
An Inference Algorithm for Guaranteeing Safe
Destruction ?

Manuel Montenegro Ricardo Peña Clara Segura
montenegro@fdi.ucm.es {ricardo,csegura}@sip.ucm.es

Universidad Complutense de Madrid, Spain

Abstract. Safe is a first-order eager language with facilities for progra-
mmer-controlled destruction and copying of data structures. It provides
also regions, i.e. disjoint parts of the heap where the programmer may
allocate data structures. A type system is used to avoid dangling pointers
arising from the inadequate usage of these facilities. In this paper we
present an inference algorithm, we describe its implementation, and give
a number of successfully typed examples. Also the correctness of the
algorithm is proved.

1 Introduction

Many imperative languages offer low level mechanisms to allocate and free heap
memory, which the programmer may use in order to dynamically create and
destroy pointer based data structures. These mechanisms give the programmer
complete control over memory usage but are very error prone. Well known prob-
lems that may arise when using a programmer-controlled memory management
are dangling references, undesired sharing between data structures with complex
side effects as a consequence, and polluting memory with garbage.

On the other hand, functional languages usually consider memory manage-
ment as a low level issue. Allocation is done implicitly and usually a garbage
collector takes care of the memory exhaustion situation.

A semi-explicit approach to memory control is the functional language called
Safe [PS04], in which the programmer cooperates with the memory management
system by providing some information about the intended use of data structures.
For instance, the programmer may indicate that some particular data structure
will not be needed in the future and that, as a consequence, it may be safely
destroyed by the runtime system and its memory recovered. The language uses
regions to locate data structures. It also allows controlling the degree of sharing
between different data structures. A garbage collector is not needed. Allocation
and destruction of data structures are done as execution proceeds.

More interesting is the definition of a type system [MPS08] guaranteeing
that destruction facilities and region management can be done in a safe way. In
particular, it guarantees that dangling pointers are never created in the live heap.
In this paper we present an inference algorithm, we describe its implementation,
and give some examples of use. We also prove the correctness of the algorithm
with respect to the type system. In Section 2 we summarize language Safe. The
type system is presented in Section 3 and the corresponding inference algorithm
is explained in Section 4. In Section 5 we show some examples whose types have
been successfully inferred. Finally, Section 6 compares this work with related
analyses in other languages with memory management facilities.
? Work supported by the projects TIN2004-07943-C04, S-0505/TIC/0407 (PROME-

SAS) and the MEC FPU grant AP2006-02154.

2 Summary of Safe

Safe is a first-order polymorphic functional language similar to (first-order)
Haskell or ML with some facilities to manage memory. The memory model is
based on heap regions where data structures (DS) are built. However, in Full-
Safe in which programs are written, regions are implicit. These are inferred when
Full-Safe is desugared into Core-Safe. As all the analyses mentioned in this paper
[PSM07,MPS08] happen at Core-Safe level, later in this section we will describe
it in detail.

The allocation and deallocation of regions is bound to function calls: a work-
ing region is allocated when entering the call and deallocated when exiting it.
Inside the function, data structures may be built but they can also be destroyed
by using a destructive pattern matching denoted by ! or a case! expression,
which deallocate the cell corresponding to the outermost constructor. Using re-
cursion the recursive spine of the whole data structure may be deallocated. We
say that it is condemned. As an example, we show an append function destroying
the first list’s spine, while keeping its elements in order to build the result:

concatD []! ys = ys
concatD (x:xs)! ys = x : concatD xs ys

As a consequence, the concatenation needs constant heap space, while the usual
version needs linear heap space. The fact that the first list is lost is reflected in
the type of the function: concatD :: [a]! -> [a] -> [a].

The data structures which are not part of the function’s result are built in
the local working region, which we call self, and they die when the function ter-
minates. As an example we show a destructive version of the treesort algorithm:

treesortD :: [Int]! -> [Int]
treesortD xs = inorder (mkTreeD xs)

First, the original list xs is used to build a search tree by applying function
mkTreeD (defined below). This tree is then traversed in inorder to produce the
sorted list. The tree is not part of the result of the function, so it will be built in
the working region and will die when the treesortD function returns (in Core-
Safe this is explicit). The original list is destroyed and the destructive appending
function is used in the traversal so that constant heap space is consumed.

Function mkTreeD inserts each element of the list in the tree by calling function
insertD, which is the destructive version of insertion in a binary search tree:

insertD :: Int -> Tree Int! -> Tree Int
insertD x Empty! = Node Empty x Empty
insertD x (Node lt y rt)! | x == y = Node lt! y rt!

| x > y = Node lt! y (insertD x rt)
| x < y = Node (insertD x lt) y rt!

Notice in the first guard, that the cell just destroyed must be built again. When a
data structure is condemned its recursive children may subsequently be destroyed
or they may be reused as part of the result of the function. We denote the latter
with a !, as shown in this function insertD. This is due to safety reasons: a
condemned data structure cannot be returned as the result of a function, as
it potentially may contain dangling pointers. Reusing turns a condemned data
structure into a safe one. The original reference is not accessible any more. So,

2

prog → dec1; . . . ; decn; e
dec → f xi

n @ rj
l = e {recursive, polymorphic function}

e → a {atom: literal c or variable x}
| x@r {copy}
| x! {reuse}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe language definition

in the example lt and rt are condemned and they must be reused in order to
be part of the result.

Data structures may also be copied using @ notation. Only the recursive
spine of the structure is copied, while the elements are shared with the old one.
This is useful when we want non-destructive versions of functions based on the
destructive ones. For example, we can define treesort xs = treesortD (xs@).

In Fig. 1 we show the syntax of Core-Safe. A program prog is a sequence
of possibly recursive polymorphic function definitions followed by a main ex-
pression e, calling them, whose value is the program result. The abbreviation
xi
n stands for x1 · · ·xn. Destructive pattern matching is desugared into case!

expressions. Constructions are only allowed in let bindings, and atoms are used
in function applications, case/case! discriminant, copy and reuse. Regions are
explicit in constructor application and the copy expression. Function definitions
have additional parameters rj l where data structures may be built. In the right
hand side expression only the rj and its working region self may be used.

Polymorphic algebraic data types are defined separately through data dec-
larations. Region inference adds region arguments to constructors forcing the re-
striction that recursive substructures must live in the same region as its parent.
There may be several region parameters when nested types are used: different
components of the data structure may live in different regions. In that case the
last region variable is the outermost region where the constructed values of this
type are allocated. In the following example

data T a b @ rho1 rho2 = C1 ([a] @ rho1) @ rho2 | C2 b @ rho2

rho2 is where the constructed values of type T are allocated, while rho1 is where
the list of a C1 value is allocated.

The data declarations must be well-formed: every type or region variable
appearing in the left hand side must appear somewhere in the right hand side
and the other way around. Also, the recursive occurrences must be identical to
the left-hand side (polymorphic recursion is not allowed).

Function splitD is an example with several output regions. In order to save
space we show here a semi-desugared version with explicit regions. Notice that
the resulting tuple and its components may live in different regions:

splitD :: Int -> [a]!@rh2 -> rh1 -> rh2 -> rh3 -> ([a]@rh1,[a]@rh2)@rh3
splitD 0 zs! @ r1 r2 r3 = ([]@r1, zs!)@r3
splitD n []! @ r1 r2 r3 = ([]@r1, []@r2)@r3
splitD n (y:ys)! @ r1 r2 r3 = ((y:ys1)@r1, ys2)@r3

where (ys1, ys2) = splitD (n-1) ys @r1 r2 r3

3

τ → t {external}
| r {in-danger}
| σ {polymorphic function}
| ρ {region}

t → s {safe}
| d {condemned}

s → T s@ρ
| b

d → T t!@ρ

r → T s#@ρ
b → a {variable}

| B {basic}
tf → ti

n → ρj
l → T s@ρk

m {function}
| si

n → ρ→ T s@ρk
m {constructor}

σ → ∀a.σ
| ∀ρ.σ
| tf

Fig. 2. Type expressions

3 Safe Type System

In this section we describe a polymorphic type system with algebraic data types
for programming in a safe way when using the destruction facilities offered by the
language. The syntax of type expressions is shown in Fig. 2. As the language is
first-order, we distinguish between functional, tf , and non-functional types, t, r.
Non-functional algebraic types may be safe types s, condemned types d or in-
danger types r. In-danger and condemned types are respectively distinguished
by a # or ! annotation. In-danger types arise as an intermediate step during
typing useful to control the side-effects of the destructions. But notice that the
types of functions only include either safe or condemned types. The intended
semantics of these types is the following:

• Safe types (s): A DS of this type can be read, copied or used to build
other DSs. They cannot be destroyed or reused by using the symbol !. The
predicate safe? tells us whether a type is safe.

• Condemned types (d): It is a DS directly involved in a case! action. Its
recursive descendants will inherit the same condemned type. They cannot
be used to build other DSs, but they can be read or copied before being
destroyed. They can also be reused once. The predicate cdm? is true for
these types.

• In-danger types (r): This is a DS sharing a recursive desdendant of a
condemned DS, so potentially it can contain dangling pointers. The predicate
danger? is true for these types. The predicate unsafe? is true for condemned
and in-danger types. Function danger(s) denotes the in-danger version of s.

We will write T@ρm instead of T s@ρm to abbreviate whenever the s are not
relevant. We shall even use T@ρ to highlight only the outermost region. A partial
order between types is defined: τ ≥ τ , T !@ρm ≥ T@ρm, and T#@ρm ≥ T@ρm.

Predicates region?(τ) and function?(τ) respectively indicate that τ is a region
type or a functional type.

Constructor types have one region argument ρ which coincides with the out-
ermost region variable of the resulting algebraic type T s@ρm, and reflect that
recursive sharing can happen only in the same region. As example:

[] : ∀a, ρ.ρ→ [a]@ρ
(:) : ∀a, ρ.a→ [a]@ρ→ ρ→ [a]@ρ
Empty : ∀a, ρ.ρ→ Tree a@ρ
Node : ∀a, ρ.Tree a@ρ→ a→ Tree a@ρ→ ρ→ Tree a@ρ

We assume that the types of the constructors are collected in an environment
Σ, easily built from the data type declarations. In functional types there may
be several region arguments ρj l where data structures may be built.

4

fresh(ρself), ρself 6∈ regions(s)

Γ + [xi : ti]
n

+ [rj : ρj]
l
+ [self : ρself] + [f : ti

n → ρj
l → s] ` e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(ti
n → ρj

l → s, Γ)]}
[FUNB]

Fig. 3. Rule for function definitions

In the type environments, Γ , we can find region type assignments r : ρ, vari-
able type assignments x : t, and polymorphic scheme assignments to functions
f : σ. In the rules we will also use gen(tf , Γ) and tf � σ to respectively denote
(standard) generalization of a monomorphic type and restricted instantiation of
a polymorphic type with safe types.

Several operators on environments are used in the rules. The usual operator
+ demands disjoint domains. Operators ⊗ and ⊕ are defined only if common
variables have the same type, which must be safe in the case of ⊕. If one of this
operators is not defined in a rule, we assume that the rule cannot be applied.
Operator �L is explained below. The predicate utype?(t, t′) is true when the
underlying Hindley-Milner types of t and t′ are the same.

We now explain in detail the typing rules. In Fig. 3 we present the rule
[FUNB] for function definitions. Notice that the only regions in scope are the
region parameters rj l and self , which gets a fresh region type ρself . The latter
cannot appear in the type of the result as self dies when the function returns
its value (ρself 6∈ regions(s)).

In Figure 4, the rules for typing expressions are shown. Function sharerec(x, e)
gives an upper approximation to the set of variables in scope in e which share
a recursive descendant of the DS starting at x. This set is computed by the
abstract interpretation based sharing analysis defined in [PSM07].

A key point to prove the correctness of the type system with respect to the
semantics is an invariant of the type system telling that if a variable appears as
condemned in the typing environment, then those variables sharing a recursive
substructure appear also in the environment with unsafe types. This is necessary
in order to propagate information about the possibly damaged pointers.

There are rules for typing literals ([LIT]), and variables of several kinds
([VAR], [REGION] and [FUNCTION]). Notice that these are given a type un-
der the smallest typing environment. Rules [EXTS] and [EXTD] allow to extend
the typing environments according to the invariant mentioned above. Notation
type(y) represents the Hindley-Milner type inferred for variable y1.

Rule [COPY] allows any variable to be copied. This is expressed by extending
the previously defined partial order between types to environments.

Rules [LET1] and [LET2] control the intermediate results by means of operator
�L. Rule [LET1] is applied when the intermediate result is safely used in the main
expression. Rule [LET2] allows the intermediate result x1 to be destroyed in the
main expression e2 if desired. In both let rules operator �L guarantees that: (1)
Each variable y condemned or in-danger in e1 may not be referenced in e2 (i.e.
y /∈ fv(e2)), as it could be a dangling reference. (2) Those variables marked as
unsafe either in Γ1 or in Γ2 will keep those types in the combined environment.

Rule [REUSE] establishes that in order to reuse a variable, it must have
a condemned type in the environment. Those variables sharing its recursive
descendants are given in-danger types in the environment.

Rule [APP] deals with function application. The use of the operator ⊕ avoids
a variable to be used in two or more different positions unless they are all safe
1 Inference implementation first infers H-M types and then destruction annotations

5

Γ ` e : s x /∈ dom(Γ)
safe?(τ) ∨ danger?(τ) ∨ region?(τ) ∨ function?(τ)

Γ + [x : τ] ` e : s
[EXTS]

Γ ` e : s x /∈ dom(Γ)
R = sharerec(x, e)− {x}

ΓR = {y : danger(type(y))| y ∈ R}
Γ ⊗ ΓR + [x : d] ` e : s

[EXTD]

∅ ` c : B
[LIT]

[x : s] ` x : s
[VAR]

[r : ρ] ` r : ρ
[REGION]

tf � σ

[f : σ] ` f : tf
[FUNCTION]

R = sharerec(x, x!)− {x}
ΓR = {y : danger(type(y))| y ∈ R}

ΓR + [x : T !@ρ] ` x! : T@ρ
[REUSE]

Γ1 ≥x@r [x : T@ρ′, r : ρ]

Γ1 ` x@r : T @ρ
[COPY]

Γ1 ` e1 : s1 Γ2 + [x1 : s1] ` e2 : s

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET1]

Γ1 ` e1 : s1 Γ2 + [x1 : d1] ` e2 : s utype?(d1, s1)

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET2]

ti
n → ρj

l → T @ρm E σ Γ = [f : σ] +
Ll

j=1[rj : ρj] +
Ln

i=1[ai : ti]

R =
Sn

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cdm?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` f ai
n@ rj

l : T @ρm
[APP]

Σ(C) = σ si
n → ρ→ T @ρm � σ Γ =

Ln
i=1[ai : si] + [r : ρ]

Γ ` C ai
n@r : T @ρm [CONS]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ→ T @ρ� σi

Γ ≥case x of Ci xij
ni→ei

n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (x))

∀i ∈ {1..n}.Γ + [xij : τij]
ni ` ei : s

Γ ` case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ→ T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
)− {x} ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R ∪ {x}, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij]
ni ` ei : s

ΓR = {y : danger(type(y)) | y ∈ R}

ΓR ⊗ Γ + [x : T !@ρ] ` case! x of Ci xij
ni → ei

n
: s

[CASE!]

Fig. 4. Type rules for expressions

parameters. Otherwise undesired side-effects could happen. The set R collects all
the variables sharing a recursive substructure of a condemned parameter, which
are marked as in-danger in environment ΓR. Rule [CONS] is more restrictive as
only safe variables can be used to construct a DS.

Rule [CASE] allows its discriminant variable to be safe, in-danger, or con-
demned as it only reads the variable. Relation inh determines which types are
acceptable for pattern variables. Apart from the fact that the underlying types
are correct from the Hindley-Milner point of view: if the discriminant is safe, so
must be all the pattern variables; if it is in-danger, the pattern variables may be
safe or in-danger; if it is condemned, recursive pattern variables are in-danger
while non-recursive ones are safe.

