equivalence.

H2 confSTG2 → (

Γ′

︷ ︸︸ ︷

Γ ∪ [pi 7→ (bei, E′| yij
mi )

n
] , e, E′, S) where E′ = E∪[xi 7→ pi

n],

yij
mi = fv bei, and pi fresh, by applying the STG-2 Letrec rule.

Then, by H1, we have:

confISTG = ([ALLOC mn, . . . , ALLOC m1, BUILDCLS (i − 1) qi zsi

n
]++trE e ρ′ η, . . .)

and, by applying the ISTG transition rules for ALLOC and BUILDCLS , we get:

confISTG ⇒+ (trE e ρ′ η, ai
n : SI ,node, ΓI ∪ [ai 7→ (qi, wsij

mi)
n
]

︸ ︷︷ ︸

Γ′
I

, cs)

where ρ′ = ρ+({xi 7→ n − i + 1
n}, n), ai fresh, zsi = (ρ′, η) yij

mi

, ( , qi) = trB bei,
and

ws ij =

{

(ai
n : SI)!k if (zs i)j = (stack , k),

nodeΓ′

I
!k if (zs i)j = (node, k).

Let us define β′ as:

β′ a =

{

pi if a = ai, 1 ≤ i ≤ n

β a otherwise.

By using this β′, ρ′, and η we can easily prove the desired result:

(Γ′, e, E′, S) ≡ (trE e ρ′ η, ai
n : SI ,node, Γ′

I , cs)
√

x xi
n (push/enter) The STGPE -2 machine first pushes the arguments xi

n into

the stack and then enters the closure pointed to by x (rule AppPE1 ). Depending
on the closure type and of the stack contents, the machine may perform one of the

following traces before reaching a new stable state:
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Var1 This is the case in which the closure is a thunk.

AppPE2 The closure expression is a λ-abstraction with less than, or equal to, or
more than n formal arguments. In the last case, the extra arguments were on top

of the stack before pushing xi
n.

(AppPE4 Var2+ AppPE3 )+ AppPE2 The closure expression is a λ-abstraction,
with more than n formal arguments. In the stack there are one or more update

marks interleaved with arguments. The update marks are removed, some partial

application closures are created, and eventually there are enough arguments in
the stack so that the original λ-abstraction is applied.

AppPE3 (AppPE4 Var2+ AppPE3 )∗ AppPE2 The closure expression is a partial

application. As above, in the stack there are one or more update marks interleaved
with arguments, the update marks are removed, some partial application closures

are created, and eventually the original λ-abstraction is applied.

All the paths above can be proved correct. The proof is tedious but not difficult.

As an example we show the proof for the trace AppPE1 AppPE2 where the λ-

abstraction have less than or equal to n formal arguments, the other case being
similar.

H1 By hypothesis we know: confSTG2 = (Γ, x xi
n, E{x 7→ p, xi 7→ pi

n}, S) ≡
(is , SI ,node, ΓI , cs) = confISTG . Let us assume Γ[p 7→ (λ yi

n′

.e, E′)], and n′ ≤ n.

Let us call β to the α-renaming establishing this equivalence.

H2 By the trace AppPE1 AppPE2 , we have:

confSTG2 → (Γ, x, E{x 7→ p}, pi
n : S)

→ (Γ, e, E′ ⊎ {yi 7→ pi
n′}, pj

n−n′

: S)

P1 By H1 and ISTGPE rules, we have:

confISTG = ([BUILDENV ((ρ, η) (x : xi
n)),SLIDE (n + 1) m,ENTER], . . .)

confISTG ⇒ ([SLIDE (n + 1) m,ENTER], a : ai
n : SI ,node, ΓI , cs)

⇒ ([ENTER], a : ai
n : S′

I ,node, ΓI , cs)

being SI = bi
m

: S′
I , pi

n = β ai
n, p = β a, and S

β≡aux (S′
I , cs).

P2 Again by H1, we have Γ
β≡ (ΓI , cs), ΓI [a 7→ (pbe ,ws)], ( , pbe) = trB (λ yi

n′

. e),

fv (λ yi
n′

.e) = zj
l, and E′ zj

l
= β ws

P3 Proceeding with the execution of ISTGPE , we get:

([ENTER], a : ai
n : S′

I ,node, ΓI , cs)
⇒ (ARGCHECK n′ : trE e ρ′ η′, ai

n : S′
I , a, ΓI , cs)

⇒ (trE e ρ′ η′, ai
n : S′

I , a, ΓI , cs)

where, by H1, ρ′ = [({yi 7→ n′ − i + 1
n′

}, n′)] and η′ = {zj 7→ j
l}.