In rule [CASE!] the discriminant is destroyed and consequently the text should
not try to reference it in the alternatives. The same happens to those variables
sharing a recursive substructure of x, as they may be corrupted. All those vari-
ables are added to the set R. Relation inh! determines the types inherited by
pattern variables: recursive ones are condemned while non-recursive ones are
safe. As recursive pattern variables inherit condemned types, the type environ-
ments for the alternatives contain all the variables sharing their recursive sub-
structures as in-danger. In particular x may appear with an in-danger type. In
order to type the whole expression we must change it to condemned.

6

4 Inference algorithm

The typing rules presented in Section 3 allow in principle several correct typings
for a program. On the one hand, this is due to polymorphism and, on the other
hand, to the fact that it may assign more condemned and in-danger types that
those really needed. We are interested in minimal types in the sense of being as
much polymorphic as possible and having as few unsafe types as possible.

As an example, let us consider the following definition: f(x : xs)@r = xs@r.
The type system can give f type [a]@ρ→ ρ′ → [a]@ρ′ but also the type [a]!@ρ→
ρ′ → [a]@ρ′. Our inference algorithm will return the first one.

Also, we are not interested in having mandatory explicit type declarations.
This is what the inference algorithm presented in this section achieves.

It has two different phases: a (modified) Hindley-Milner phase and an un-
safety propagation phase. The first one is rather straightforward with the added
complication of region inference, which is done at this stage. Its output consists
of decorating each applied occurrence of a variable and each defining occurrence
of a function symbol in the abstract syntax tree (AST) with its Hindley-Milner
type. We will not insist further in this phase here.

The second phase propagates unsafety information from the parts of the text
where condemned and in-danger types arise to the rest of the program text. As
the Hindley-Milner types are already available, the only additional information
needed for each variable is a mark telling whether it is a safe, in-danger or con-
demned one. Condemned and in-danger marks arise for instance in the [CASE!],
[REUSE], and [APP] typing rules while mandatory safe marks arise for instance
in rules for constructor applications. The algorithm generates minimal sets of
these marks in the program sites where they are mandatory and propagates this
information bottom-up in the AST looking for consistency of the marks. It may
happen that a safe mark is inferred for a variable in a program site and a con-
demned mark is inferred for the same variable in another site. This sometimes is
allowed by the type system —e.g. it is legal to read a variable in the auxiliary ex-
pression of a let and to destroy it in the main expression—, and disallowed some
other times—e.g. in a case, it is not legal to have a safe type for a variable in
one alternative and a condemned or in-danger type for it in another alternative.

So, the algorithm has two working modes. In the bottom-up working mode,
it accumulates sets of marks for variables. In fact, it propagates bottom-up four
sets of variables (D,R, S,N) respectively meaning condemned, in-danger, safe,
and don’t-know variables in the corresponding expression. The fourth set arises
from the non-deterministic typing rules for [COPY] and [CASE] expressions.

The algorithm checks for consistency the information coming from two or
more different branches of the AST. This happens for instance in let and case
expressions. Even though the information is consistent it may be necessary to
propagate some information down the AST. For instance, x ∈ D1 and x ∈ N2 is
consistent in two different branches 1 and 2 of a case or a case!, but a D mark
for x must be propagated down the branch 2.

So, the algorithm consists of a single bottom-up traversal of the AST, oc-
cassionally interrupted by top-down traversals when new information must be
propagated in one or more branches. If the propagation does not raise an error,
then the bottom-up phase is resumed.

In Figure 5 we show the rules that drive the bottom-up working mode. A
judgement of the form e `inf (D,R, S,N) should be read as: from expression
e the 4-tuple (D,R, S,N) of marked variables is inferred. A straightforward

7

c `inf (∅, ∅, ∅, ∅)
[LITI]

x `inf (∅, ∅, {x}, ∅)
[VARI]

x@r `inf (∅, ∅, ∅, {x})
[COPYI]

R = sharerec(x, x!)− {x} type(x) = T@ ρ

x! `inf ({x}, R, ∅, ∅)
[REUSEI]

∀i ∈ {1..n}.ai `inf (∅, ∅, Si, ∅)
C ai

n @r `inf (∅, ∅,
Sn

i=1 Si, ∅)
[CONSI]

∀i ∈ {1..n}.Di = {ai | i ∈ ID}
∀i ∈ {1..n}.Si = {ai | i ∈ IS}
∀i ∈ {1..n}.Ni = {ai | i ∈ IN}

`Sn
i=1Di

´
∩
`Sn

i=1 Si

´
= ∅`Sn

i=1Di

´
∩
`Sn

i=1Ni

´
= ∅

∀i, j ∈ {1..n} . i 6= j ⇒ Di ∩Dj = ∅

R ∩ (
Sn

i=1 Si) = ∅
R ∩ (

Sn
i=1Di) = ∅

R ∩ (
Sn

i=1Ni) = ∅
Σ ` f : (ID, ∅, IS , IN) R =

Sn
i=1

˘
sharerec(ai, f ai

n @rj
l)− {ai} | ai ∈ Di

¯
f ai

n @rj
l `inf

`Sn
i=1Di, R,

Sn
i=1 Si,

`Sn
i=1Ni

´
−
`Sn

i=1 Si

´´ [APPI]

e1 `inf (D1, R1, S1, N1) x1 /∈ R2 (D1 ∪R1) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) N = (N1 − (D2 ∪R2 ∪ S2)) ∪N2

(∅, ∅, N1 ∩ (D2 ∪R2 ∪ S2)) `check e1 (∅, ∅, (S1 ∪ {x1}) ∩N2) `check e2

let x1 = e1 in e2 `inf ((D1 ∪D2)− {x1}, R1 ∪ (R2 −D1), ((S1 −N2) ∪ S2)− ({x1} ∪D2 ∪R2), N − {x1})
[LETI]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}

type(x) =

8><>:
d if x ∈ D
r if x ∈ R
s if x ∈ S
n e. o. c.

def (tn
i=1(Di, Ri, Si, Ni, Pi))

∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

(D,R, S,N) = tn
i=1(Di, Ri, Si, Ni, Pi)

N ′ =

N if x ∈ D ∪R ∪ S
N ∪ {x} if x 6∈ D ∪R ∪ S

∀i ∈ {1..n} . ((D ∪D′i) ∩Ni, R ∪ ((R′i ∪R′′i ∪R′′′i)−Di), (S ∪ S′i) ∩Ni) `check ei

where D′i = ∅ R′i =

Reci if type(x) = d
∅ otherwise

S′i =

8><>:
Pi − Reci if type(x) = d
Pi −R′′i if type(x) = r
Pi if type(x) = s
∅ otherwise

R′′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni}
R′′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni} − (D ∩Ni)
R′′i ∩ (Si ∪ S′i) = ∅

case x of Ci xij
ni → ei

n `inf (D,R, S,N ′)
[CASEI]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
R = sharerec(x, case! x of Ci xij

ni → ei
n
)

L =
Sn

i=1 fv(ei)

def (tn
i=1(Di, Ri, Si, Ni, Pi))

∀i ∈ {1..n} . def (inh!(Di, Ri, Si, Pi,Reci))
R ∩ L = ∅ ∧ type(x) = T@ρ

(D,R′, S,N) = tn
i=1(Di, Ri, Si, Ni, Pi)

∀i ∈ {1..n} . ((D ∪ Reci) ∩Ni, R ∪R′ ∪ (R′i ∪R′′i)−Di, (S ∪ (Pi − Reci)) ∩Ni) `check ei

where R′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪ Reci) ∩Ni} − (Reci ∩Ni)
R′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ D ∩Ni} − (D ∩Ni)
R′i ∩ (Pi − Reci) = ∅ ∧ {y ∈ sharerec(z, ei) | z ∈ Reci} ∩ (Pi − Reci) = ∅

case! x of Ci xij
ni → ei

n `inf (D ∪ {x}, (R ∪R′)− {x}, S,N)
[CASE!I]

Fig. 5. Bottom-up inference rules

8

invariant of this set of rules is that the four sets inferred for each expression e
are pairwise disjoint and their union is a superset of e’s free variables. The set R
may contain variables in scope but not free in e. This is due to the use of the set
sharerec consisting of all variables in scope satisfying the sharing property. The
predicates and least upper bound appearing in the rules [CASEI] and [CASE!I]
are defined in Figures 6 and 7.

In Figure 8 we show the top-down checking rules. A judgement (D,R, S) `check
e should be understood that the sets of marked variables D,R, S are correctly
propagated down the expression e. One invariant in this case is that the three
sets are pairwise disjoint and that the union of D and S is contained in the fourth
set N inferred from the expression by the `inf rules. It can be seen that the `inf

rules may invoke the `check rules. However, the `check rules do not invoke the
`inf ones. The ocurrences of `inf in the `check rules should be interpreted as a
remembering of the sets that were inferred in the bottom-up mode and that the
algorithm recorded in the AST. So there is no need to infer them again.

The rules [VARI], [COPYI] and [REUSEI] assign to the corresponding variable
a safe, don’t-know and condemned mark respectively. If a variable occurs as a
parameter of a data constructor then it gets a safe mark, as specified by the rule
[CONSI]. For the case of function application (rule [APPI]) we obtain from the
signature Σ the positions of the parameters which are known to be condemned
(ID) and safe (IS). The remaining ones belong to the set IN of unknown posi-
tions. The actual parameters in the function application get the corresponding
mark. The disjointness conditions in the rule [APPI] prevent a variable from
occurring at two condemned positions, or at a safe and a condemned position
simultaneously. In rules [REUSEI] and [APPI] all variables belonging to the set R
are returned as in-danger, in order to preserve the invariant of the type system
mentioned above.

The rule [LETI] correspond with the rules [LET1] and [LET2] of the type
system. The results of the subexpressions e1 and e2 are checked by means of the
assumption (D1 ∪ R1) ∩ fv(e2) = ∅, corresponding to the �L operator of the
type system. Moreover, if a variable gets a condemned, in-danger or safe mark
in e2 then it can’t be used destructively or become in danger in e1, because
of the operator �L. Hence this variable has to be propagated as safe through
e1 by means of a `check . According to the type system, the variables belonging
to R2 could also be propagated through e1 with an unsafe mark. However, the
inference algorithm resolves the non-determinism of the type system by assigning
a maximal number of safe marks.

To infer the four sets for a case/case! expression (rules [CASEI] and [CASE!I])
we have to infer the result from each alternative. The operator t ensures the
consistency of the marks inferred for a variable: if a variable gets two different
marks in two distinct branches then at least one of them must be a don’t-know
mark. On the other hand, the inherited types of the pattern variables in each
branch are checked via the inh and inh! predicates. A mark may be propagated
top-down through the AST (by means of `check rules) in one of the following
cases:

1. A variable gets a don’t-know mark in a branch ej and a different mark in a
branch ek. The mark obtained from ek must be propagated through ej .

2. A pattern variable gets a don’t-know mark in a branch ej . Its inherited type
must be propagated through ej . That is what the sets D′i, R

′
i and S′i of the

rule [CASEI] achieve.

9

def (inh(n,Di, Ri, Si, Pi,Reci)) ≡ true
def (inh(s,Di, Ri, Si, Pi,Reci)) ≡ Pi ∩ (Di ∪Ri) = ∅
def (inh(r,Di, Ri, Si, Pi,Reci)) ≡ Pi ∩Di = ∅
def (inh(d,Di, Ri, Si, Pi,Reci)) ≡ Reci ∩ (Di ∪ Si) = ∅ ∧ (Pi − Reci) ∩ (Di ∪Ri) = ∅
def (inh!(Di, Ri, Si, Pi,Reci)) ≡ Reci ∩ (Ri ∪ Si) = ∅ ∧ (Pi − Reci) ∩ (Di ∪Ri) = ∅

Fig. 6. Predicates inh and inh!

def (tn
i=1(Di, Ri, Si, Ni, Pi)) ≡ ∀i, j ∈ {1..n} . i 6= j ⇒ (Di − Pi) ∩ (Rj − Pj) = ∅ ∧

(Di − Pi) ∩ (Sj − Pj) = ∅ ∧ (Ri − Pi) ∩ (Sj − Pj) = ∅

tn
i=1(Di, Ri, Si, Ni, Pi)

def
= (D,R, S,N) where

D =

Sn
i=1(Di − Pi) R =

Sn
i=1(Ri − Pi)

S =
Sn

i=1(Si − Pi) N =
`Sn

i=1(Ni − Pi)
´
− (D ∪R ∪ S)

Fig. 7. Least upper bound definitions

(∅, R, ∅) `check c
[LITC]

(∅, R, ∅) `check x
[VARC]

(∅, R, ∅) `check x!
[REUSEC]

({x}, R, ∅) `check x@r
[COPY1C]

(∅, R, ∅) `check x@r
[COPY2C]

(∅, R, {x}) `check x@r
[COPY3C]

(∅, R, ∅) `check C ai
n @r

[CONSC]

f ai
n @rj

l `inf (D,R, S,N)
∀ai ∈ Dp . (#j : 1 ≤ j ≤ n : ai = aj) = 1

(Dp, Rp, Sp) `check f ai
n@rj

l
[APPC]

e1 `inf (D1, R1, S1, N1) Rp ∩ S1 = ∅ ∧ ((Dp ∩N1) ∪Rp ∪R′′p) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) ∃z ∈ Dp ∩N2 . x1 ∈ sharerec(z, e2)⇒ x1 ∈ D2

(Dp ∩N1, Rp, Sp ∩N1) `check e1 (Dp ∩N2, Rp ∪ (R′p −D2), Sp ∩N2) `check e2
where R′p = {y ∈ ((Dp ∩N1) ∪D1) ∩ sharerec(z, e2) | z ∈ Dp ∩N2} − (N2 ∪ {x1})

R′′p = {y ∈ sharerec(z, e1) | z ∈ Dp ∩N1}
(Dp, Rp, Sp) `check let x1 = e1 in e2

[LETC]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
D =

Sn
i=1(Di − Pi)

type(x) =

8><>:
d if x ∈ Dp

r if x ∈ Rp

s if x ∈ Sp

n otherwise
x ∈ Dp ∪Rp ∪ Sp ⇒ ∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

∀i ∈ {1..n} . ((Dp ∪Dpi) ∩Ni, (Rp ∪Rpi ∪R′pi
∪R′′pi

)−Di, (Sp ∪ Spi) ∩Ni) `check ei

where Dpi = ∅ Rpi =

Reci if type(x) = d
∅ otherwise

Spi =

8><>:
Pi − Reci if type(x) = d
Pi −R′pi

if type(x) = r
Pi if type(x) = s
∅ otherwise

R′pi
= {y ∈ Pi ∩ sharerec(z, ei) | z ∈ Dp ∩Ni}

R′′pi
= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∩Ni)

R′pi
∩ (Si ∪ Spi) = ∅ ∧ Rp ∩ Si = ∅

(Dp, Rp, Sp) `check case x of Ci xij
ni → ei

n [CASEC]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

Sni
j=1{xij}

∀i ∈ {1..n} . Reci =
Sni

j=1{xij | j ∈ RecPos(Ci)}
D =

Sn
i=1(Di − Pi)

∀i ∈ {1..n} . {y ∈ (Pi − Reci) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} = ∅
∀i ∈ {1..n} . (Dp ∩Ni, Rp ∪ (R′pi

−Di), Sp ∩Ni) `check ei

where R′pi
= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∪Ni)

(Dp, Rp, Sp) `check case! x of Ci xij
ni → ei

n [CASE!C]

Fig. 8. Top-down checking rules

10

e′ ≡ case xs of
[]→ case! y of . . .
(x : xx)→ y@r

e′′ ≡ case n of
0→ case! y of

. . . case! x of . . .
1→ . . . x@r . . .

e′′′ = case n of
0→ case! y of

. . . case! x of . . .
1→ let x1 = y@r

in x@r

(a) (b) (c)

Fig. 9. Motivating examples for R′′i , R′′′i in [CASEI] and R′p in [LETC].

3. A variable belongs to R′′i or R′′′i . These cases are explained below.

There exists an invariant in the `check rules (see below) which specifies the
following: if a variable x is propagated top-down with a condemned mark, those
variables sharing a recursive substructure with x either have been inferred previ-
ously as condemned (via the `inf rules) or have been propagated with an unsafe
(i.e. in-danger or condemned) mark as well. The sets R′′i and R′′′i occur in the
[CASEI] and [CASE!I] rules in order to preserve this invariant. The set R′′i con-
tains the pattern variables which may share a recursive substructure with some
condemned variable being propagated top-down through the ei. An example of
this situation is shown in Fig. 9 (a). Let us assume that x ∈ sharerec(y, y@r).
The condemned mark of y obtained in the first branch has to be propagated
through the branch guarded by (x : xx). Thus we must propagate an in-danger
mark for the variable x, since it shares a recursive substructure of y.

In order to justify the occurrence of R′′′i , let us consider the e′′ expression
shown in Fig. 9 (b). Let e0 and e1 be the expressions corresponding to the case
branches guarded by 0 and 1, respectively. Variables x and y are inferred as
condemned in e0. On the other hand, x is inferred as don’t-know in e1. Hence
the condemned mark of x has to be propagated through e1. We assume that y
doesn’t belong to any of the four sets inferred for e1. According to the invariant
mentioned above, if y ∈ sharerec(x, e1) then y should be propagated through e1
as well. The fact that y ∈ R′′′i guarantees this.

The `check rules capture the same verifications as the `inf rules, but in a
top-down fashion. The occurrence of the R′p set in [LETC] is motivated by the
example shown in Figure 9 (c). We shall assume that y ∈ sharerec(x, x@r).
In the let expression x and y get a don’t-know mark, but because of their
destructive use in the case branch guarded by 0, a condemned mark for x and
y has to be propagated through the let expression. The mark corresponding
to x spreads over the expression x@r, but y should also be included there as
in-danger, in order to preserve the invariant of `check introduced above, since y
shares a recursive structure of x. This is what the set R′p ensures.

The algorithm is modular in the sense that each function body is indepen-
dently inferred. The result is reflected in the function type and this type is
available for typing the remaining functions. For typing a recursive function a
fixpoint computation is needed. In the initial environment a don’t-know mark is
assigned to each formal argument. After each iteration, some don’t-know marks
may have turned into condemned, in-danger or safe marks. This procedure con-
tinues until the mark for each argument stabilises. If the fixpoint assigns an
in-danger mark to an argument, this is rejected as a bad typing. Otherwise, if
any don’t-know mark remains, this is forced to be a safe mark by the algorithm
and propagated down the whole function body by using the `check rules once
more. As a consequence, if the algorithm succeeds, every variable inferred as

11

don’t-know during the bottom-up trasversal will eventually get a d, r or s mark
(see Appendix for a detailed proof).

If n is the size of the AST for a function body and m is the number of
its formal arguments, the algorithm runs in Θ(mn3) in the worst case. This
corresponds to m iterations of the fixpoint and a top-down traversal at each
intermediate expression. We conjecture however that the average case is near
to Θ(n2), corresponding to a single bottom-up traversal and a single fixpoint
iteration.

4.1 Correctness of the inference algorithm

Lemma 1. Let us assume that during the inference algorithm we have e `inf

(D,R, S,N) and (D′, R′, S′) `check e for an expression e. Then

1. D,R, S and N are pairwise disjoint.
2. D ∪ S ∪N ⊆ FV (e), R ⊆ scope(e) and D ∪R ∪ S ∪N ⊇ FV (e).
3.
⋃
z∈D sharerec(z, e) ⊆ D ∪R.

4. D′, R′ and S′ are pairwise disjoint.
5. D′ ∪ S′ ⊆ N , R′ ⊆ scope(e).
6.
⋃
z∈D′ sharerec(z, e) ⊆ D′ ∪R′ ∪D.

7. R′ ∩ S = ∅, R′ ∩D = ∅.

Proof. (1), (2) and (3) by structural induction on e; (4), (5), (6) and (7) hold at
each initial call to `check and it is preserved at each recursive call.

A single subexpression e may suffer more than one `check during the inference
algorithm but always with different variables. This is due to the fact, not reflected
in the rules, that whenever some variables in the set N inferred for e are forced
to get a mark different from n, the decoration in the AST is changed to the new
marks. More precisely, if e `inf (D,R, S,N) and (D′, R′, S′) `check e, then the
decoration is changed to (D∪D′, R∪R′, S∪S′, N − (D′∪R′∪S′)). So, the next
`check for expression e will get a smaller set N − (D′ ∪ R′ ∪ S′) of don’t-know
variables and, by Lemma 1, only those variables can be forced to change its
mark. As a corollary, the mark for a variable can change during the algorithm
from n to d, r or s, but no other transitions between marks are possible.

Let (D′, R′, S′) `∗check e denote the accumulation of all the `check involving
e during the algorithm and let D′, R′ and S′ represent the union of respectively
all the marks d, r and s forced in these calls to `check . If e `inf (D,R, S,N)
represent the sets inferred during the bottom-up mode, then D′ ∪ R′ ∪ S′ ⊇ N
must hold, since every variable eventually gets a mark d, r or s.

The next theorem uses the convention Γ (x) = s (respectively, r or d) to
indicate that x has a safe type (respectively, an in danger or a condemned type)
without worrying about which precise type it has.

Theorem 1. Let us assume that the function declaration f xi
n @ rj

l = e has
been successfully typed by the inference algorithm and let e′ be any subexpression
of e for which the algorithm has got e′ `inf (D,R, S,N) and (D′, R′, S′) `∗check e′.
Then there exists a safe type s′ and a well-formed type environment Γ such that
Γ ` e′ : s′, and ∀x ∈ scope(e′):

[x ∈ D ∪D′ ↔ Γ (x) = d] ∧ [x ∈ S ∪ S′ ↔ Γ (x) = s] ∧ [x ∈ R ∪R′ ↔ Γ (x) = r]

Proof. It can be done by structural induction on e′.

12

5 Small examples

In this section we show some examples. Firstly, we review the example of ap-
pending two lists (Sec. 2). The Core-Safe code for concatD is as follows:

concatD zs ys@r = case! zs of
[]→ ys
(x : xs)→ let x1 = concatD xs ys @r in (x : x1)@r

We shall start with the recursive call to concatD . Initially all parameter
positions are marked as don’t-know and hence the actual arguments xs and ys
belong to set N . In addition to this, variables x and x1 get an s mark since they
are used to build a DS. Joining the results of both auxiliary and main expressions
in let we get the following sets: D = ∅, R = ∅, S = {x}, N = {xs, ys}. With
respect to the case! branch guarded by [], the variable ys gets a safe mark (rule
[VARI]). Information of both alternatives in case! is gathered as follows:

([] guard) D1 = ∅ R1 = ∅ S1 = {ys} N1 = ∅ P1 = ∅ Rec1 = ∅
(x : xs guard) D2 = ∅ R2 = ∅ S2 = {x} N2 = {xs, ys} P2 = {x, xs} Rec2 = {xs}

Since ys has a safe mark in the branch guarded by [] and a don’t-know mark
in the branch guarded by (x : xs), the safe mark has to be propagated through
the latter by means of the `check rules. Moreover, the pattern variable xs is also
propagated as condemned. The first bottom-up traversal of the AST terminates
with the following result: D = {zs}, R = ∅, S = {ys} and N = ∅. Consequently
the type signature of concatD is updated: the first position is now condemned and
the second one is safe. Another bottom-up traversal is needed, as the fixpoint
has not been reached yet. Now variables xs and ys belong to sets D and S
respectively in the recursive call to concatD . Variable zs is also marked as in-
danger, since it shares a recursive structure with xs. However, neither xs nor zs
occur free in the main expression of let and hence the rule [LETI] may still be
applied. At the end of this iteration a fixpoint has been reached. The final type
signature for concatD is ∀a.[a]!@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2.

With respect to the remaining examples shown in Sec. 2, the types inferred
by the algorithm are as follows:

treesortD :: ∀a, ρ1, ρ2 . [a]!@ρ1 → ρ2 → [a]@ρ2

mkTreeD :: ∀ρ1, ρ2 . [Int]!@ρ1 → ρ2 → Tree Int@ρ2

insertD :: ∀ρ . Int → Tree Int!@ρ→ ρ→ Tree Int@ρ
splitD :: ∀a, ρ1, ρ2, ρ3 . Int → [a]!@ρ2 → ρ1 → ρ2 → ρ3 → ([a]@ρ1, [a]@ρ2)@ρ3

6 Related Work

The use of regions in functional languages to avoid garbage collection is not new.
Tofte and Talpin [TT97] introduced in ML-Kit —a variant of ML— the use of
nested regions by means of a letregion construct. Their main contribution is a
region inference algorithm which introduces region annotations at the intermedi-
ate language level. An extension of their work [BTV96,TBE+06] allows to reset
all the data structures in a region whithout deallocating the whole region. The
AFL system [AFL95] inserts (as a result of an analysis) allocation and dealloca-
tion commands separated from the letregion construct which now only brings
new regions into scope. In [HMN01] a comparison of these works is done.

13

Hughes and Pareto [HP99] incorporate regions in Embedded-ML. This lan-
guage uses a sized-types system in which the programmer annotates heap and
stack sizes and these annotations can be type-checked. So, regions can be proved
to be bounded. A small difference with these approaches is that, in Safe system,
region allocation and deallocation are synchronized with function calls instead
of being introduced by a special language construct. But the relevant difference
is that Safe has an additional mechanism allowing the programmer to selectively
destroy data structures inside a region.

More recently, Hofmann and Jost [HJ03] have developed a type system to
infer heap consumption. Theirs is also a first-order eager functional language with
a construct match ′ which destroys constructor cells. Its operational behaviour is
similar to that of Safe case!. The main difference is the compile time analysis
guaranteeing the safe use of this dangerous feature. A minor difference with
[HJ03] is that they do not use the concept of nested regions where DSs are
allocated. In [PSM07] a more detailed comparison with these works can be found.

Our safety type system has some characteristics of linear types (see [Wad90]
as a basic reference). A number of variants of linear types have been developed
for years for coping with the related problems of achieving safe updates in place
in functional languages [Ode92] or detecting program sites where values could be
safely deallocated [Kob99]. The work closest to our system is [AH02], where the
authors propose a type system for a language which explicitly reuses heap cells.
They prove that well-typed programs can be safely translated to an imperative
language with an explicit deallocation/reusing mechanism. We summarise here
the differences and similitudes with our work.

In the first place, there are non-essential differences such as: (1) They only
admit algorithms running in constant heap space, i.e. for each allocation there
must exist a previous deallocation. (2) They use at the source level an explicit
parameter d representing a pointer to the cell being reused. (3) They distinguish
two different cartesian products depending on whether there is sharing or not
between the tuple components.

Also, there are the following obvious similitudes: (1) They allow several ac-
cesses to the same variable, provided that only the last one is destructive. (2)
They express the nature of arguments (destructive, read-only and shared, or
just read-only) in the function type. (3) They need information about sharing
between the variables and the final result of expressions.

But, in our view, the following more essential differences makes our language
and type system more powerful than theirs:

1. Their uses 2 and 3 (read-only and shared, or just read-only) could be roughly
assimilated to our use s (read-only), and their use 1 (destructive), to our use
d (condemned). We add a third use r (in-danger) arising from a sharing
analysis based on abstract interpretation. This use allows us to know more
precisely which variables are in danger when some other is destroyed.

2. Their uses form a total order 1 < 2 < 3. A type assumption can always
be worsened without destroying the well-typedness. Our marks s, r, d do not
form a total order. Only in some expressions (case and COPY) we allow
the partial order s ≤ r and s ≤ d. It is not clear whether that order gives
more power to the system or not. In principle it will allow different uses of
a variable in different branches of a conditional being the use of the whole
conditional the worst one. For the moment our system does not allow this.

3. Their system forbids non-linear applications such as f(x, x). We allow them
for s-type arguments.

14

4. Our typing rules for let x1 = e1 in e2 allow more combinations than theirs.
Let i ∈ {1, 2, 3} the use assigned to x1, be j the use of a variable z in e1 and
be k the use of the same variable z in e2. We allow the following combinations
(i, j, k) that they forbid: (1, 2, 2), (1, 2, 3), (2, 2, 2), (2, 2, 3). The deep reason
is our more precise sharing information and the new in-danger type.

5. They need explicit declaration of uses while we infer them.

Examples of Safe programs using respectively the combinations (1, 2, 3) and
(1, 2, 2) are the following, where x and z get an s-type in our type system:

let x = z : [] in case! x of . . . case z of . . .
let x = z : [] in case! x of . . . z

Both programs take profit from the fact that variable z is not a recursive de-
scendant of x.

References

[AFL95] A. Aiken, M. Fähndrich, and R. Levien. Better static memory management:
improving region-based analysis of higher-order languages. In PLDI’95,
pages 174–185. ACM Press, 1995.

[AH02] D. Aspinall and M. Hofmann. Another Type System for in-place Updating.
In ESOP’02, LNCS 2305, pages 36–52. Springer-Verlag, 2002.

[BTV96] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von neu-
mann machines via region representation inference. In POPL’96, pages 171–
183. ACM Press, 1996.

[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In POPL’03, pages 185–197. ACM Press, 2003.

[HMN01] F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow
sensitive region-based memory management. In PPDP’01, pages 175–186.
ACM Press, 2001.

[HP99] R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in
Bounded Space; Towards Embedded ML Programming. In ICFP’99, pages
70–81. ACM Press, 1999.

[Kob99] N. Kobayashi. Quasi-linear Types. In POPL’99, pages 29–42. ACM Press,
1999.

[MPS08] M. Montenegro, R. Peña, and C. Segura. A type system for safe mem-
ory management and its proof of correctness. Technical report, SIC-5-08.
Universidad Complutense de Madrid, 2008.

[Ode92] M. Odersky. Observers for Linear Types. In ESOP’92, LNCS 582, pages
390–407. Springer-Verlag, 1992.

[PS04] R. Peña and C. Segura. A First-Order Functional Language for Reasoning
about Heap Consumption. In Proc. of the 16th International Workshop on
Implementation of Functional Languages, IFL’04, pages 64–80, 2004.

[PSM07] R. Peña, C. Segura, and M. Montenegro. A Sharing Analysis for Safe. In
Trends in Functional Programming (Vol. 7), pages 109–128. Intellect, 2007.

[TBE+06] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, and P. Ses-
toft. Programming with regions in the MLKit (revised for version 4.3.0).
Technical report, IT University of Copenhagen, Denmark, 2006.

[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[Wad90] P. Wadler. Linear types can change the world! In IFIP TC 2 Working
Conference on Programming Concepts and Methods, pages 561–581. North
Holland, 1990.

15

A Correctness of the inference algorithm (Proof)

A.1 Properties of the inference algorithm

Lemma 1. Let us assume that during the inference algorithm we have e `inf

(D,R, S,N) and (D′, R′, S′) `check e for an expression e. Then the following
seven properties hold:

1. D, R, S and N are pairwise disjoint.
2. D ∪ S ∪N ⊆ fv(e), R ⊆ scope(e) and D ∪R ∪ S ∪N ⊇ fv(e).
3.
⋃
z∈D sharerec(z, e) ⊆ D ∪R

4. D′, R′ and S′ are pairwise disjoint.
5. D′ ∪ S′ ⊆ N , R′ ⊆ scope(e).
6.
⋃
z∈D′ sharerec(z, e) ⊆ D′ ∪R′ ∪D.

7. R′ ∩ S = ∅, R′ ∩D = ∅.

Proof.