P4 By P1, P2, and P3, we have: E′ ⊎ {yi 7→ pi
n′} β≡ (ρ′, ai

n : S′
I , η

′, ΓI , a)

P5 By P1 and P3, we have: pj
n−n′

: S
β≡ (ρ′, ai

n : S′
I , cs)

P6 Finally, by P2, P3, P4 and P5, we have:

(Γ, e, E′ ⊎ {yi 7→ pi
n′}, pj

n−n′

: S) ≡ (trE e ρ′ η′, ai
n : S′

I , a, ΓI , cs)
√
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x xi
n (eval/apply) Depending on the closure type pointed to by x and of the stack

contents, the machine may perform one of the following traces before reaching a
new stable state:

AppEA1 Var1 This is the case in which the closure is a thunk.

AppEA2 The closure expression is a λ-abstraction with less than, or equal to, n

formal arguments.

(AppEA4 Var2∗ AppEA5 AppEA3 )+ AppEA2 The closure expression is a λ-ab-
straction with more than n formal arguments, then a partial application closure

is created. After zero or more more update marks, there should be a packet of
arguments in the stack. Then AppEA5 followed by AppEA3 are executed and

the control expression would be again of the form x xi
n with x pointing to a

λ-abstraction. The trace may iterate several times and eventually there would be
enough arguments in the control expression so that the λ-abstraction would be

applied (rule AppEA2 ).

AppEA3 (AppEA4 Var2∗ AppEA5 AppEA3 )∗ AppEA2 The closure expression is
a partial application. It is copied to the control expression and then the func-

tional variable would point to a λ-abstraction. The rest of the trace is covered
by the second or by the third case of this description.

As an example we show the proof for the trace AppEA1 Var1 .

H1 By hypothesis we know: confSTG2 = (Γ, x xi
n, E{x 7→ p, xi 7→ pi

n}, S) ≡
(is , SI ,node, ΓI , cs) = confISTG . Let us assume Γ = Γ′⊎ [p 7→ (e, E′)]. Let us call

β to the α-renaming establishing this equivalence.

H2 By the trace AppEA1 Var1 , we have:

confSTG2 → (Γ, x, E{x 7→ p}, •pi
n : S)

→ (Γ′, e, E′, #p : •pi
n : S)

P1 By H1 and ISTGEA rules, we have:

confISTG = ([BUILDENV ((ρ, η) (x : xi
n)),SLIDE (n + 1) m,ENTER], . . .)

confISTG ⇒ ([SLIDE (n + 1) m,EVAL n], a : ai
n : SI ,node, ΓI , cs)

⇒ ([EVAL n], a : ai
n : S′

I ,node, ΓI , cs)

being SI = bi
m

: S′
I , pi

n = β ai
n, p = β a, and S

β≡aux (S′
I , cs).

P2 Again by H1, we have Γ
β≡ (ΓI , cs), ΓI = Γ′

I ⊎ [a 7→ (pbe ,ws)], ( , pbe) = trB e,

fv e = zj
l, and E′ zj

l
= β ws

P3 Proceeding with the execution of ISTGEA, we get:

([EVAL n], a : ai
n : S′

I ,node, Γ′
I ⊎ [a 7→ (pbe ,ws)], cs)

⇒ (UPDTMARK : trE e ρ∅ η′, •ai
n : S′

I , a, Γ′
I ⊎ [a 7→ (pbe ,ws)], cs)

⇒ (trE e ρ∅ η′, #a : •ai
n : S′

I , a, Γ′
I ⊎ [a 7→ (pbh ,ws)], cs)

where, by H1, η′ = {zj 7→ j
l}.

P4 By P1, P2, and P3, we have: E′ β≡ (ρ∅, #a : •ai
n : S′

I , η
′, Γ′

I ⊎ [a 7→ (pbh ,ws)], a)

P5 By P1 we have: #p : •pi
n : S

β≡ (ρ∅, #a : •ai
n : S′

I , cs)

P6 By P2 we have: Γ′ β≡ (Γ′
I ⊎ [a 7→ (pbh ,ws)], cs)
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P7 Finally, by P3, P4, P5, and P6, we have:

(Γ′, e, E′, #p : •pi
n : S) ≡ (trE e ρ∅ η′, #a : •ai

n : S′
I , a, Γ′

I⊎[a 7→ (pbh ,ws)], cs)
√

Abnormal termination An informal reasoning of why both machines should stop

abnormally at the same time follows. Both machines start from equivalent stable
configurations. By hypothesis, STG-2 can evolve neither to a new stable configura-

tion nor to a normal form. We should prove that ISTG neither can. For STG-2 not
to evolve, one of the following situations must happen:

• There is a λ-abstraction about to be applied, the stack does not contain
enough arguments, and there is something in the stack different from an up-

date mark. As the stack is not empty, it should be a case continuation. As

stacks are equivalent, then the ISTG stack should have also a case continua-
tion and could not evolve.