Properties (1), (2) and (3)

These properties can be proven by induction on the structure of e.

e ≡ c e ≡ x e ≡ x@r e ≡ x! e ≡ C ai
n @r

Trivial, by simple inspection of the corresponding `inf rules. For the case
e ≡ x! the property R ⊆ scope(e) holds due to the fact that sharerec function
only returns variables belonging to scope(e). In addition, we have:⋃

z∈D sharerec(z, e) = sharerec(x, e)
= (sharerec(x, e)− {x}) ∪ {x}
= R ∪D

e ≡ f ain @ rj
l

We have got the following sets:

D =
⋃n
i=1Di

R =
⋃n
i=1{sharerec(ai, f ain @ rj

l)− {ai} | ai ∈ Di}
S =

⋃n
i=1 Si

N =
⋃n
i=1Ni −

⋃n
i=1 Si

It follows that D ∩ R = ∅, D ∩ S = ∅, D ∩ N = ∅, R ∩ S = ∅, R ∩ N = ∅
because of the hypothesis in the [APPI] rule and due to the fact that ID, IS and
IN are pairwise disjoint. Besides that, the property S ∩N = ∅ holds trivially.

With respect to the property (2), it can be easily proven from the definition
of sharerec that R ⊆ scope(e). The remaining set inclusions hold, since we have
D ∪ S ∪N = fv(e): let us assume that x ∈ D. It follows that x ∈ Di for some i
and therefore, x is a parameter in the function call. Cases x ∈ S and x ∈ N are
similar. On the other hand, if x ∈ fv(e) then x belongs to Di, Si or Ni, since
ID ∪ IS ∪ IN = {1..n}.

To prove the property (3), let y ∈ sharerec(z, e) for some variable z ∈⋃n
i=1Di. Then there exists an i ∈ {1..n} so that y ∈ sharerec(ai, e) and ai ∈ Di

hold:

16

• If y = ai, then y ∈ D.
• If y 6= ai, then y ∈ R.

e ≡ let x1 = e1 in e2

The inferred sets are:

D = (D1 ∪D2)− {x1}
R = R1 ∪ (R2 −D1)
S = ((S1 −N2) ∪ S2)− ({x1} ∪D2 ∪R2)
N = ((N1 − (D2 ∪R2 ∪ S2)) ∪N2)− {x1}

The induction hypothesis establishes that D1, R1, S1 and N1 are pairwise
disjoint, and D2, R2, S2, N2 as well.

It can be shown that D ∩ R = ∅ from the induction hypothesis and from
the fact that R1 ∩D2 = ∅. The latter holds due to the hypothesis (D1 ∪ R1) ∩
fv(e2) = ∅ in [LETI]. Indeed, we haveD2 ⊆ fv(e2) by application of the induction
hypothesis for the property (2).

The proof for D ∩ S = ∅ is similar: it has to be shown that D1 ∩ S2 = ∅,
which can be deduced again from the the fact that (D1 ∪ R1) ∩ fv(e2) = ∅ and
S2 ⊆ fv(e). The disjointness of the remaining set pairs can be proven in a similar
way.

To prove the property (2) it can be easily seen that D ∪ S ∪N ⊆ fv(e):

fv(e) = (fv(e1) ∪ fv(e2))− {x1}
= (fv(e1)− {x1}) ∪ (fv(e2)− {x1})
⊇ ((D1 ∪ S1 ∪N1)− {x1}) ∪ ((D2 ∪ S2 ∪N2)− {x1})
= ((D1 ∪D2)− {x1}) ∪ ((S1 ∪ S2)− {x1}) ∪ ((N1 ∪N2)− {x1})
⊇ D ∪ S ∪N

On the other hand, let x ∈ R. According to the definition of the set R we
distinguish two cases:

• x ∈ R1: By the induction hypothesis we have that R1 ⊆ scope(e1) and hence,
x ∈ scope(e1) = scope(e).
• x ∈ R2: It holds that x ∈ scope(e2) = scope(e) ∪ {x1}. However, we have
x 6= x1; otherwise we would have x1 ∈ R2 and the rule [LETI] could not be
applied. Therefore, x ∈ scope(e).

So far it has been proven that R ⊆ scope(e). It has to be shown that D ∪
R ∪ S ∪N ⊇ fv(e). Let us assume that x ∈ fv(e), therefore x 6= x1.

• x ∈ fv(e1): The induction hypothesis establishes that x ∈ D1∪R1∪S1∪N1.
• If x ∈ D1 then x ∈ D.
• If x ∈ R1 then x ∈ R.
• If x ∈ S1, x /∈ N2 and x /∈ D2 ∪R2 then x ∈ S.
• If x ∈ S1 and x ∈ N2 then x ∈ N .
• If x ∈ S1 but x ∈ D2 ∪ R2 then we have x ∈ R or x ∈ D. The proof is

similar to the one shown for the case x ∈ fv(e2).
• If x ∈ N1 and x /∈ (D2 ∪R2 ∪ S2) then x ∈ N .

17

• If x ∈ N1 and x ∈ (D2 ∪ R2 ∪ S2), although is it not necessarily true
that x ∈ fv(e2) (this case is shown below), the proof is similar to the
case fv(e2), because x 6= x1.

• x ∈ fv(e2): By induction hypothesis we have x ∈ D2 ∪R2 ∪ S2 ∪N2.
• If x ∈ D2 then x ∈ D.
• If x ∈ R2 and x /∈ D1 then x ∈ R.
• If x ∈ R2 and x ∈ D1 then x ∈ D.
• If x ∈ S2 then x ∈ S.
• If x ∈ N2 then x ∈ N .

In any case it holds that x ∈ D ∨ x ∈ R ∨ x ∈ S ∨ x ∈ N and hence
x ∈ D ∪R ∪ S ∪N .

To prove the property (3), let y ∈ sharerec(z, e) for some z ∈ (D1∪D2)−{x1}.
It holds that y 6= x1, since x1 /∈ scope(e). According to the set to which z belongs,
the following cases can be distinguished:

• z ∈ D1

Since scope(e1) = scope(e) we have y ∈ sharerec(z, e1) for some z ∈ D1. The
induction hypothesis establishes that⋃

z∈D1

sharerec(z, e1) ⊆ D1 ∪R1

Therefore, y ∈ D1 ∪R1. If y ∈ D1 then y ∈ D. If y ∈ R1 then y ∈ R.
• z ∈ D2

In that case we have scope(e2) = scope(e) ∪ {x1}. However, we have y ∈
sharerec(z, e2) for some z ∈ D2 as well, since y 6= x1. Again the induction
hypothesis can be applied:⋃

z∈D2

sharerec(z, e2) ⊆ D2 ∪R2

So that we obtain y ∈ D2∪R2. If y ∈ D2 then y ∈ D. If y ∈ R2 then it holds
that y ∈ R, or y ∈ D.

e ≡ case x of C xij
ni → ei

n

The following sets are inferred:

D =
⋃n
i=1(Di − Pi)

R =
⋃n
i=1(Ri − Pi)

S =
⋃n
i=1(Si − Pi)

N ′ = (
⋃n
i=1(Ni − Pi))− (D ∪R ∪ S)

N =
{
N ′ ∪ {x} if x /∈ D ∪R ∪ S
N ′ otherwise

In order to prove (1) we begin proving that D ∩R = ∅ by contradiction. Let
us assume that there exists a variable z such that z ∈ D and z ∈ R. Hence, there
exist i, j ∈ {1..n} such that z ∈ (Di − Pi) and z ∈ (Rj − Pj).

18

• If i = j then we have that z ∈ Di and z ∈ Ri contradicting the induction
hypothesis, which establishes the disjointness of Di and Ri.

• If i 6= j then we have (Di − Pi) ∩ (Rj − Pj) 6= ∅, contradicting the fact that
t operator is well-defined.

The proof for D ∩ S = ∅ and R ∩ S = ∅ is similar. On the other hand, it
holds trivially that N ′ is disjoint from D, R and S. It can also be proved by case
distinction (z = x or z 6= x) that N is disjoint from D, R and S.

Let us prove property (2). First:

fv(e) =
⋃n
i=1 (fv(ei)− {xij | j ∈ {1..ni}}) ∪ {x}

=
⋃n
i=1 (fv(ei)− Pi) ∪ {x}

⊇
⋃n
i=1 ((Di ∪ Si ∪Ni)− Pi) ∪ {x}

=
⋃n
i=1(Di − Pi) ∪

⋃n
i=1(Si − Pi) ∪

⋃n
i=1(Ni − Pi) ∪ {x}

⊇
⋃n
i=1(Di − Pi) ∪

⋃n
i=1(Si − Pi) ∪ (

⋃n
i=1(Ni − Pi)− (D ∪R ∪ S)) ∪ {x}

= D ∪ S ∪N ′ ∪ {x}
⊇ D ∪ S ∪N

Second, let us assume that z ∈ R. Then there exists an i ∈ {1..n} such that
z ∈ Ri and z /∈ Pi and hence:

z ∈ Ri ⇒ z ∈ scope(ei)⇒ z ∈ scope(e)

The first step follows from the induction hypothesis and the last one follows
from the fact that scope(ei) = scope(e) ∪ Pi and that z /∈ Pi.

In order to prove D ∪R ∪ S ∪N ⊇ fv(e), let z ∈ fv(e).

• If z = x then either z ∈ N or z ∈ D ∪R ∪ S.
• If z 6= x then z ∈ fv(ei) and z /∈ Pi for some i ∈ {1..n}. From the induction

hypothesis we have z ∈ Di ∪Ri ∪ Si ∪Ni.
• If z ∈ Di (resp. Ri, Si), then we have z ∈ D (resp. R, S), since z /∈ Pi.
• If z ∈ Ni then either z ∈ N or z ∈ D ∪R ∪ S.

With respect to the property (3) let y ∈ sharerec(z, e) for some z ∈ D. Since
no variable in Pi belongs to scope(e) we have y /∈ Pi for all i ∈ {1..n}. On the
other hand, z ∈ Dj and z /∈ Pj for some j ∈ {1..n}. The induction hypothesis
establishes that:

∀i ∈ {1..n} .
⋃
z∈Di

sharerec(z, ei) ⊆ Di ∪Ri

Since scope(e) ⊆ scope(ej) holds, it can be seen that y ∈ sharerec(z, ej) for
some z ∈ Dj . This implies that y ∈ Dj ∪Rj . If y ∈ Dj then y ∈ D, since y /∈ Pj .
In a similar way, if y ∈ Rj then y ∈ R.

e ≡ case! x of C xij
ni → ei

n

The following sets are inferred:

D = D∗ ∪ {x}
R = (sharerec(x, e) ∪R∗)− {x}
S = S∗

N = N∗

where (D∗, R∗, S∗, N∗) = tni=1(Di, Ri, Si, Ni, Pi)

19

The proof of the disjointness of D∗, R∗, S∗ and N∗ is similar to the one seen
for the case. It has to be proven that:

x /∈ S x /∈ N sharerec(x, e) ∩D∗ = ∅
sharerec(x, e) ∩ S = ∅ sharerec(x, e) ∩N = ∅

All of these can be obtained from the hypothesis R∩L = ∅ in rule [CASE!I].
If a variable belongs to D∗, S or to N then it also belongs to fv(e) by property
(2) (see below).

Using the same reasoning as the one seen for case we have fv(e) ⊇ D∗∪S∗∪
N∗ ∪ {x} and hence fv(e) ⊇ D ∪ S ∪N .

On the other hand, let z be a variable such that z ∈ R:

• If z ∈ sharerec(x, e) then z ∈ scope(e) by the definition of the function
sharerec, which only returns variables in scope.
• If z ∈ R′ then z ∈ scope(e) (see case above).

Then we have R ⊆ scope(e). The proof for D∪R∪S∪N ⊇ fv(e) is similar to
the one seen in case expressions, but in this case the variable x always belongs
to D.

In order to prove (3), let y ∈ sharerec(z, e) for some z ∈ D. We shall prove
that y ∈ D ∪ R: If y = x then it holds that y ∈ D, so let us assume in the
following that y 6= x. We distinguish cases:

• If z = x then y ∈ sharerec(x, e) and hence y ∈ R.
• If z 6= x then it can be proven that y ∈ D∗∪R∗ (see case). Hence y ∈ D∪R.

Properties (4), (5), (6) and (7)

These four properties are related with the `check rules. In order to prove
them we will show that they hold in each initial call to `check and that they are
preserved in each recursive call.

Initial calls in [LETI]

Properties (4), (6) and (7) hold trivially, since R′ = D′ = ∅. With respect to
(5) we have that R′ = ∅ ⊆ scope(e). In addition, since D′ = ∅ and because of
the intersection with N1 in the check on e1 and the intersection with N2 in the
check on e2 we have D′ ∪ S′ ⊆ N in each case.

Initial calls in [CASEI] Let e ≡ case x of Ci xijni → ei
n

A check on the i−th branch is done with the following sets:

D′ = (D ∪D′i) ∩Ni
R′ = R ∪ ((R′i ∪R′′i ∪R′′′i)−Di)
S′ = (S ∪ S′i) ∩Ni

Property (4) can be proven considering each pair separately:

• D′ ∩R′ = ∅.
From (1) it follows that D∩R = ∅. It also holds that D∩(R′i∪R′′i) = ∅, since
R′i can only have variables from Reci ⊆ Pi, the set R′′i can only have variables
from Pi, and D does not contain any variable from Pi. Moreover, R′′′i does
not contain variables from D ∩ Ni and D′ ⊆ D ∩ Ni. Thus R′′′i ∩ D′ = ∅
holds. Finally, we have that D′i = ∅ and hence disjoint from R′.

20

• D′ ∩ S′ = ∅
From (1) it follows that D ∩ S = ∅. Moreover, D does not have variables
from Pi and S′i only contains variables from Pi, so we have D∩S′i = ∅. Since
D′i = ∅, it holds that D′i ∩ S′ = ∅.

• R′ ∩ S′ = ∅
Using the same reasoning as the one seen above the property R∩S′ = ∅ can
be proven. In addition, it holds that S ∩ (R′i ∪ R′′i) = ∅, since R′i and R′′i
only contain variables from Pi, which is disjoint from S. By case distinction
on type(x) and using the fact that Reci ∩ (Pi − Reci) = ∅ it can be proven
that R′i ∩ S′i = ∅. Moreover, since S and D are disjoint and R′′′i does not
contain any element from Pi ⊇ S′i, we have that S′ and R′′′i are disjoint. The
property R′′i ∩ S′i = ∅ can be obtained from one of the assumptions in rule
[CASEI].

The property (5) can be easily proven from the definition of D′ and S′, in
which there is an intersection which Ni ⊆ N . On the other hand we obtain R ⊆
scope(e) from the property (2) and hence R ⊆ scope(e) ⊆ scope(ei). Moreover:

R′i ⊆ Reci ⊆ scope(ei)
R′′i ⊆ Pi ⊆ scope(ei)

R′′′i ⊆ D ⊆ scope(e) ⊆ scope(ei)

Thus it follows that R′ ⊆ scope(ei).
In order to prove (6), let us assume, for some i ∈ {1..n} : y ∈ sharerec(z, ei),

where z ∈ (D ∪D′i) ∩ Ni = D ∩ Ni. Whe shall prove y ∈ D′ ∪ R′ ∪Di by case
distinction:

• y ∈ Pi
It holds that y ∈ R′′i and hence, either y ∈ Di or y ∈ R′.

• y /∈ Pi.
It holds that y ∈ sharerec(z, e) for some z ∈ D. The property (3) allows us
to establish the following:⋃

z∈D
sharerec(z, e) ⊆ D ∪R

Hence, it follows that y ∈ D ∪R and the following case distinction is made:

• If y ∈ D and y ∈ Ni then y ∈ D′.
• If y ∈ D but y /∈ Ni then y ∈ R′′′i from which y ∈ R′ ∨ y ∈ Di can be

proven.
• If y ∈ R then y ∈ R′.