• A construction has been arrived at, and there is something in the stack dif-

ferent from case continuations or update marks. As the stack is not empty,
they should be arguments. As stacks are equivalent, then the ISTG machine

could not evolve either.
• The control expression is a pointer to a non-existent closure (i.e. to a closure

under evaluation). Then the closure code pointer in ISTG would be pbh and

the machine would also stop.

Corollary 39
Given a closed expression e0 with different bound variables, the initial STG-2 config-
uration ({}, e0, {}, [ ]), and the initial ISTG configuration (trE e0 ρ∅ {}, [ ], , {}, cs),
then:

({}, e0, {}, [ ]) STG-2−→ ∗
(∆[p 7→ w], x, E{x 7→ p}, [ ]) iff

(trE e0 ρ∅ {}, [ ], , {}, cs) ⇒∗ (is , [ ],node, ∆I , cs)
and (∆[p 7→ w], x, E{x 7→ p}, [ ]) ≡ (is , [ ],node, ∆I , cs)

where cs is the code store generated by the whole translation of e0.

Corollary 40
The translation given in figures 15, 16 and 18 is correct.

6 Related work and conclusions

We have already mentioned in Section 2 the works by Sestoft and Mountjoy and

their influence in our own work.

Mountjoy (Mountjoy, 1998) had the idea of restricting the language Basic and
its semantics in order to get closer to the STG language and then to derive the

STG machine from the new semantics. He developed two different semantics: in
the first one, which we call semantics S1, the main change was the requirement

for normal forms to be either constructions (as they were in Sestoft’s semantics)

or variables pointing to heap bindings containing λ-abstractions, instead of just
λ-abstractions. The reason for this was to forbid the presence of λ-abstractions in

the control expression. Another change was to force applications to have the form
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x x1, i.e. with a variable in the functional part. These changes forced Mountjoy

to modify the source language and to define a normalisation transformation from
Basic to the new language. Mountjoy proved that the normalisation process did not

change the normal forms arrived at by both semantics.

The second semantics, which we call semantics S2, forced applications of n ar-

guments to be done simultaneously instead of one by one. Correspondingly, λ-

abstractions were allowed to have several arguments. Semantics S2 was informally
derived and contained some mistakes. In particular, the rule AppM made a λ-

abstraction to appear in the control expression, in contradiction with the desire of
having λ-abstractions only in the heap. This makes rule AppM incorrect and conse-

quently rules to correctly cope with partial applications are missing. The derivation

of an STG-like machine from the semantics S2 was done informally and no proof
of correctness was provided.

The differences with our semantics S3 are: (1) we correctly cope with partial
applications; (2) we also consider as normal forms variables pointing to construc-

tions or to partial applications; and (3) we provide proofs of correctness for the

relation between the semantics S3 and the STG-1 machines. Also, at the time of
Mountjoy’s work the eval/apply model had not been developed, so no derivation of

this machine was done.

There have been other successful derivations of abstract machines starting from

high level descriptions of the semantics. For instance, in (Hannan & Miller, 1992)

and (Ager et al., 2003) a number of such derivations are presented. Well-known
abstract machines for the λ-calculus such as SECD, Krivine’s, CLS and CAM are

derived and proved correct. These papers propose general schemes for achieving
this kind of derivations. The differences with the present work are the following:

• They concentrate on the pure λ-calculus and they consider neither sharing
nor heaps. Algebraic types, case and letrec expressions are not considered

either.

• In the second paper, the starting point is the denotational meaning of the
source language.

• In order to refine their machines they use predefined correct transformations

such as closure conversion, transformation into continuation passing style,

defunctionalization and in-lining.

• They ignore the compilation issues from the source language to machine in-
structions.

In (Kluge, 2005) a broad survey of abstract and virtual machines for the λ-

calculus and for practical functional languages is presented, which contains the

details of many well-known (and some not so well-known) abstract machines. Most
of them are full-normalising and some are weakly normalising, as is usually the

case when implementing real-life functional languages. When the machines execute
compiled code, the translation schemes are also provided. The aim of the book is

to serve as a text for a graduate course and no attempt is made at providing proofs

of correctness either for the machines or for the compilation schemes.