In order to prove (7) we consider each pair of sets separately:

• R′ ∩Di = ∅
We prove that R∩Di = ∅ by contradiction: Let x ∈ R ∧ x ∈ Di. Then there
exists a j ∈ {1..n} such that x ∈ Rj . Obviously x /∈ Pj ∧ x /∈ Pi. If j = i
then Ri∩Di 6= ∅, which contradicts (1), since we have ei `inf (Di, Ri, Si, Ni).
On the other hand, if j 6= i then it holds that x ∈ (Rj − Pj) ∩ (Di − Pi),
contradicting the fact that t is well-defined.

21

• R′ ∩ Si = ∅
In the same way as R ∩Di = ∅, it can be proven that S ∩Di = ∅.
It can be proven by contradiction that R′i ∩ Si = ∅. Let x ∈ R′i ∧ x ∈ Si.
This implies that x ∈ Reci and that the case discriminant has d type. Under
these conditions we have Reci ∩ Si 6= ∅ contradicting the well-definedness of
inh.
From the premises of [CASEI] rule we can obtain R′′i ∩ Si = ∅. In addition,
R′′′i only contains variables from D. With the same reasoning as the one
seen for R ∩Di = ∅ it can be proven that D ∩ Si = ∅. Hence it holds that
R′′′i ∩ Si = ∅.

Initial calls in [CASE!I] Let e ≡ case! x of Ci xijni → ei
n

A `check on the i-th branch is done with the following sets:

D′ = (D∗ ∪ Reci) ∩Ni
R′ = R∗ ∪ sharerec(x, e) ∪ ((R′i ∪R′′i)−Di)
S′ = (S∗ ∪ (Pi −Reci)) ∩Ni

where (D∗, R∗, S∗, N∗) = tni=1(Di, Ri, Si, Ni, Pi)

We prove (4):

• D′ ∩R′ = ∅
As we have seen in (1), it holds that D∗ ∩ R∗ = ∅. Moreover, since D∗ ⊆ L
and one of the assumptions in [CASE!I] states that R ∩ L = ∅, we prove
that sharerec(x, e) is disjoint from D∗. We have also that R′i ∩D∗ = ∅, since
the latter does not contain any element from Pi. The disjointness of R′′i and
D∗ ∩Ni follows from the definition of R′′i .
On the other hand, since the sets R∗, sharerec(x, e) and R′′i do not contain
variables belonging to Pi, it follows that they are disjoint from Reci ∩ Ni.
We have also R′i ∩ (Reci ∩Ni) = ∅ from the definition of R′i.

• D′ ∩ S′ = ∅
It can be easily proven from the fact that D∗∩S∗ = ∅ and Reci∩(Pi−Reci) =
∅.

• R′ ∩ S′ = ∅
The proof is similar to that corresponding to D′∩R′ = ∅. The only difference
lies in the fact that R′i may not be disjoint from (Pi − Reci). However, this
is forbidden due to the assumption R′i ∩ (Pi − Reci) = ∅ in [CASE!I] rule.

Property (5) holds trivially, since there is an intersection with Ni in the definition
of D′ y S′ of each case! branch. Moreover:

R∗ ⊆ R ⊆ scope(e) ⊆ scope(ei)
sharerec(x, e)− {x} ⊆ scope(e) ⊆ scope(ei) (definition of sharerec)

R′i ⊆ scope(ei) (definition of sharerec)
R′′i ⊆ scope(ei) (definition of sharerec)

Hence we have R′ ⊆ scope(ei).
In order to prove (6), let y ∈ sharerec(z, ei) where z ∈ (D∗ ∪ Reci) ∩ Ni

for some i ∈ {1..n}. We have to prove y ∈ D′ ∪ R′ ∪ Di. If y ∈ Di then the
membership holds trivially. If y ∈ (D∗ ∪ Reci) ∩ Ni, then it also holds that
y ∈ D′. Thus, let us assume in the following that y /∈ ((D∗ ∪ Reci) ∩Ni) ∪Di.

We proceed by case distinction:

22

• y ∈ Pi
It holds that y ∈ R′i and hence y ∈ R′.

• y /∈ Pi.
We have y ∈ sharerec(z, e) for some z ∈ (D∗ ∪Reci)∩Ni. If z ∈ (Reci ∩Ni)
then we have that y ∈ sharerec(x, e). In that case we can prove that y ∈
R ⊆ R′ holds. In the following we shall assume that z ∈ (D∗ ∩ Ni). Since
the property (3) holds for each ei, the following membership can be proven
from the definition of t:⋃

z∈D∗
sharerec(z, e) ⊆ D∗ ∪R∗

Thus y ∈ D∗ ∪R∗. We distinguish cases:
• If y ∈ R∗ then y ∈ R′.
• If y ∈ D∗ and y ∈ Ni then y ∈ D′.
• If y ∈ D∗ and y /∈ Ni we have y ∈ R′′′i and hence y ∈ R′.

We prove (7):

• R′ ∩Di = ∅
We only have to show that R∗ ∩Di = ∅. The reasoning of the case can be
applied here.

• R′ ∩ Si = ∅
Using a similar reasoning to the one seen in the nondestructive case, it can
be proven that R∗∩Si = ∅. Moreover, we have sharerec(x, e)∩Si = ∅ because
of the assumption R∩L = ∅ in [CASE!I] and the fact that sharerec(x, e) does
not have variables from Pi. On the other hand the disjointness of R′i and Si
holds, as the inh! rules forces an hypothetic common element of both sets
to belong to Pi − Reci, but one of the assumptions in [CASE!I] establishes
that R′i ∩ (Pi − Reci) = ∅. With respect to R′′i ∩ Si = ∅, it is guaranteed by
the well-definedness of the t.

Recursive calls in [LETC] Let e ≡ let x1 = e1 in e2

Let us assume that the call (Dp, Rp, Sp) `check e satisfies the properties (4),
(5), (6) and (7). There are two `check calls. The first one is done on e1 with the
following sets:

D′ = Dp ∩N1

R′ = Rp
S′ = Sp ∩N1

From the fact that Dp, Rp and Sp are pairwise disjoint it can be seen that
Dp ∩N1, Rp and Sp ∩N1 are pairwise disjoint as well. Thus, property (4) holds.

It also holds that (5), since in D′ and S′ there is an intersection with N1. In
addition we have R′ = Rp ⊆ scope(e) ⊆ scope(e1).

With respect to (6), let y ∈ sharerec(z, e1) for some z ∈ Dp ∩ N1. It has to
be proven:

y ∈ (Dp ∩N1) ∪Rp ∪D1 = D′ ∪R′ ∪D1

Obviously it holds that y 6= x1, since x1 /∈ scope(e1). Moreover, since scope(e1) =
scope(e), we have y ∈ sharerec(z, e) for some z ∈ Dp, and from the induction
hypothesis: ⋃

z∈Dp

sharerec(z, e) ⊆ Dp ∪Rp ∪ ((D1 ∪D2)− {x1})

23

Hence, y ∈ Dp ∪Rp ∪ ((D1 ∪D2)− {x1}). We proceed by case distinction:

• y ∈ Dp

By property (5) it holds that y ∈ N ⊆ N1 ∪N2.
• If y ∈ N1 then y ∈ Dp ∩N1 and hence y ∈ D′.
• If we had y ∈ N2, it would hold that y ∈ fv(e2) and y ∈ R′′p , which the

assumption ((Dp ∩N1) ∪Rp ∪R′′p) ∩ fv(e2) = ∅ in [LETC] forbids.
• y ∈ Rp

In that case we have y ∈ R′.
• y ∈ (D1 ∪D2)− {x1}

We have seen that y 6= x1 and hence y ∈ D1 ∪D2. If y ∈ D1 the property
holds trivially. If y ∈ D2 then we would have y ∈ fv(e2) and y ∈ R′′p , which
is not possible because of the assumption ((Dp ∩N1)∪Rp ∪R′′p)∩ fv(e2) = ∅
in [LETC].

In order to prove (7) it holds that Rp ∩ D1 = ∅, since D1 ⊆ D, which is
disjoint from Rp by induction hypothesis. In addition Rp ∩ S1 = ∅ because of
the assumptions of [LETC].

Let us consider the recursive call to `check on e2:

D′ = Dp ∩N2

R′ = Rp ∪ (R′p −D2)
S′ = Sp ∩N2

To prove (4) the reasoning is similar to the one seen previously in the `check
call on e1. Two additional properties have to be proven: R′p∩D′ = ∅ and R′p∩S′ =
∅. They can be obtained from the fact that R′p does not contain variables from
N2 and that the sets D′ and S′ only have variables from N2.

In the same way as the `check call on e1, the property (5) holds.
In order to prove (6) let us assume y ∈ sharerec(z, e2) for some z ∈ Dp ∩N2.

We have to prove:

y ∈ (Dp ∩N2) ∪ (Rp ∪ (R′p −D2)) ∪D2 = D′ ∪R′ ∪D2

If y = x1, then from one of the premises in [LETC] we have x ∈ D2. Now we
shall assume that y 6= x1. In this case it holds that y ∈ sharerec(z, e) and hence
the induction hypothesis can be applied in the same way as the `check call on
e1. It follows that y ∈ Dp ∪Rp ∪ ((D1 ∪D2)− {x1}). We distinguish cases:

• y ∈ Dp

• If y ∈ N2 then y ∈ D′.
• If y /∈ N2 then we have y ∈ N1, since Dp ⊆ N ⊆ N1 ∪ N2. In this case
y ∈ R′p and hence y ∈ D2 ∨ y ∈ R′

• y ∈ Rp
It holds that y ∈ R′.
• y ∈ (D1 ∪D2)− {x1}

If y ∈ D2 then the property holds. If y ∈ D1 − D2 then y cannot occur in
fv(e2), by the assumption in [LETI] and hence y /∈ N2. Therefore we have
y ∈ R′p and hence y ∈ R′.

We shall prove now (7):

24

• (Rp ∪ (R′p −D2)) ∩D2 = ∅
We have that Rp ∩ D2 = ∅ since D2 ⊆ D and, by induction hypothesis,
Rp ∩D = ∅.
• (Rp ∪ (R′p −D2)) ∩ S2 = ∅

It follows that Rp ∩ S2 = ∅ because of the property S2 ⊆ fv(e2) and the
assumptionRp∩fv(e2) = ∅ in [LETC]. We proveR′p∩S2 = ∅ by contradiction:
Let us assume that x ∈ R′p ∧ x ∈ S2. Then x ∈ fv(e2) by (2). Moreover, by
definition of R′p, we have either x ∈ (Dp ∩N1), or x ∈ D1. The former case
contradicts the assumption (Dp ∩ N1) ∩ fv(e2) = ∅ in [LETC]. The latter
contradicts the assumption D1 ∩ fv(e2) = ∅ in [LETI].

Recursive calls in [CASEC] Let e ≡ case x of Ci xijni → ei
n

Let us assume that the call (Dp, Rp, Sp) `check e satisfies the four properties.
Each i-th recursive call is done with the following sets:

D′ = (Dp ∪Dpi) ∩Ni
R′ = Rp ∪ (Rpi

∪R′pi
∪R′′pi

)−Di

S′ = (Sp ∪ Spi
) ∩Ni

From the fact that Dp and Sp are disjoint and that Dpi = ∅, it follows that
D′ and S′ are disjoint as well. In order to prove (4) we only have to show that
R′ is disjoint from D′ and S′. We shall prove that R′ ∩ S′ = ∅ (the property
R′∩D′ = ∅ holds in a similar way). By induction hypothesis we have Rp∩Sp = ∅.
It also holds that (Rpi ∪R′pi

)∩Sp = ∅, since Sp only contains free variables from
e and Rpi ∪R′pi

only has variables from Pi. By case distinction on the set where
the case discriminant belongs to, it can be proven that Rpi

∩ Spi
= ∅ in any

case. Moreover R′pi
∩ Spi = ∅ holds by the assumption in [CASEC]. Finally,

the property R′′pi
∩ S′ = ∅ also holds: on one hand, Spi only contains elements

from Pi, while R′′pi
has no pattern variables. On the other hand, Sp ⊆ N and

hence Sp is disjoint from D, while also remaining disjoint from Dp by induction
hypothesis.

Gathering all these equalities together we have:

(Rp ∪ (Rpi
∪R′pi

∪R′′pi
)−Di) ∩ ((Sp ∪ Spi

) ∩Ni) = ∅

Hence R′ and S′ are disjoint.
The proof for (5) is quite simple: It follows thatD′∪S′ ⊆ Ni from the fact that

in the definitions of D′ and S′ an intersection is made with the corresponding Ni.
On the other hand we have Rp ⊆ scope(e) ⊆ scope(ei). Rpi

only has variables
from Reci, which also belong to scope(ei). In addition it holds that R′pi

∪R′′pi
⊆

scope(ei) since both R′pi
and R′′pi

only contain variables from sharerec(ei).
In order to prove (6) let us assume y ∈ sharerec(z, ei) for some variable

z ∈ (Dp ∪Dpi) ∩Ni. Since Dpi = ∅, it holds that z ∈ Dp. We have to prove:

y ∈ (((Dp ∪Dpi
) ∩Ni) ∪ (Rp ∪ (Rpi

∪R′pi
∪R′′pi

)−Di) ∪Di = D′ ∪R′ ∪Di

If y ∈ Pi then we have y ∈ R′pi
and hence it holds that y ∈ Di ∪R′.

25

If y /∈ Pi then y ∈ sharerec(z, e) for some z ∈ Dp. From the induction
hypothesis we have: ⋃

z∈Dp

sharerec(z, e) ⊆ Dp ∪Rp ∪D

Hence y ∈ Dp ∪Rp ∪D. We proceed by case distinction:

• y ∈ Dp

If y ∈ Ni then y ∈ D′. If y /∈ Ni then we have y ∈ R′′pi
, from which it follows

that y ∈ Di ∪R′.
• y ∈ Rp

In this case y ∈ Di ∪R′ always holds.
• y ∈ D

If y /∈ (Dp ∩ Ni) then y ∈ R′′pi
and hence y ∈ R′ ∨ y ∈ Di. Otherwise it

belongs to D′.

Now we shall prove (7). The equality R′∩Di = ∅ follows from the definition of
R′ and the disjointness of Rp and D ⊇ (Di−Pi). Let us prove R′∩Si = ∅. From
the induction hypothesis we can show that Rp ∩ Si = ∅. We have R′pi

∩ Si = ∅
by hypothesis in [CASEC] rule. On the other hand, let z be a variable such that
z ∈ Rpi and z ∈ Si. The first membership forces x to belong to Dp, where x
is the case discriminant. Furthermore we have z ∈ Reci ∩ Si, which contradicts
the well-definedness of inh in the [CASEC] rule. Hence we have Rpi

∩ Si = ∅.
Finally it holds that R′′pi

∩ Si = ∅, since R′′pi
only has variables from D and N

and it follows that D ∩ Si = N ∩ Si = ∅ by the definition of t.

Recursive call in [CASE!C] Let e ≡ case! x of Ci xijni → ei
n

In this case the proof is a simplified version of the one seen in the recursive
call in [CASEC]. Thus it will not be described here.

Lemma 2. Let f xi
n @ rj

l = e be a function declaration. If the algorithm
eventually succeeds with (D, ∅, S, ∅) for e, including the fixpoint computation and
the final `check forcing all don’t-know variables to be safe, then for all x ∈ var(e),
x has got a mark d, s or r.

Proof. By induction on the depth in which x comes into scope:

• Base case: If x ∈ scope(e) then x is one of the parameters xi, that is, one
of the free variables in e. Every variable belonging to N gets an s mark, due
to the final `check done:

(∅, ∅, N) `check e
• Inductive step: If x ∈ var(e) but x /∈ scope(e) then x is a bound variable.

If x comes into scope in a expression let x1 = e1 in e2 and it is inferred with
an n mark (that is, x1 ∈ N2), the following `check of [LETI] rule forces it to
get an s mark:

(∅, ∅, (S1 ∪ {x1}) ∩N2) `check e2
If x comes into scope as a pattern variable of a branch of a case! x′ of C xij

ni → ei
n

then it is one of the xij for some i ∈ {1..n} and some j ∈ {1..ni}. In that
case the following `check on ei is done:

((D ∪ Reci) ∩Ni, R ∪R′ ∪ (R′i ∪R′′i)−Di, (S ∪ (Pi − Reci)) ∩Ni) `check ei

26

It holds that if x = xij for some i ∈ {1..n} and some j ∈ {1..ni}, then either
x ∈ Reci or x ∈ Pi − Reci. In the former case x gets a d type and in the
latter case it gets an s type.
If x comes into scope in a case x′ of C xij

ni → ei
n
, then x is one of the xij

of some case branch ei. Since x′ comes into scope in a wider context, from
the induction hypothesis it follows that it already has a mark d, r or s. If x′
has an s mark, then the following check on ei is done:

(D ∩Ni, R ∪ ((R′i ∪R′′i ∪R′′′i)−Di), (S ∪ Pi) ∩Ni) `check ei

and hence x gets an s mark. If x′ has a d mark, the situation is similar to the
one in case!: if x is in a condemned position of the corresponding Ci then
it gets type r, otherwise it gets s type. Finally, if x′ has an r mark, then x
gets an s mark.

A.2 Algorithm correctness

Let f xin @ rj
l = e a function definition accepted by the inference algorithm.

For each subexpression e′ of e four sets have been inferred by means of `inf

rules. This has been done once for each subexpression.

e′ `inf (D,R, S,N)

Furthermore, an expression can suffer several `check , each with a different
set of variables:

(D1, R1, S1) `check e′
...

(Dm, Rm, Sm) `check e′

We shall use the notation (D′, R′, S′) `∗check e denote the accumulation of
all the `check suffered by e during the algorithm and let D′, R′ and S′ represent
the union of respectively all the marks d, r and s forced in these calls to `check .
That is:

(D′, R′, S′) `∗check e where D′ =
m⋃
i=1

Di R′ =
m⋃
i=1

Ri S′ =
m⋃
i=1

Si

By Lemma 2 we can safely assume that for all subexpression e′ of e it holds
that N ⊆ D′ ∪ R′ ∪ S′. The following theorem will prove the correctness of the
algorithm for nonrecursive functions by establishing a correspondence between
the `inf and `check rules of the algorithm and the rules of the type system. We
shall extend it later (to which corresponds to Theorem 1 in the paper) in order
to include recursive definitions

Theorem 2. Let us assume that the nonrecursive function declaration f xin @ rj
l =

e has been successfully typed by the inference algorithm and let e′ be any subex-
pression of e for which the algorithm has got e′ `inf (D,R, S,N) and (D′, R′, S′) `∗check
e′. Then there exists a safe type s′ and a well-formed type environment Γ such
that:

1. Γ ` e′ : s

27

2. ∀x ∈ scope(e′) :
(a) Γ (x) = d⇔ x ∈ D ∪D′
(b) Γ (x) = s⇔ x ∈ S ∪ S′
(c) Γ (x) = r ⇔ x ∈ R ∪R′

Proof. By structural induction on e′.

e′ ≡ c

∅ ` c : B
[LIT]

c `inf (∅, ∅, ∅, ∅)
[LITI] (∅, R, ∅) `check c

[LITC]

Let Γ = [y : r | y ∈ R′]. The environment ∅ satisfies ∅ ` e′ : s. By means of
the [EXTS] rule Γ ` e′ : s can be inferred, and hence (1) holds. On the other
hand property (2) also holds, since D ∪D′ = S ∪ S′ = ∅ and R ∪R′ = R′.

e′ ≡ x

[x : s] ` x : s
[VAR]

x `inf (∅, ∅, {x}, ∅)
[VARI] (∅, R, ∅) `check x

[VARC]

Let Γ = [x : s] + [y : r | y ∈ R′], which is well-defined, since S = {x} and by
Lemma 1 (7), the sets S and R′ are disjoint. The environment [x : s] satisfies
[x : s] ` e′ : s. By means of the [EXTS] rule it can be proven that Γ ` e′ : s.
The property (2) also holds in this case, since D ∪ D′ = ∅, S ∪ S′ = {x} and
R ∪R′ = R′.

e′ ≡ x!

R = sharerec(x, x!)− {x}
ΓR = {y : danger(type(y))| y ∈ R}

ΓR + [x : T !@ρ] ` x! : T@ρ
[REUSE]

(∅, R, ∅) `check x!
[REUSEC]

R = sharerec(x, x!)− {x} type(x) = T@ ρ

x! `inf ({x}, R, ∅, ∅)
[REUSEI]

Let Γ = [x : d] + [y : r | y ∈ R ∪R′]. It is well-defined, since D = {x} and by
Lemma 1 (1,7) it follows that R ∩D = ∅ and R′ ∩D = ∅, since D = {x}.

Let Γ ′ = [x : d] + [y : r | y ∈ R]. Since R = sharerec(x, e′) − {x} we
have Γ ′ ` e′ : s. Through successive applications of [EXTS] rule it holds that
Γ ` e′ : s.

Property (2) holds trivially, since D ∪D′ = {x} and S ∪ S′ = ∅.

e′ ≡ x@r

Γ1 ≥x@r [x : T@ρ′, r : ρ]
Γ1 ` x@r : T @ρ

[COPY]
x@r `inf (∅, ∅, ∅, {x})

[COPYI]

We have x ∈ N , and since N ⊆ D′ ∪R′ ∪ S′ we proceed by case distinction:

28

• x ∈ D′
A `check has been done on this expression using [COPY1C]. Let Γ = [x :
d] + [y : r | y ∈ R′] + [r : ρ], which is well-defined by Lemma 1 (7). It
can be proven (1) from the fact that Γ ≥e′ [x : s, r : ρ]. Indeed, the only
variable with a d type in Γ is x, which belongs to D′. From Lemma 1 (6)
it follows that every variable belonging to sharerec(x, e′) also belongs to
D′ ∪ R′ ∪ D = {x} ∪ R′. Since the variables from {x} ∪ R′ have unsafe
types in Γ , one of the conditions imposed by ≥e′ holds. The two remaining
conditions hold trivially and hence we have Γ ` e′ : s.
In addition, we have D ∪ D′ = {x}, R ∪ R′ = R′ and S ∪ S′ = ∅, so that
property (2) also holds.

• x ∈ R′
In this case the `check has been done via the rule [COPY2C]. Let Γ = [y :
r | y ∈ R′] + [r : ρ]. It holds that Γ ≥e′ [x : s, r : ρ], since x ∈ dom(Γ) and
Γ (x) = r ≥ s. Moreover the third property of ≥e′ holds, since there are no
variables with d type in Γ . Hence Γ ` e′ : s can be inferred.
Property (2) can be proven from the fact that that D∪D′ = S ∪S′ = ∅ and
that in Γ there are no variables whose type is s or d. In addition R∪R′ = R′

and the variables from Γ with r type are exactly the ones belonging to R′.
• x ∈ S′

Let Γ = [x : s] + [y : r | y ∈ R′] + [r : ρ]. It is well-defined because of
Lemma 1 (7). The corresponding `check rule is [COPY3C]. Again, it holds
that Γ ≥e′ [x : s, r : ρ], since Γ (x) = s ≥ s. Hence, Γ ` e′ : s.
Moreover the property (2) also holds, since D ∪ D′ = ∅, R ∪ R′ = R′ and
S ∪ S′ = {x}.

e′ ≡ C ai
n @r

Σ(C) = σ si
n → ρ→ T @ρm � σ Γ =

⊕n
i=1[ai : si] + [r : ρ]

Γ ` C ai
n@r : T @ρm

[CONS]

∀i ∈ {1..n}.ai `inf (∅, ∅, Si, ∅)
Cai

n@r `inf (∅, ∅,
⋃n
i=1 Si, ∅)

[CONSI] (∅, R, ∅) `check C ai
n @r

[CONSC]

Let Γ =
⊕n

i=1[ai : s]+[y : r | y ∈ R′]+[r : ρ]. The result of
⊕

operator is well-
defined, since it is only applied to environments with safe variables. Furthermore,
S = {ai |var(ai) ∧ i ∈ {1..n}} and from Lemma 1 (7) it follows that R′∩S = ∅.
Hence Γ is well defined.

On the other hand, let Γ ′ =
⊕n

i=1[ai : s] + [r : ρ]. Trivially it holds that
Γ ′ ` e′ : s. Using the [EXTS] rule of the type system this environment can be
extended with variables from R′ in order to prove Γ ` e′ : s.

Moreover R ∪ R′ = R′ and D ∪ D′ = ∅ and hence properties (2a) and (2c)
hold. In addition, for any variable x:

Γ (x) = s⇔ x ∈ var(e′)⇔ x ∈ S ∪ S′

Thus property (2b) also holds.

e′ ≡ g ain @ rj
l

29

ti
n → ρj

l → T @ρm E σ Γ = [g : σ] +
⊕l

j=1[rj : ρj] +
⊕n

i=1[ai : ti]
R =

⋃n
i=1{sharerec(ai, g ain@rj l)− {ai} | cdm?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ` g ain@ rj
l : T @ρm

[APP]

∀i ∈ {1..n}.Di = {ai | i ∈ ID}
∀i ∈ {1..n}.Si = {ai | i ∈ IS}
∀i ∈ {1..n}.Ni = {ai | i ∈ IN}

(
⋃n
i=1Di) ∩ (

⋃n
i=1 Si) = ∅

(
⋃n
i=1Di) ∩ (

⋃n
i=1Ni) = ∅

∀i, j ∈ {1..n} . i 6= j ⇒ Di ∩Dj = ∅

R ∩ (
⋃n
i=1 Si) = ∅

R ∩ (
⋃n
i=1Di) = ∅

R ∩ (
⋃n
i=1Ni) = ∅

Σ ` g : (ID, ∅, IS , IN) R =
⋃n
i=1

{
sharerec(ai, g ain @ rj

l)− {ai} | ai ∈ Di

}
g ai

n @ rj
l `inf (

⋃n
i=1Di, R,

⋃n
i=1 Si, (

⋃n
i=1Ni)− (

⋃n
i=1 Si))

[APPI]

g ai
n @ rj

l `inf (D,R, S,N)
∀ai ∈ Dp . (#j : 1 ≤ j ≤ n : ai = aj) = 1

(Dp, Rp, Sp) `check g ain @ rj
l

[APPC]

Let us assume that f is a nonrecursive call, that is, f 6= g. This allows us to
establish N = ∅ and hence D′ = S′ = ∅.

Let (ID, ∅, IS , ∅) the signature of the symbol g. For each i ∈ {1..n}, Γi is
defined as follows:

Γi =
{

[ai : d] if ai is a variable and i ∈ ID
[ai : s] if ai is a variable and i ∈ IS (i > 0)

We define Γ ′ as follows:

Γ ′ = [rj : ρj l, g : σ] +
n⊕
i=0

Γi

We shall prove by contradiction that Γ is well-defined. If it were not well-
defined, it would fall into at least one of the following cases:

1. There are two environments Γi and Γj , (with i, j ∈ {1..n}, i 6= j) such that
x ∈ dom(Γi) ∩ dom(Γj) and Γi(x) = Γj(x) = d. Hence we have i, j ∈ ID
and by hypothesis in [APPI] rule, x ∈ Di and x ∈ Dj . This would lead to
Di ∩Dj 6= ∅, which contradicts one of the assumptions in rule [APPI].

2. There are two environments Γi and Γj , (with i, j ∈ {1..n}, i 6= j) such that
x ∈ dom(Γi)∩dom(Γj), Γi(x) = d and Γj(x) = s. In this case we have x ∈ Di

and x ∈ Sj , which contradicts the assumption (
⋃n
i=1Di) ∩ (

⋃n
i=1 Si) = ∅.

3. There are two environments Γi and Γj , (with i, j ∈ {1..n}, i 6= j) such that
x ∈ dom(Γi)∩ dom(Γj), Γi(x) = s and Γj(x) = d. This case is similar to the
previous one.

On the other hand, we define two environments ΓR and ΓR′ as follows:

ΓR = [y : r | y ∈ sharerec(ai, e′)− {ai}, i ∈ {1..n}, cdm?(ti)]
ΓR′ = [y : r | y ∈ R′]

and let Γ ′′ = ΓR+Γ ′. There are no common variables in the domains of ΓR and
Γ ′ and hence Γ ′′ is well-defined. Indeed, the definition of ΓR does not include
the ai variables and the identifiers g and r which belong to the domain of Γ ′.

From the way in which the Γ ′′ environment has been built, similar to the
rule of the type system [APP], it follows that Γ ′′ ` e′ : s. We now define

30

Γ = ΓR′ ⊗Γ ′′. It is well-defined by Lemma 1. From the fact that Γ ′′ ` e′ : s and
via the [EXTS] rule we can infer Γ ` e′ : s and hence property (1) holds. In the
same way, property (2) is quite straightforward to prove:

Γ (x) = d⇔ ∃i ∈ {1..n}. x ∈ dom(Γi) ∧ Γi(x) = d
⇔ ∃i ∈ ID. x = ai
⇔ ∃i ∈ {1..n} . x ∈ Di

⇔ x ∈ D

Γ (x) = s⇔ ∃i ∈ {1..n}. x ∈ dom(Γi) ∧ Γi(x) = s
⇔ ∃i ∈ IS . x = ai
⇔ ∃i ∈ {1..n} . x ∈ Si
⇔ x ∈ S

Γ (x) = r ⇔ x ∈ dom(ΓR) ∨ x ∈ dom(ΓR′)
⇔ (∃i ∈ {1..n}. x ∈ sharerec(ai, e′)− {ai} ∧ ai ∈ Di) ∨ x ∈ R′
⇔ x ∈ R ∪R′

e′ ≡ let x1 = e1 in e2

Let us assume that x1 /∈ D2, which corresponds to the use of rule [LET1] of
the type system.

Γ1 ` e1 : s1 Γ2 + [x1 : s1] ` e2 : s

Γ1 �fv(e2) Γ2 ` let x1 = e1 in e2 : s
[LET1]

e1 `inf (D1, R1, S1, N1) x1 /∈ R2 (D1 ∪R1) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) N = (N1 − (D2 ∪R2 ∪ S2)) ∪N2

(∅, ∅, N1 ∩ (D2 ∪R2 ∪ S2)) `check e1 (∅, ∅, (S1 ∪ {x1}) ∩N2) `check e2
let x1 = e1 in e2 `inf ((D1 ∪D2)− {x1}, R1 ∪ (R2 −D1), ((S1 −N2) ∪ S2)− ({x1} ∪D2 ∪R2), N − {x1})

[LETI]

e1 `inf (D1, R1, S1, N1) Rp ∩ S1 = ∅ ∧ ((Dp ∩N1) ∪Rp ∪R′′p) ∩ fv(e2) = ∅
e2 `inf (D2, R2, S2, N2) ∃z ∈ Dp ∩N2 . x1 ∈ sharerec(z, e2)⇒ x1 ∈ D2

(Dp ∩N1, Rp, Sp ∩N1) `check e1 (Dp ∩N2, Rp ∪ (R′p −D2), Sp ∩N2) `check e2
where R′p = {y ∈ ((Dp ∩N1) ∪D1) ∩ sharerec(z, e2) | z ∈ Dp ∩N2} −N2

R′′p = {y ∈ sharerec(z, e1) | z ∈ Dp ∩N1}
(Dp, Rp, Sp) `check let x1 = e1 in e2

[LETC]

We have:

e1 `inf (D1, R1, S1, N1)
(D′1, R

′
1, S
′
1) `∗check e1

e2 `inf (D2, R2, S2, N2)
(D′2, R

′
2, S
′
2) `∗check e2

By induction hypothesis there are two environments Γ1 and Γ2 that satisfy:

Γ1 ` e1 : s1 Γ2 ` e2 : s2

Let Γ ′2 = Γ2 � (dom(Γ2)− {x1}) and Γ = Γ1 �L Γ ′2, where L = fv(e2). The
environment Γ is well-defined if ∀x ∈ dom(Γ1). unsafe?(Γ1(x)) ⇒ x /∈ L holds.
We shall show this: Let x a variable from the domain of Γ1 such that x ∈ L. The
assumption (D1 ∪R1) ∩ fv(e2) in [LETI] prevents x from occurring in D1 ∪R1.
Moreover, the assumption ((Dp∩N1)∪Rp∪R′′p)∩ fv(e2) = ∅ in [LETC] prevents
x from occurring in D′1 ∪R′1. From the fact that x /∈ D1 ∪D′1 and by induction
hypothesis we have Γ1(x) 6= d. Similarly, from the fact that x /∈ R1 ∪R′1 and by
induction hypothesis we have Γ1(x) 6= r. Gathering these two results together,
we have ¬unsafe?(Γ1(x)).