Regarding the STG machine and the GHC compiler, there are some differences

between the machine translations we present in Section 5.4 and the actual code
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generated by GHC. Some are just omissions, some are non-substantial differences

and yet some others are deeper ones.

In the first group is included the treatment of basic values, very elaborated in
GHC —see for example (Peyton Jones & Launchbury, 1991)— and completely

ignored here. For the sake of simplicity, we have preferred to concentrate our study

on the functional kernel of the machine, but of course a formal analysis of this
aspect could also be undertaken along similar lines.

The second group contains, for instance, the optimisation of the implementation

of updates, which in GHC are always done by indirection. Also, GHC maintains the

so called info-table, a static table shared by all closures created from the same bind-
ing, which contains detailed information about the size and layout of the closures.

Our model has simplified these aspects. Finally, we understand that stack restruc-
turing, as the one performed by our SLIDE instruction, is not implemented in this

way by GHC. Apparently, they maintain up to four compile-time environments for

free variables: one based on stack offsets, another one based on the current closure,
a third one containing the addresses of the static bindings, and a fourth one where

numbers relative to the heap pointer are assigned to variables. When they push a

case continuation framework, they save in the stack the free variables needed by
the continuation expression. Thus, they do not reuse the control expression envi-

ronment as we do in our translation, and instead they trim the environment to just
the set of variables free in the alternatives.

A deeper difference between our derived STG machines and the actual implemen-
tation made by GHC is the way the latter processes the stack frames. Our model

is based on the current machine instruction somehow inspecting the kind of stack
frame on top of the stack, and taking the appropriate action based on that. That is,

stack frames are implicitly assumed to be tagged. In contrast, GHC’s implementa-

tion is based on having a return address at the beginning of each stack frame. The
machine just jumps to this return address instead of inspecting the stack, and then

falls into code that knows the exact size and layout of the stack frame, and how to
process it. This (replacing tags by jumps) can be considered as an optimisation, but

it also makes the translation different. For instance, our RETURNCON instruction

cannot be recognised as such in the code. Its behaviour is split up into the return
address code associated to update stack frames and the return address code associ-

ated to case continuation stack frames. Likewise, our EVAL instruction behaviour

is split up into the return address code for argument and update stack frames, and
the code generated for each call site. GHC’s programmers have even developed for

this site code several optimised versions of a generic function stgApply specialised
in the number and type of arguments being applied. The translation of a variable

of a functional type generates code which inspects the closure pointed to by the

variable and jumps to the closure code if it happens to be a thunk. Otherwise, it
jumps to the top stack frame return address.

We find it difficult to introduce these optimisations in our model and at the same

time to keep the correctness argument simple. We have been able to show that our

environment conventions, choice of machine instructions, and formal translation
schemes make this reasoning feasible with a reasonable amount of effort. It might be

possible to get closer to the actual implementation by introducing more refinements
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about primitive values, runtime environments, and stack frames, but we decided to

stop there. We believe that we have gone most of the way from the original Sestoft’s
semantics to a reasonably efficient imperative implementation, and provided a solid

basis for anyone willing to continue this kind of formal work.

To sum up, we believe that the derivation method we have followed to arrive
at the final imperative code could constitute an attractive approach to design ab-

stract machines and imperative translations of functional languages. We can briefly
describe the steps as follows:

1. Start from a well-known, accepted, natural semantics of the language.
2. Manipulate the semantics and the language in order to avoid constructions

which may be costly to implement (in our case, the back and forth thrashing

of values between the heap and the control expression). Prove that the new
semantics is equivalent to the original one.

3. Introduce a stack to traverse the semantic derivation tree in a sequential way.
4. Replace explicit substitutions by runtime environments.
5. Observe in which transitions new environments are installed, saved, dupli-

cated, extended or discarded.
6. Decide how to represent environments. A number of choices are: as frames in

the stack, as part of the current closure, as static addresses, as offsets from the
heap pointer, etc. Establish appropriate compile-time and run-time invariants

for the environments.
7. Concurrently design the instructions of the imperative machine and the trans-

lation schemes of the source language, in order to implement every transition

rule of the reference abstract machine.
8. Prove that every refinement preserves the semantics.

The second part of our contribution has consisted of clarifying how and why the
two STG machines work and in providing some help for those wishing to understand

the detailed explanations contained in (Marlow & Peyton Jones, 2006) and in the

actual code of the GHC compiler.
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