31

Thus Γ is well-defined. Now it has to be proven that Γ ′2 + [x1 : s1] ` e2 : s.
If x1 /∈ dom(Γ2) then Γ ′2 = Γ2. In this case we obtain Γ ′2 ` e2 : s and it is only
necessary the [EXTS] rule in order to get Γ ′2 + [x1 : s1] ` e2 : s. If x1 ∈ dom(Γ2)
we have to prove that Γ2(x1) = s. We proceed by contradiction: Let us assume
that Γ2(x1) = d. It follows that x1 ∈ D2 ∪ D′2. Since we assume that x1 /∈ D2

([LET1] in the type system), we have x1 ∈ D′2. That implies x1 ∈ N2 (by Lemma
1 (5)). Hence the `check on e2 in [LETI] rule forces x1 to belong to S′2. This
contradicts the property D′2 ∩S′2 = ∅ (Lemma 1 (4)). Now we shall assume that
Γ2(x1) = r: this would imply x1 ∈ R2 ∪ R′2. By the assumption in [LETI] we
establish that x1 /∈ R2, and by simple inspection of the `check calls in [LETI]
and [LETC], it can be proven that x1 /∈ R′2, so Γ2(x1) 6= r. The remaining case
is that Γ2(x1) = s.

We have got Γ ` e′ : s and hence the property (1) holds. We shall now prove
the property (2a) considering each implication separately. Let x ∈ scope(e′).
This implies that x 6= x1:

• x ∈ D ∪D′ ⇒ Γ (x) = d
If x ∈ D, then by definition of D we have x ∈ D1 ∨ x ∈ D2.
If x ∈ D′, then x ∈ N . From the definition of N it follows that x ∈ N1 ∨ x ∈
N2 and hence x ∈ D′1 ∨ x ∈ D′2.
If x ∈ D1 ∪ D′1 we have Γ1(x) = d by induction hypothesis and hence
Γ (x) = (Γ1 �L Γ2)(x) = Γ1(x) = d
On the other hand, if x ∈ D2∩D′2 we have Γ2(x) = d by induction hypothesis
and hence Γ (x) = (Γ1 �L Γ2)(x) = Γ2(x) = d (since it is not possible
unsafe?(Γ1(x)), as Γ1 �L Γ2 would not be defined).

• Γ (x) = d⇒ x ∈ D ∪D′
If Γ (x) = Γ1(x) = d then x ∈ D1 ∪D′1 and hence x ∈ D ∪D′.
If Γ (x) = Γ2(x) = d then x ∈ D2 ∪D′2 and hence x ∈ D ∪D′.

We have completed the proof for (2a). We shall prove now (2b):

• x ∈ S ∪ S′ ⇒ Γ (x) = s
First we assume that x ∈ S. We have x ∈ (S1 −N2) ∪ S2 and x /∈ D2 ∪R2.
If x ∈ S1 but x /∈ N2 from the induction hypothesis it follows that Γ1(x) = s.
In order to prove (Γ1 �L Γ2)(x) = Γ1(x) = s it is enough to prove that x
cannot occur in Γ2 with an unsafe type. Indeed:
• If Γ2(x) = d then x ∈ D2 ∪D′2, which is not possible, since x /∈ D2 ∪N2.
• If Γ2(x) = r then we have x ∈ R2 ∪ R′2. Since x /∈ R2, it holds that
x ∈ R′2. The occurrence of x in R′2 has its source in a `check call on e2 in
[LETC]. Thus we have x ∈ R′ ∪R′p. It is not possible that x ∈ R′, since
R′ ∩ S = ∅ holds by Lemma 1 (7). It is not possible that x ∈ R′p, since
this would imply that x ∈ N1 ∪D1, which contradicts Lemma 1 (1).

If x ∈ S2 then we have Γ2(x) = s by induction hypothesis. This implies that
x ∈ fv(e2). Since the Γ environment is well defined, it is not possible under
these conditions that x has an unsafe type in Γ1. Thus Γ (x) = (Γ1�

LΓ2) = s.
Now we shall assume that x ∈ S′. By Lemma 1 (5) we have x ∈ N ⊆ N1∪N2.
If x ∈ N1 then x ∈ S′1. By induction hypothesis we have Γ1(x) = s. To prove
Γ (x) = (Γ1 �L Γ2)(x) = s we have to ensure that x does not have an unsafe
type in Γ2:
• If Γ2(x) = d then x ∈ D2 ∪D′2. However, it is not possible that x ∈ D2

since we would have x ∈ D, which contradicts the disjointness of D and
N . It is not possible that x ∈ D′2, since it would imply that x ∈ D′,
contradicting the disjointness of D′ and S′.

32

• If Γ2(x) = r then x ∈ R2 ∪R′2. It is not possible that x ∈ R2 since that
would imply x ∈ R ∪D and the sets D and R are disjoint from N . The
case x ∈ R′2 is not possible: it would lead to x ∈ R′∪R′p. If x ∈ R′ then R′

and S′ would not be disjoint. If x ∈ R′p we have x ∈ D′ ∪D1 ⊆ D′ ∪D.
However, it holds that D′ ∩ S′ = ∅ and D ∩ N = ∅, which lead to a
contradiction.

If x ∈ N2 then x ∈ S′2 and, by the induction hypothesis, Γ2(x) = s. Since
x ∈ fv(e2) and Γ is well-defined, the variable x cannot occur in Γ1 with an
unsafe type. Hence Γ (x) = (Γ1 �L Γ2)(x) = s.

• Γ (x) = s⇒ x ∈ S ∪ S′
If Γ (x) = Γ1(x) = s then x ∈ S1 ∪ S′1. It can be proven that x /∈ D2 and
x /∈ R2, since Γ2(x) 6= d, r. If x ∈ S′1 then we have x ∈ S′. On the other
hand, if x ∈ S1 a case distinction is made:
• If x /∈ N2 then x ∈ S.
• If x ∈ N2 then x ∈ N ⊆ D′ ∪ R′ ∪ S′. It is not possible that x ∈ D′,

since that would imply Γ (x) = d. It is not possible that x ∈ R′ since it
implies that Γ (x) = r (see below). Hence we have x ∈ S′. (call to `check
in [LETI]).

If Γ (x) = Γ2(x) = s then x ∈ S2 ∪ S′2. Moreover it holds that x /∈ D2 and
x /∈ R2, since Γ2(x) 6= d, r. Under these conditions, if x ∈ S2 then x ∈ S. In
addition, if S′2 then x ∈ S′.

Finally we shall prove (2c):

• x ∈ R ∪R′ ⇒ Γ (x) = r
Let x ∈ R ⊆ R1 ∪ R2. If x ∈ R1 then Γ1(x) = r and hence, Γ (x) =
(Γ1 �L Γ2)(x) = r. If x ∈ R2 then Γ2(x) = r. In this case it holds that
Γ (x) = r only if x does not have d type in Γ1. However, this is not the case,
since Γ is well-defined.
On the other hand, let x ∈ R′. Hence x /∈ D1; otherwise we would have
x ∈ D, and a contradiction with R′ ∩D = ∅ (Lemma 1 (7)). Thus we have
x ∈ R′1 and by induction hypothesis, Γ1(x) = r. Hence we have Γ (x) = r.

• Γ (x) = r ⇒ x ∈ R ∪R′
If Γ (x) = Γ1(x) = r then x ∈ R1 ∪R′1 and hence x ∈ R ∪R′.
If Γ (x) = Γ2(x) = r then Γ1(x) 6= d, which implies that x /∈ D1. On the
other hand, the induction hypothesis establishes that x ∈ R2∪R′2. If x ∈ R′2
then x ∈ R′ ∪ R′p. It is not possible that x ∈ R′p, as it would imply that
x ∈ D′ ∪D1 ⊆ D′ ∪D and hence we would have Γ (x) = d. Thus x ∈ R′.

For the case x ∈ D2 ([LET2] in the type system) the reasoning is similar.
Now we have to prove the assumption Γ ′2 + [x1 : d1] ` e2 : s of [LET2]. However,
since we have x ∈ D2 it holds that x ∈ dom(Γ2) and Γ2(x) = d. Thus the
assumption holds.

e′ ≡ case z of C xij
ni → ei

n

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.sini → ρ→ T @ρm � σi
Γ ≥case z of Ci xij

ni→ei
n [z : T@ρm] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (z))
∀i ∈ {1..n}.Γ + [xij : τij]

ni ` ei : s

Γ ` case z of Ci xijni → ei
n

: s
[CASE]

33

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

⋃ni

j=1{xij}
∀i ∈ {1..n} . Reci =

⋃ni

j=1{xij | j ∈ RecPos(Ci)}

type(x) =

d if x ∈ D
r if x ∈ R
s if x ∈ S
n e. o. c.

def (tni=1(Di, Ri, Si, Ni, Pi))
∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

(D,R, S,N) = tni=1(Di, Ri, Si, Ni, Pi)

N ′ =
{
N if x ∈ D ∪R ∪ S
N ∪ {x} if x 6∈ D ∪R ∪ S

∀i ∈ {1..n} . ((D ∪D′i) ∩Ni, R ∪ ((R′i ∪R′′i ∪R′′′i)−Di), (S ∪ S′i) ∩Ni) `check ei

where D′i = ∅ R′i =
{

Reci if type(x) = d
∅ otherwise S′i =

Pi − Reci if type(x) = d
Pi −R′′i if type(x) = r
Pi if type(x) = s
∅ otherwise

R′′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni}
R′′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ (D ∪D′i) ∩Ni} − (D ∩Ni)
R′′i ∩ (Si ∪ S′i) = ∅

case x of Ci xijni → ei
n `inf (D,R, S,N ′)

[CASEI]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

⋃ni

j=1{xij}
∀i ∈ {1..n} . Reci =

⋃ni

j=1{xij | j ∈ RecPos(Ci)}
D =

⋃n
i=1(Di − Pi)

type(x) =

d if x ∈ Dp

r if x ∈ Rp
s if x ∈ Sp
n otherwise

x ∈ Dp ∪Rp ∪ Sp ⇒ ∀i ∈ {1..n} . def (inh(type(x), Di, Ri, Si, Pi,Reci))

∀i ∈ {1..n} . ((Dp ∪Dpi
) ∩Ni, (Rp ∪Rpi

∪R′pi
∪R′′pi

)−Di, (Sp ∪ Spi
) ∩Ni) `check ei

where Dpi = ∅ Rpi =
{

Reci if type(x) = d
∅ otherwise Spi =

Pi − Reci if type(x) = d
Pi −R′pi

if type(x) = r
Pi if type(x) = s
∅ otherwise

R′pi
= {y ∈ Pi ∩ sharerec(z, ei) | z ∈ Dp ∩Ni}

R′′pi
= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∩Ni)

R′pi
∩ (Si ∪ Spi

) = ∅ ∧ Rp ∩ Si = ∅

(Dp, Rp, Sp) `check case x of Ci xijni → ei
n [CASEC]

Let us define Γ as follows:

Γ = [x : d | x ∈ D ∪D′]
+ [x : r | x ∈ R ∪R′]
+ [x : s | x ∈ S ∪ S′]

First we shall prove that Γ is well-defined. We will show that the sets (D∪D′),
(R∪R′) and (S∪S′) are pairwise disjoint. We show that (D∪D′)∩(R∪R′) = ∅.
Indeed, by Lemma 1 (1) we have D∩R = ∅. On the other hand, as D′ ⊆ N and
N∩R = ∅, we have D′∩R = ∅. Moreover D∩R′ = ∅ and D′∩R′ = ∅ follow from
the properties (7) and (4) from Lemma 1. The equality (R′ ∪R) ∩ (S ∪ S′) = ∅
is proven in a similar way. With respect to (D ∪D′) ∩ (S ∪ S′) = ∅, this follows
from Lemma 1 (1, 6).

Now we prove that Γ ≥e′ [z : s]. On one hand we have z ∈ dom(Γ), since z
occurs free in e′ and by Lemma 1 (5) we have either z ∈ D or z ∈ R or z ∈ S or
z ∈ N ⊆ D′ ∪R′ ∪ S′. Moreover, in each case it holds that Γ (z) ≥ s. Moreover,
putting the properties (3) and (6) of Lemma 1 together we have:⋃

z∈D∪D′
sharerec(z, e′) ⊆ D ∪R ∪D′ ∪R′

34

Thus every variable sharing a recursive child of another with d type in Γ has
an unsafe type in this environment. The three conditions for ≥e′ are satisfied
and hence Γ ≥e′ [z : s].

Now we shall prove that Γ ′i ` ei : s, where Γ ′i = Γ + [xij : τij]
ni and we

shall find the corresponding τij in order to satisfy the inh predicates in rule
[CASE]. We know by the induction hypothesis that there exists a Γi which
satisfies Γi ` ei : s. If we assign ∀x ∈ dom(Γi). Γ ′i (x) = Γi(x) we will be able to
infer, by means of the rules [EXTS] and [EXTD] that Γ ′i ` ei : s.

Let x ∈ dom(Γi) ∩ dom(Γ ′i) and let us assume that x ∈ Pi, that is, x = xij
for some j = {1..ni}. According to the type of the case discriminant we have
the following cases:

• z ∈ D
First we assume that x ∈ Pi−Reci. From the inh predicate in rule [CASEI] it
follows that x /∈ Di and x /∈ Ri. Thus we have either x ∈ Si or x ∈ Ni. In the
latter case the only possibility is x ∈ S′i since D′i = ∅ and R′i only contains
variables from Reci (otherwise, the inh predicate in [CASEC] would not be
defined). Since x ∈ Si∪S′i, we have Γi(x) = s by induction hypothesis. Thus
we are forced to assign τij = s in Γ ′i , so the inh(s, s, Γ (z)) in rule [CASE]
holds, since Γ (z) has d type and it holds that ¬utype?(Γ ′(x), Γ (z)), since
x /∈ Reci.
Now we assume x ∈ Reci. The inh predicate specifies that x /∈ Di and x /∈ Si.
The remaining possibility is that x ∈ Ri or x ∈ Ni. In the latter case we
have x ∈ R′i, since D′i is empty and S′i does not contain variables from Reci.
Since x ∈ Ri ∪ R′i and hence Γi(x) = r we can assign τij = r so as to have
Γ ′(x) = r. Thus the inh predicate of rule [CASE] holds for the variable x.

• z ∈ R
The use of inh in [CASEI] forces x not to belong to Di. On the other hand we
have D′i = ∅ and S′i = Pi −R′pi

. The remaining possibilities are x ∈ Ri ∪R′i
and x ∈ Si ∪ S′i.
If x ∈ Ri ∪ R′i then Γi(x) = r and we can assign τij = r. Thus Γ ′i (x) = r
allows the inh predicate to verify.
If x ∈ Si ∪ S′i then Γi(x) = s and we can assign τij = s. Hence the inh
predicate also holds for x.

• z ∈ S
In this case we have x /∈ Di and x /∈ Ri, and if x ∈ Ni then x ∈ S′i. The
membership x ∈ R′i cannot hold, since it implies x ∈ R′′i and z would share
a recursive child of a variable belonging to D ∪D′i, which contradicts z ∈ S.
Thus we have x ∈ Si ∪ S′i and by induction hypothesis, Γi(x) = s. We can
assign τij = s and hence the inh predicate of [CASE] rule is satisfied.

• z ∈ N
We do a case distinction according to the membership of z: z ∈ D′, z ∈ R′
or z ∈ S′. The proof for each case is similar to the ones above. In this case
the inh of rule [CASEC] and the definitions of Dpi , Rpi and Spi force the
variable x to have an specific type.

Now we assume that x /∈ Pi. If x ∈ Di then Γi(x) = d by induction hy-
pothesis. In this case, from the definition of t it follows that x ∈ D and hence
Γ ′i (x) = Γ (x) = d. The cases x ∈ Ri and x ∈ Si are similar. If x ∈ Ni then
another case distinction is made: x ∈ D′i, x ∈ S′i or x ∈ R′i. In the first case,
Γi(x) = d and since x ∈ D′i ∩Ni we obtain x ∈ D′ and hence Γ ′i (x) = Γi(x) = d.
Again, the two remaining cases are similar.

35

As we have seen, Γ ` e′ : s can be inferred by the [CASE] rule of the type
system and hence (1) holds. Finally, (2a), (2b) and (2c) hold trivially by the
definition of Γ .

e′ ≡ case! z of C xij
ni → ei

n

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. sini → ρi
li → T @ρm � σi

R = sharerec(z, case! z of Ci zijni → ei
n
)− {z} ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρm)

∀z ∈ R ∪ {z}, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [z : T #@ρm] + [xij : tij]
ni ` ei : s

ΓR = {y : danger(type(y)) | y ∈ R}

ΓR ⊗ Γ + [z : T !@ρm] ` case! z of Ci xijni → ei
n

: s
[CASE!]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

⋃ni

j=1{xij}
∀i ∈ {1..n} . Reci =

⋃ni

j=1{xij | j ∈ RecPos(Ci)}
R = sharerec(z, case! z of Ci xijni → ei

n
)

L =
⋃n
i=1 fv(ei)

def (tni=1(Di, Ri, Si, Ni, Pi))
∀i ∈ {1..n} . def (inh!(Di, Ri, Si, Pi,Reci))

R ∩ L = ∅ ∧ type(z) = T@ρ

(D,R′, S,N) = tni=1(Di, Ri, Si, Ni, Pi)

∀i ∈ {1..n} . ((D ∪ Reci) ∩Ni, R ∪R′ ∪ (R′i ∪R′′i)−Di, (S ∪ (Pi − Reci)) ∩Ni) `check ei
where R′i = {y ∈ Pi ∩ sharerec(z, ei) | z ∈ (D ∪ Reci) ∩Ni} − (Reci ∩Ni)

R′′i = {y ∈ D ∩ sharerec(z, ei) | z ∈ D ∩Ni} − (D ∩Ni)
R′i ∩ (Pi − Reci) = ∅ ∧ {y ∈ sharerec(z, ei) | z ∈ Reci} ∩ (Pi − Reci) = ∅

case! z of Ci xijni → ei
n `inf (D ∪ {z}, (R ∪R′ − {z}), S,N)

[CASE!I]

∀i ∈ {1..n} . ei `inf (Di, Ri, Si, Ni)
∀i ∈ {1..n} . Pi =

⋃ni

j=1{xij}
∀i ∈ {1..n} . Reci =

⋃ni

j=1{xij | j ∈ RecPos(Ci)}
D =

⋃n
i=1(Di − Pi)

∀i ∈ {1..n} . {y ∈ (Pi − Reci) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} = ∅
∀i ∈ {1..n} . (Dp ∩Ni, Rp ∪ (R′pi

−Di), Sp ∩Ni) `check ei
where R′pi

= {y ∈ (Dp ∪D) ∩ sharerec(z, ei) | z ∈ Dp ∩Ni} − (Dp ∪Ni)

(Dp, Rp, Sp) `check case! z of Ci xijni → ei
n [CASE!C]

We shall define Γ as follows:

Γ = [x : d | x ∈ D ∪D′]
+ [x : r | x ∈ R ∪R′]
+ [x : s | x ∈ S ∪ S′]

In this case it holds that z ∈ D and hence Γ (z) = d. Let Γ0 be the environ-
ment resulting from the removal of the binding [z : d] from Γ :

Γ0 = Γ � (dom(Γ)− {z})

First we shall prove that ∀y ∈ sharerec(z, e′) the property ∀i ∈ {1..n}. y /∈
fv(ei) holds. This is enforced by the assumption R ∩ L = ∅ in [CASE!I] rule.

Now we shall prove that Γ ′i ` ei : s, where Γ ′i = Γ0 + [z : r] + [xij : tij]
ni . We

assume that Γi ` ei : s for some Γi. We have to prove that Γ ′i (x) = Γi(x) for all
x ∈ dom(Γi):

Let x ∈ dom(Γi). If x ∈ Pi and x occurs free in ei the following case distinc-
tion is made:

• x ∈ Reci
By the inh! in [CASE!I] we know that x /∈ Ri, x /∈ Si. If x ∈ Ni then x ∈ D′i
holds, by the `check in [CASEI].

36

Hence we have x ∈ Di ∪D′i. The induction hypothesis allows us to establish
Γi(x) = d. From the assignment tij = d it follows that Γi(x) = Γ ′i (x) = d
and that the conditions enforced by the inh! of [CASE!] rule in the type
system hold.

• x ∈ Pi − Reci
The proof is similar to the case above. In this case we have x ∈ Si ∪ S′i and
Γi(x) = Γ ′i (x) = s.

On the other hand, if x ∈ Pi but x /∈ fv(ei), the environment Γi can be
extended via de [EXTS] and [EXTD] rules in order to include the xij occurring
in Γ ′i . The addition of a condemned variable by means of [EXTD] involves the
addition of all variables sharing a recursive descendant of it. However, the con-
dition {y ∈ sharerec(z, ei) | z ∈ Reci} ∩ (Pi − Reci) = ∅ in [CASEI] avoids a
conflict with nonrecursive patterns whose type is safe.

The case in which x /∈ Pi the reasoning is the same to the one corresponding
one to the nondestructive case. Properties (2a), (2b) and (2c) hold trivially by
the definition of Γ .

A.3 Recursive definitions. Fixed point

The Theorem 2 above excludes recursive function definitions. Now we shall ex-
tend it to include them. The main problem to deal with is the existence of a
fixed point in the successive algorithm iterations.

Firstly, a partial order over signatures is defined. Let f xi
n @ rj

l = e
a function definition. A signature corresponding to that definition is a tuple
(ID, IR, IS , IN), where IR = ∅, ID ∪ IS ∪ IN = {1..n}, and ID, IS and IN are
pairwise disjoint.

Definition 1. Let v be a partial order defined over signatures as follows:

(ID, ∅, IS , IN) v (I ′D, ∅, I ′S , I ′N)⇔def ID ⊆ I ′D ∧
ID ∪ IS ⊆ I ′D ∪ I ′S ∧
IN ⊇ I ′N

Trivially it holds that v is reflexive and transitive. The antisymmetry prop-
erty can be proven from the fact that ID, IS and IN are pairwise disjoint. Given a
function definition f xin @ rj

l = e, the set of possible signatures with the partial
order v constitute a finite lattice whose bottom element is ⊥ = (∅, ∅, ∅, {1..n})

The v order can be extended to function environments Σ as follows: We
have Σ v Σ′ iff dom(Σ) = dom(Σ′) and for all function symbol g ∈ dom(Σ) ∩
dom(Σ′):

Σ ` g : S ∧ Σ′ ` g : S′ ⇒ S v S′

We shall use the e `Σinf (D,R, S,N) notation where necessary in order to
specify that the inference algorithm returns (D,R, S,N) for the expression e
under a function environment Σ.

Lemma 3. Let f xin @ rj
l = e be a function definition and Σ, Σ′ two function

environments such that Σ v Σ′. If the algorithm has e `Σinf (D,R, S,N) with
the function environment Σ and it has e `Σ′inf (D′, R′, S′, N ′) with the function
environment Σ′, then:

37

Fig. 10. Situation in which N ⊂ N ′

1. D ∪R ⊆ D′ ∪R′
2. D ∪R ∪ S ⊆ D′ ∪R′ ∪ S′
3. N ⊇ N ′

Proof. By structural induction on e.

e ≡ c e ≡ x e ≡ x@r e ≡ x! e ≡ C ai
n @r

It holds trivially, since the result (D,R, S,N) does not depend on Σ.

e ≡ g ain @rj l

Let Σ ` g : (ID, ∅, IS , IN) and Σ′ ` g : (I ′D, ∅, I ′S , I ′N). From ID ⊆ I ′D it
follows that D ⊆ D′ and R ⊆ R′. Hence we have D ∪D′ ⊆ R ∪R′.

Moreover, since ID ∪ IS ⊆ I ′D ∪ I ′S it holds that D ∪ S ⊆ D′ ∪ S′. Hence
D ∪R ∪ S ⊆ D′ ∪R′ ∪ S′.

We shall prove by contradiction that N ⊇ N ′. Let us assume that there exists
an ai such that ai /∈ N but ai ∈ N ′. From the set inclusion IN ⊇ I ′N it follows
that

⋃n
i=1Ni ⊇

⋃n
i=1N

′
i and hence the only possibility is that

⋃n
i=1 Si ⊃

⋃n
i=1 S

′
i.

This is shown in Figure 10.
Let ai ∈

⋃n
i=1N

′
i , that is, i ∈ I ′N . If ai ∈

⋃n
i=1 Si but ai /∈

⋃n
i=1 S

′
i we

have i ∈ IS , but i /∈ I ′S , from which it follows that ai ∈ I ′D by the property
ID ∪ IS ⊆ I ′D ∪ I ′S . Since I ′D and I ′N are disjoint, it holds that i /∈ I ′N .

e ≡ let x1 = e1 in e2

Let us assume the following results:

e1 `Σinf (D1, R1, S1, N1) e2 `Σinf (D2, R2, S2, N2)

e1 `Σ
′

inf (D′1, R
′
1, S
′
1, N

′
1) e2 `Σ

′

inf (D′2, R
′
2, S
′
2, N

′
2)

38

Property (1) is proven as follows:

D ∪R
= ((D1 ∪D2)− {x1}) ∪ (R1 ∪ (R2 −D1))
= (D1 ∪D2 ∪R1 ∪R2)− {x1} since x1 /∈ R1 and x1 /∈ R2

⊆ (D′1 ∪D′2 ∪R′1 ∪R′2)− {x1} by I.H.
= ((D′1 ∪D′2)− {x1}) ∪ (R′1 ∪ (R′2 −D′1))
= D′ ∪R′

In a similar way we show the property (2):

D ∪R ∪ S
= ((D1 ∪D2)− {x1}) ∪ (R1 ∪ (R2 −D1)) ∪ (((S1 −N2) ∪ S2)− ({x1} ∪D2 ∪R2))
= ((D1 ∪D2) ∪ (R1 ∪ (R2 −D1)) ∪ (((S1 −N2) ∪ S2)− (D2 ∪R2)))− {x1}
= (D1 ∪D2 ∪R1 ∪R2 ∪ (S1 −N2) ∪ S2)− {x1}
⊆ (D′1 ∪D′2 ∪R′1 ∪R′2 ∪ (S′1 −N ′2) ∪ S′2)− {x1}
= ((D′1 ∪D′2)− {x1}) ∪ (R′1 ∪ (R′2 −D′1)) ∪ (((S′1 −N ′2) ∪ S′2)− ({x1} ∪D′2 ∪R′2))
= D′ ∪R′ ∪ S′

In order to prove the property (3), it is only necessary the induction hypoth-
esis and the property (2).

e ≡ case x of Ci xijni → ei
n

We shall assume that the algorithm has for every i ∈ {1..n}:

ei `Σinf (Di, Ri, Si, Ni) ei `Σ
′

inf (D′i, R
′
i, S
′
i, N

′
i)

Applying the induction hypothesis:

D ∪R =
n⋃
i=1

(Di − Pi) ∪
n⋃
i=1

(Ri − Pi) ⊆
n⋃
i=1

(D′i − Pi) ∪
n⋃
i=1

(R′i − Pi) = D′ ∪R′

And hence property (1) holds. For the remaining properties we follow a sim-
ilar reasoning.

e ≡ case! x of Ci xijni → ei
n

The proof is similar to the one corresponding to the nondestructive case.
The R′ set occurring in [CASE!I] does not affect the proof, since this set does
not depend on the function environment.

Definition 2. For any fixed function declaration f xi
n @ rj

l = e the function
F is defined over environments as follows:

Ff xi
n @ rj

l=e(Σ) = Σ [g 7→ extract(xin, D,R, S,N)] where e `Σinf (D,R, S,N)

where extract obtains the signature of the function from the corresponding
sets (D,R, S,N) and it is defined as follows:

extract(xin, D, ∅, S,N) = ({i ∈ {1..n} | xi ∈ D},
∅,
{i ∈ {1..n} | xi ∈ S},
{i ∈ {1..n} | xi ∈ N} ∪ {i ∈ {1..n} | xi /∈ D ∪ S ∪N})

39

Lemma 4. Given a definition f xi
n @ rj

l = e, the function Ff xi
n @ rj

l=e is
monotonic w.r.t. v. That is:

Σ v Σ′ =⇒ Ff xi
n @ rj

l=e(Σ) v Ff xi
n @rj

l=e(Σ
′)

Proof. We shall assume the following results from the inference algorithm:

e `Σinf (D,R, S,N) (ID, ∅, IS , IN) = extract(xin, D,R, S,N)
e `Σ′inf (D′, R′, S′, N ′) (I ′D, ∅, I ′S , I ′N) = extract(xin, D′, R′, S′, N ′)

It has to be proven that (ID, ∅, IS , IN) v (I ′D, ∅, I ′S , I ′N). By Lemma 3 it holds
that D ∪ R ⊆ D′ ∪ R′. Since R = R′ = ∅, we have D ⊆ D′ and hence ID ⊆ I ′D.
The remaining conditions for v can be easily obtained from Lemma 3.

The lemma above proves that we get a “greater” signature in each algorithm
iteration and hence, a fixpoint can be reached by Kleene’s ascending chain. This
allow us to modify the Theorem 2 so as to include recursive definitions:

Theorem 1. Let us assume that the function declaration f xi
n @ rj

l = e has
been successfully typed by the inference algorithm and let e′ be any subexpression
of e for which the algorithm has got e′ `inf (D,R, S,N) and (D′, R′, S′) `∗check e′.
Then there exists a safe type s′ and a well-formed type environment Γ such that:

1. Γ ` e′ : s
2. ∀x ∈ scope(e′) :

(a) Γ (x) = d⇔ x ∈ D ∪D′
(b) Γ (x) = s⇔ x ∈ S ∪ S′
(c) Γ (x) = r ⇔ x ∈ R ∪R′

Proof. The proof is as seen in Theorem 2. The only additional case to consider
is the one corresponding to a recursive call, that is, e′ = f xi

n @ rj
l. Let

(ID, ∅, IS , IN) the signature obtained for f . The set IN may be nonempty. For
all i ∈ {1..n} an environment Γi is defined as follows:

Γi =
{

[ai : d] if ai is a variable and ai ∈ D ∪D′
[ai : s] if ai is a variable and ai ∈ S ∪ S′

In the same way as Theorem 2, Γ ′ is defined as follows:

Γ ′ = [rj : ρj l, f : σ] +
n⊕
i=0

Γi

We shall show that Γ ′ is well-defined. Indeed, let us assume that there exists
an x ∈ dom(Γi) ∩ dom(Γj) such that Γi(x) = Γj(x) = d for some i, j ∈ {1..n}
such that i 6= j. If x ∈ D the same reasoning as in Theorem 2 may be applied in
order to get a contradiction. Moreover, it is not possible that x ∈ D′, since the
following condition of [APPC] rule prevents a parameter from occurring in two
condemned positions:

∀ai ∈ Dp. (#j : 1 ≤ j ≤ n : ai = aj) = 1

Now properties (1) and (2) can be proven in the same way as Theorem 2.

40

